04.06.2016 Views

Casella et al. - 2013 - TILLING in European Rice Hunting Mutations for Cr

Casella et al. - 2013 - TILLING in European Rice Hunting Mutations for Cr

Casella et al. - 2013 - TILLING in European Rice Hunting Mutations for Cr

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Published August 26, <strong>2013</strong><br />

RESEARCH<br />

<strong>TILLING</strong> <strong>in</strong> <strong>European</strong> <strong>Rice</strong>:<br />

Hunt<strong>in</strong>g <strong>Mutations</strong> <strong>for</strong> <strong>Cr</strong>op Improvement<br />

Laura <strong>Casella</strong>, Raffaella Greco,* Gianluca Bruschi, Barbara Wozniak, Ludovico Dreni,<br />

Mart<strong>in</strong> Kater, Stefano Cavigiolo, Elisab<strong>et</strong>ta Lupotto, and Pi<strong>et</strong>ro Piffanelli<br />

ABSTRACT<br />

Targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes<br />

(<strong>TILLING</strong>) is a powerful technique that exploits<br />

variation <strong>in</strong>duced by classic<strong>al</strong> mutagenesis<br />

<strong>for</strong> gene discovery and function<strong>al</strong> studies as<br />

well as crop improvement. Here we describe<br />

the development and v<strong>al</strong>idation of the first rice<br />

(Oryza sativa L.) <strong>TILLING</strong> plat<strong>for</strong>m of a <strong>European</strong><br />

temperate japonica accession. A tot<strong>al</strong> of 1860<br />

M 2<br />

<strong>et</strong>hyl m<strong>et</strong>hane sulfonate (EMS)-mutagenized<br />

l<strong>in</strong>es were generated <strong>in</strong> the vari<strong>et</strong>y ‘Volano’, one<br />

of the most widely cultivated <strong>European</strong> rice<br />

vari<strong>et</strong>ies representative of the tradition<strong>al</strong> It<strong>al</strong>ian<br />

high qu<strong>al</strong>ity rice. The v<strong>al</strong>idation of the <strong>TILLING</strong><br />

population was per<strong>for</strong>med by screen<strong>in</strong>g the<br />

M 2<br />

l<strong>in</strong>es <strong>for</strong> variation <strong>in</strong> four targ<strong>et</strong> genes<br />

of relevance <strong>for</strong> the improvement of Volano<br />

(SD1, Hd1, SNAC1, and BADH2, <strong>in</strong>volved<br />

<strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g plant height, flower<strong>in</strong>g time,<br />

drought tolerance, and aroma, respectively).<br />

Two <strong>in</strong>dependent mutations identified <strong>in</strong> the<br />

Green Revolution gene SD1 (semidwarf 1) were<br />

demonstrated to have a significant phenotypic<br />

effect, result<strong>in</strong>g <strong>in</strong> semidwarf progenies with an<br />

average height reduction of 21% <strong>in</strong> the plants<br />

carry<strong>in</strong>g the mutant <strong>al</strong>lele <strong>in</strong> the homozygous<br />

state. The density of one mutation every 373<br />

kb estimated <strong>in</strong> the Volano <strong>TILLING</strong> population<br />

was comparable to that previously obta<strong>in</strong>ed<br />

<strong>in</strong> rice EMS-mutagenized populations and<br />

confirmed the effectiveness of this approach <strong>for</strong><br />

targ<strong>et</strong>ed improvement of <strong>European</strong> temperate<br />

rice germplasm. Besides the v<strong>al</strong>idation of the<br />

<strong>TILLING</strong> plat<strong>for</strong>m, this work <strong>al</strong>so provides<br />

gen<strong>et</strong>ic materi<strong>al</strong> that can be directly exploited<br />

<strong>for</strong> the improvement of the Volano vari<strong>et</strong>y.<br />

L. <strong>Casella</strong>, G. Bruschi, S. Cavigiolo, and E. Lupotto, Consiglio per<br />

la <strong>Rice</strong>rca e la Sperimentazione <strong>in</strong> Agricoltura- <strong>Rice</strong> Research Unit,<br />

13100 Vercelli, It<strong>al</strong>y; R. Greco, B. Wozniak, and P. Piffanelli, <strong>Rice</strong><br />

Genomics Unit, Parco Tecnologico Padano, 26900 Lodi, It<strong>al</strong>y; L. Dreni<br />

and M. Kater, Dep. of Biosciences, Università degli Studi di Milano,<br />

via Celoria 26, <strong>2013</strong>3 Milan, It<strong>al</strong>y. The first two authors contributed<br />

equ<strong>al</strong>ly to this work. Received 18 Dec. 2012. *Correspond<strong>in</strong>g author<br />

(raffaella.greco@tecnoparco.org).<br />

Abbreviations: 2-AP, 2-ac<strong>et</strong>yl-1-pyrrol<strong>in</strong>e; BADH2, b<strong>et</strong>a<strong>in</strong>e <strong>al</strong>dehyde<br />

dehydrogenase; DIOX_N, dioxygenase N-term<strong>in</strong><strong>al</strong>; EMS, <strong>et</strong>hyl<br />

m<strong>et</strong>hane sulfonate; GA, gibberell<strong>in</strong>; GA20, gibberell<strong>in</strong> 20; GA20ox,<br />

gibberell<strong>in</strong> 20-oxidase; Hd1, Head<strong>in</strong>g date-1; MNU, N-m<strong>et</strong>hyl-Nnitrosourea;<br />

NAC, NAM, ATAF, and CUC; NAD, nicot<strong>in</strong>amide<br />

aden<strong>in</strong>e d<strong>in</strong>ucleotide; NGS, next generation sequenc<strong>in</strong>g; PCR, polymerase<br />

cha<strong>in</strong> reaction; SD1, semidwarf 1; SIFT, sort<strong>in</strong>g tolerant from<br />

<strong>in</strong>tolerant; SNAC1, Stress-responsive NAC 1; SNP, s<strong>in</strong>gle nucleotide<br />

polymorphism; <strong>TILLING</strong>, targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes.<br />

<strong>Rice</strong> is the most important food crop <strong>in</strong> the world, represent<strong>in</strong>g<br />

the ma<strong>in</strong> source of energy <strong>in</strong>take <strong>for</strong> more than one third of the<br />

world’s population. Although the majority of the glob<strong>al</strong> rice production<br />

comes from develop<strong>in</strong>g countries such as Ch<strong>in</strong>a, India, Indonesia,<br />

and Bangladesh, northern It<strong>al</strong>y plays an important role provid<strong>in</strong>g<br />

about 50% of the tot<strong>al</strong> <strong>European</strong> rice production (FAO, 2010). Most<br />

of the rice vari<strong>et</strong>ies grown <strong>in</strong> It<strong>al</strong>y belong to the temperate japonica<br />

phylogen<strong>et</strong>ic subgroup (Spada <strong>et</strong> <strong>al</strong>., 2004; Mantegazza <strong>et</strong> <strong>al</strong>., 2008;<br />

Faivre-Rampant <strong>et</strong> <strong>al</strong>., 2010; Courtois <strong>et</strong> <strong>al</strong>., 2012), characterized by<br />

a lower gen<strong>et</strong>ic diversity compared to the tropic<strong>al</strong> japonicas and the<br />

most diverse <strong>in</strong>dica group (Garris <strong>et</strong> <strong>al</strong>., 2005). Indica cultivars had a<br />

limited <strong>in</strong>fluence <strong>in</strong> <strong>European</strong> and It<strong>al</strong>ian breed<strong>in</strong>g programs ma<strong>in</strong>ly<br />

Published <strong>in</strong> <strong>Cr</strong>op Sci. 53:2550–2562 (<strong>2013</strong>).<br />

doi: 10.2135/cropsci2012.12.0693<br />

© <strong>Cr</strong>op Science Soci<strong>et</strong>y of America | 5585 Guil<strong>for</strong>d Rd., Madison, WI 53711 USA<br />

All rights reserved. No part of this periodic<strong>al</strong> may be reproduced or transmitted <strong>in</strong> any<br />

<strong>for</strong>m or by any means, electronic or mechanic<strong>al</strong>, <strong>in</strong>clud<strong>in</strong>g photocopy<strong>in</strong>g, record<strong>in</strong>g,<br />

or any <strong>in</strong><strong>for</strong>mation storage and r<strong>et</strong>riev<strong>al</strong> system, without permission <strong>in</strong> writ<strong>in</strong>g from<br />

the publisher. Permission <strong>for</strong> pr<strong>in</strong>t<strong>in</strong>g and <strong>for</strong> repr<strong>in</strong>t<strong>in</strong>g the materi<strong>al</strong> conta<strong>in</strong>ed here<strong>in</strong><br />

has been obta<strong>in</strong>ed by the publisher.<br />

2550 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


ecause of their failure to grow at northern latitudes, requir<strong>in</strong>g<br />

long-day adaptation and cold tolerance, as well as of sterility<br />

barriers (Courtois <strong>et</strong> <strong>al</strong>., 2012). Due to environment<strong>al</strong><br />

constra<strong>in</strong>ts and consumer tradition, which favor tradition<strong>al</strong><br />

risotto type rice, the It<strong>al</strong>ian rice germplasm has a narrow<br />

gen<strong>et</strong>ic basis, which may benefit from the <strong>in</strong>troduction of<br />

new sources of gen<strong>et</strong>ic variation.<br />

The targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (TILL-<br />

ING) approach, comb<strong>in</strong><strong>in</strong>g classic<strong>al</strong> mutagenesis (by chemic<strong>al</strong><br />

or physic<strong>al</strong> agents) with a high-throughput screen<strong>in</strong>g<br />

m<strong>et</strong>hod to d<strong>et</strong>ect the <strong>in</strong>duced mutations, is a powerful technology<br />

that can be used to <strong>in</strong>duce and characterize gen<strong>et</strong>ic<br />

variation. The <strong>TILLING</strong> approach was first developed <strong>in</strong><br />

Arabidopsis th<strong>al</strong>iana (L.) Heynh. (McC<strong>al</strong>lum <strong>et</strong> <strong>al</strong>., 2000) and<br />

s<strong>in</strong>ce then has been successfully used <strong>in</strong> many other plant as<br />

well as anim<strong>al</strong> species (reviewed <strong>in</strong> Kurowska <strong>et</strong> <strong>al</strong>., 2011;<br />

Rashid <strong>et</strong> <strong>al</strong>., 2011; Wang <strong>et</strong> <strong>al</strong>., 2012). Orig<strong>in</strong><strong>al</strong>ly developed<br />

<strong>for</strong> function<strong>al</strong> genomics studies, as an <strong>al</strong>ternative to<br />

transgenic approaches such as transfer DNA and transposon<br />

<strong>in</strong>sertion<strong>al</strong> mutagenesis or ribonucleic acid <strong>in</strong>terference (An<br />

<strong>et</strong> <strong>al</strong>., 2005; Alonso and Ecker, 2006; Sm<strong>al</strong>l, 2007; Krishnan<br />

<strong>et</strong> <strong>al</strong>., 2009; Gilchrist and Haughn, 2010; Kuromori <strong>et</strong><br />

<strong>al</strong>., 2009), <strong>TILLING</strong> was shown to be <strong>al</strong>so a v<strong>al</strong>uable tool<br />

<strong>in</strong> crop breed<strong>in</strong>g (Kurowska <strong>et</strong> <strong>al</strong>., 2011; Rashid <strong>et</strong> <strong>al</strong>., 2011;<br />

Wang <strong>et</strong> <strong>al</strong>., 2012). Among the various mutagenic agents,<br />

<strong>et</strong>hyl m<strong>et</strong>hane sulfonate (EMS) is ma<strong>in</strong>ly used <strong>in</strong> TILL-<br />

ING as it produces random mutations <strong>in</strong> gen<strong>et</strong>ic materi<strong>al</strong>s<br />

at a very high density (Koornneef, 2002). Thanks to its<br />

capability to create a wide spectrum of different mutations<br />

(missense, nonsense, and splice site) result<strong>in</strong>g <strong>in</strong> a diverse<br />

array of mutant <strong>al</strong>leles, EMS, <strong>in</strong> comb<strong>in</strong>ation with a TILL-<br />

ING approach, can provide a range of different phenotypes<br />

that can be useful <strong>for</strong> breed<strong>in</strong>g (Alonso and Ecker, 2006;<br />

Gilchrist and Haughn, 2005; Henikoff and Comai, 2003).<br />

Favorable mutations d<strong>et</strong>ected with<strong>in</strong> a <strong>TILLING</strong> plat<strong>for</strong>m<br />

can be rather easily <strong>in</strong>trogressed <strong>in</strong>to different gen<strong>et</strong>ic<br />

backgrounds or <strong>TILLING</strong> itself can be developed <strong>in</strong>to the<br />

gen<strong>et</strong>ic materi<strong>al</strong> of <strong>in</strong>terest, as classic<strong>al</strong> mutagenesis can be<br />

applied to any plant species (Henikoff and Comai, 2003).<br />

Sever<strong>al</strong> examples of the successful use of <strong>TILLING</strong><br />

<strong>for</strong> crop improvement have been described <strong>in</strong> different<br />

plant species. Comb<strong>in</strong><strong>in</strong>g <strong>TILLING</strong> mutation discovery<br />

and convention<strong>al</strong> breed<strong>in</strong>g, Slade <strong>et</strong> <strong>al</strong>. (2012) reported the<br />

creation of novel nontransgenic wheat [Triticum aestivum L.<br />

and Triticum turgidum L. subsp. durum (Desf.) Husn.] l<strong>in</strong>es<br />

with high levels of amylose and resistant starch content,<br />

shown to have benefici<strong>al</strong> effects <strong>for</strong> the control of obesity<br />

and diab<strong>et</strong>es. Two mutants with <strong>al</strong>tered seed oligosaccharide<br />

content (raff<strong>in</strong>ose and stachyose <strong>in</strong> the first mutant and<br />

oleic and l<strong>in</strong>oleic acid <strong>in</strong> the second), a phenotype desirable<br />

<strong>for</strong> cook<strong>in</strong>g and <strong>in</strong>dustri<strong>al</strong> oils, were identified <strong>in</strong> a soybean<br />

[Glyc<strong>in</strong>e max (L.) Merr.] <strong>TILLING</strong> collection (Dierk<strong>in</strong>g<br />

and Bilyeu, 2009). The development of a <strong>TILLING</strong> plat<strong>for</strong>m<br />

<strong>in</strong> melon (Cucumis melo L.) <strong>al</strong>lowed the identification<br />

of a mutant with a significantly improved shelf life due to<br />

an <strong>in</strong>duced <strong>al</strong>teration <strong>in</strong> an <strong>et</strong>hylene biosynth<strong>et</strong>ic enzyme<br />

(Dahmani-Mardas <strong>et</strong> <strong>al</strong>., 2010). In tomato (Solanum lycopersicum<br />

L.), <strong>TILLING</strong> led to the identification of two <strong>al</strong>lelic<br />

mutations <strong>in</strong> an <strong>et</strong>hylene receptor gene, caus<strong>in</strong>g delayed<br />

fruit ripen<strong>in</strong>g and prolonged shelf life (Okabe <strong>et</strong> <strong>al</strong>., 2011).<br />

In addition, mutants <strong>for</strong> virus resistance <strong>in</strong> melon (Ni<strong>et</strong>o <strong>et</strong><br />

<strong>al</strong>., 2007) and tomato (Piron <strong>et</strong> <strong>al</strong>., 2010), starch <strong>in</strong> potato<br />

(Solanum tuberosum L.) (Muth <strong>et</strong> <strong>al</strong>., 2008), natur<strong>al</strong> products<br />

<strong>in</strong> sorghum [Sorghum bicolor (L.) Moench] (Blomstedt <strong>et</strong> <strong>al</strong>.,<br />

2012), and nornicot<strong>in</strong>e content <strong>in</strong> tobacco (Nicotiana tabacum<br />

L.) (Julio <strong>et</strong> <strong>al</strong>., 2007) have been described.<br />

The <strong>TILLING</strong> approach was <strong>al</strong>so used to produce<br />

mutant collections <strong>in</strong> rice. The first rice <strong>TILLING</strong> plat<strong>for</strong>m<br />

was created <strong>in</strong> the <strong>in</strong>dica vari<strong>et</strong>y IR64, the most widely<br />

grown cultivar <strong>in</strong> Southeast Asia (Wu <strong>et</strong> <strong>al</strong>., 2005). This<br />

large mutagenized M 2<br />

population was obta<strong>in</strong>ed us<strong>in</strong>g different<br />

mutagenic agents but a low mutation density (1/1000<br />

kb) was observed. Improvements of both the mutagenesis<br />

procedure and the screen<strong>in</strong>g m<strong>et</strong>hod <strong>al</strong>lowed a higher<br />

mutation density (1/300 kb) <strong>in</strong> a <strong>TILLING</strong> population to be<br />

achieved <strong>for</strong> the reference rice vari<strong>et</strong>y Nipponbare (Till <strong>et</strong><br />

<strong>al</strong>., 2007). An even higher mutation density was achieved <strong>in</strong><br />

the Taiwanese japonica rice cultivar Taichung 65 by treat<strong>in</strong>g<br />

poll<strong>in</strong>ated flowers with N-m<strong>et</strong>hyl-N-nitrosourea (MNU)<br />

(Suzuki <strong>et</strong> <strong>al</strong>., 2008). However, so far no <strong>TILLING</strong> plat<strong>for</strong>m<br />

has been developed us<strong>in</strong>g gen<strong>et</strong>ic materi<strong>al</strong> adapted to<br />

grow <strong>in</strong> the temperate <strong>European</strong> pedoclimatic conditions.<br />

In this study we developed gen<strong>et</strong>ic variation <strong>in</strong> the temperate<br />

Oryza sativa subsp. japonica cultivar Volano. This vari<strong>et</strong>y<br />

was chosen as be<strong>in</strong>g representative of the tradition<strong>al</strong> It<strong>al</strong>ian<br />

high qu<strong>al</strong>ity rice. Volano is one of the most widely cultivated<br />

and important It<strong>al</strong>ian rice vari<strong>et</strong>ies, with a large <strong>in</strong>tern<strong>al</strong> mark<strong>et</strong>,<br />

and is exported worldwide as it belongs to the Arborio<br />

class, the most popular risotto type rice of the Long A gra<strong>in</strong><br />

class. In 2011, Volano was cultivated on 20.230 ha (Ente Nazion<strong>al</strong>e<br />

Risi, 2011), represent<strong>in</strong>g 17% of the nation<strong>al</strong> grow<strong>in</strong>g<br />

area of risotto type rice. Volano is a t<strong>al</strong>l vari<strong>et</strong>y (110 cm), which<br />

is a typic<strong>al</strong> trait of tradition<strong>al</strong> It<strong>al</strong>ian rice vari<strong>et</strong>ies, and has a relatively<br />

long life cycle, consist<strong>in</strong>g of 155 d from sow<strong>in</strong>g to seed<br />

ripen<strong>in</strong>g. It has a moderate resistance to diseases, such as blast<br />

and a poor yield per<strong>for</strong>mance when grown <strong>in</strong> water-limited<br />

conditions (Ente Nazion<strong>al</strong>e Risi, 2012b). Due to its v<strong>al</strong>uable<br />

gra<strong>in</strong> qu<strong>al</strong>ity characteristics, Volano is of strategic relevance<br />

<strong>for</strong> ongo<strong>in</strong>g breed<strong>in</strong>g programs and surely will take advantage<br />

from the improvement of sever<strong>al</strong> traits, <strong>in</strong>clud<strong>in</strong>g shorten<strong>in</strong>g of<br />

the plant stature and of the growth cycle and improved resistance<br />

to biotic and abiotic stress conditions.<br />

A tot<strong>al</strong> of 1860 M 2<br />

EMS mutagenized l<strong>in</strong>es were generated<br />

and used <strong>for</strong> <strong>TILLING</strong> screen<strong>in</strong>g of four agronomic<strong>al</strong>ly<br />

and qu<strong>al</strong>ity relevant targ<strong>et</strong> genes. A mutation density<br />

of 1/373 kb was estimated, show<strong>in</strong>g the effectiveness of this<br />

approach <strong>for</strong> targ<strong>et</strong>ed improvement of <strong>European</strong> temperate<br />

rice germplasm.<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2551


Table 1. Targ<strong>et</strong> genes and primers used <strong>for</strong> targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (<strong>TILLING</strong>) an<strong>al</strong>ysis of the Volano <strong>et</strong>hyl<br />

m<strong>et</strong>hane sulfonate–mutagenized population.<br />

Gene Locus † Forward primer Reverse primer Amplicon size (bp)<br />

SD1 Os01g66100 acacacgctctcaactcactcc agcagaggagaacagaggagag 1081<br />

Hd1 Os06g16370 gtccatgtggtgcaagctaaag cgtggcatgtagtaacaactaac 972<br />

SNAC1 Os03g60080 cagcgagaagcaagcaagaag agcatcgatcaccacctgttc 1142<br />

BADH2 Os08g32870 tgagaatcatgttcgggatg acaaagtcccgcacttcaga 840<br />

†<br />

Referr<strong>in</strong>g to Michigan State University v.6.1 rice genome annotation (Ouyang <strong>et</strong> <strong>al</strong>., 2007).<br />

MATERIALS AND METHODS<br />

Mutagenesis and Plant Materi<strong>al</strong><br />

Pure seed samples of O. sativa subsp. japonica ‘Volano’ (Ente Nazion<strong>al</strong>e<br />

Risi, 2012b; Supplement<strong>al</strong> Table S1) were obta<strong>in</strong>ed by the<br />

breed<strong>in</strong>g company Soci<strong>et</strong>à It<strong>al</strong>iana Sementi (Bologna, It<strong>al</strong>y).<br />

Ethyl m<strong>et</strong>hane sulfonate mutagenesis was per<strong>for</strong>med essenti<strong>al</strong>ly<br />

as described by Till <strong>et</strong> <strong>al</strong>. (2007) with the follow<strong>in</strong>g<br />

modifications. To ev<strong>al</strong>uate the toxicity and/or l<strong>et</strong>h<strong>al</strong>ity of the<br />

EMS treatment <strong>in</strong> Volano, a range of doses from 0.25 to 1.0%<br />

of EMS (liquid, product code M0880; Sigma-Aldrich) was first<br />

tested on batches of 200 seeds. Seedl<strong>in</strong>g surviv<strong>al</strong> decreased<br />

markedly at doses above 0.75%. The optimum dosage of 0.75%,<br />

which gave germ<strong>in</strong>ation rates averag<strong>in</strong>g 59% (untreated control<br />

displayed 95%), was hence applied.<br />

A tot<strong>al</strong> of 20,000 seeds were then treated <strong>in</strong> batches of 5000<br />

seeds <strong>in</strong> 1 L flasks. After a presoak<strong>in</strong>g <strong>for</strong> 18 h <strong>in</strong> 400 mL of tap<br />

water, seeds were treated with a solution of 0.75% EMS <strong>in</strong> 0.066<br />

M phosphate buffer (Na 2<br />

HPO 4<br />

and KH 2<br />

PO 4<br />

) at pH 7 <strong>for</strong> 24 h.<br />

After the EMS treatment, seeds were thoroughly washed over<br />

a period of 24 h, first with deionized water (three times <strong>for</strong> 30<br />

m<strong>in</strong>utes each time) and then with tap water (refreshed every<br />

hour <strong>for</strong> the first 5 h). All the 20,000 mutagenized seeds were<br />

dried with w<strong>et</strong> blott<strong>in</strong>g paper and directly sown <strong>in</strong> the open<br />

field. The M 1<br />

plants were grown accord<strong>in</strong>g to standard paddy<br />

rice agronomic practices and harvested at maturity. Twenty M 2<br />

seeds from each M 1<br />

fertile l<strong>in</strong>e (approximately 2000) were sown<br />

<strong>in</strong> the field the follow<strong>in</strong>g grow<strong>in</strong>g season. Of each M 2<br />

l<strong>in</strong>e one<br />

s<strong>in</strong>gle he<strong>al</strong>thy M 2<br />

plant was chosen, leaf samples were taken <strong>for</strong><br />

DNA isolation, and the plants were bagged <strong>in</strong>dividu<strong>al</strong>ly and<br />

<strong>al</strong>lowed to grow to maturity. The DNA extraction was per<strong>for</strong>med<br />

on a s<strong>in</strong>gle fertile M 2<br />

plant per l<strong>in</strong>e. From each selected<br />

M 2<br />

plant, M 3<br />

seeds were collected and stored at 4°C with 7 to<br />

10% relative humidity to ensure their long-term viability.<br />

DNA Isolation and Pool<strong>in</strong>g Strategy<br />

The DNA was isolated from lyophilized leaf tissue <strong>in</strong> 96-well<br />

plates with NucleoSp<strong>in</strong> Plant II (Macherey-Nagel GmbH &<br />

Co. KG), us<strong>in</strong>g a Tecan Freedom EVO150 liquid handl<strong>in</strong>g<br />

robot (Tecan Group Ltd.). Be<strong>for</strong>e pool<strong>in</strong>g, the concentration<br />

of each sample was d<strong>et</strong>erm<strong>in</strong>ed us<strong>in</strong>g the PicoGreen dsDNA<br />

(double-strand DNA) quantitation assay (Life Technologies<br />

Corp.) and norm<strong>al</strong>ized at a standard concentration of 2 ng μL –1 ,<br />

to ensure that each sample was equ<strong>al</strong>ly represented <strong>in</strong> the pool.<br />

Two-dimension<strong>al</strong> pool<strong>in</strong>g (eightfold <strong>for</strong> columns and 12-fold<br />

<strong>for</strong> rows) was per<strong>for</strong>med by comb<strong>in</strong><strong>in</strong>g <strong>al</strong>l samples <strong>in</strong> shared<br />

rows and <strong>al</strong>l samples <strong>in</strong> shared columns, so that each M 2<br />

l<strong>in</strong>e<br />

was represented both <strong>in</strong> the eightfold and <strong>in</strong> the 12-fold pool.<br />

Primer Design<br />

Primers <strong>for</strong> the amplification of the targ<strong>et</strong> genes were designed<br />

from the Nipponbare genome sequence us<strong>in</strong>g CODDLE<br />

(Codons Optimized to Discover Del<strong>et</strong>erious LEsions) (http://<br />

www.proweb.org/coddle; accessed 18 Dec. 2012) and Primer3<br />

(Rozen and Sk<strong>al</strong><strong>et</strong>sky, 2000). The targ<strong>et</strong> genes and the<br />

selected primer sequences are listed <strong>in</strong> Table 1. Forward and<br />

reverse primers were 5¢-end labeled with 6FAM and VIC,<br />

respectively. Labeled and unlabeled oligonucleotides were purchased<br />

from Applied Biosystems (Life Technologies Corp.).<br />

<strong>TILLING</strong> Protocol<br />

The screen<strong>in</strong>g of <strong>in</strong>duced mutations by <strong>TILLING</strong> was per<strong>for</strong>med<br />

essenti<strong>al</strong>ly as described by Till <strong>et</strong> <strong>al</strong>. (2006), with the<br />

follow<strong>in</strong>g modifications. Polymerase cha<strong>in</strong> reactions (PCRs)<br />

were per<strong>for</strong>med <strong>in</strong> a f<strong>in</strong><strong>al</strong> volume of 10 μL, us<strong>in</strong>g 2 μL of<br />

pooled genomic DNA and HotStarTaq Master Mix (Qiagen).<br />

Labeled and unlabeled primers were mixed <strong>in</strong> a 3:2 ratio, with<br />

a f<strong>in</strong><strong>al</strong> concentration of 0.4 μM. Cycl<strong>in</strong>g was per<strong>for</strong>med on a<br />

TProfession<strong>al</strong> thermocycler (Biom<strong>et</strong>ra GmbH) as follows: 95°C<br />

<strong>for</strong> 15 m<strong>in</strong>; 35 cycles of 94°C <strong>for</strong> 1 m<strong>in</strong>, melt<strong>in</strong>g temperature<br />

–5°C <strong>for</strong> 1 m<strong>in</strong>, and 72°C <strong>for</strong> 1 m<strong>in</strong> and 30 s; and 72°C <strong>for</strong> 10<br />

m<strong>in</strong>. For <strong>al</strong>l the primer pairs an anne<strong>al</strong><strong>in</strong>g temperature of 60°C<br />

was used. After amplification, PCR products were denatured<br />

and anne<strong>al</strong>ed to <strong>for</strong>m h<strong>et</strong>eroduplexes b<strong>et</strong>ween complementary<br />

strands as follows: 94°C <strong>for</strong> 10 m<strong>in</strong> and 90 cycles of 1 m<strong>in</strong> from<br />

94 to 4°C, decreas<strong>in</strong>g by 1°C per cycle. H<strong>et</strong>eroduplexes were<br />

cleaved by digestion with the mismatch-specific endonuclease<br />

ENDO1 (Seri<strong>al</strong> Gen<strong>et</strong>ics, Evry, France) (Triques <strong>et</strong> <strong>al</strong>., 2008),<br />

accord<strong>in</strong>g to the manufacturer’s <strong>in</strong>structions. The reactions<br />

were per<strong>for</strong>med <strong>in</strong> a f<strong>in</strong><strong>al</strong> volume of 30 μL and <strong>in</strong>cubated at<br />

45°C <strong>for</strong> 20 m<strong>in</strong>. The samples were then <strong>et</strong>hanol (CH 3<br />

CH 2<br />

OH)<br />

precipitated, r<strong>in</strong>sed with <strong>et</strong>hanol 70%, and resuspended <strong>in</strong> 12<br />

μL of Hi-Di Formamide and 0.05 μL of GeneScan 1200 LIZ<br />

Size Standard (Applied Biosystems, Life Technologies Corp.).<br />

To identify the cleavage products result<strong>in</strong>g from h<strong>et</strong>eroduplex<br />

mismatches, ENDO1-digested samples were loaded on an<br />

ABI3730 DNA sequencer (Applied Biosystems, Life Technologies<br />

Corp.) us<strong>in</strong>g a 96-capillary array with POP7 polymer. The<br />

output sequences were then an<strong>al</strong>yzed us<strong>in</strong>g the software GeneMapper<br />

4.0 (Applied Biosystems, Life Technologies Corp.).<br />

V<strong>al</strong>idation of <strong>Mutations</strong><br />

To confirm the mutations d<strong>et</strong>ected, PCR and convention<strong>al</strong><br />

sequenc<strong>in</strong>g were per<strong>for</strong>med on the <strong>in</strong>dividu<strong>al</strong> M 2<br />

DNA samples<br />

identified accord<strong>in</strong>g to the two-dimension<strong>al</strong> pool<strong>in</strong>g strategy.<br />

Polymerase cha<strong>in</strong> reaction amplification was per<strong>for</strong>med <strong>in</strong><br />

a f<strong>in</strong><strong>al</strong> volume of 10 μL, as previously described, except that<br />

only unlabeled primers were used and the cycl<strong>in</strong>g program<br />

2552 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


was stopped after the extension step of 10 m<strong>in</strong> at 72°C. Be<strong>for</strong>e<br />

sequenc<strong>in</strong>g, the PCR products were purified from free primers<br />

and nucleotides us<strong>in</strong>g ExoSAP-IT (GE He<strong>al</strong>thcare), follow<strong>in</strong>g<br />

the manufacturer’s <strong>in</strong>structions.<br />

Sequenc<strong>in</strong>g reactions were s<strong>et</strong> up <strong>in</strong> a f<strong>in</strong><strong>al</strong> volume of 10 μL<br />

with 10 to 40 ng of purified PCR product and a primer concentration<br />

of 0.32 μM us<strong>in</strong>g the BigDye Term<strong>in</strong>ator v3.1 Cycle<br />

Sequenc<strong>in</strong>g Kit (Applied Biosystems, Life Technologies Corp.).<br />

The follow<strong>in</strong>g conditions were used: 96°C <strong>for</strong> 1 m<strong>in</strong> and 25 cycles<br />

of 96°C <strong>for</strong> 10 sec, 55°C <strong>for</strong> 5 sec, and 60°C <strong>for</strong> 4 m<strong>in</strong>. Samples<br />

were then <strong>et</strong>hanol and <strong>et</strong>hylenediam<strong>in</strong><strong>et</strong><strong>et</strong>raac<strong>et</strong>ic acid precipitated<br />

and an<strong>al</strong>yzed on the ABI3730 DNA sequencer (Applied<br />

Biosystems, Life Technologies Corp.). The output sequences<br />

were an<strong>al</strong>yzed with the software Mutation Surveyor (SoftGen<strong>et</strong>ics,<br />

2010) to identify and v<strong>al</strong>idate the mutations.<br />

To predict wh<strong>et</strong>her a po<strong>in</strong>t mutation would have an effect at<br />

the prote<strong>in</strong> level, the targ<strong>et</strong> am<strong>in</strong>o acid sequences (semidwarf 1<br />

[SD1], Head<strong>in</strong>g date-1 [Hd1], Stress-responsive NAC 1 [SNAC1],<br />

and b<strong>et</strong>a<strong>in</strong>e <strong>al</strong>dehyde dehydrogenase [BADH2]) were an<strong>al</strong>yzed<br />

with SIFT (Sort<strong>in</strong>g Tolerant From Intolerant) (Kumar <strong>et</strong> <strong>al</strong>.,<br />

2009) to identify the regions that do not tolerate substitutions.<br />

Phenotypic Field Ev<strong>al</strong>uations<br />

<strong>Rice</strong> plants were grown <strong>in</strong> the field at the Consiglio per la<br />

<strong>Rice</strong>rca e la Sperimentazione <strong>in</strong> Agricoltura-<strong>Rice</strong> Research<br />

Unit <strong>in</strong> Vercelli (It<strong>al</strong>y). Seeds were sown directly <strong>in</strong>to dry soil<br />

and convention<strong>al</strong> submersion was established at the third to<br />

fourth leaf development<strong>al</strong> stage until 1 mo be<strong>for</strong>e harvest<strong>in</strong>g.<br />

Standard fertilization was per<strong>for</strong>med with 150 kg N ha –1 , 40<br />

kg P 2<br />

O 5<br />

ha –1 , and 150 kg K 2<br />

0 ha –1 . The tot<strong>al</strong> rate of N and<br />

K was fractionated <strong>in</strong> two times (one-third be<strong>for</strong>e sow<strong>in</strong>g and<br />

two-thirds at panicle <strong>in</strong>itiation stage) to improve the efficiency<br />

of the two fertilizers. Dur<strong>in</strong>g the grow<strong>in</strong>g season the follow<strong>in</strong>g<br />

agronomic<strong>al</strong> traits were assessed accord<strong>in</strong>g to the Internation<strong>al</strong><br />

Union <strong>for</strong> the Protection of New Vari<strong>et</strong>ies of Plants guidel<strong>in</strong>es<br />

(UPOV): tot<strong>al</strong> plant height (cm), measured at maturity on the<br />

primary tiller, consider<strong>in</strong>g the distance from the soil to the tip of<br />

the panicle (exclud<strong>in</strong>g the awn); panicle length (cm), measured at<br />

maturity on the primary tiller, consider<strong>in</strong>g the distance from the<br />

base to the tip of the panicle (exclud<strong>in</strong>g the awn); panicle type<br />

and panicle attitude <strong>in</strong> relation to stem, both assessed after ripen<strong>in</strong>g;<br />

gra<strong>in</strong> characteristics (length, width, and weight), assessed<br />

after ripen<strong>in</strong>g; and growth cycle, consider<strong>in</strong>g the days from seed<br />

sow<strong>in</strong>g till seed ripen<strong>in</strong>g. At maturity, paddy rice samples were<br />

harvested by hand and stored <strong>in</strong> controlled conditions.<br />

RESULTS<br />

Development of the Volano <strong>TILLING</strong> Population<br />

The Volano <strong>TILLING</strong> plat<strong>for</strong>m was developed us<strong>in</strong>g the<br />

chemic<strong>al</strong> mutagen EMS, shown to be effective <strong>for</strong> rice by<br />

Till <strong>et</strong> <strong>al</strong>. (2007) us<strong>in</strong>g the japonica cultivar Nipponbare,<br />

<strong>in</strong> which a density of <strong>in</strong>duced mutations of 1/300 kb was<br />

reported. However, EMS toxicity and efficiency is genotype<br />

specific and can vary greatly with<strong>in</strong> the same species and<br />

subspecies, as shown by the lower mutation rate observed <strong>in</strong><br />

the EMS-mutagenized <strong>in</strong>dica vari<strong>et</strong>y IR64 (1/1000 bp) (Wu<br />

<strong>et</strong> <strong>al</strong>., 2005). A pilot test us<strong>in</strong>g different doses of EMS was<br />

per<strong>for</strong>med on sm<strong>al</strong>l batches of Volano seeds to identify the<br />

optim<strong>al</strong> quantity of EMS to be used <strong>for</strong> large-sc<strong>al</strong>e mutagenesis<br />

(data not shown). Based on the results obta<strong>in</strong>ed, the<br />

mutagenesis was per<strong>for</strong>med us<strong>in</strong>g 0.75% EMS on 20,000<br />

seeds of Volano. The mutagenized seeds were sown directly<br />

<strong>in</strong> field conditions and the surviv<strong>in</strong>g M 1<br />

plants were grown<br />

to maturity and self-fertilized. Approximately 2000 fertile<br />

M 1<br />

l<strong>in</strong>es were harvested and 20 seeds from each l<strong>in</strong>e<br />

were planted to generate the M 2<br />

generation. Dur<strong>in</strong>g the<br />

growth of the M 2<br />

population, sever<strong>al</strong> mutant phenotypes<br />

were observed at different development<strong>al</strong> stages, rang<strong>in</strong>g<br />

from seedl<strong>in</strong>g to maturity stage. The most common mutant<br />

phenotypes were related to dwarfism, plant sterility, <strong>al</strong>teration<br />

<strong>in</strong> plant architecture, growth cycle duration, and seed<br />

morphology. Examples of the phenotypes observed are<br />

shown <strong>in</strong> Fig. 1. A summary of the phenotypic data collected<br />

<strong>for</strong> plant height, panicle length, growth cycle, and<br />

gra<strong>in</strong> size and shape is reported <strong>in</strong> Supplement<strong>al</strong> Table S2<br />

and Supplement<strong>al</strong> Fig. S1. While the majority of the M 2<br />

l<strong>in</strong>es had an average plant height of 98.6 ± 9.7 cm typic<strong>al</strong> of<br />

Volano, 2.1% of the mutagenized l<strong>in</strong>es showed a semidwarf<br />

phenotype with a reduction <strong>in</strong> height >20 cm (Supplement<strong>al</strong><br />

Fig. S1). Similarly, 1.5% of the M 2<br />

mutagenized plants<br />

showed <strong>in</strong>creased panicle length (>25 cm) with respect to<br />

that of Volano (22 cm) (Supplement<strong>al</strong> Fig. S1). Variability <strong>in</strong><br />

growth cycle duration was <strong>al</strong>so observed, with a range difference<br />

of 40 d b<strong>et</strong>ween the earliest and the latest M 2<br />

l<strong>in</strong>es.<br />

Few “early” mutants show<strong>in</strong>g a shorten<strong>in</strong>g of at least 20 d<br />

b<strong>et</strong>ween the sow<strong>in</strong>g and the ripen<strong>in</strong>g time were recorded<br />

(Supplement<strong>al</strong> Fig. S1).<br />

From the 20 M 2<br />

seeds sown <strong>for</strong> each M 1<br />

l<strong>in</strong>e, one M 2<br />

fertile and he<strong>al</strong>thy-look<strong>in</strong>g <strong>in</strong>dividu<strong>al</strong> plant was chosen<br />

<strong>for</strong> DNA isolation and <strong>for</strong> seed harvest. In tot<strong>al</strong> 1860 M 2<br />

l<strong>in</strong>es were selected to constitute the Volano mutagenized<br />

<strong>TILLING</strong> collection.<br />

D<strong>et</strong>ection of <strong>Mutations</strong> <strong>in</strong> Candidate Genes<br />

To estimate the efficiency of the EMS treatment and to<br />

ev<strong>al</strong>uate the mutation frequency <strong>in</strong> the Volano EMS-treated<br />

population, <strong>TILLING</strong> was <strong>in</strong>iti<strong>al</strong>ly per<strong>for</strong>med on DNA isolated<br />

from 1152 M 2<br />

l<strong>in</strong>es organized us<strong>in</strong>g to a two-dimension<strong>al</strong><br />

pool<strong>in</strong>g strategy. A similar strategy was successfully<br />

used to screen another rice mutagenized population (Till <strong>et</strong><br />

<strong>al</strong>., 2007), where eightfold pools were used <strong>in</strong> both dimensions.<br />

The advantage of us<strong>in</strong>g a 2D pool<strong>in</strong>g strategy is that<br />

the M 2<br />

l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g the mutation can be directly identified<br />

without sequenc<strong>in</strong>g <strong>al</strong>l the samples <strong>in</strong> the pool.<br />

For this pilot screen<strong>in</strong>g, four genes of relevance <strong>for</strong> agronomic<br />

and qu<strong>al</strong>ity traits were selected: SD1 (semidwarf 1),<br />

<strong>in</strong>volved <strong>in</strong> plant height d<strong>et</strong>erm<strong>in</strong>ation (Sasaki <strong>et</strong> <strong>al</strong>., 2002),<br />

Hd1 (Head<strong>in</strong>g date-1), which plays a cruci<strong>al</strong> role <strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g<br />

the flower<strong>in</strong>g time (Yano <strong>et</strong> <strong>al</strong>., 2000), SNAC1 (Stressresponsive<br />

NAC 1), which was shown to be a centr<strong>al</strong> player <strong>in</strong><br />

stomata guard cell closure under water stress conditions (Hu<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2553


Figure 1. Examples of morphologic<strong>al</strong> mutant phenotypes observed <strong>in</strong> the M 2<br />

generation of the Volano <strong>et</strong>hyl m<strong>et</strong>hane sulfonate–mutagenized<br />

population. (a) Abnorm<strong>al</strong> spikel<strong>et</strong> pigmentation, (b) <strong>al</strong>tered gra<strong>in</strong> shape (c and f) dwarfism, (d) early flower<strong>in</strong>g, and (e) late flower<strong>in</strong>g.<br />

<strong>et</strong> <strong>al</strong>., 2006), and BADH2, which is responsible of the typic<strong>al</strong><br />

aroma of fragrant rice (Bradbury <strong>et</strong> <strong>al</strong>., 2005).<br />

The <strong>TILLING</strong> screen<strong>in</strong>g identified three mutations<br />

<strong>in</strong> the SD1 gene, one <strong>in</strong> Hd1, four <strong>in</strong> SNAC1, and two <strong>in</strong><br />

BADH2 (Table 2). The mutations observed were predom<strong>in</strong>antly<br />

G/C to A/T transitions (90%), except <strong>for</strong> one T/C<br />

transition d<strong>et</strong>ected <strong>in</strong> the SD1 gene. These results are <strong>in</strong> l<strong>in</strong>e<br />

with other EMS mutagenesis studies reported <strong>in</strong> literature. In<br />

Arabidopsis th<strong>al</strong>iana, maize (Zea mays L.), and wheat, G/C to<br />

A/T transitions were shown to make up more than 99% of <strong>al</strong>l<br />

EMS-<strong>in</strong>duced mutations (Greene <strong>et</strong> <strong>al</strong>., 2003; Henikoff and<br />

Comai, 2003) whereas <strong>in</strong> other species such as tomato, barley<br />

(Hordeum vulgare L.), and rice, these transitions represent<br />

only 70% of the observed mutations (C<strong>al</strong>dwell <strong>et</strong> <strong>al</strong>., 2004;<br />

Till <strong>et</strong> <strong>al</strong>., 2007; M<strong>in</strong>oia <strong>et</strong> <strong>al</strong>., 2010). The only T/C transition<br />

d<strong>et</strong>ected was h<strong>et</strong>erozygous and there<strong>for</strong>e is unlikely to<br />

have been a natur<strong>al</strong>ly occurr<strong>in</strong>g mutation, consider<strong>in</strong>g the<br />

low estimated rate of spontaneous mutations (10 –7 to 10 –8 bp<br />

per generation) (Greene <strong>et</strong> <strong>al</strong>., 2003).<br />

All but one of the mutations identified occurred <strong>in</strong><br />

exons (Table 2), which may be expected consider<strong>in</strong>g that<br />

25% of the 4035 nucleotides used <strong>for</strong> the screen<strong>in</strong>g spanned<br />

<strong>in</strong>trons (Table 3). Based on the predicted effect on the<br />

prote<strong>in</strong> product, we found 70% missense, 20% silent, and<br />

10% nonsense mutations. Besides the nonsense mutation,<br />

the majority of the missense mutations d<strong>et</strong>ected (six out of<br />

seven) were likely to generate nonfunction<strong>al</strong> prote<strong>in</strong> products,<br />

accord<strong>in</strong>g to SIFT predictions (Kumar <strong>et</strong> <strong>al</strong>., 2009).<br />

The SIFT <strong>al</strong>gorithm predicts wh<strong>et</strong>her an am<strong>in</strong>o acid substitution<br />

<strong>in</strong> a prote<strong>in</strong> will have a phenotypic effect based on its<br />

degree of conservation <strong>in</strong> <strong>al</strong>ignments derived from closely<br />

related sequences. The assumption is that am<strong>in</strong>o acid residues<br />

at positions important <strong>for</strong> prote<strong>in</strong> function should be<br />

conserved throughout evolution among members of a prote<strong>in</strong><br />

family (Kumar <strong>et</strong> <strong>al</strong>., 2009). All but one (the silent<br />

base change <strong>in</strong> SNAC1 mentioned above) of the mutations<br />

identified were found to be h<strong>et</strong>erozygous (Table 3).<br />

To estimate the mutation rate, 200 bp were subtracted<br />

from the length of each screened amplicon accord<strong>in</strong>g to<br />

Greene <strong>et</strong> <strong>al</strong>. (2003), who reported the difficulty to reliably<br />

d<strong>et</strong>ect mutations close to the <strong>TILLING</strong> primers.<br />

The result<strong>in</strong>g estimated average mutation density <strong>in</strong> the<br />

2554 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


Table 2. Ethyl m<strong>et</strong>hane sulfonate–<strong>in</strong>duced mutations identified <strong>in</strong> the Volano targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (TILL-<br />

ING) population.<br />

Gene<br />

Plant<br />

identity †<br />

Nucleotide<br />

change<br />

Position<br />

from ATG ‡<br />

Position<br />

<strong>in</strong> CDS ‡<br />

Am<strong>in</strong>o acid<br />

change SIFT score § Am<strong>in</strong>o acid properties <br />

SD1 860 G/A 144 exon1 W > STOP 0.00 –<br />

1427 C/T 473 exon1 S158F 0.09 N and P ® N and NP<br />

921 T/C 802 exon2 Y234H 0.00 N and P ® B and P<br />

Hd1 782 G/A 242 exon1 C81Y 0.05 N and SP ® N and P<br />

SNAC1 1213 C/T 262 exon1 R88C 0.00 B and P ® N and SP<br />

951 C/T 316 exon1 P106S 0.03 N and NP ® N and P<br />

1523 C/T 467 exon1 S156F 0.00 N and P ® N and NP<br />

269 G/A 756 exon2 E > E – –<br />

BADH2 1133 C/T 2690 exon6 L206F 0.00 N and NP ® N and NP<br />

108 C/T 2829 <strong>in</strong>tron6 – – –<br />

†<br />

M 2<br />

l<strong>in</strong>e carry<strong>in</strong>g the mutation.<br />

‡<br />

Positions refer to the genomic sequences (Michigan State University v.6.1 rice genome annotation [Ouyang <strong>et</strong> <strong>al</strong>., 2007]). CDS, cod<strong>in</strong>g DNA sequence.<br />

§<br />

Prediction based on SIFT (sort<strong>in</strong>g tolerant from <strong>in</strong>tolerant) <strong>al</strong>gorithm (Kumar <strong>et</strong> <strong>al</strong>., 2009). An am<strong>in</strong>o acid substitution predicted to impair the prote<strong>in</strong> function has a score<br />

≤0.05; if tolerated the score is >0.05.<br />

<br />

N, neutr<strong>al</strong>; P, polar; SP, slightly polar; NP, nonpolar; B, basic.<br />

Table 3. Features of the observed mutations identified by the targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (<strong>TILLING</strong>) screen<strong>in</strong>g<br />

of the Volano <strong>et</strong>hyl m<strong>et</strong>hane sulfonate–mutagenized population.<br />

Gene<br />

Amplicon<br />

size (bp)<br />

CDS † (bp) Tot<strong>al</strong> Silent Missense Nonsense HET ‡ HOM §<br />

SD1 1081 879 3 0 2 1 3 0<br />

Hd1 972 828 1 0 1 0 1 0<br />

SNAC1 1142 951 4 1 3 0 3 1<br />

BADH2 840 350 2 1 1 0 2 0<br />

Tot<strong>al</strong> 4035 3008 10 2 7 1 9 1<br />

% 20% 70% 10% 90% 10%<br />

†<br />

CDS, cod<strong>in</strong>g DNA sequence.<br />

‡<br />

HET, h<strong>et</strong>erozygous.<br />

§<br />

HOM, homozygous.<br />

Volano <strong>TILLING</strong> population observed <strong>in</strong> the pilot screen<br />

was 1/373 kb.<br />

<strong>TILLING</strong> <strong>for</strong> <strong>Cr</strong>op Improvement<br />

of <strong>European</strong> Temperate <strong>Rice</strong><br />

Four rice genes were selected to v<strong>al</strong>idate the Volano<br />

<strong>TILLING</strong> population based on the agronomic impact of<br />

the phenotypic effect expected from the <strong>al</strong>teration and/or<br />

<strong>in</strong>activation of the encoded polypeptides.<br />

Reduction <strong>in</strong> plant height represents one of the most<br />

important go<strong>al</strong>s of the current breed<strong>in</strong>g programs to<br />

improve the field per<strong>for</strong>mance of the Volano vari<strong>et</strong>y. To<br />

identify Volano l<strong>in</strong>es with shorter stature, we screened <strong>for</strong><br />

EMS-<strong>in</strong>duced mutations <strong>in</strong> the SD1 gene, which is the<br />

most important gene of the rice Green Revolution (Sasaki<br />

<strong>et</strong> <strong>al</strong>., 2002). SD1 encodes <strong>for</strong> a gibberell<strong>in</strong> 20-oxidase, a<br />

key enzyme <strong>in</strong> the gibberell<strong>in</strong> (GA) biosynth<strong>et</strong>ic pathway,<br />

which plays a centr<strong>al</strong> role <strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g plant height by<br />

affect<strong>in</strong>g cellular and <strong>in</strong>ternode elongation. Alterations <strong>in</strong><br />

the SD1 genomic sequence and encoded prote<strong>in</strong> result <strong>in</strong><br />

decreased levels of GAs due to the defective gibberell<strong>in</strong><br />

20-oxidase (GA20ox) enzyme, which lead to plants with<br />

shorter and thicker culms, improved lodg<strong>in</strong>g resistance,<br />

and a greater harvest <strong>in</strong>dex (Monna <strong>et</strong> <strong>al</strong>., 2002; Sasaki <strong>et</strong><br />

<strong>al</strong>., 2002; Spielmeyer <strong>et</strong> <strong>al</strong>., 2002).<br />

The SD1 gene consists of three exons encod<strong>in</strong>g a<br />

prote<strong>in</strong> product of 389 am<strong>in</strong>o acids with two predicted<br />

conserved function<strong>al</strong> doma<strong>in</strong>s, a non-heme dioxygenase<br />

N-term<strong>in</strong><strong>al</strong> (DIOX_N) doma<strong>in</strong> (IPR026992) spann<strong>in</strong>g<br />

residues 64 to 168 and a oxoglutarate- and iron-dependent<br />

dioxygenase doma<strong>in</strong> (IPR005123), typic<strong>al</strong> of plant<br />

dioxygenases <strong>in</strong>volved <strong>in</strong> hormone and pigment synthesis,<br />

spann<strong>in</strong>g residues 224 to 324.<br />

The <strong>TILLING</strong> screen<strong>in</strong>g of SD1 <strong>in</strong> the Volano mutagenized<br />

population identified three <strong>in</strong>dependent po<strong>in</strong>t<br />

mutations, of which two were predicted to generate missense<br />

products and one a truncated prote<strong>in</strong> (Table 2). The<br />

C/T transition <strong>in</strong> l<strong>in</strong>e M2_1427 led to a nonsynonymous<br />

change from a polar ser<strong>in</strong>e to a nonpolar phenyl<strong>al</strong>an<strong>in</strong>e at<br />

am<strong>in</strong>o acid position 158 of the DIOX_N doma<strong>in</strong>, which<br />

accord<strong>in</strong>g to the SIFT prediction presumably does not<br />

affect prote<strong>in</strong> function (Kumar <strong>et</strong> <strong>al</strong>., 2009). Based on<br />

sequence <strong>al</strong>ignment, four residues other than ser<strong>in</strong>e were<br />

found at a correspond<strong>in</strong>g position 158 <strong>in</strong> orthologous<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2555


dioxigenases from other plant species, among which are<br />

phenyl<strong>al</strong>an<strong>in</strong>e, threon<strong>in</strong>e (less polar than ser<strong>in</strong>e), and to<br />

a lesser extent charged residues such as aspartic acid and<br />

histid<strong>in</strong>e (data not shown). This sequence diversity <strong>in</strong>dicates<br />

that this am<strong>in</strong>o acid position may not be essenti<strong>al</strong> <strong>for</strong><br />

enzyme function.<br />

In contrast, the T/C transition <strong>in</strong> l<strong>in</strong>e M2_921 caused<br />

a tyros<strong>in</strong>e®histid<strong>in</strong>e substitution at position 234 <strong>in</strong> the<br />

oxoglutarate- and iron-dependent dioxygenase doma<strong>in</strong>.<br />

The hydrophobic Tyr234 is highly conserved among plant<br />

dioxygenases and its replacement by any other residue is<br />

expected to be highly del<strong>et</strong>erious <strong>for</strong> the SD1 prote<strong>in</strong><br />

function (SIFT score: 0.00).<br />

The G/A transition <strong>in</strong> the M2_860 l<strong>in</strong>e created a premature<br />

stop codon at position 48 of the prote<strong>in</strong> sequence,<br />

generat<strong>in</strong>g a predicted nonfunction<strong>al</strong> product lack<strong>in</strong>g the<br />

majority of the polypeptide (341 am<strong>in</strong>o acid residues),<br />

<strong>in</strong>clud<strong>in</strong>g the two function<strong>al</strong> doma<strong>in</strong>s. All the M 2<br />

identified<br />

mutations <strong>in</strong> the SD1 gene were h<strong>et</strong>erozygous.<br />

To confirm the <strong>in</strong>heritance of the <strong>in</strong>duced mutations<br />

<strong>in</strong> the SD1 gene and to explore their phenotypic effect,<br />

30 M 3<br />

seeds derived from each M 2<br />

mutant l<strong>in</strong>e were sown<br />

<strong>in</strong> the field and grown to maturity. The DNA was isolated<br />

from each M 3<br />

plant and the s<strong>in</strong>gle nucleotide polymorphism<br />

(SNP) <strong>al</strong>terations confirmed by sequenc<strong>in</strong>g. For<br />

the M 2<br />

l<strong>in</strong>es 921 and 860, M 3<br />

progeny plants carry<strong>in</strong>g the<br />

correspond<strong>in</strong>g mutation <strong>in</strong> the homozygous state showed a<br />

statistic<strong>al</strong>ly significant decrease <strong>in</strong> plant height when compared<br />

to homozygous wild-type plants (Fig. 2) (Wilcoxon<br />

signed-rank test: p < 0.01). An average height reduction<br />

of 19.1 ± 2.2 cm was observed <strong>in</strong> case of M 3<br />

homozygous<br />

mutant progenies derived from M2_860 and 23.8 ± 4.7<br />

cm <strong>in</strong> case of M2_921 (Fig. 3). Furthermore, the M 3<br />

plants<br />

h<strong>et</strong>erozygous <strong>for</strong> the mutations showed an <strong>in</strong>termediate<br />

stature b<strong>et</strong>ween the homozygous mutant and the wild-type<br />

(Fig. 3) (Wilcoxon signed-rank test: p > 0.05), support<strong>in</strong>g<br />

the hypothesis that the observed phenotypes arose specific<strong>al</strong>ly<br />

from the EMS-<strong>in</strong>duced <strong>al</strong>terations <strong>in</strong> the SD1 gene.<br />

In agreement with the predicted effect of the mutation on<br />

the prote<strong>in</strong> function, the M 3<br />

mutant progeny plants derived<br />

from the l<strong>in</strong>e M2_1427 did not differ significantly <strong>in</strong> plant<br />

height from the mutagenized l<strong>in</strong>es not carry<strong>in</strong>g the mutation<br />

(Fig. 3) (Wilcoxon signed-rank test: p > 0.05).<br />

Hd1, a rice ortholog of the A. th<strong>al</strong>iana flower<strong>in</strong>g time<br />

gene CONSTANS (Putterill <strong>et</strong> <strong>al</strong>., 1995), encodes a transcription<strong>al</strong><br />

activator that promotes head<strong>in</strong>g under shortday<br />

conditions and <strong>in</strong>hibits it under long-day conditions<br />

(Yano <strong>et</strong> <strong>al</strong>., 2000). By act<strong>in</strong>g <strong>in</strong> a complex n<strong>et</strong>work with<br />

other flower<strong>in</strong>g genes, such as Hd3a, Ehd1, and Gdh7, it<br />

plays a cruci<strong>al</strong> role <strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g flower<strong>in</strong>g time variation<br />

<strong>in</strong> rice (Tsuji <strong>et</strong> <strong>al</strong>., 2011), which is a relevant trait <strong>in</strong><br />

case of growth at northern latitudes such as Europe. The<br />

Hd1 prote<strong>in</strong> conta<strong>in</strong>s an N-term<strong>in</strong><strong>al</strong> z<strong>in</strong>c f<strong>in</strong>ger doma<strong>in</strong><br />

<strong>in</strong>volved <strong>in</strong> DNA-b<strong>in</strong>d<strong>in</strong>g and a C-term<strong>in</strong><strong>al</strong> CCT doma<strong>in</strong><br />

Figure 2. Example of a “semidwarf” Volano mutant. A M 3<br />

plant<br />

from l<strong>in</strong>e M2_921 carry<strong>in</strong>g the homozygous mutation is shown (on<br />

the left) <strong>in</strong> comparison with a mutagenized plant not carry<strong>in</strong>g the<br />

mutation (on the right) at maturity stage.<br />

Figure 3. Segregation of plant height among M 3<br />

progenies of<br />

the three identified sd1 mutants (l<strong>in</strong>es M2_860, M2_921, and<br />

M2_1427). For each M 2<br />

l<strong>in</strong>e, the blue bars represent the average<br />

height of the homozygous wild-type plants, red bars represent<br />

plants carry<strong>in</strong>g the mutation <strong>in</strong> the h<strong>et</strong>erozygote state, and<br />

green bars represent the homozygous mutant plants. Error bars<br />

are <strong>in</strong>dicated. Double asterisks (**) <strong>in</strong>dicate significant differences<br />

b<strong>et</strong>ween homozygous mutants and wild-type (wt) (p < 0.01; Wilcoxon<br />

signed-rank test). h<strong>et</strong>, h<strong>et</strong>erozygous.<br />

that functions as nuclear loc<strong>al</strong>ization sign<strong>al</strong> (Yano <strong>et</strong> <strong>al</strong>.,<br />

2000). Inactivation of the Hd1 gene results <strong>in</strong> earlier head<strong>in</strong>g<br />

under long days with a reduction of the grow<strong>in</strong>g cycle<br />

(Yano <strong>et</strong> <strong>al</strong>., 2000). One missense mutation was identified<br />

<strong>in</strong> the Volano <strong>TILLING</strong> population <strong>in</strong> this gene (Table<br />

2). The mutation was located <strong>in</strong> the z<strong>in</strong>c f<strong>in</strong>ger doma<strong>in</strong><br />

and caused the substitution of a conserved cyste<strong>in</strong>e residue<br />

2556 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


at position 81 of the second B-box type doma<strong>in</strong> with a<br />

tyros<strong>in</strong>e, predicted to impair prote<strong>in</strong> function (Table 2).<br />

The assessment of M 3<br />

progeny mutant plants <strong>for</strong> phenotypic<br />

variation <strong>in</strong> life cycle length did not show significant<br />

changes when compared to sister l<strong>in</strong>es not carry<strong>in</strong>g the<br />

po<strong>in</strong>t mutation (data not shown).<br />

SNAC1 is a NAM, ATAF, and CUC (NAC) transcription<br />

factor expressed <strong>in</strong> guard cells of rice upon dehydration<br />

and <strong>in</strong>volved <strong>in</strong> regulat<strong>in</strong>g stomat<strong>al</strong> closure (Hu <strong>et</strong><br />

<strong>al</strong>., 2006). Its overexpression <strong>in</strong> transgenic rice plants was<br />

shown to greatly enhance tolerance to drought and s<strong>al</strong>t<br />

stress while <strong>in</strong>activation resulted <strong>in</strong> <strong>in</strong>creased stomat<strong>al</strong> aperture<br />

and sensitivity to dehydration (Hu <strong>et</strong> <strong>al</strong>., 2006; You <strong>et</strong><br />

<strong>al</strong>., <strong>2013</strong>), suggest<strong>in</strong>g that only ga<strong>in</strong>-of-function mutations<br />

<strong>in</strong> this gene would result <strong>in</strong> a desirable phenotype. All the<br />

three missense mutations identified <strong>in</strong> the SNAC1 gene <strong>in</strong><br />

the Volano <strong>TILLING</strong> population were located with<strong>in</strong> the<br />

conserved NAC DNA-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> (Hu <strong>et</strong> <strong>al</strong>., 2006;<br />

Chen <strong>et</strong> <strong>al</strong>., 2011) and they were <strong>al</strong>l generat<strong>in</strong>g changes <strong>in</strong><br />

am<strong>in</strong>o acid polarity (Table 2). The C/T transition at position<br />

88 led to the substitution of a very conserved arg<strong>in</strong><strong>in</strong>e<br />

(very hydrophilic) with cyste<strong>in</strong>e (hydrophobic) <strong>in</strong> a putative<br />

nuclear loc<strong>al</strong>ization sign<strong>al</strong> with<strong>in</strong> the NAC doma<strong>in</strong> (Hu <strong>et</strong><br />

<strong>al</strong>., 2006). The other two missense mutations resulted <strong>in</strong> a<br />

prol<strong>in</strong>e®ser<strong>in</strong>e and a ser<strong>in</strong>e®phenyl<strong>al</strong>an<strong>in</strong>e replacements<br />

at am<strong>in</strong>o acid positions 106 and 156, respectively. Accord<strong>in</strong>g<br />

to the SIFT scores, <strong>al</strong>l the three am<strong>in</strong>o acid substitutions<br />

are predicted to affect prote<strong>in</strong> function (Table 2). The<br />

progeny of the three M 2<br />

l<strong>in</strong>es carry<strong>in</strong>g the missense mutations<br />

are currently under <strong>in</strong>vestigation to assess the response<br />

under water-limited conditions.<br />

The BADH2 gene encodes the enzyme b<strong>et</strong>a<strong>in</strong>e <strong>al</strong>dehyde<br />

dehydrogenase (BADH2) that cat<strong>al</strong>yses the oxidation<br />

of a precursor of 2-ac<strong>et</strong>yl-1-pyrrol<strong>in</strong>e (2-AP). Inactivation of<br />

this enzyme leads to accumulation of 2-AP, the compound<br />

responsible of the typic<strong>al</strong> aroma of fragrant rice (Bradbury <strong>et</strong><br />

<strong>al</strong>., 2005). The BADH2 enzyme belongs to the nicot<strong>in</strong>amide<br />

aden<strong>in</strong>e d<strong>in</strong>ucleotide (NAD)-dependent <strong>al</strong>dehyde dehydrogenase<br />

family and is predicted to conta<strong>in</strong> three doma<strong>in</strong>s<br />

based on its three-dimension<strong>al</strong> structure: a NAD b<strong>in</strong>d<strong>in</strong>g, a<br />

substrate b<strong>in</strong>d<strong>in</strong>g, and an oligomerization doma<strong>in</strong> (Chen <strong>et</strong><br />

<strong>al</strong>., 2008). While Volano is a nonfragrant vari<strong>et</strong>y carry<strong>in</strong>g the<br />

function<strong>al</strong> BADH2 gene, the missense mutation identified <strong>in</strong><br />

the <strong>TILLING</strong> population caused a leuc<strong>in</strong>e to phenyl<strong>al</strong>an<strong>in</strong>e<br />

substitution at am<strong>in</strong>o acid position 206 <strong>in</strong> the NAD b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong>, likely to impair prote<strong>in</strong> function accord<strong>in</strong>g to SIFT<br />

prediction (Table 2). Assessment of the M 3<br />

progeny from the<br />

missense M 2<br />

mutant l<strong>in</strong>e did not reve<strong>al</strong> the appearance of the<br />

fragrance phenotype (data not shown).<br />

DISCUSSION<br />

Volano is one of the most widely cultivated and important<br />

<strong>European</strong> rice vari<strong>et</strong>ies. In It<strong>al</strong>y, it is the most cultivated<br />

vari<strong>et</strong>y of the Long A gra<strong>in</strong> group and the second most<br />

cultivated vari<strong>et</strong>y at nation<strong>al</strong> level (Ente Nazion<strong>al</strong>e Risi,<br />

2012a). Volano is representative of those temperate japonica<br />

genotypes that are adapted to south <strong>European</strong> pedoclimatic<br />

conditions above the 45th par<strong>al</strong>lel, requir<strong>in</strong>g early maturation<br />

and low photoperiod sensitivity (Okumoto <strong>et</strong> <strong>al</strong>., 1996;<br />

Ichitani <strong>et</strong> <strong>al</strong>., 1997). Europe is one of the most northern<br />

areas where rice is grown extensively as a crop, tog<strong>et</strong>her<br />

with northern Ch<strong>in</strong>a and Japan (Lu and Chang, 1980).<br />

Belong<strong>in</strong>g to the Arborio class, which is the most popular<br />

rice <strong>for</strong> risotto, Volano is considered representative<br />

of the tradition<strong>al</strong> It<strong>al</strong>ian high qu<strong>al</strong>ity rice and is exported<br />

worldwide. Due to its strategic relevance <strong>for</strong> It<strong>al</strong>ian and<br />

<strong>European</strong> breed<strong>in</strong>g programs, this tradition<strong>al</strong> vari<strong>et</strong>y was<br />

chosen <strong>for</strong> the development of the first rice <strong>TILLING</strong><br />

plat<strong>for</strong>m of a <strong>European</strong> temperate japonica accession. The<br />

Volano vari<strong>et</strong>y has various agronomic traits that may benefit<br />

to be improved, <strong>in</strong>clud<strong>in</strong>g plant height, the duration of<br />

the growth cycle, and the resistance to biotic (blast disease)<br />

and abiotic (growth <strong>in</strong> water-limited conditions) stresses.<br />

To create the <strong>TILLING</strong> population EMS was chosen<br />

as a mutagenic agent, which has been used to create mutant<br />

collections of rice and other cere<strong>al</strong> species. Different<br />

mutagens can produce a different spectrum of mutations<br />

and there<strong>for</strong>e different series of <strong>al</strong>leles. Gamma and fast<br />

neutron irradiation have been shown to <strong>in</strong>duce sm<strong>al</strong>l (few<br />

base pairs) and large (hundreds to thousands of base pairs)<br />

del<strong>et</strong>ions, respectively, and ma<strong>in</strong>ly result <strong>in</strong> gene knockout<br />

(Li <strong>et</strong> <strong>al</strong>., 2001; Sato <strong>et</strong> <strong>al</strong>., 2006; Morita <strong>et</strong> <strong>al</strong>., 2009).<br />

On the other hand, chemic<strong>al</strong> mutagens such as EMS and<br />

MNU typic<strong>al</strong>ly <strong>in</strong>duce SNPs randomly throughout the<br />

genome (Henikoff and Comai, 2003; Cooper <strong>et</strong> <strong>al</strong>., 2008;<br />

Suzuki <strong>et</strong> <strong>al</strong>., 2008). These po<strong>in</strong>t mutations lead to the<br />

generation of a series of polymorphic <strong>al</strong>leles, <strong>in</strong>clud<strong>in</strong>g loss<br />

of function, that provides a range of different phenotypes<br />

with a potenti<strong>al</strong> use <strong>in</strong> crop improvement (Gilchrist and<br />

Haughn, 2005). In rice, MNU-<strong>in</strong>duced mutations have<br />

been shown to occur at a rate two times higher (1/135 kb)<br />

(Suzuki <strong>et</strong> <strong>al</strong>., 2008) than those obta<strong>in</strong>ed with EMS (1/300<br />

kb) (Till <strong>et</strong> <strong>al</strong>., 2007). However, to obta<strong>in</strong> such a high<br />

mutation frequency, the treatment with MNU requires<br />

that the flowers are exposed to the mutagen rather than<br />

the seeds (as <strong>for</strong> EMS), mak<strong>in</strong>g the experiment<strong>al</strong> procedure<br />

less amenable to large-sc<strong>al</strong>e mutagenesis.<br />

The density of one mutation every 373 kb estimated<br />

<strong>in</strong> the Volano <strong>TILLING</strong> population described here, based<br />

on a pilot screen<strong>in</strong>g of four targ<strong>et</strong> genes <strong>in</strong> 1152 M 2<br />

l<strong>in</strong>es,<br />

was comparable to what has previously been obta<strong>in</strong>ed <strong>in</strong><br />

other rice EMS-mutagenized populations. This observed<br />

rate is higher than that reported <strong>for</strong> the <strong>in</strong>dica rice vari<strong>et</strong>y<br />

IR64 (1/1000 kb) (Wu <strong>et</strong> <strong>al</strong>., 2005) and slightly lower<br />

than that obta<strong>in</strong>ed <strong>in</strong> Nipponbare (1/300 kb) (Till <strong>et</strong> <strong>al</strong>.,<br />

2007). However, this difference is likely to be due to the<br />

higher dose of EMS (1.5%) used by Till <strong>et</strong> <strong>al</strong>. (2007) compared<br />

to that used <strong>in</strong> this study (0.75%). Over<strong>al</strong>l, the results<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2557


obta<strong>in</strong>ed confirmed the efficiency of the mutagenic treatment<br />

and the suitability of the Volano <strong>TILLING</strong> plat<strong>for</strong>m<br />

as a source of new gen<strong>et</strong>ic variation <strong>in</strong> temperate japonica.<br />

Besides the v<strong>al</strong>idation of the <strong>TILLING</strong> plat<strong>for</strong>m, the<br />

present work provides gen<strong>et</strong>ic materi<strong>al</strong> that can be directly<br />

exploited <strong>for</strong> the agronomic improvement of Volano.<br />

Currently, one of the ma<strong>in</strong> objectives of the breed<strong>in</strong>g programs<br />

is the reduction <strong>in</strong> plant stature. Reduction <strong>in</strong> tot<strong>al</strong><br />

height has been shown to <strong>in</strong>crease plant responses to N<br />

<strong>in</strong>puts, result<strong>in</strong>g <strong>in</strong> a higher yield without culm elongation<br />

and lodg<strong>in</strong>g problems (Ashikari <strong>et</strong> <strong>al</strong>., 2002). Moreover,<br />

a shorter stature can be benefici<strong>al</strong> <strong>for</strong> the plant <strong>in</strong> terms<br />

of tolerance to water-limited conditions, as reduced plant<br />

height leads to a significant reduction of the area <strong>in</strong>volved<br />

<strong>in</strong> loss of water by transpiration, which represents one of<br />

the ma<strong>in</strong> strategies of drought escape (Levitt, 1980).<br />

In this study we identified three <strong>in</strong>dependent mutations<br />

<strong>in</strong> the SD1 (semidwarf 1) gene, which <strong>in</strong> rice plays<br />

a cruci<strong>al</strong> role <strong>in</strong> d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g plant height (Sasaki <strong>et</strong> <strong>al</strong>.,<br />

2002). SD1 encodes a GA20-oxidase (GA20ox), a key<br />

enzyme <strong>in</strong> the biosynthesis of gibberell<strong>in</strong>s. In particular, it<br />

cat<strong>al</strong>yzes the sequenti<strong>al</strong> oxidation and elim<strong>in</strong>ation of C-20<br />

<strong>in</strong> the GA biosynth<strong>et</strong>ic pathway, provid<strong>in</strong>g a substrate <strong>for</strong><br />

the GA3b-hydroxylase (GA3ox) that cat<strong>al</strong>yzes the last<br />

step of the synthesis of active GAs (Hedden and Phillips,<br />

2000). Two GA20ox genes (GA20ox-1 and GA20ox-2)<br />

have been shown to be present <strong>in</strong> the rice genome (Monna<br />

<strong>et</strong> <strong>al</strong>., 2002; Sasaki <strong>et</strong> <strong>al</strong>., 2002). GA20ox-1 is predom<strong>in</strong>antly<br />

expressed <strong>in</strong> unopened flowers and is necessary <strong>for</strong><br />

flowers to develop and fertilize norm<strong>al</strong>ly (hence ensur<strong>in</strong>g<br />

yield) while GA20ox-2 (correspond<strong>in</strong>g to SD1) is highly<br />

expressed <strong>in</strong> the leaf blade and stems. This function<strong>al</strong><br />

redundancy expla<strong>in</strong>s why loss of SD1 function (and consequently<br />

GA deficiency) can result <strong>in</strong> reduction of plant<br />

height without seed yield be<strong>in</strong>g affected (Monna <strong>et</strong> <strong>al</strong>.,<br />

2002; Sasaki <strong>et</strong> <strong>al</strong>., 2002).<br />

Two of the three mutations <strong>in</strong> the SD1 gene identified<br />

<strong>in</strong> this study displayed a strong phenotypic effect, result<strong>in</strong>g<br />

<strong>in</strong> a significant reduction (about 21% on average) of plant<br />

height. The level of reduction <strong>in</strong> height is correlated with<br />

the <strong>al</strong>lelic status of the mutation, with a stronger effect<br />

associated with the homozygous state when compared to<br />

the h<strong>et</strong>erozygote. Both the mutations were predicted to<br />

affect prote<strong>in</strong> activity: <strong>in</strong> the l<strong>in</strong>e M2_860, the premature<br />

<strong>in</strong>sertion of a stop codon generates an <strong>in</strong>active truncated<br />

GA20ox enzyme and there<strong>for</strong>e leaf- and stem-specific<br />

reduced GA biosynthesis while the l<strong>in</strong>e M2_921 carried<br />

a substitution of a highly conserved tyros<strong>in</strong>e, likely<br />

to generate a loss of prote<strong>in</strong> function. Unexpectedly, the<br />

phenotypic effect on plant stature associated to the missense<br />

mutation appeared to be slightly stronger than that<br />

observed <strong>for</strong> the nonsense mutant. This observation would<br />

deserve a thorough <strong>in</strong>vestigation to unravel the underly<strong>in</strong>g<br />

cellular and regulatory mechanisms.<br />

Sever<strong>al</strong> sd1 <strong>al</strong>leles that cause semidwarfism <strong>in</strong> rice have<br />

been described and used <strong>in</strong> breed<strong>in</strong>g programs worldwide<br />

to improve the agronomic per<strong>for</strong>mance of loc<strong>al</strong> vari<strong>et</strong>ies<br />

(Asano <strong>et</strong> <strong>al</strong>., 2007). Dee-geo-woo-gen, the Ch<strong>in</strong>ese<br />

semidwarf rice cultivar <strong>in</strong> which sd1 was first identified<br />

and the derived high-yield<strong>in</strong>g cultivar IR8 (IRRI, 1967),<br />

the first Green Revolution rice vari<strong>et</strong>y, carry the same sd1<br />

<strong>al</strong>lele harbor<strong>in</strong>g a 383-bp del<strong>et</strong>ion from exon 1 to exon 2<br />

that orig<strong>in</strong>ates a stop codon (Monna <strong>et</strong> <strong>al</strong>., 2002, Sasaki <strong>et</strong><br />

<strong>al</strong>., 2002). An <strong>in</strong>dependent del<strong>et</strong>ion of 280 bp was found<br />

<strong>in</strong> the cod<strong>in</strong>g region of SD1 <strong>in</strong> the <strong>in</strong>dica semidwarf vari<strong>et</strong>y<br />

Doongara (Spielmeyer <strong>et</strong> <strong>al</strong>., 2002). In addition, sever<strong>al</strong><br />

po<strong>in</strong>t mutations occurr<strong>in</strong>g at different positions <strong>in</strong> the<br />

SD1 cod<strong>in</strong>g sequence were shown to cause s<strong>in</strong>gle am<strong>in</strong>o<br />

acid substitutions result<strong>in</strong>g <strong>in</strong> semidwarfism, as found <strong>in</strong> the<br />

japonica semidwarf vari<strong>et</strong>ies Jikkoku, Reimei, and C<strong>al</strong>rose<br />

76 (Spielmeyer <strong>et</strong> <strong>al</strong>., 2002). The two sd1 mutants identified<br />

<strong>in</strong> the Volano <strong>TILLING</strong> population described here represent<br />

v<strong>al</strong>uable gen<strong>et</strong>ic materi<strong>al</strong> <strong>for</strong> breed<strong>in</strong>g programs to<br />

enhanc<strong>in</strong>g yield per<strong>for</strong>mance and adaptation to chang<strong>in</strong>g<br />

climatic conditions (water scarcity dur<strong>in</strong>g the plant maturation<br />

stage) of <strong>European</strong> temperate japonica rice vari<strong>et</strong>ies.<br />

<strong>Rice</strong> is a short day plant exhibit<strong>in</strong>g a high level of<br />

natur<strong>al</strong> variation <strong>in</strong> flower<strong>in</strong>g time that contributed to<br />

its adaptation to grow <strong>in</strong> a wide range of different environments<br />

while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g yield production. The Hd1<br />

(Head<strong>in</strong>g date-1) gene targ<strong>et</strong>ed <strong>for</strong> <strong>TILLING</strong> screen<strong>in</strong>g <strong>in</strong><br />

this study plays a key role <strong>in</strong> rice by d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g flower<strong>in</strong>g<br />

time (Yano <strong>et</strong> <strong>al</strong>., 2000; Tsuji <strong>et</strong> <strong>al</strong>., 2011) and hence<br />

represents a good candidate to study the gen<strong>et</strong>ic components<br />

<strong>in</strong>volved <strong>in</strong> controll<strong>in</strong>g growth cycle duration <strong>in</strong><br />

<strong>European</strong> temperate japonica rice. A short basic veg<strong>et</strong>ative<br />

growth phase, tog<strong>et</strong>her with a low sensitivity to photoperiod,<br />

are the most important traits d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g the adaptability<br />

of rice vari<strong>et</strong>ies to cultivation at high latitudes,<br />

such as It<strong>al</strong>y and south Europe <strong>in</strong> gener<strong>al</strong> (Okumoto <strong>et</strong> <strong>al</strong>.,<br />

1996; Ichitani <strong>et</strong> <strong>al</strong>., 1997). Moreover, as with plant height<br />

reduction, reduc<strong>in</strong>g the growth cycle <strong>al</strong>so represents an<br />

effective strategy <strong>for</strong> drought escap<strong>in</strong>g (Levitt, 1980). In<br />

wheat and barley, shorten<strong>in</strong>g the crop life-cycle duration<br />

has been shown to be an effective breed<strong>in</strong>g strategy to<br />

reduce water consumption (Cattivelli <strong>et</strong> <strong>al</strong>., 2008).<br />

Allelic diversity at the Hd1 locus was demonstrated<br />

to be one of the major d<strong>et</strong>erm<strong>in</strong>ants of flower<strong>in</strong>g time<br />

variation <strong>in</strong> cultivated rice (Takahashi <strong>et</strong> <strong>al</strong>., 2009). The<br />

<strong>TILLING</strong> screen<strong>in</strong>g of the Volano population yielded one<br />

missense mutation <strong>in</strong> the Hd1 cod<strong>in</strong>g sequence that was<br />

predicted to affect prote<strong>in</strong> function <strong>al</strong>though no significant<br />

phenotypic variation <strong>in</strong> growth cycle duration was reve<strong>al</strong>ed<br />

<strong>in</strong> the progeny. These prelim<strong>in</strong>ary results may <strong>in</strong>dicate that<br />

the missense mutation does not affect the prote<strong>in</strong> function<br />

or that Hd1 is not the most relevant gene <strong>in</strong>volved <strong>in</strong> controll<strong>in</strong>g<br />

the life cycle duration <strong>in</strong> <strong>European</strong> temperate japonica<br />

germplasm. The photoperiodic control of flower<strong>in</strong>g <strong>in</strong><br />

2558 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


ice <strong>in</strong>volves a complex n<strong>et</strong>work of genes (reviewed <strong>in</strong> Tsuji<br />

<strong>et</strong> <strong>al</strong>., 2011) and variation at other important regulators is<br />

expected <strong>al</strong>so to contribute at d<strong>et</strong>erm<strong>in</strong><strong>in</strong>g adaptation of<br />

rice cultivars to high-latitude climate regions (Xue <strong>et</strong> <strong>al</strong>.,<br />

2008; Takahashi <strong>et</strong> <strong>al</strong>., 2009). The isolation of addition<strong>al</strong><br />

natur<strong>al</strong> or <strong>in</strong>duced Hd1 mutants from <strong>European</strong> rice accessions<br />

will clarify the role of Hd1 <strong>in</strong> regulat<strong>in</strong>g the growth<br />

cycle <strong>in</strong> temperate areas.<br />

A rapid and effective stomat<strong>al</strong> closure <strong>in</strong> a crop is considered<br />

a positive trait <strong>for</strong> the improvement of water use<br />

efficiency <strong>in</strong> drought conditions (S<strong>in</strong>clair and Muchow,<br />

2001). A previous study <strong>in</strong> A. th<strong>al</strong>iana reported the clon<strong>in</strong>g<br />

of a quantitative trait locus regulat<strong>in</strong>g transpiration<br />

efficiency while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g biomass production, hence<br />

uncoupl<strong>in</strong>g the usu<strong>al</strong>ly negative association b<strong>et</strong>ween transpiration<br />

efficiency and both stomat<strong>al</strong> conductance and<br />

biomass production (Masle <strong>et</strong> <strong>al</strong>., 2005). Based on this<br />

f<strong>in</strong>d<strong>in</strong>g the SNAC1 gene, which has been shown to be<br />

<strong>in</strong>volved <strong>in</strong> stomat<strong>al</strong> closure mechanisms <strong>in</strong> the early stages<br />

of drought stress (Hu <strong>et</strong> <strong>al</strong>., 2006), was selected as a targ<strong>et</strong><br />

<strong>for</strong> <strong>TILLING</strong> screen<strong>in</strong>g of the Volano mutagenized population.<br />

Three <strong>in</strong>dependent M 2<br />

l<strong>in</strong>es carry<strong>in</strong>g missense<br />

mutations <strong>in</strong> the NAC doma<strong>in</strong> of the SNAC1 gene were<br />

identified and the M 3<br />

progeny plants will be ev<strong>al</strong>uated<br />

<strong>in</strong> water-limited conditions <strong>in</strong> the next grow<strong>in</strong>g season.<br />

A “positive” phenotypic effect would be predicted only<br />

<strong>in</strong> case a ga<strong>in</strong>-of-function mutation occurred, caus<strong>in</strong>g an<br />

<strong>al</strong>tered expression of the gene that constitutively activates<br />

it. However, those k<strong>in</strong>ds of mutations are expected to<br />

occur more frequently <strong>in</strong> regulatory rather than cod<strong>in</strong>g<br />

regions, where loss of function mutations are more probable<br />

to take place. In this sense, the next experiment to be<br />

undertaken would be the screen<strong>in</strong>g <strong>for</strong> mutations <strong>in</strong> the<br />

regulatory sequence of SNAC1.<br />

A qu<strong>al</strong>ity trait of rice that is highly appreciated both<br />

<strong>in</strong> Asian and <strong>European</strong> countries is the presence of aromatic<br />

compounds lead<strong>in</strong>g to scented rice gra<strong>in</strong>s. The<br />

major gene <strong>for</strong> gra<strong>in</strong> fragrance ( fgr) encodes the enzyme<br />

BADH2, <strong>in</strong>activation of which leads to the accumulation<br />

of the precursor 2-AP that releases the typic<strong>al</strong> “basmatilike”<br />

perfume (Bradbury <strong>et</strong> <strong>al</strong>., 2005). One s<strong>in</strong>gle base<br />

substitution <strong>in</strong> the BADH2 gene was identified <strong>in</strong> the<br />

Volano <strong>TILLING</strong> population caus<strong>in</strong>g a missense mutation.<br />

The po<strong>in</strong>t mutation identified differs from <strong>al</strong>l the<br />

polymorphisms described so far that have been shown to<br />

impair the enzymatic function, lead<strong>in</strong>g to the fragrant<br />

phenotype (Kovach <strong>et</strong> <strong>al</strong>., 2009), and does not affect the<br />

function<strong>al</strong> NAD-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>.<br />

In this work we have shown that <strong>TILLING</strong>, based on<br />

classic<strong>al</strong> mutagenesis to create new gen<strong>et</strong>ic variation without<br />

the use of transgenic technologies, represents a powerful<br />

technique <strong>for</strong> crop improvement that can be applied to<br />

temperate japonica rice grown <strong>in</strong> <strong>European</strong> areas. The <strong>in</strong>iti<strong>al</strong><br />

screen<strong>in</strong>g of the EMS-mutagenized Volano collection<br />

identified a number of mutations <strong>in</strong> agronomic<strong>al</strong>ly and<br />

qu<strong>al</strong>ity relevant genes that can provide gen<strong>et</strong>ic materi<strong>al</strong> of<br />

direct use <strong>in</strong> marker-assisted breed<strong>in</strong>g programs.<br />

The v<strong>al</strong>idated Volano <strong>TILLING</strong> EMS-mutagenized<br />

population represents a v<strong>al</strong>uable tool to assess the function<br />

of candidate genes <strong>in</strong> controll<strong>in</strong>g targ<strong>et</strong> traits of high<br />

relevance <strong>for</strong> cultivation of rice <strong>in</strong> temperate areas, such as<br />

disease resistance, abiotic stress tolerance, and nutrition<strong>al</strong><br />

properties of the rice seeds. The use of next generation<br />

sequenc<strong>in</strong>g (NGS) approaches will facilitate the discovery<br />

of mutants <strong>in</strong> a large s<strong>et</strong> of candidate genes (Rigola <strong>et</strong><br />

<strong>al</strong>., 2009; Tsai <strong>et</strong> <strong>al</strong>., 2011). In the future, NGS technologies<br />

will <strong>al</strong>so facilitate the resequenc<strong>in</strong>g of mutagenized<br />

l<strong>in</strong>es show<strong>in</strong>g phenotypes of relevance <strong>in</strong> agronomic and<br />

qu<strong>al</strong>ity traits (<strong>for</strong>ward gen<strong>et</strong>ics) to identify novel but y<strong>et</strong><br />

unknown gen<strong>et</strong>ic components.<br />

Supplement<strong>al</strong> In<strong>for</strong>mation Available<br />

Supplement<strong>al</strong> materi<strong>al</strong> is available at http://www.crops.<br />

org/publications/cs.<br />

Acknowledgments<br />

We would like to thank Prof. Chun-M<strong>in</strong>g Liu <strong>for</strong> shar<strong>in</strong>g the EMS<br />

mutagenesis protocol and Dr. Laura Ross<strong>in</strong>i and Dr. John Williams<br />

<strong>for</strong> critic<strong>al</strong> read<strong>in</strong>g of the manuscript. This work was f<strong>in</strong>anci<strong>al</strong>ly<br />

supported by the It<strong>al</strong>ian M<strong>in</strong>istry of Agriculture, Food and Forestry<br />

Policies with<strong>in</strong> the framework of the project VALORYZA (D.M.<br />

301/7303/2006), by the CARIPLO Foundation with<strong>in</strong> the<br />

DRYRICE project (2008-3179) and by the AGER Foundation<br />

with<strong>in</strong> the RISINNOVA project (2010-2369). Laura <strong>Casella</strong> was<br />

supported by a fellowship from the Consiglio per la <strong>Rice</strong>rca e la<br />

Sperimentazione <strong>in</strong> Agricoltura with<strong>in</strong> a PhD program on Plant<br />

Biology and <strong>Cr</strong>op Production (University of Milano, It<strong>al</strong>y).<br />

References<br />

Alonso, J.M., and J.R. Ecker. 2006. Mov<strong>in</strong>g <strong>for</strong>ward <strong>in</strong> reverse:<br />

Gen<strong>et</strong>ic technologies to enable genome-wide phenomic<br />

screens <strong>in</strong> Arabidopsis. Nat. Rev. Gen<strong>et</strong>. 7(7):524–536.<br />

doi:10.1038/nrg1893<br />

An, G., D.H. Jeong, K.H. Jung, and S. Lee. 2005. Reverse gen<strong>et</strong>ic<br />

approaches <strong>for</strong> function<strong>al</strong> genomics of rice. Plant Mol. Biol.<br />

59(1):111–123. doi:10.1007/s11103-004-4037-y<br />

Asano, K., T. Takashi, K. Miura, Q. Qian, H. Kitano, M. Matsuoka,<br />

and M. Ashikari. 2007. Gen<strong>et</strong>ic and molecular an<strong>al</strong>ysis<br />

of utility of sd1 <strong>al</strong>leles <strong>in</strong> rice breed<strong>in</strong>g. Breed. Sci. 57:53–58.<br />

doi:10.1270/jsbbs.57.53<br />

Ashikari, M., A. Sasaki, M. Ueguchi-Tanaka, H. Itoh, A.<br />

Nishimura, S. Datta, K. Ishiyama, T. Saito, M. Kobayashi,<br />

G.S. Khush, H. Kitano, and M. Matsuoka. 2002. Loss-offunction<br />

of a rice gibberell<strong>in</strong> biosynth<strong>et</strong>ic gene, GA20 oxidase<br />

(GA20ox-2), led to the rice “Green Revolution.” Breed.<br />

Sci. 52:143–150. doi:10.1270/jsbbs.52.143<br />

Blomstedt, C.K., R.M. Gleadow, N. O’Donnell, P. Naur, K.<br />

Jensen, T. Laursen, C.E. Olsen, P. Stuart, J.D. Hamill,<br />

B.L. Møller, and A.D. Ne<strong>al</strong>e. 2012. A comb<strong>in</strong>ed biochemic<strong>al</strong><br />

screen and <strong>TILLING</strong> approach identifies mutations <strong>in</strong><br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2559


Sorghum bicolor L. Moench result<strong>in</strong>g <strong>in</strong> acyanogenic <strong>for</strong>age<br />

production. Plant Biotechnol. J. 10:54–66. doi:10.1111/j.1467-<br />

7652.2011.00646.x<br />

Bradbury, L.M.T., T.L. Fitzger<strong>al</strong>d, R.J. Henry, Q. J<strong>in</strong>, and D.L.E.<br />

Waters. 2005. The gene <strong>for</strong> fragrance <strong>in</strong> rice. Plant Biotechnol.<br />

J. 3:363–370. doi:10.1111/j.1467-7652.2005.00131.x<br />

C<strong>al</strong>dwell, D.G., N. McC<strong>al</strong>lum, P. Shaw, G.J. Muehlbauer,<br />

D.F. Marsh<strong>al</strong>l, and R. Waugh. 2004. A structured mutant<br />

population <strong>for</strong> <strong>for</strong>ward and reverse gen<strong>et</strong>ics <strong>in</strong> barley<br />

(Hordeum vulgare L.). Plant J. 40:143–150. doi:10.1111/j.1365-<br />

313X.2004.02190.x<br />

Cattivelli, L., F. Rizza, F.-W. Badeck, E. Mazzucotelli, A.M. Mastrangelo,<br />

E. Francia, C. Marè, A. Tondelli, and A.M. Stanca.<br />

2008. Drought tolerance improvement <strong>in</strong> crop plants: An<br />

<strong>in</strong>tegrated view from breed<strong>in</strong>g to genomics. Field <strong>Cr</strong>ops Res.<br />

105:1–14. doi:10.1016/j.fcr.2007.07.004<br />

Chen, S., Y. Yang, W. Shi, Q. Ji, F. He, Z. Zhang, Z. Cheng,<br />

X. Liu, and M. Xu. 2008. Badh2, encod<strong>in</strong>g b<strong>et</strong>a<strong>in</strong>e <strong>al</strong>dehyde<br />

dehydrogenase, <strong>in</strong>hibits the biosynthesis of 2-ac<strong>et</strong>yl-<br />

1-pyrrol<strong>in</strong>e, a major component <strong>in</strong> rice fragrance. Plant Cell<br />

20:1850–1861. doi:10.1105/tpc.108.058917<br />

Chen, Q., Q. Wang, L. Xiong, and Z. Lou. 2011. A structur<strong>al</strong><br />

view of the conserved doma<strong>in</strong> of rice stress-responsive NAC1.<br />

Prote<strong>in</strong> Cell 2:55–63. doi:10.1007/s13238-011-1010-9<br />

Cooper, J.L., B.J. Till, R.G. Laport, M.C. Darlow, J.M. Kleffner,<br />

A. Jamai, T. El-Mellouki, S. Liu, R. Ritchie, N. Nielsen,<br />

K.D. Bilyeu, K. Meksem, L. Comai, and S. Henikoff. 2008.<br />

<strong>TILLING</strong> to d<strong>et</strong>ect <strong>in</strong>duced mutations <strong>in</strong> soybean. BMC<br />

Plant Biol. 8:9. doi:10.1186/1471-2229-8-9<br />

Courtois, B., J. Frou<strong>in</strong>, R. Greco, G. Bruschi, G. Droc, C. Hamel<strong>in</strong>,<br />

M. Ruiz, G. Clément, J.-C. Evrard, S. van Coppenole,<br />

D. Katsantonis, M. Oliveira, S. Negrão, C. Matos, S. Cavigiolo,<br />

E. Lupotto, P. Piffanelli, and N. Ahmadi. 2012. Gen<strong>et</strong>ic<br />

diversity and population structure <strong>in</strong> a <strong>European</strong> collection<br />

of rice. <strong>Cr</strong>op Sci. 52:1663. doi:10.2135/cropsci2011.11.0588<br />

Dahmani-Mardas, F., C. Troadec, A. Bou<strong>al</strong>em, S. Lévêque, A.A.<br />

Alsadon, A.A. Aldoss, C. Dogimont, and A. Bendahmane.<br />

2010. Eng<strong>in</strong>eer<strong>in</strong>g melon plants with improved fruit shelf<br />

life us<strong>in</strong>g the <strong>TILLING</strong> approach. PLoS ONE 5(12):E15776.<br />

doi:10.1371/journ<strong>al</strong>.pone.0015776<br />

Dierk<strong>in</strong>g, E.C., and K.D. Bilyeu. 2009. New sources of soybean<br />

seed me<strong>al</strong> and oil composition traits identified through TILL-<br />

ING. BMC Plant Biol. 9:89. doi:10.1186/1471-2229-9-89<br />

Ente Nazion<strong>al</strong>e Risi. 2011. <strong>Rice</strong> statistics. Ente Nazion<strong>al</strong>e Risi,<br />

Milan, It<strong>al</strong>y. http://www.enterisi.it/upload/enterisi/bilanci/<br />

ST1BIS%202011%20provvisorio_15916_74.pdf (accessed 30<br />

Mar. <strong>2013</strong>).<br />

Ente Nazion<strong>al</strong>e Risi. 2012a. <strong>Rice</strong> provision<strong>al</strong> statistics. Ente<br />

Nazion<strong>al</strong>e Risi, Milan, It<strong>al</strong>y. http://www.enterisi.it/upload/<br />

enterisi/documenti<strong>al</strong>legati/St1bis_13660_59.pdf (accessed 30<br />

Mar. <strong>2013</strong>).<br />

Ente Nazion<strong>al</strong>e Risi. 2012b. Volano. Ente Nazion<strong>al</strong>e Risi, Milan, It<strong>al</strong>y.<br />

http://www.enterisi.it/upload/enterisi/gestionedocument<strong>al</strong>e/<br />

volano_784_2283.pdf (accessed 30 Mar. <strong>2013</strong>).<br />

Faivre-Rampant, O., G. Bruschi, P. Abbruscato, S. Cavigiolo, A.M.<br />

Picco, L. Borgo, E. Lupotto, and P. Piffanelli. 2010. Assessment<br />

of gen<strong>et</strong>ic diversity <strong>in</strong> It<strong>al</strong>ian rice germplasm related to<br />

agronomic traits and blast resistance (Magnaporthe oryzae). Mol.<br />

Breed. 27:233–246. doi:10.1007/s11032-010-9426-0<br />

FAO. 2010. FAOSTAT – <strong>Cr</strong>ops. FAO, Rome, It<strong>al</strong>y. http://faostat.<br />

fao.org/site/567/default.aspx#ancor (accessed 18 Dec. 2012).<br />

Garris, A.J., T.H. Tai, J. Coburn, S. Kresovich, and S. McCouch.<br />

2005. Gen<strong>et</strong>ic structure and diversity <strong>in</strong> Oryza sativa L.<br />

Gen<strong>et</strong>ics 169:1631–1638. doi:10.1534/gen<strong>et</strong>ics.104.035642<br />

Gilchrist, E.J., and G.W. Haughn. 2005. <strong>TILLING</strong> without<br />

a plough: A new m<strong>et</strong>hod with applications <strong>for</strong> reverse<br />

gen<strong>et</strong>ics. Curr. Op<strong>in</strong>. Plant Biol. 8:211–215. doi:10.1016/j.<br />

pbi.2005.01.004<br />

Gilchrist, E.J., and G.W. Haughn. 2010. Reverse gen<strong>et</strong>ics techniques:<br />

Eng<strong>in</strong>eer<strong>in</strong>g loss and ga<strong>in</strong> of gene function <strong>in</strong> plants.<br />

Brief<strong>in</strong>gs Funct. Genomics 9:103–110. doi:10.1093/bfgp/elp059<br />

Greene, E.A., C.A. Codomo, N.E. Taylor, J.G. Henikoff, B.J. Till,<br />

S.H. Reynolds, L.C. Enns, C. Burtner, J.E. Johnson, A.R.<br />

Odden, L. Comai, and S. Henikoff. 2003. Spectrum of chemic<strong>al</strong>ly<br />

<strong>in</strong>duced mutations from a large-sc<strong>al</strong>e reverse-gen<strong>et</strong>ic<br />

screen <strong>in</strong> Arabidopsis. Gen<strong>et</strong>ics 164:731–740.<br />

Hedden, P., and A.L. Phillips. 2000. Gibberell<strong>in</strong> m<strong>et</strong>abolism: New<br />

<strong>in</strong>sights reve<strong>al</strong>ed by the genes. Trends Plant Sci. 5:523–530.<br />

doi:10.1016/S1360-1385(00)01790-8<br />

Henikoff, S., and L. Comai. 2003. S<strong>in</strong>gle-nucleotide mutations <strong>for</strong><br />

plant function<strong>al</strong> genomics. Annu. Rev. Plant Biol. 54:375–<br />

401. doi:10.1146/annurev.arplant.54.031902.135009<br />

Hu, H., M. Dai, J. Yao, B. Xiao, X. Li, Q. Zhang, and L. Xiong.<br />

2006. Overexpress<strong>in</strong>g a NAM, ATAF, and CUC (NAC) transcription<br />

factor enhances drought resistance and s<strong>al</strong>t tolerance<br />

<strong>in</strong> rice. Proc. Natl. Acad. Sci. USA 103(35):12987–12992.<br />

Ichitani, K., Y. Okumoto, and T. Tanisaka. 1997. Photoperiod<br />

sensitivity gene of Se-1 locus found <strong>in</strong> photoperiod <strong>in</strong>sensitive<br />

rice cultivars of the northern limit region of rice cultivation.<br />

Breed. Sci. 47:145–152.<br />

IRRI. 1967. Annu<strong>al</strong> report 1966. Internation<strong>al</strong> <strong>Rice</strong> Research<br />

Institute, Los Baños, Philipp<strong>in</strong>es. p. 59–82.<br />

Julio, E., F. Laporte, S. Reis, C. Rothan, and F. Dorlhac de<br />

Borne. 2007. Reduc<strong>in</strong>g the content of nornicot<strong>in</strong>e <strong>in</strong> tobacco<br />

via targ<strong>et</strong>ed mutation breed<strong>in</strong>g. Mol. Breed. 21:369–381.<br />

doi:10.1007/s11032-007-9138-2<br />

Koornneef, M. 2002. Classic<strong>al</strong> mutagenesis <strong>in</strong> higher plants. In:<br />

P.M. Gilmart<strong>in</strong> and C. Bowler, editors, Molecular plant biology.<br />

Vol. 1. Ox<strong>for</strong>d Univ. Press, Ox<strong>for</strong>d, UK. p. 1–11.<br />

Kovach, M.J., M.N. C<strong>al</strong><strong>in</strong>gacion, M.A. Fitzger<strong>al</strong>d, and S.R.<br />

McCouch. 2009. The orig<strong>in</strong> and evolution of fragrance <strong>in</strong> rice<br />

(Oryza sativa L.). Proc. Natl. Acad. Sci. USA 106(34):14444–<br />

14449. doi:10.1073/pnas.0904077106<br />

Krishnan, A., E. Guiderdoni, G. An, Y.C. Hs<strong>in</strong>g, C. Han, M.C.<br />

Lee, S.-M. Yu, N. Upadhyaya, S. Ramachandran, Q. Zhang,<br />

V. Sundaresan, H. Hirochika, H. Leung, and A. Pereira. 2009.<br />

Mutant resources <strong>in</strong> rice <strong>for</strong> function<strong>al</strong> genomics of the grasses.<br />

Plant Physiol. 149:165–170. doi:10.1104/pp.108.128918<br />

Kumar, P., S. Henikoff, and P.C. Ng. 2009. Predict<strong>in</strong>g the effects<br />

of cod<strong>in</strong>g non-synonymous variants on prote<strong>in</strong> function us<strong>in</strong>g<br />

the SIFT <strong>al</strong>gorithm. Nat. Protoc. 4:1073–1081. doi:10.1038/<br />

nprot.2009.86<br />

Kuromori, T., S. Takahashi, Y. Kondou, K. Sh<strong>in</strong>ozaki, and M.<br />

Matsui. 2009. Phenome an<strong>al</strong>ysis <strong>in</strong> plant species us<strong>in</strong>g lossof-function<br />

and ga<strong>in</strong>-of-function mutants. Plant Cell Physiol.<br />

50(7):1215–1231. doi:10.1093/pcp/pcp078<br />

Kurowska, M., A. Daszkowska-Golec, D. Gruszka, M. Marzec,<br />

M. Szurman, I. Szarejko, and M. M<strong>al</strong>uszynski. 2011. TILL-<br />

ING: A shortcut <strong>in</strong> function<strong>al</strong> genomics. J. Appl. Gen<strong>et</strong>.<br />

52(4):371–390. doi:10.1007/s13353-011-0061-1<br />

Levitt, J. 1980. Responses of plants to environment<strong>al</strong> stresses, Vol.<br />

2. Water, radiation, s<strong>al</strong>t and other stresses. Academic Press,<br />

New York, NY. p. 93–128.<br />

2560 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>


Li, X., Y. Song, K. Century, S. Straight, P. Ron<strong>al</strong>d, X. Dong,<br />

M. Lassner, and Y. Zhang. 2001. A fast neutron del<strong>et</strong>ion<br />

mutagenesis-based reverse gen<strong>et</strong>ics system <strong>for</strong> plants. Plant J.<br />

27:235–242. doi:10.1046/j.1365-313x.2001.01084.x<br />

Lu, J.J., and T.T. Chang. 1980. <strong>Rice</strong> <strong>in</strong> its tempor<strong>al</strong> and spati<strong>al</strong><br />

perspectives. In: B.S. Luh, editor, <strong>Rice</strong>: Production and utilization.<br />

AVI Publish<strong>in</strong>g Co., Westport, CT. p. 1–74.<br />

Masle, J., S.R. Gilmore, and G.D. Farquhar. 2005. The ERECTA<br />

gene regulates plant transpiration efficiency <strong>in</strong> Arabidopsis.<br />

Nature 436(7052):866–870. doi:10.1038/nature03835<br />

McC<strong>al</strong>lum, C.M., L. Comai, E.A. Greene, and S. Henikoff. 2000.<br />

Targ<strong>et</strong><strong>in</strong>g <strong>in</strong>duced loc<strong>al</strong> lesions <strong>in</strong> genomes (<strong>TILLING</strong>) <strong>for</strong><br />

plant function<strong>al</strong> genomics. Plant Physiol. 123:439–442.<br />

doi:10.1104/pp.123.2.439<br />

Mantegazza, R., M. Biloni, F. Grassi, B. Basso, B.-R. Lu, X.X.<br />

Cai, F. S<strong>al</strong>a, and A. Spada. 2008. Tempor<strong>al</strong> trends of variation<br />

<strong>in</strong> It<strong>al</strong>ian rice germplasm over the past two centuries<br />

reve<strong>al</strong>ed by AFLP and SSR markers. <strong>Cr</strong>op Sci. 48:1832–1840.<br />

doi:10.2135/cropsci2007.09.0532<br />

M<strong>in</strong>oia, S., A. P<strong>et</strong>rozza, O. D’Onofrio, F. Piron, G. Mosca, G.<br />

Sozio, F. Cell<strong>in</strong>i, A. Bendahmane, and F. Carriero. 2010.<br />

A new mutant gen<strong>et</strong>ic resource <strong>for</strong> tomato crop improvement<br />

by <strong>TILLING</strong> technology. BMC Res. Notes 3:69.<br />

doi:10.1186/1756-0500-3-69<br />

Monna, L., N. Kitazawa, R. Yosh<strong>in</strong>o, J. Suzuki, H. Masuda, Y.<br />

Maehara, M. Tanji, M. Sato, S. Nasu, and Y. M<strong>in</strong>obe. 2002.<br />

Position<strong>al</strong> clon<strong>in</strong>g of rice semidwarf<strong>in</strong>g gene, sd-1: <strong>Rice</strong><br />

“green revolution gene” encodes a mutant enzyme <strong>in</strong>volved<br />

<strong>in</strong> gibberell<strong>in</strong> synthesis. DNA Res. 9:11–17. doi:10.1093/<br />

dnares/9.1.11<br />

Morita, R., M. Kusaba, S. Iida, H. Yamaguchi, T. Nishio, and<br />

M. Nishimura. 2009. Molecular characterization of mutations<br />

<strong>in</strong>duced by gamma irradiation <strong>in</strong> rice. Genes Gen<strong>et</strong>. Syst.<br />

84:361–370. doi:10.1266/ggs.84.361<br />

Muth, J., S. Hartje, R.M. Twyman, H.-R. Hofferbert, E. Tacke,<br />

and D. Prüfer. 2008. Precision breed<strong>in</strong>g <strong>for</strong> novel starch variants<br />

<strong>in</strong> potato. Plant Biotechnol. J. 6:576–584. doi:10.1111/<br />

j.1467-7652.2008.00340.x<br />

Ni<strong>et</strong>o, C., F. Piron, M. D<strong>al</strong>mais, C.F. Marco, E. Moriones, M.L.<br />

Gómez-Guillamón, V. Truniger, P. Gómez, J. Garcia-Mas,<br />

M.A. Aranda, and A. Bendahmane. 2007. Eco<strong>TILLING</strong> <strong>for</strong><br />

the identification of <strong>al</strong>lelic variants of melon eIF4E, a factor<br />

that controls virus susceptibility. BMC Plant Biol. 7:34.<br />

doi:10.1186/1471-2229-7-34<br />

Okabe, Y., E. Asamizu, T. Saito, C. Matsukura, T. Ariizumi, C. Brès,<br />

C. Rothan, T. Mizoguchi, and H. Ezura. 2011. Tomato TILL-<br />

ING technology: Development of a reverse gen<strong>et</strong>ics tool <strong>for</strong> the<br />

efficient isolation of mutants from Micro-Tom mutant libraries.<br />

Plant Cell Physiol. 52:1994–2005. doi:10.1093/pcp/pcr134<br />

Okumoto, Y., K. Ichitani, H. Inoue, and T. Tanisaka. 1996. Photoperiod<br />

<strong>in</strong>sensitivity gene essenti<strong>al</strong> to the vari<strong>et</strong>ies grown <strong>in</strong><br />

the northern limit region of paddy rice (Oryza sativa L.) cultivation.<br />

Euphytica 92:63–66. doi:10.1007/BF00022829<br />

Ouyang, S., W. Zhu, J. Hamilton, H. L<strong>in</strong>, M. Campbell, K.<br />

Childs, F. Thibaud-Nissen, R.L. M<strong>al</strong>ek, Y. Lee, L. Zheng,<br />

J. Orvis, B. Haas, J. Wortman, and C.R. Buell. 2007. The<br />

TIGR rice genome annotation resource: Improvements and<br />

new features. Nucleic Acid Res. 35(Database Issue):D846–<br />

D851. doi:10.1093/nar/gkl976<br />

Piron, F., M. Nicolaï, S. M<strong>in</strong>oïa, E. Piednoir, A. Mor<strong>et</strong>ti, A. S<strong>al</strong>gues,<br />

D. Zamir, C. Caranta, and A. Bendahmane. 2010. An<br />

<strong>in</strong>duced mutation <strong>in</strong> tomato eIF4E leads to immunity to two<br />

potyviruses. PLoS ONE 5(6):E11313. doi:10.1371/journ<strong>al</strong>.<br />

pone.0011313<br />

Putterill, J., F. Robson, K. Lee, R. Simon, and G. Coupland. 1995.<br />

The CONSTANS gene of Arabidopsis promotes flower<strong>in</strong>g<br />

and encodes a prote<strong>in</strong> show<strong>in</strong>g similarities to z<strong>in</strong>c f<strong>in</strong>ger<br />

transcription factors. Cell 80:847–857. doi:10.1016/0092-<br />

8674(95)90288-0<br />

Rashid, M., G. He, Y. Guanxiao, and Z. Khurram. 2011. Relevance<br />

of till<strong>in</strong>g <strong>in</strong> plant genomics. Aust. J. <strong>Cr</strong>op Sci. 5:411–420.<br />

Rigola, D., J. van Oeveren, A. Janssen, A. Bonné, H. Schneiders,<br />

H.J. a van der Poel, N.J. van Orsouw, R.C.J. Hogers,<br />

M.T.J. de Both, and M.J.T. van Eijk. 2009. High-throughput<br />

d<strong>et</strong>ection of <strong>in</strong>duced mutations and natur<strong>al</strong> variation us<strong>in</strong>g<br />

KeyPo<strong>in</strong>t technology. PLoS ONE 4(3):E4761. doi:10.1371/<br />

journ<strong>al</strong>.pone.0004761<br />

Rozen, S., and H. Sk<strong>al</strong><strong>et</strong>sky. 2000. Primer3 on the WWW <strong>for</strong><br />

gener<strong>al</strong> users and <strong>for</strong> biologist programmers. M<strong>et</strong>hods Mol.<br />

Biol. 132:365–386.<br />

Sasaki, A., M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A.<br />

Nishimura, D. Swapan, K. Ishiyama, T. Saito, M. Kobayashi,<br />

G.S. Khush, H. Kitano, and M. Matsuoka. 2002. Green Revolution:<br />

A mutant gibberell<strong>in</strong>-synthesis gene <strong>in</strong> rice. Nature<br />

416(6882):701–702. doi:10.1038/416701a<br />

Sato, Y., K. Shirasawa, Y. Takahashi, M. Nishimura, and T. Nishio.<br />

2006. Mutant selection from progeny of gamma-ray-irradiated<br />

rice by DNA h<strong>et</strong>eroduplex cleavage us<strong>in</strong>g Brassica p<strong>et</strong>iole<br />

extract. Breed. Sci. 56:179–183. doi:10.1270/jsbbs.56.179<br />

S<strong>in</strong>clair, T.R., and R.C. Muchow. 2001. System an<strong>al</strong>ysis of plant<br />

traits to <strong>in</strong>crease gra<strong>in</strong> yield on limited water supplies. Agron.<br />

J. 93:263. doi:10.2134/agronj2001.932263x<br />

Slade, A.J., C. McGuire, D. Loeffler, J. Mullenberg, W. Sk<strong>in</strong>ner,<br />

G. Fazio, A. Holm, K.M. Brandt, M.N. Ste<strong>in</strong>e, J.F. Goodst<strong>al</strong>,<br />

and V.C. Knauf. 2012. Development of high amylose wheat<br />

through <strong>TILLING</strong>. BMC Plant Biol. 12:69. doi:10.1186/1471-<br />

2229-12-69<br />

Sm<strong>al</strong>l, I. 2007. RNAi <strong>for</strong> reve<strong>al</strong><strong>in</strong>g and eng<strong>in</strong>eer<strong>in</strong>g plant gene<br />

functions. Curr. Op<strong>in</strong>. Biotechnol. 18:148–153. doi:10.1016/j.<br />

copbio.2007.01.012<br />

SoftGen<strong>et</strong>ics. 2010. Mutation Surveyor. DNA variant an<strong>al</strong>ysis<br />

software. SoftGen<strong>et</strong>ics LLC, State College, PA.<br />

Spada, A., R. Mantegazza, M. Biloni, E. Capor<strong>al</strong>i, and F. S<strong>al</strong>a.<br />

2004. It<strong>al</strong>ian rice vari<strong>et</strong>ies: Historic<strong>al</strong> data, molecular markers<br />

and pedigrees to reve<strong>al</strong> their gen<strong>et</strong>ic relationships. Plant<br />

Breed. 123:105–111. doi:10.1046/j.1439-0523.2003.00950.x<br />

Spielmeyer, W., M.H. Ellis, and P.M. Chandler. 2002. Semidwarf<br />

(sd-1), “green revolution” rice, conta<strong>in</strong>s a defective gibberell<strong>in</strong><br />

20-oxidase gene. Proc. Natl. Acad. Sci. USA 99:9043–<br />

9048. doi:10.1073/pnas.132266399<br />

Suzuki, T., M. Eiguchi, T. Kumamaru, H. Satoh, H. Matsusaka, K.<br />

Moriguchi, Y. Nagato, and N. Kurata. 2008. MNU-<strong>in</strong>duced<br />

mutant pools and high per<strong>for</strong>mance <strong>TILLING</strong> enable f<strong>in</strong>d<strong>in</strong>g<br />

of any gene mutation <strong>in</strong> rice. Mol. Gen<strong>et</strong>. Genomics 279:213–<br />

223. doi:10.1007/s00438-007-0293-2<br />

Takahashi, Y., K.M. Teshima, S. Yokoi, H. Innan, and K. Shimamoto.<br />

2009. Variations <strong>in</strong> Hd1 prote<strong>in</strong>s, Hd3a promoters, and<br />

Ehd1 expression levels contribute to diversity of flower<strong>in</strong>g<br />

time <strong>in</strong> cultivated rice. Proc. Natl. Acad. Sci. USA 106:4555–<br />

4560. doi:10.1073/pnas.0812092106<br />

Till, B.J., T. Colbert, C. Codomo, L. Enns, J. Johnson, S.H. Reynolds,<br />

J.G. Henikoff, E.A. Greene, M.N. Ste<strong>in</strong>e, L. Comai,<br />

and S. Henikoff. 2006. High-throughput <strong>TILLING</strong> <strong>for</strong> Arabidopsis.<br />

M<strong>et</strong>hods Mol. Biol. 323:127–135.<br />

crop science, vol. 53, november–december <strong>2013</strong> www.crops.org 2561


Till, B.J., J. Cooper, T.H. Tai, P. Colowit, E.A. Greene, S.<br />

Henikoff, and L. Comai. 2007. Discovery of chemic<strong>al</strong>ly<br />

<strong>in</strong>duced mutations <strong>in</strong> rice by <strong>TILLING</strong>. BMC Plant Biol.<br />

7:19. doi:10.1186/1471-2229-7-19<br />

Triques, K., E. Piednoir, M. D<strong>al</strong>mais, J. Schmidt, C. Le Signor,<br />

M. Sharkey, M. Caboche, B. Sturbois, and A. Bendahmane.<br />

2008. Mutation d<strong>et</strong>ection us<strong>in</strong>g ENDO1: Application to disease<br />

diagnostics <strong>in</strong> humans and <strong>TILLING</strong> and Eco-<strong>TILLING</strong><br />

<strong>in</strong> plants. BMC Mol. Biol. 9:42. doi:10.1186/1471-2199-9-42<br />

Tsai, H., T. Howell, R. Nitcher, V. Missirian, B. Watson, K.J. Ngo,<br />

M. Lieberman, J. Fass, C. Uauy, R.K. Tran, A.A. Khan, V.<br />

Filkov, T.H. Tai, J. Dubcovsky, and L. Comai. 2011. Discovery<br />

of rare mutations <strong>in</strong> populations: <strong>TILLING</strong> by sequenc<strong>in</strong>g.<br />

Plant Physiol. 156:1257–1268. doi:10.1104/pp.110.169748<br />

Tsuji, H., K. Taoka, and K. Shimamoto. 2011. Regulation of flower<strong>in</strong>g<br />

<strong>in</strong> rice: Two florigen genes, a complex gene n<strong>et</strong>work,<br />

and natur<strong>al</strong> variation. Curr. Op<strong>in</strong>. Plant Biol. 14:45–52.<br />

doi:10.1016/j.pbi.2010.08.016<br />

Wang, T.L., C. Uauy, F. Robson, and B. Till. 2012. <strong>TILLING</strong><br />

<strong>in</strong> extremis. Plant Biotechnol. J. 10(7):761–772. doi:10.1111/<br />

j.1467-7652.2012.00708.x<br />

Wu, J.-L., C. Wu, C. Lei, M. Baraoidan, A. Bordeos, M.R.S.<br />

Madamba, M. Ramos-Pamplona, R. Mauleon, A. Portug<strong>al</strong>,<br />

V.J. Ulat, R. Bruskiewich, G. Wang, J. Leach, G. Khush, and<br />

H. Leung. 2005. Chemic<strong>al</strong>- and irradiation-<strong>in</strong>duced mutants<br />

of <strong>in</strong>dica rice IR64 <strong>for</strong> <strong>for</strong>ward and reverse gen<strong>et</strong>ics. Plant<br />

Mol. Biol. 59:85–97. doi:10.1007/s11103-004-5112-0<br />

Xue, W., Y. X<strong>in</strong>g, X. Weng, Y. Zhao, W. Tang, L. Wang, <strong>et</strong> <strong>al</strong>.<br />

2008. Natur<strong>al</strong> variation <strong>in</strong> Ghd7 is an important regulator of<br />

head<strong>in</strong>g date and yield potenti<strong>al</strong> <strong>in</strong> rice. Nat. Gen<strong>et</strong>. 40:761–<br />

767. doi:10.1038/ng.143<br />

Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T.<br />

Fuse, T. Baba, K. Yamamoto, Y. Umehara, Y. Nagamura, and<br />

T. Sasaki. 2000. Hd1, a major photoperiod sensitivity quantitative<br />

trait locus <strong>in</strong> rice, is closely related to the Arabidopsis<br />

flower<strong>in</strong>g time gene CONSTANS. Plant Cell 12:2473–2484.<br />

You, J., W. Zong, X. Li, J. N<strong>in</strong>g, H. Hu, X. Li, J. Xiao, and L.<br />

Xiong. <strong>2013</strong>. The SNAC1-targ<strong>et</strong>ed gene OsSRO1c modulates<br />

stomat<strong>al</strong> closure and oxidative stress tolerance by regulat<strong>in</strong>g<br />

hydrogen peroxide <strong>in</strong> rice. J. Exp. Bot. 64:569–583.<br />

doi:10.1093/jxb/ers349<br />

2562 www.crops.org crop science, vol. 53, november–december <strong>2013</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!