04.06.2016 Views

Karpouzas et al. - 2006 - Pesticide exposure assessment in rice paddies in E

Karpouzas et al. - 2006 - Pesticide exposure assessment in rice paddies in E

Karpouzas et al. - 2006 - Pesticide exposure assessment in rice paddies in E

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DG <strong>Karpouzas</strong> <strong>et</strong> <strong>al</strong>.<br />

framework of the two standard Med-Rice scenarios.<br />

Therefore, certa<strong>in</strong> param<strong>et</strong>ers, <strong>in</strong>clud<strong>in</strong>g the period of<br />

<strong>rice</strong> cultivation and paddy closure, the percolation rate,<br />

the depth of soil horizon beneath the <strong>rice</strong> paddy, the<br />

fraction of pesticide lost by drift and other hydraulic<br />

param<strong>et</strong>ers such as the diffusion coefficient, constants<br />

a and b, and dispersivity, are <strong>al</strong>lowed to be given v<strong>al</strong>ues<br />

other than the scenario default ones.<br />

As a first improvement of the assumptions for<br />

paddy water predictions, a more re<strong>al</strong>istic adsorption<br />

is proposed to be modelled <strong>in</strong> tier 2. 5 The<br />

amount of substance adsorbed on paddy soil is <strong>in</strong><br />

constant equilibrium with its amount <strong>in</strong> paddy water,<br />

while <strong>in</strong> tier-1 the sorption occurs <strong>in</strong>stantaneously<br />

and no <strong>in</strong>teraction takes place thereafter. For<br />

GW, SWAGW assumes a miscible displacement<br />

behaviour of pesticide, a constant moisture content<br />

correspond<strong>in</strong>g to saturation, and a constant addition<br />

of pesticide correspond<strong>in</strong>g to its TWA <strong>in</strong> paddy water,<br />

both dur<strong>in</strong>g paddy closure and paddy open<strong>in</strong>g. 5<br />

In the relevant EU member states, <strong>rice</strong> cultivation is<br />

ma<strong>in</strong>ly divided <strong>in</strong>to two dist<strong>in</strong>ct time periods of water<br />

submersion:<br />

• a first period which follows pesticide application<br />

where the paddy field is ma<strong>in</strong>ta<strong>in</strong>ed submerged by<br />

a static body of water and no irrigation or dra<strong>in</strong>age<br />

is applied (closed <strong>rice</strong> environment);<br />

• a successive second period, where irrigation and<br />

dra<strong>in</strong>age occur concurrently, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a constant<br />

water depth <strong>in</strong> the paddy field (open <strong>rice</strong><br />

environment).<br />

Accord<strong>in</strong>g to this practice, the SWAGW model<br />

simulates pesticide dissipation <strong>in</strong> <strong>rice</strong> <strong>paddies</strong> by<br />

divid<strong>in</strong>g the simulation period <strong>in</strong>to two different timedependent<br />

systems: a closed paddy system [0–5 days<br />

after treatment (DAT)] and an open paddy system (5<br />

DAT onwards).<br />

2.1.1 Closed system<br />

The conservation of mass <strong>in</strong> the paddy environment<br />

dur<strong>in</strong>g the period of paddy closure is given by the<br />

follow<strong>in</strong>g equation:<br />

A Tot<strong>al</strong> − A LL = A L + A S + B L (1)<br />

where A Tot<strong>al</strong> (µg) is the tot<strong>al</strong> pesticide mass added<br />

<strong>in</strong> the paddy system, A LL (µg) is the pesticide mass<br />

leached through soil, A L (µg) is the pesticide mass<br />

dissolved <strong>in</strong> the paddy water, A S (µg) is the pesticide<br />

mass adsorbed onto the paddy soil and B L (µg) is the<br />

amount of residue formed. From these, A S is given by<br />

the follow<strong>in</strong>g equation:<br />

A S = K 2 (1 − e −αt )A L (2)<br />

where K 2 is the adsorption ratio of pesticide <strong>in</strong> the soil.<br />

By substitut<strong>in</strong>g the different components of (1) and<br />

(2), the differenti<strong>al</strong> equation takes the form<br />

dA L<br />

dt<br />

=− k 2w + k <strong>in</strong>f + αK 2 e −αt<br />

1 + K 2 (1 − e −αt A L (3)<br />

)<br />

where k 2w is the daily degradation rate of pesticide<br />

<strong>in</strong> the paddy water, k <strong>in</strong>f is a pseudo-first-order<br />

degradation constant tak<strong>in</strong>g <strong>in</strong>to account the daily<br />

pesticide leach<strong>in</strong>g, and α is a constant tak<strong>in</strong>g <strong>in</strong>to<br />

account the time dependence of ratio K 2 . When<br />

t →∞, equation (2) is equ<strong>al</strong> to A S = K 2 A L .Atthe<br />

<strong>in</strong>iti<strong>al</strong> time condition, t = 0, A L = A 0 ,whereA 0 (µg) is<br />

the <strong>in</strong>iti<strong>al</strong> amount of pesticide, and equation (3) takes<br />

the form<br />

(<br />

k )<br />

A L = A 0 e αt [−K 2 + e αt (1 + K 2 )] − 1+ 2w + k <strong>in</strong>f<br />

α(1 + K 2 )<br />

(4)<br />

The TWAs <strong>in</strong> the time <strong>in</strong>terv<strong>al</strong> 0 ≤ t ≤ T 1 , where<br />

T 1 (d) is the end of the paddy clos<strong>in</strong>g period, are<br />

computed accord<strong>in</strong>g to the equation<br />

TWA AL =<br />

A 0<br />

t(k 2w + k <strong>in</strong>f ) [−K 2 + e αt<br />

(<br />

× (1 + K 2 )] − 1+ k )<br />

2w + k <strong>in</strong>f<br />

α(1 + K 2 )<br />

[<br />

× K 2 − e −αt (1 + K 2 ) − (K 2 − e αt<br />

× (1 + K 2 )) + (<br />

1+ k 2w + k <strong>in</strong>f<br />

α(1 + K 2 )) ]<br />

(5)<br />

2.1.2 Open system<br />

The conservation of mass <strong>in</strong> the paddy environment<br />

dur<strong>in</strong>g the period of paddy open<strong>in</strong>g is c<strong>al</strong>culated by<br />

the follow<strong>in</strong>g formula:<br />

A Tot<strong>al</strong> − A LL − A L = A L + A S + B L (6)<br />

where A L (µg) is the pesticide mass flow<strong>in</strong>g out of the<br />

paddy ow<strong>in</strong>g to controlled dra<strong>in</strong>age and c<strong>al</strong>culated by<br />

the follow<strong>in</strong>g formula:<br />

dA L<br />

= k out A L (7)<br />

dt<br />

where k out is a pseudo-first-order degradation constant<br />

tak<strong>in</strong>g <strong>in</strong>to account the daily water discharge from the<br />

paddy. By substitut<strong>in</strong>g the different components of<br />

Eqn (6), the differenti<strong>al</strong> equation takes the form<br />

dA L<br />

dt<br />

=− k 2w + k <strong>in</strong>f + k out + α K 2 e −αt<br />

1 + K 2 (1 − e −αt A L (8)<br />

)<br />

The solution of Eqn (8), for the <strong>in</strong>iti<strong>al</strong> condition<br />

t = T 1 −−−→ A L = A ◦ 0 (9)<br />

where A ◦ 0 (µg) is the pesticide mass at the end of the<br />

clos<strong>in</strong>g time T 1 , is therefore<br />

A L = A ◦ 0 eαt [−K 2 + e αt<br />

(<br />

k )<br />

× (1 + K 2 )] − 1+ 2w + k <strong>in</strong>f + k out<br />

α(1 + K 2 )<br />

(10)<br />

626 Pest Manag Sci 62:624–636 (<strong>2006</strong>)<br />

DOI: 10.1002/ps

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!