04.06.2016 Views

Karpouzas et al. - 2006 - Pesticide exposure assessment in rice paddies in E

Karpouzas et al. - 2006 - Pesticide exposure assessment in rice paddies in E

Karpouzas et al. - 2006 - Pesticide exposure assessment in rice paddies in E

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DG <strong>Karpouzas</strong> <strong>et</strong> <strong>al</strong>.<br />

were derived us<strong>in</strong>g the PRZM 3.0 user’s manu<strong>al</strong> for<br />

the different porous materi<strong>al</strong>s of the soil horizon. 14<br />

Other param<strong>et</strong>ers such as effective porosity (ϕ,<br />

dimensionless) and residu<strong>al</strong> water phase saturation<br />

(S wr , dimensionless) were c<strong>al</strong>culated with the follow<strong>in</strong>g<br />

formulae:<br />

ϕ = θ s − θ r (16)<br />

S wr = θ r<br />

θ s<br />

(17)<br />

2.6 Statistic<strong>al</strong> an<strong>al</strong>ysis<br />

Model performance was objectively assessed by<br />

compar<strong>in</strong>g the graphic<strong>al</strong> agreement b<strong>et</strong>ween predicted<br />

and observed concentrations of both pesticides <strong>in</strong><br />

paddy water and paddy soil. In addition, the goodness<br />

of fit was assessed us<strong>in</strong>g appropriate statistic<strong>al</strong> <strong>in</strong>dices<br />

<strong>in</strong>clud<strong>in</strong>g root mean square error (RMSE) and<br />

modell<strong>in</strong>g efficiency (EF):<br />

n∑<br />

RMSE = 100<br />

(P i − O i ) 2<br />

√<br />

i=1<br />

(18)<br />

O n<br />

∑<br />

(Oi − O) 2 − ∑ (P i − O i ) 2<br />

EF = ∑ (19)<br />

(Oi − O) 2<br />

where P i and O i are the predicted and observed v<strong>al</strong>ues<br />

respectively, O is the average of the observed v<strong>al</strong>ues<br />

and n is the number of observations. In gener<strong>al</strong>,<br />

the lower the RMSE, the higher is the agreement<br />

b<strong>et</strong>ween measured and predicted data. 28 In contrast,<br />

the optim<strong>al</strong> v<strong>al</strong>ue for EF is 1, and thus the closer to<br />

1 the v<strong>al</strong>ues of EF, the greater is the correspondence<br />

b<strong>et</strong>ween measured and predicted data. 28<br />

3 RESULTS<br />

3.1 Model predictions <strong>in</strong> paddy water<br />

The agreement b<strong>et</strong>ween measured and predicted<br />

concentrations of c<strong>in</strong>osulfuron and pr<strong>et</strong>ilachlor <strong>in</strong><br />

paddy water is shown <strong>in</strong> Fig. 2. Gener<strong>al</strong>ly, <strong>al</strong>l<br />

three models predicted with acceptable accuracy<br />

the dissipation of c<strong>in</strong>osulfuron <strong>in</strong> paddy water <strong>in</strong><br />

both 1997 (Fig. 2(a)) and 1998 (Fig. 2(b)). The<br />

good agreement b<strong>et</strong>ween observed and predicted<br />

concentrations of c<strong>in</strong>osulfuron <strong>in</strong> paddy water is<br />

reflected <strong>in</strong> the low RMSE and high EF v<strong>al</strong>ues of the<br />

RICEWQ and PCPF-1 models (Table 5). The v<strong>al</strong>ues<br />

of the statistic<strong>al</strong> <strong>in</strong>dices for SWAGW suggested lower<br />

but still acceptable agreement b<strong>et</strong>ween predicted and<br />

measured concentrations. For example, the RMSE<br />

v<strong>al</strong>ues for c<strong>in</strong>osulfuron <strong>in</strong> 1997 were 52.6, 86.8<br />

and 104.2 for RICEWQ, PCPF-1 and SWAGW<br />

respectively (Table 5). All three models predicted<br />

with high accuracy the dissipation of pr<strong>et</strong>ilachlor <strong>in</strong><br />

paddy water, as shown <strong>in</strong> Figs 2(c) and (d). This good<br />

agreement is reflected <strong>in</strong> the low RMSE and high<br />

EF v<strong>al</strong>ues for <strong>al</strong>l models <strong>in</strong> both years studied. For<br />

example, the RMSE v<strong>al</strong>ues for SWAGW <strong>in</strong> 2001 and<br />

2002 were 62.8 and 24.8 respectively, compared with<br />

42.3 and 36.5 for RICEWQ and 11.5 and 33.9 for<br />

PCPF-1 (Table 5). Therefore, the highest agreement<br />

<strong>Pesticide</strong> concentration <strong>in</strong> paddy water (µg l -1 )<br />

70<br />

60<br />

(a)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 20 40 60 80 100 120<br />

1200<br />

1000<br />

(c)<br />

800<br />

600<br />

400<br />

200<br />

70<br />

60<br />

(b)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 20 40 60 80 100 120<br />

1400<br />

1200<br />

(d)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 20 40 60 80 100 120<br />

Time (days after application)<br />

0<br />

0 20 40 60 80 100 120<br />

Figure 2. Measured ) and predicted dissipation <strong>in</strong> paddy water of c<strong>in</strong>osulfuron <strong>in</strong> (a) 1997 and (b) 1998, and of pr<strong>et</strong>ilachlor <strong>in</strong> (c) 2001 and<br />

(d) 2002. <strong>Pesticide</strong> dissipation<br />

(° as simulated by (- - - - ) SWAGW, ( )RICEWQand( )PCPF-1.<br />

632 Pest Manag Sci 62:624–636 (<strong>2006</strong>)<br />

DOI: 10.1002/ps

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!