16.12.2012 Views

Computer Algebra Recipes

Computer Algebra Recipes

Computer Algebra Recipes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.2. SECOND-ORDER MODELS 181<br />

Referring to the freebody diagram, sin(μ) =Vy=V and cos(μ) =Vx=V .<br />

> sin(theta):=V[y]/Speed; cos(theta):=V[x]/Speed;<br />

sin(μ) := q<br />

Vy<br />

Vx 2 + Vy 2<br />

cos(μ) := q<br />

Vx<br />

Vx 2 + Vy 2<br />

The unit vector ^ Á pointing in the lift direction is related to the Cartesian unit<br />

vectors ^ex and ^ey pointing along the x- andy-directions, respectively, by the<br />

relation ^ Á = ¡ sin μ ^ex +cosμ ^ey. This relation is entered and labeled uÁ.<br />

> u[phi]:=;<br />

uÁ := ¡ q<br />

Vy<br />

Vx 2 + Vy 2<br />

ex +<br />

q<br />

Vx<br />

Vx 2 + Vy 2<br />

ey<br />

The gravitational force ~ Fgravity = ¡mg^ey, wherem is the mass of the ball and<br />

g is the acceleration due to gravity.<br />

> F[gravity]:=;<br />

Fgravity := ¡mgey<br />

According to the photocopied references, both the drag force ~ Fdrag and the<br />

lift force ~ Flift are proportional to the square of the speed. Jennifer labels the<br />

proportionality constants (per unit mass) as Kdrag and Klift, respectively, and<br />

enters the two forces.<br />

> F[drag]:=-K[drag]*m*Speed^2*u[v];<br />

q<br />

Fdrag := ¡Kdrag m<br />

Vx 2 + Vy 2 Vx ex ¡ Kdrag m<br />

q<br />

Vx 2 + Vy 2 Vy ey<br />

> F[lift]:=K[lift]*m*Speed^2*u[phi];<br />

q<br />

Flift := ¡Klift m Vx 2 + Vy 2 q<br />

Vy ex + Klift m Vx 2 + Vy 2 Vx ey<br />

The net force ~ F acting on the golf ball is the vector sum of the three forces.<br />

> F:=F[gravity]+F[drag]+F[lift]:<br />

Now, Vx = dx(t)=dt and Vy = dy(t)=dt, wherex(t) andy(t) are the horizontal<br />

and vertical coordinates of the golf ball at time t.<br />

> V[x]:=diff(x(t),t): V[y]:=diff(y(t),t):<br />

Newton's second law of motion is applied in the x- andy-directions.<br />

> xeq:=diff(V[x],t)=simplify(F[1]/m);<br />

xeq := d2<br />

s<br />

μ 2 μ<br />

d d<br />

x(t) =¡ x (t) +<br />

dt2 dt dt y(t)<br />

2μ μ μ<br />

d<br />

d<br />

Kdrag x (t) + Klift<br />

dt dt y(t)<br />

<br />

> yeq:=diff(V[y],t)=simplify(F[2]/m);

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!