atw 2019-02
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
nucmag.com<br />
<strong>2019</strong><br />
2<br />
71<br />
Contribution of NPPs<br />
to the Energy Transition<br />
79 ı Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe<br />
90 ı Spotlight on Nuclear Law<br />
The New Radiation Protection Law (I): Official Approvals<br />
91 ı Environment and Safety<br />
Piping Stress Analysis of Safety Injection System<br />
of Typical PWR Power Reactor<br />
ISSN · 1431-5254<br />
24.– €<br />
106 ı Special Topic | A Journey Through 50 Years AMNT<br />
1971 DAtF-KTG-Meeting on Reactors in Bonn<br />
Register Now!
#50AMNT<br />
www.amnt<strong>2019</strong>.com<br />
Take a Glimpse into the Future<br />
Technolution – The Co-Evolution<br />
Between Techology and Humankind<br />
› Matthias Horx ‹<br />
Trend Researcher and Futurologist,<br />
Austria<br />
Tuesday, 7 th Mai <strong>2019</strong>, 6:30 pm<br />
Media Partners<br />
Celebrate with us our 50 th anniversary
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
The Same Procedure<br />
63<br />
Anyone who is enthusiastic about the construction of a nuclear power plant today must consider the fact that this<br />
plant will technically still run in 80 or even 100 years under politically reliable framework conditions. For nuclear power<br />
plants that are in operation today, even for 30 to 40 years, technical operating lives of 60 years are a matter of course,<br />
and in the USA, for example, 80 years are undergoing technical and regulatory evaluation. As far as the guarantee of<br />
continued highest safety levels is concerned, statements are very clear: A “retirement loan” is not granted, nor does it<br />
have to, since highest safety is also guaranteed for running plants by ongoing quality management and for new technical<br />
findings by retrofitting.<br />
Such long-term prospects also raise the question of<br />
whether sufficient nuclear fuel is available worldwide as a<br />
raw material at all. The answer is given periodically, every<br />
two years, with the comprehensive report “Uranium:<br />
Resources, Production and Demand” by the Nuclear<br />
Energy Agency (NEA) of the Organisation for Economic<br />
Development (OECD) and the International Atomic<br />
Energy Agency (IAEA). Since the mid-1960s, the two<br />
organizations have been publishing this analysis of the<br />
global nuclear fuel market, reserves and resources. The<br />
Red Book offers a detailed and reliable insight into the<br />
current situation of the entire uranium and nuclear fuel<br />
supply. The Red Book also provides an outlook on demand<br />
and supply forecasts for the coming decades. The data in<br />
the 27 th edition, which has now been published, have been<br />
compiled with the support of 41 member states of both<br />
organisations and analyses by NEA and IAEA experts. They<br />
reflect the state of knowledge on 45 countries with nuclear<br />
fuel resources and/or requirements as of 1 January 2017.<br />
In addition, other aspects of nuclear fuel supply are<br />
outlined, such as environmental protection and price<br />
development.<br />
The opening statement is unequivocal: With the<br />
demand level of 2016, sufficient uranium is known<br />
worldwide to supply for 130 years. Further nuclear fuel<br />
resources have been identified, but are not yet taken into<br />
account because they are not strategically necessary!<br />
On the uranium supply side, the Red Book again<br />
identifies an increase in resources compared to 2015:<br />
According to the list classified by costs step by step, a total<br />
of 7.989 million tonnes of uranium at production costs<br />
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
EDITORIAL 64<br />
Es bleibt dabei<br />
Liebe Leserin, lieber Leser, wer sich heute für den Bau eines Kernkraftwerks begeistert, muss damit rechnen,<br />
dass diese Anlage unter politisch verlässlichen Rahmenbedingungen technisch gesehen noch in 80 oder gar 100 Jahren<br />
laufen wird. Für Kernkraftwerke, die heute in Betrieb sind, auch schon seit 30 bis 40 Jahren, sind technische Laufzeiten<br />
von 60 Jahren eine Selbstverständlichkeit und zum Beispiel in den USA sind 80 Jahre in der technischen und<br />
regulatorischen Prüfung. Was die Gewährleistung von weiterhin höchsten Sicherheitsniveaus betrifft, so sind Aussagen<br />
sehr eindeutig: Ein „Alterskredit“ wird nicht gewährt, muss er auch nicht, da höchste Sicherheit auch bei laufenden<br />
Anlagen durch das laufende Qualitätsmanagement und bei neuen technischen Erkenntnissen durch Nachrüstungen<br />
gewährleistet wird.<br />
1) Uranium 2018:<br />
Resources, Production<br />
and Demand,<br />
A Joint Report by<br />
the OECD Nuclear<br />
Energy Agency and<br />
the International<br />
Atomic Energy<br />
Agency, NEA No.<br />
7413, Paris, 2018<br />
Mit solchen Langfristperspektiven stellt sich auch die<br />
Frage, ob überhaupt ausreichend Kernbrennstoff weltweit<br />
als Rohstoff zur Verfügung steht. Die Antwort darauf gibt<br />
es periodisch, alle zwei Jahre, mit dem umfassenden<br />
Bericht „Uranium: Resources, Production and Demand“<br />
von Nuclear Energy Agency (NEA) der Organisation for<br />
Economic Development (OECD) und Internationaler<br />
Atom energie-Organisation (IAEO). Seit Mitte der 1960er-<br />
Jahre veröffentlichen die beiden Organisationen diese<br />
Analyse zum weltweiten Kernbrennstoffmarkt, den<br />
Reserven und Ressourcen. Das Red Book bietet einen<br />
detaillierten und verlässlichen Einblick in die aktuelle<br />
Situation der gesamten Uran- und Kernbrennstoff versorgung.<br />
Zudem liefert das Red Book einen Ausblick auf<br />
die Bedarfs- und Versorgungsprognose der kommenden<br />
Jahrzehnte. Die Daten der jetzt veröffentlichten 27. Ausgabe<br />
sind mit Unterstützung von inzwischen 41<br />
Mitgliedsstaaten beider Organisationen sowie Analysen<br />
der Experten von NEA und IAEO ermittelt worden. Sie<br />
spiegeln den Wissensstand zu 45 Staaten mit Kernbrennstoffressourcen<br />
und/oder -bedarf zum Stichtag 1. Januar<br />
2017 wider. Darüber hinaus werden weitere Aspekte der<br />
Kernbrennstoffversorgung umrissen, wie z.B. Umweltschutz<br />
und Preisentwicklung.<br />
Eindeutig ist das Eingangsstatement: Mit dem Bedarfsniveau<br />
des Jahres 2016 ist weltweit ausreichend Uran<br />
zur Versorgung für 130 Jahre bekannt. Weitere Kernbrennstoffressourcen<br />
sind identifiziert, werden aber, da<br />
strategisch nicht erforderlich, noch nicht berücksichtigt!<br />
Aufseiten der Uranversorgung identifiziert das Red<br />
Book wiederum einen Ressourcenzuwachs im Vergleich<br />
zum Jahr 2015: Entsprechend der stufenweise nach Kosten<br />
klassifizierten Aufstellung werden am Stichtag 1. Januar<br />
2017 insgesamt 7,989 Mio. t Uran zu Gewinnungskosten<br />
Kommunikation und<br />
Training für Kerntechnik<br />
Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />
Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />
3 Atom-, Vertrags- und Exportrecht<br />
Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 05.03.<strong>2019</strong><br />
17.09.<strong>2019</strong><br />
Ihr Weg durch Genehmigungs- und Aufsichtsverfahren RA Dr. Christian Raetzke <strong>02</strong>.04.<strong>2019</strong><br />
22.10.<strong>2019</strong><br />
Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 03.04.<strong>2019</strong> Berlin<br />
Atomrecht – Was Sie wissen müssen<br />
Export kerntechnischer Produkte und Dienstleistungen –<br />
Chancen und Regularien<br />
3 Kommunikation und Politik<br />
RA Dr. Christian Raetzke<br />
Akos Frank LL. M.<br />
RA Kay Höft M. A.<br />
O. L. Kreuzer<br />
Dr.-Ing. Wolfgang Steinwarz<br />
Berlin<br />
Berlin<br />
04.06.<strong>2019</strong> Berlin<br />
12.06. - 13.06.<strong>2019</strong> Berlin<br />
Schlüsselfaktor Interkulturelle Kompetenz –<br />
International verstehen und verstanden werden<br />
Public Hearing Workshop –<br />
Öffentliche Anhörungen erfolgreich meistern<br />
Angela Lloyd 20.03.<strong>2019</strong> Berlin<br />
Dr. Nikolai A. Behr 05.11. - 06.11.<strong>2019</strong> Berlin<br />
3 Rückbau und Strahlenschutz<br />
In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />
Das neue Strahlenschutzgesetz –<br />
Folgen für Recht und Praxis<br />
Stilllegung und Rückbau in Recht und Praxis<br />
Dr. Maria Poetsch<br />
RA Dr. Christian Raetzke<br />
Dr. Matthias Bauerfeind<br />
RA Dr. Christian Raetzke<br />
12.<strong>02</strong>. - 13.<strong>02</strong>.<strong>2019</strong><br />
18.03. - 19.03.<strong>2019</strong><br />
04.04. - 05.04.<strong>2019</strong><br />
25.06. - 26.06.<strong>2019</strong><br />
Berlin<br />
24.09. - 25.09.<strong>2019</strong> Berlin<br />
3 Nuclear English<br />
Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 10.04. - 11.04.<strong>2019</strong><br />
18.09. - 19.09.<strong>2019</strong><br />
Enhancing Your Nuclear English Devika Kataja 22.05. - 23.05.<strong>2019</strong> Berlin<br />
3 Wissenstransfer und Veränderungsmanagement<br />
Berlin<br />
Erfolgreicher Wissenstransfer in der Kern technik –<br />
Methoden und praktische Anwendung<br />
Veränderungsprozesse gestalten – Heraus forderungen<br />
meistern, Beteiligte gewinnen<br />
Dr. Tanja-Vera Herking<br />
Dr. Christien Zedler<br />
Dr. Tanja-Vera Herking<br />
Dr. Christien Zedler<br />
26.03. - 27.03.<strong>2019</strong> Berlin<br />
26.11. - 27.11.<strong>2019</strong> Berlin<br />
Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />
Kontakt<br />
INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />
Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />
Die INFORUM-Seminare können je nach<br />
Inhalt ggf. als Beitrag zur Aktualisierung<br />
der Fachkunde geeignet sein.
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
66<br />
Issue 2 | <strong>2019</strong><br />
February<br />
CONTENTS<br />
Contents<br />
Editorial<br />
The Same Procedure E/G 63<br />
Inside Nuclear with NucNet<br />
Financing New Nuclear: Is RAB Model the Right Way Forward? 68<br />
DAtF Notes 69<br />
Calendar 70<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants<br />
to the Energy Transition in Germany 71<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe 79<br />
Spotlight on Nuclear Law<br />
The New Radiation Protection Law (I): Official Approvals G 90<br />
Environment and Safety<br />
Piping Stress Analysis of Safety Injection System<br />
of Typical PWR Power Reactor 91<br />
Environment and Safety<br />
Research for the Adequacy Analysis of Plant System Behaviors<br />
During Abnormal Conditions 95<br />
Operation and New Build<br />
Design of Control System for On-line Ultrasonic Testing Device<br />
of Nuclear Power Hollow Flange Bolt Based on LabVIEW 98<br />
Research and Innovation<br />
Simulation of KSMR Core Zero Power Conditions<br />
Using the Monte Carlo Code Serpent 103<br />
Special Topic | A Journey Through 50 Years AMNT<br />
1971 DAtF-KTG-Meeting on Reactors in Bonn G 106<br />
Cover:<br />
Isar NPP in Germany. Isar 2 (left) was the<br />
third NPP worldwide that produced more<br />
than 350 billion kWh of electricity.<br />
Copyright: PreussenElektra GmbH<br />
KTG Inside 112<br />
News 113<br />
Nuclear Today<br />
Nuclear Has Every Reason to Plan for a New Energy Horizon 118<br />
G<br />
E/G<br />
= German<br />
= English/German<br />
Imprint 1<strong>02</strong><br />
Contents
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Feature<br />
Major Trends in Energy Policy<br />
and Nuclear Power<br />
71 Contribution of Nuclear Power Plants<br />
to the Energy Transition in Germany<br />
67<br />
CONTENTS<br />
Denis Janin, Eckart Lindwedel,<br />
Volker Raffel, Graham Weale, James Cox and Geir Bronmo<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
79 Wind Energy in Germany<br />
and Europe<br />
Thomas Linnemann and Guido S. Vallana<br />
Spotlight on Nuclear Law<br />
90 The New Radiation Protection Law (I): Official Approvals<br />
Das neue Strahlenschutzrecht (I): Genehmigungen<br />
Christian Raetzke<br />
Environment and Safety<br />
91 Piping Stress Analysis of Safety Injection System<br />
of Typical PWR Power Reactor<br />
Mazhar Iqbal, Agha Nadeem, Tariq Najam,<br />
Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan<br />
Special Topic | A Journey Through 50 Years AMNT<br />
106 1971 DAtF-KTG-Meeting on Reactors in Bonn<br />
DAtF-KTG-Reaktortagung 1971 in Bonn<br />
Nuclear Today<br />
118 Nuclear Has Every Reason to Plan for a New Energy Horizon<br />
John Shepherd<br />
Contents
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
68<br />
INSIDE NUCLEAR WITH NUCNET<br />
Financing New Nuclear:<br />
Is RAB Model the Right Way Forward?<br />
David Dalton, NucNet<br />
The United Kingdom (UK) is considering a new method of funding to make sure new plants can get built.<br />
The UK government has confirmed it is exploring<br />
the “right ways” to finance new nuclear,<br />
including through potential government investment<br />
in the Wylfa Newydd nuclear power station on the<br />
isle of Anglesey in North Wales and a regulated asset base,<br />
or RAB, model for future projects.<br />
Business secretary Greg Clark said in a speech on the<br />
future of the energy market that “if nuclear is sufficiently<br />
competitive, then it is worth, in my view, turning that<br />
option into a commitment.”<br />
He said there has been “some criticism” of the<br />
prospective cost of the Hinkley Point C nuclear station<br />
project, but in its efforts to bring down costs the government<br />
is looking into financing options for new-build.<br />
“It is also why we recently announced a nuclear industry<br />
deal with its emphasis on the need to reduce the costs [of<br />
new nuclear] by 30 % through increasing modularisation<br />
and advanced manufacturing,” Mr Clark said.<br />
France’s state-controlled EDF, through its UK division<br />
EDF Energy, is building two EPR units at Hinkley Point C<br />
with the financial participation of China’s General Nuclear<br />
Power Corporation (CGN). The cost of the project is<br />
estimated at almost £ 20 bn.<br />
The financing for the project proved controversial.<br />
The deal struck with EDF Energy to build what is Britain’s<br />
first new nuclear power project in a generation has been<br />
criticised by the National Audit Office (NAO) because it<br />
guarantees the company a strike price of £ 92.50 per<br />
megawatt- hour of electricity, well above current market<br />
prices.<br />
The agreement means EDF will receive £ 92.50 for each<br />
MWh of electricity from the station that it sells into the<br />
market for 35 years. EDF will receive top-up payments –<br />
ultimately paid for by electricity bill-payers – if the market<br />
price is lower. Conversely, payments will flow in the<br />
opposite direction if wholesale prices rise above the strike<br />
price.<br />
The core of the issue is the upfront cost of financing major<br />
infrastructure projects like nuclear plants. According to<br />
the NAO it has not been commercially viable for private<br />
developers to build new generating capacity without<br />
government support. “The forecast revenues available in<br />
the wholesale electricity market do not cover the high<br />
upfront costs and other risks of building, operating and<br />
decommissioning low-carbon power plants,” the NAO said.<br />
Mr Clark’s speech is the clearest indication yet that the<br />
government is open to RAB, essentially a type of contract<br />
drawn up with the backing of government which calculates<br />
the costs and profits of a project before it is started, and<br />
allocates an investor’s profits from day one.<br />
A government regulator sets a fixed number, the RAB,<br />
which attempts to account for all the future costs involved<br />
in the completion of a project. The regulator then also sets<br />
a fixed rate of return for the investors based on those costs.<br />
Dieter Helm, the British economist and academic, says<br />
RAB would solve the problem for nuclear developers of<br />
“time inconsistency and the operating contract” – the risks<br />
to the developer that the government will renege on its<br />
part of the deal and that the plant will be forced off the<br />
system by the investment decisions of others, in particular<br />
where low-carbon investment is decided by and subsidised<br />
by government.<br />
“The RAB mechanism is honoured by the regulator and<br />
the regulator is itself backed by statute, so ultimately this<br />
duty is backed by the government,” Mr Helm wrote in a<br />
recent paper.<br />
“Because there is regulatory protection against time<br />
inconsistency and because ultimately the government<br />
stands behind the regulator and the duty to finance<br />
functions, investors treat the RAB as a very solid<br />
securitisable asset.”<br />
Nuclear power is “always and everywhere political”<br />
because it involves capital intensive and long-lived assets,<br />
and because it comes with environmental, military and<br />
technology specific risks on a scale which no private<br />
market can handle on its own, Mr Helm said.<br />
Nuclear waste lasts for many generations and plans<br />
for the storage of that waste remain a work-in-progress.<br />
Decommissioning is far into the future and cannot be left<br />
to limited liability private companies.<br />
Nuclear has important military dimensions and<br />
terrorist- related risks. Accidents, however unlikely, may<br />
create large-scale consequences, which private limited<br />
liabilities companies cannot fully provide for.<br />
According to Mr Helm, these characteristics that<br />
nuclear is a societal and political matter, over many<br />
generations. Nuclear safety regulation, nuclear funds for<br />
decommissioning, nuclear waste storage and nuclear<br />
security and secrecy remain for the state, and cannot be<br />
contracted out to private project developers.<br />
What can be contracted out to private companies is<br />
the construction and operation of nuclear power stations<br />
– in principle. In practice, most nuclear developers are<br />
state-owned, in whole or in part, and all have close links to<br />
government.<br />
“This is because of the technology and also the specific<br />
endemic challenges of project developments,” Mr Helm<br />
said. “There are unsurprisingly no purely private sector<br />
nuclear projects anywhere in the world.”<br />
Apart from Hinkley Point C, which is in the early stages<br />
of construction, there are three other new nuclear projects<br />
on the drawing board in the UK.<br />
Horizon Nuclear Power is planning to build two UK<br />
Advanced Boiling Water Reactors at Wylfa Newydd. CGN<br />
and EDF Energy have formed a joint venture with plans to<br />
build a single China-designed HPR1000 plant at Bradwell<br />
B in Essex, southeast England, a project CGN has said<br />
could use the RAB model. EDF wants to begin construction<br />
of two EPR units at the Sizewell C nuclear power station on<br />
the east coast of England by the end of 2<strong>02</strong>1.<br />
However, Toshiba announced earlier this month it had<br />
decided to wind up NuGen, the company overseeing plans<br />
Inside Nuclear with NucNet<br />
Financing New Nuclear: Is RAB Model the Right Way Forward?
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Notes<br />
Return of Waste<br />
from Nuclear Fuel Reprocessing<br />
Until 2005, the reprocessing of spent nuclear fuel was the planned<br />
way. By the year 1994, it was even the legal requirement. Therefore<br />
the spent fuel elements were transported to France and Great<br />
Britain for reprocessing. For this purpose, the operators of the<br />
German nuclear power plants have signed contracts with the<br />
operators of the reprocessing facilities in La Hague and Sellafield.<br />
The radioactive waste caused by the reprocessing will be returned<br />
to Germany. To reflect this DAtF has published a new edition of the<br />
brochure on the management of the return of waste from nuclear<br />
fuel reprocessing.<br />
LA HAGUE<br />
SELLAFIELD<br />
DATF EDITORIAL NOTES<br />
69<br />
pp<br />
How does the conditioning of the radioactive waste work?<br />
pp<br />
How is this waste stored temporarily?<br />
pp<br />
Which organizations are responsible for authorization?<br />
Answers to these questions and more information can be found in<br />
the new edition of:<br />
Return of Waste<br />
from Nuclear Fuel Reprocessing<br />
33<br />
Now available for download at www.kernenergie.de<br />
(German)<br />
Rücknahme von Abfällen<br />
aus der Wiederaufarbeitung<br />
For further details please contact:<br />
Nicolas Wendler<br />
DAtF<br />
Robert-Koch-Platz 4, 10115 Berlin, Germany<br />
E-mail: presse@kernenergie.de<br />
www.kernenergie.de<br />
to build three Westinghouse Generation III+ AP1000 units<br />
at the Moorside site in northwest England.<br />
Toshiba said it was winding up NuGen because of its<br />
inability to find a buyer and the ongoing costs it was<br />
incurring. The company said finding the right financing<br />
model was an issue. Before the wind-up was confirmed,<br />
NuGen chief executive Tom Samson said the RAB model<br />
should be considered, although it was not clear if this was<br />
ever the case.<br />
Author<br />
NucNet<br />
The Independent Global Nuclear News Agency<br />
Editor responsible for this story: David Dalton<br />
Editor in Chief, NucNet<br />
Avenue des Arts 56<br />
1000 Brussels, Belgium<br />
www.nucnet.org<br />
DAtF Notes
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Calendar<br />
70<br />
<strong>2019</strong><br />
CALENDAR<br />
05.<strong>02</strong>.-07.<strong>02</strong>.<strong>2019</strong><br />
Nordic Nuclear Forum. Helsinki, Finland, FinNuclear,<br />
www.nordicnuclearforum.fi/conference<br />
25.<strong>02</strong>.-26.<strong>02</strong>.<strong>2019</strong><br />
Symposium Anlagensicherung. Hamburg,<br />
Germany, TÜV NORD Akademie, www.tuev-nord.de<br />
03.03.-07.03.<strong>2019</strong><br />
WM Symposia – WM<strong>2019</strong>. Phoenix, AZ, USA,<br />
www.wmsym.org<br />
05.03.-06.03.<strong>2019</strong><br />
VI. International Power Plants Summit.<br />
Istanbul, Turkey, INPPS Fair,<br />
www.nuclearpowerplantssummit.com<br />
10.03.-15.03.<strong>2019</strong><br />
83. Annual Meeting of DPG and DPG Spring<br />
Meeting of the Atomic, Molecular, Plasma Physics<br />
and Quantum Optics Section (SAMOP),<br />
incl. Working Group on Energy. Rostock, Germany,<br />
Deutsche Physikalische Gesellschaft e.V.,<br />
www.dpg-physik.de<br />
10.03.-14.03.<strong>2019</strong><br />
The 9 th International Symposium On<br />
Supercritical- Water-Cooled Reactors (ISSCWR-9).<br />
Vancouver, British Columbia, Canada, Canadian<br />
Nuclear Society (CNS), www.cns-snc.ca<br />
11.03.-13.03.<strong>2019</strong><br />
18 th Workshop of the European ALARA Network:<br />
ALARA in Decommissioning and Site Remediation.<br />
Marcoule, France, European ALARA Network<br />
www.eu-alara.net<br />
11.03.-12.03.<strong>2019</strong><br />
Carnegie International Nuclear Policy Conference.<br />
Washington D.C., U.S.A., Carnegie Endownment for<br />
International Peace, carnegieendowment.org<br />
<br />
24.03.-28.03.<strong>2019</strong><br />
RRFM <strong>2019</strong> – <strong>2019</strong> the European Research<br />
Reactor Conference. Jordan, IGORR, the International<br />
Group Operating Research Reactors and European<br />
Nuclear Society (ENS), www.euronuclear.org<br />
25.03.-27.03.<strong>2019</strong><br />
Cyber Security Implementation Workshop.<br />
Boston MA, USA, Nuclear Energy Institute (NEI),<br />
www.nei.org<br />
01.04.-03.04.<strong>2019</strong><br />
CIENPI – 13 th China International Exhibition on<br />
Nuclear Power Industry. Beijing, China,<br />
Coastal International, www.coastal.com.hk<br />
09.04.-11.04.<strong>2019</strong><br />
World Nuclear Fuel Cycle <strong>2019</strong>. Shanghai, China,<br />
World Nuclear Association (WNA), Miami, Florida,<br />
USA, www.wnfc.info<br />
ATOMEXPO <strong>2019</strong>. Sochi, Russia,<br />
<strong>2019</strong>.atomexpo.ru/en/<br />
15.04.-16.04.<strong>2019</strong><br />
07.05.-08.05.<strong>2019</strong><br />
50 th Annual Meeting on Nuclear Technology<br />
AMNT <strong>2019</strong> | 50. Jahrestagung Kerntechnik.<br />
Berlin, Germany, DAtF and KTG,<br />
www.amnt<strong>2019</strong>.com – Register Now!<br />
15.05.-17.05.<strong>2019</strong><br />
1 st International Conference of Materials,<br />
Chemistry and Fitness-For-Service Solutions<br />
for Nuclear Systems. Toronto, Canada, Canadian<br />
Nuclear Society (CNS), www.cns-snc.ca<br />
16.05.-17.05.<strong>2019</strong><br />
Emergency Power Systems at Nuclear Power<br />
Plants. Munich, Germany, TÜV SÜD,<br />
www.tuev-sued.de/eps-symposium<br />
24.05.-26.05.<strong>2019</strong><br />
International Topical Workshop on Fukushima<br />
Decommissioning Research – FDR<strong>2019</strong>.<br />
Fukushima, Japan, The University of Tokyo,<br />
fdr<strong>2019</strong>.org<br />
29.05.-31.05.<strong>2019</strong><br />
Global Nuclear Power Tech. Seoul, South Korea,<br />
Korea Electric Engineers Association,<br />
electrickorea.org/eng<br />
03.06.-05.06.<strong>2019</strong><br />
Nuclear Energy Assembly. Washington DC, USA,<br />
Nuclear Energy Institute (NEI), www.nei.org<br />
03.06.-07.06.<strong>2019</strong><br />
World Nuclear University Short Course:<br />
The World Nuclear Industry Today.<br />
Rio de Janeiro, Brazil, World Nuclear University,<br />
www.world-nuclear-university.org<br />
04.06.-07.06.<strong>2019</strong><br />
FISA <strong>2019</strong> and EURADWASTE ‘19. 9 th European<br />
Commission Conferences on Euratom Research<br />
and Training in Safety of Reactor Systems and<br />
Radioactive Waste Management. Pitesti, Romania,<br />
www.nucleu2<strong>02</strong>0.eu<br />
24.06.-28.06.<strong>2019</strong><br />
<strong>2019</strong> International Conference on the Management<br />
of Spent Fuel from Nuclear Power Reactors.<br />
Vienna, Austria, International Atomic Energy Agency<br />
(IAEA), www.iaea.org<br />
23.06.-27.06.<strong>2019</strong><br />
World Nuclear University Summer Institute.<br />
Romania and Switzerland, World Nuclear University,<br />
www.world-nuclear-university.org<br />
21.07.-24.07.<strong>2019</strong><br />
14 th International Conference on CANDU Fuel.<br />
Mississauga, Ontario, Canada, Canadian Nuclear<br />
Society (CNS), www.cns-snc.ca<br />
28.07.-01.08.<strong>2019</strong><br />
Radiation Protection Forum. Memphis TN, USA,<br />
Nuclear Energy Institute (NEI), www.nei.org<br />
29.07.-<strong>02</strong>.08.<strong>2019</strong><br />
27 th International Nuclear Physics Conference<br />
(INPC). Glasgow, Scotland, inpc<strong>2019</strong>.iopconfs.org<br />
04.08.-09.08.<strong>2019</strong><br />
PATRAM <strong>2019</strong> – Packaging and Transportation<br />
of Radioactive Materials Symposium.<br />
New Orleans, LA, USA. www.patram.org<br />
21.08.-30.08.<strong>2019</strong><br />
Frédéric Joliot/Otto Hahn (FJOH) Summer School<br />
FJOH-<strong>2019</strong> – Innovative Reactors: Matching the<br />
Design to Future Deployment and Energy Needs.<br />
Karlsruhe, Germany, Nuclear Energy Division<br />
of Commissariat à l’énergie atomique et aux<br />
énergies alternatives (CEA) and Karlsruher Institut<br />
für Technologie (KIT), www.fjohss.eu<br />
04.09.-06.09.<strong>2019</strong><br />
World Nuclear Association Symposium <strong>2019</strong>.<br />
London, UK, World Nuclear Association (WNA),<br />
www.wna-symposium.org<br />
04.09.-05.09.<strong>2019</strong><br />
VGB Congress <strong>2019</strong> – Innovation in Power<br />
Generation. Salzburg, Austria, VGB PowerTech e.V.,<br />
www.vgb.org<br />
08.09.-11.09.<strong>2019</strong><br />
4 th Nuclear Waste Management,<br />
Decommissioning and Environmental Restoration<br />
(NWMDER). Ottawa, Canada, Canadian Nuclear<br />
Society (CNS), www.cns-snc.ca<br />
09.09.-12.09.<strong>2019</strong><br />
24 th World Energy Congress. Abu Dhabi, UAE,<br />
www.wec24.org<br />
09.09.-12.09.<strong>2019</strong><br />
Jahrestagung <strong>2019</strong> – Fachverband für<br />
Strahlenschutz | Strahlenschutz und Medizin.<br />
Würzburg, Germany,<br />
www.fs-ev.org/jahrestagung-<strong>2019</strong><br />
16.09.-20.09.<strong>2019</strong><br />
63 rd Annual Conference of the IAEA. Vienna,<br />
Austria, International Atomic Energy Agency (IAEA),<br />
www.iaea.org/about/governance/<br />
general-conference<br />
22.10.-25.10.<strong>2019</strong><br />
SWINTH-<strong>2019</strong> Specialists Workshop on Advanced<br />
Instrumentation and Measurement Techniques<br />
for Experiments Related to Nuclear Reactor<br />
Thermal Hydraulics and Severe Accidents.<br />
Livorno, Italy, www.nineeng.org/swinth<strong>2019</strong>/<br />
23.10.- 24.10.<strong>2019</strong><br />
Chemistry in Power Plants. Würzburg, Germany,<br />
VGB PowerTech e.V., www.vgb.org/en/<br />
chemie_im_kraftwerk_<strong>2019</strong>.html<br />
27.10.-30.10.<strong>2019</strong><br />
FSEP CNS International Meeting on Fire Safety<br />
and Emergency Preparedness for the Nuclear<br />
Industry. Ottawa, Canada, Canadian Nuclear Society<br />
(CNS), www.cns-snc.ca<br />
12.11.-14.11.<strong>2019</strong><br />
International Conference on Nuclear<br />
Decommissioning – ICOND <strong>2019</strong>. Eurogress<br />
Aachen, Aachen Institute for Nuclear Training GmbH,<br />
www.icond.de<br />
25.11.-29-11.<strong>2019</strong><br />
International Conference on Research Reactors:<br />
Addressing Challenges and Opportunities to<br />
Ensure Effectiveness and Sustainability.<br />
Buenos Aires, Argentina, International Atomic<br />
Energy Agency (IAEA), www.iaea.org/events/<br />
conference-on-research-reactors-<strong>2019</strong><br />
This is not a full list and may be subject to change.<br />
Calendar
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants to<br />
the Energy Transition in Germany<br />
Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo<br />
This study investigates the contribution of nuclear power plants (NPPs) to the German Energy Transition by analysing<br />
the effects of an early closure of NPPs early 2<strong>02</strong>0. According to the German law, the seven NPPs remaining today in<br />
operation will be shut-down successively by 2<strong>02</strong>2 at the latest. Until then NPPs generate competitive, CO 2 -free and<br />
dispatchable power supporting the German power system and the other energy transition objectives. This work<br />
quantifies the impact of an early phase-out of NPPs in Germany and at the European level. A coupled market and grid<br />
system analysis is performed. The Pöyry’s in-house market model BID3 and the grid analysis software tool PSS/E,<br />
simulating the electrical behaviour of the power grid using the transmission system planning, are applied. This approach<br />
enables a consideration of power grid actual flows, model power redispatch measures and an evaluation of the<br />
associated costs. In a nutshell a premature shut down of German NPPs already by the end of <strong>2019</strong> would cost over<br />
5 billion EUR to the German social welfare, increase CO 2 emissions by up to 90 million tons and raise wholesale power<br />
prices between 4 to 7 EUR/MWh. As for grid stability aspects, without NPPs on the grid from January 2<strong>02</strong>0 onwards,<br />
the capacity margins would be reduced by 1.5 GW, the redispatch costs of thermal power plants would increase while<br />
the measures associated with renewables energies curtailment would decrease. This research was performed by the<br />
independent analysis of Pöyry Management Consulting at the request of PreussenElektra in 2018.<br />
1 Introduction<br />
According to the German law, the seven nuclear power<br />
plants (NPPs) remaining today in operation will be shut<br />
down successively by 31st December 2<strong>02</strong>2 at the latest, as<br />
shown in Figure 1 [1]. Until then, NPPs generate competitive,<br />
dispatchable and CO 2 -free power [2] supporting<br />
the German energy transition (Energiewende) objectives.<br />
This work quantifies the contribution of NPPs to the<br />
German energy transition during the period 01.01.2<strong>02</strong>0<br />
until 31.12.2<strong>02</strong>2. The study investigates the scenario of<br />
an early closure of all NPPs early 2<strong>02</strong>0 and focuses on<br />
energy economics and power grid consequences. A<br />
coupled market and grid system analysis is performed<br />
using the market model BID3 [4] and the PSS/E tool [5]<br />
simulating the electrical behaviour of the power grid using<br />
the transmission system planning. This work was performed<br />
by the independent analysis of Pöyry Management<br />
Consulting GmbH at the initiative of PreussenElektra<br />
GmbH in 2018.<br />
2 Method<br />
2.1 Scenarios<br />
The independent and widely accepted by industry players<br />
“Pöyry Central Scenario” is used as the base input. It is<br />
Pöyry’s most likely view of the development of the<br />
electricity market and the broader economic environment<br />
and is introduced hereafter. In this study, two scenarios for<br />
NPPs phase-out in Germany are investigated:<br />
pp<br />
the “Reference” case: NPPs will shut-down according<br />
to their latest authorized date of operation as specified<br />
in German atomic law and shown in Figure 1. This<br />
scenario is equal to the Pöyry Central Scenario.<br />
pp<br />
the “NPP Out” case: in which all seven today operating<br />
NPPs are shut-down by the end of <strong>2019</strong>.<br />
The specific assumptions are described in the next<br />
paragraphs, including the logic for the choice of 2013<br />
as reference for the weather year.<br />
2.1.1 Pöyry Central Scenario<br />
Pöyry’s independent and widely accepted “Central<br />
Scenario” is used as basis for this study. “Central” represents<br />
a midway alternative between two more extreme<br />
Low and High scenarios and represents Pöyry’s most likely<br />
| | Fig. 1.<br />
Latest NPP operation date according to German law. Source: Federal<br />
Ministry for the Environment, Nature Protection and Nuclear Safety<br />
(Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit).<br />
view of the development of the electricity market and<br />
broader economic environment. This view is based on<br />
market expertise from all European countries, planned<br />
and announced power plant and interconnector commissioning<br />
and decommissioning, and projections of external<br />
factors such as currency exchange rates, inflation, commodity<br />
prices and electricity demand. This section provides<br />
an overview of the core assumptions defining the<br />
“Central Scenario”. These assumptions may be classified<br />
under the following headings:<br />
pp<br />
economic assumptions<br />
The real exchange rates are derived from projections<br />
of nominal exchange rates and inflation. Within the<br />
modelling, the real exchange rates are used to convert<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 71<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 72<br />
Real Exchange Rates<br />
Annual Inflation Rates<br />
US$ per £1 US$ per €1 £ per €1 US UK Eurozone<br />
2018 1.30 1.17 0.87 2.2% 2.5% 1.5%<br />
<strong>2019</strong> 1.35 1.23 0.88 2.2% 2.1% 1.6%<br />
2<strong>02</strong>0 1.40 1.22 0.84 2.1% 2.1% 1.8%<br />
2<strong>02</strong>1 & 2<strong>02</strong>2 1.46 1.22 0.84 2.0% 2.0% 2.0%<br />
| | Tab. 1.<br />
Inflation and real exchange rate (2016 Money).<br />
dollar- denominated oil and coal price projections Euros.<br />
Table 1 shows the real exchange rates and the annual<br />
inflation rates for the US, UK and the Eurozone that are<br />
assumed in the modelling.<br />
Nominal exchange rates for 2018-2<strong>02</strong>0 are based on<br />
the median composite Bloomberg forecast from up to 50<br />
financial institutions. The farthest (2<strong>02</strong>0) nominal<br />
exchange rate is taken as the assumed long-term forecast<br />
and kept constant for the following years. Inflation rates<br />
for 2018–<strong>2019</strong> are derived using the median composite<br />
CPI forecasts from Bloomberg. In 2<strong>02</strong>0 the inflation rate<br />
trends between the <strong>2019</strong> value and the long-term (from<br />
2<strong>02</strong>1 onwards) assumption of 2 % in all three economic<br />
areas. The real exchange rates therefore fluctuate until<br />
2<strong>02</strong>0 in line with the inflation rate and the nominal<br />
exchange rate differentials that occur to 2<strong>02</strong>0.<br />
pp<br />
generation capacity<br />
The projected generation capacity for Germany is based on<br />
three main components: plant which already exist or is<br />
under construction, generic new power plant (in the longterm,<br />
based on need and economic viability); and renewable<br />
development (based primarily on policy and targets).<br />
With regards to plant existing or under construction, the<br />
status is taken from several sources including company’s<br />
annual reports, the German federal agency for power grid<br />
(Bundesnetzagentur) power plant list and Pöyry’s own<br />
market intelligence. A more rapid phase-out of coal power<br />
plants as being currently considered by the German<br />
government in 2018 is not modelled. The construction of<br />
new fossil generation as generic new power plant results<br />
has a negligible impact on the rather short time period<br />
study considered here. With regards to renewable energy<br />
sources (RES) development the current renewable<br />
capacity plans are considered.<br />
pp<br />
electricity demand<br />
The projections for electricity demand in Germany are<br />
produced using Pöyry’s demand model. This is an<br />
[TWh] 2<strong>02</strong>0 2<strong>02</strong>1 2<strong>02</strong>2<br />
Demand DE 551.8 551.5 550.9<br />
| | Tab. 2.<br />
Projected annual electricity consumption.<br />
econometric model which assumes a long-term relationship<br />
between electricity demand and Gross Domestic<br />
Product (GDP). The base demand in Germany for each<br />
future year is calculated by using annual GDP growth<br />
assumptions based on International Monetary Fund (IMF)<br />
projections [3].<br />
In addition to the underlying demand development due<br />
to economic growth or recession, the demand model also<br />
captures the impact of energy efficiency measures and the<br />
shift of energy demand from other fuels in the transport<br />
and heat sectors into electricity. Temperature corrections<br />
are also applied to historical demand values to mitigate the<br />
impact of extreme (cold or warm) weather years on future<br />
demand projections. The reference weather year of 2013 is<br />
selected as basis for this study. The choice of this weather<br />
year is explained in §2.1.3. The resulting electricity<br />
demand development (average year) can be found in<br />
Table 2.<br />
pp<br />
interconnectors<br />
Because of its geographical location within Europe, the<br />
German power grid is interconnected with nine neighboring<br />
countries: Austria, Czech Republic, Denmark,<br />
France, Luxembourg, Poland, Sweden, Switzerland and<br />
the Netherlands. The current interconnectors as well as<br />
the projects planned for realization in time frame up to<br />
2<strong>02</strong>3 are considered in this study according to ENTSO-E<br />
data. Regarding intra-German transmission capacities, the<br />
assumptions of the German TSO’s on the German grid are<br />
used in this study, which are in line with ENTSO-E assumptions<br />
for the investigated period 2<strong>02</strong>0–2<strong>02</strong>2. Specifically,<br />
the Elbe 2 grid project planned for realization in <strong>2019</strong> is<br />
considered operational.<br />
pp<br />
fuel and CO 2 prices<br />
Fuel and CO 2 prices are exogenous parameters inserted<br />
into Pöyry’s power market modelling tool BID3. These<br />
prices are determined with the help of models specific to<br />
each commodity, expect for lignite. For lignite no model<br />
exists as fuel costs depend only on the production costs of<br />
this energy source. An overview of all projected fuel prices<br />
as well as historic prices for reference can be found in<br />
Figure 2.<br />
pp<br />
storage<br />
Batteries are not modelled in this study. Although they are<br />
being built in Germany, they are only operating in the<br />
ancillary services market so far and there is no evidence<br />
showing the introduction of batteries into the day-ahead<br />
market in the modelled time frame.<br />
| | Fig. 2.<br />
Fuel prices overview.<br />
Dashed line represents historical prices, solid line projections.<br />
Sources: Historical prices – MCIS (Coal), Thompson Reuters (CO 2 ), ICIS Heren (Gas), EIA (HSFO);<br />
Projections – Pöyry Management Consulting interpolated with forwards from API2 (Coal), Thompson<br />
Reuters (CO 2 ), ICIS Heren (Gas), ICE (HSFO); Lignite based on fundamental production economics<br />
2.1.2 NPPs phase-out scenarios<br />
According to the German atomic low, the seven NPPs<br />
operating today, with a total installed capacity of<br />
9,509 MW, will be shut-down successively by the end of<br />
2<strong>02</strong>2 at the latest, as highlighted in Table 3. The plant<br />
closures are modelled according to the German Atomic<br />
law latest NPPs shut-down dates. This scenario is referred<br />
to as “Reference” case in this study. The reference scenario<br />
is used to benchmark the outcomes obtained from the<br />
“NPP Out” case.<br />
The “NPP Out” case is the alternative scenario considered.<br />
It assumes the premature closure of all remaining<br />
seven NPP as of 01.01.2<strong>02</strong>0, as highlighted in Table 3.<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
MW <strong>2019</strong> 2<strong>02</strong>0 2<strong>02</strong>1 2<strong>02</strong>2 2<strong>02</strong>3<br />
Reference 9,509 8,107 8,107 4,049 0<br />
NPP Out 9,509 0 0 0 0<br />
| | Tab. 3.<br />
Nuclear capacity per scenario.<br />
2.1.3 Selection of reference weather year<br />
A reference weather year is required to model both the<br />
demand and the generation from RES. The weather choice<br />
is rather sensitive as it could impact substantially the study<br />
outcomes. The weather year 2013 is selected from the<br />
available set of weather years (2010–2014). This choice<br />
is motivated by 2013 “average behavior”: 2013 is close<br />
to average with regards to wholesale price, renewable<br />
gen eration and peak prices. An overview of the two<br />
parameters for the years under consideration can be found<br />
in Figure 3 and Figure 4 with the deviation from average<br />
given in Table 4. By not selecting a more extreme weather<br />
year such as 2011 the authors aim to remain as objective<br />
and robust as possible in the study’s outcomes.<br />
2012 is a second candidate as both wholesale price and<br />
renewable generation deviation are in a reasonable range.<br />
Due to the cold winter spells end of January and early February<br />
however, the year shows atypical price peaks and<br />
would therefore distort the overall results too much. An<br />
overview of the effect of cold spells on the 200 highest<br />
prices per year can be found in Figure 4. To assess the effects<br />
of a change in weather year on the results of this<br />
study, a sensitivity analysis with 2012 weather year is performed.<br />
2.2 Modelling tools<br />
A multistage process described in this section is followed in<br />
this work to properly assess the role of NPPs in the German<br />
power system. The two scenarios described in §2.1 are<br />
modelled using Pöyry’s proprietary fundamental market<br />
modelling software BID3 combined with grid modelling<br />
and analysis via PSS/E.<br />
2.2.1 Power market modelling and BID3<br />
Pöyry’s in-house, fundamental model BID3 [6] [7], models<br />
the market dispatch of all generation facilities in Europe.<br />
BID3 can model the behavior of individual power plants of<br />
all fuel types as well as renewable generators. It simulates<br />
all 8760 hours per year, generating hourly wholesale<br />
prices. An overview is shown in Figure 5.<br />
The output of all generators is jointly optimized for<br />
economic costs for each hour of the modelled time period.<br />
The result of the process is a fundamental view of what the<br />
market prices, power plant dispatch, cross-zonal interconnection<br />
flows and total cost of generation in each<br />
scenario will be on an hourly resolution. In this modelling<br />
process, price zones are optimized jointly such that for<br />
Germany the entire price zone is optimized disregarding<br />
any internal transmission capacity restrictions while for<br />
instance Sweden is split into four price zones. All zones are<br />
optimized simultaneously and so is the market flow between<br />
them. All evaluations are realized at the European scale.<br />
2.2.2 System modelling and PPS/E<br />
PSS/E is a transmission system planning and analysis<br />
software developed by Siemens Power Technologies International<br />
(Siemens PTI). The Siemens PTI PSS/E software<br />
product is an integrated program providing power flow,<br />
short circuit and dynamic simulation. In this study PSS/E is<br />
applied to the European Network of Transmission System<br />
| | Fig. 3.<br />
Weather years 2010–2014 wholesale price and RES generation.<br />
| | Fig. 4.<br />
Peak Prices in Weather Years 2010 – 2014<br />
[EUR/MWh].<br />
| | Fig. 5.<br />
Pöyry BID3 Overview.<br />
Weather<br />
year<br />
Wholesale<br />
price<br />
Operators for Electricity (ENTSO-E) high voltage system<br />
data of the Central European synchronous area. The software<br />
simulates substations as nodes to which power lines,<br />
loads, generators, and auxiliary devices such as shunt reactors/capacitors<br />
are connected. For the load flow calculations<br />
performed in this study, power lines are modelled as<br />
impedances with loss-causing resistance and power-factor<br />
altering reactance. Generators are modelled by providing<br />
maximum and minimum real power deliverable as well as<br />
available range in terms of reactive power. The maximum<br />
real power is provided by BID3 and is a result of market<br />
modelling. Loads are modelled as constant active and<br />
reactive power based on the ENTSO-E Ten-Year Network<br />
Development Plan 2016 (TYNDP2016) dataset. Loads and<br />
generators connected below 220 kV voltage level are aggregated<br />
to loads and/or generators at the buses where they<br />
are connected to the high voltage grid. Flows to countries<br />
outside the synchronous areas, i.e. through DC lines, are<br />
set as fixed flows using hourly flow data from BID3.<br />
Renewable<br />
Generation<br />
2010 +9.9 % -6.5 %<br />
2011 -3.5 % +7.7 %<br />
2012 +4.2 % +2.2 %<br />
2013 -1.6 % -2.7 %<br />
2014 +9.0 % -0.8 %<br />
| | Tab. 4.<br />
Deviation from average of the weather years<br />
2010–2014.<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 73<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 74<br />
| | Fig. 6.<br />
Iteration between BID3 and PSS/E.<br />
With this setup, the Central European synchronous<br />
area can be modelled in its entirety. By altering the power<br />
output of the plants in Germany, PSS/E can reduce lineloadings<br />
in all lines to below 70 % of maximum capacity<br />
with a 10 % relaxation factor. It means PSS/E aims at<br />
clearing congestion with 70 % nominal derating factor<br />
but, if that is not possible, loads up to 80 % are allowed. As<br />
the result some lines are loaded between 70 % and 80 %.<br />
This alteration is done with the objective of changing plant<br />
outputs to a minimal level, i.e. with limiting disturbance of<br />
generation schedule. PSS/E however does not consider<br />
cost of generation as a parameter when altering generation<br />
levels and therefore creates a non-optimal solution from<br />
an economic point of view. 70–80 % line loading is used as<br />
a reasonable proxy for fulfilling the n-1 criterion since<br />
contingency analyses, requiring dynamic analysis, are not<br />
performed in this study. To receive a dispatch that is both,<br />
economically optimized and preventing line overloading, a<br />
coupling between BID3 and PSS/E is implemented.<br />
2.2.3 Iteration between BID3 and PSS/E<br />
BID3 and PSS/E have complementary strengths with BID3<br />
focusing on market dispatch and PSS/E on system stability.<br />
In combination the two software can form a full redispatch<br />
model on an hourly level.<br />
As starting point, the market dispatch is calculated in<br />
BID3 where each market zone is represented as one<br />
node with transmission constraints of interconnectors as<br />
boundaries between them. Within the software, the power<br />
plants are then activated such that all loads can be served<br />
at minimum total cost. From this calculation, a dispatching<br />
schedule for all power plants is derived which can serve as<br />
input for the next phase of the computation.<br />
Simultaneously, the ENTSO-E grid data is loaded into<br />
PSS/E and a run based on reference dispatching schedules<br />
from ENTSO-E is created. The dispatch results and loads<br />
from BID3 then replace the original data and the system is<br />
rerun. With the market dispatch given, several lines in the<br />
system are overloaded. Overloading in the German system<br />
are resolved using PSS/E corrective action as described in<br />
§2.2.2. Since PSS/E does not economically optimize its<br />
redispatch, an interface back to BID3 is required.<br />
This interface is implemented by splitting Germany into<br />
nine virtual zones set such that critical lines cross zonal<br />
borders and setting cross-zonal transmission limits. These<br />
transmission limits are then based on the cross-zonal<br />
transmission flow in PSS/E for all 8760 hours of the year<br />
after the corrective action analysis where line overloading<br />
is reduced. By then performing the market dispatch on a<br />
zonal basis, the BID3 dispatch is forced to respect major<br />
line capacity restrictions.<br />
As BID3 however only “sees” the transmission constraints<br />
between the zones and not within them, PSS/E<br />
and BID3 need to be run iteratively until the market<br />
dispatch satisfies the systems constraints. The iteration<br />
thus consists of PSS/E generating maximum flow<br />
constraints between the zones, BID3 running with these<br />
constraints and deriving a dispatching schedule which<br />
PSS/E again adapts resulting in new flow constraints. The<br />
iteration is performed five times until the market redispatch<br />
no longer causes any significant overloading. An<br />
overview of the process can be seen in Figure 6.<br />
2.3 Metrics<br />
The main quantified indicators highlighting the study<br />
outcomes are described hereafter.<br />
2.3.1 Socio-economic welfare<br />
The socio-economic welfare is defined as a measure of the<br />
economic impact of the power system to the society. In this<br />
study, it refers to the amount of cost or gains incurred by<br />
producers, consumers and through congestion in interconnectors<br />
between countries. The three components of<br />
the socio-economic welfare have been assessed:<br />
pp<br />
Producer surplus is the gross margin achieved by<br />
producers. It is defined as the value of electricity sold<br />
minus the variable costs of generation (mainly fuel and<br />
CO 2 ).<br />
Producer surplus = total generation * wholesale price –<br />
generation cost<br />
pp<br />
Consumer surplus is the value of uninterrupted<br />
electricity supply to consumers. Consumer surplus is<br />
defined as the difference between value of lost load and<br />
wholesale price.<br />
Consumer surplus = (Value lost load – wholesale price) *<br />
total generation<br />
pp<br />
Congestion rent is the cost of utilizing an interconnector.<br />
It is defined as the costs saving resulting of<br />
energy flow across the border multiplied by the amount<br />
of energy transferred across the border.<br />
The investment and building costs of new generation<br />
capacity such as gas plant, RES or interconnections are not<br />
considered in this study. However, it is important to<br />
mention that part or all of the producer surplus is needed<br />
to cover fixed costs and therefore avoid the impression that<br />
any positive surplus represents a form of super normal<br />
profits. The approach of focusing only the variable costs is<br />
motivated by the scenarios looked at: only the NPPs<br />
installed capacity varies between both scenarios as the<br />
short time frame considered would not permit the building<br />
of new generation and grid capacity in the “NPP Out”<br />
scenario.<br />
2.3.2 Wholesale prices<br />
The wholesale price is a combination of short-run marginal<br />
costs (system marginal price) and a premium during<br />
periods of a tight system (scarcity rent), although in the<br />
last decade the incidence of such premiums at all, let alone<br />
of any significant size, has been very infrequent. Both<br />
components are added to form the wholesale price.<br />
In the real world, market participants submit bids<br />
which are sorted to construct the so-called “merit order”.<br />
These bids are largely reflective of the short-term marginal<br />
costs of a plant such as fuel cost and machine wear. This is<br />
modelled as the system marginal price (SMP).<br />
As the more expensive plants are often price setting and<br />
would thus not generate a profit, these plants need to<br />
bid above their SMP to cover their fixed costs such as<br />
personnel, land lease, return on capital employed, etc.<br />
This is modelled as scarcity rent (SR).<br />
The SMP is based on short-term costs and reflects the<br />
difference between staying idle and generating power for<br />
the most expensive plant in that hour. Modelling of the<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
system marginal price is very similar to the merit-order<br />
used in power exchanges. The power plants are ordered by<br />
marginal price and plants are activated up until the current<br />
demand has been satisfied. Power plants have restraints on<br />
them such as minimum on- and off-times causing slight<br />
distortions in the merit order. BID3 optimizes the system<br />
such that overall costs of generation are the lowest. The<br />
system marginal price is therefore the result of the<br />
economic optimization and in principle comparable to the<br />
merit-order price if every power plant would only bid its<br />
short-term costs.<br />
Scarcity rent is used to replicate strategic bidding at<br />
tight system status where suppliers bid above their shortrun<br />
marginal costs. In BID3 all plants bid their short-run<br />
marginal costs (SRMC). As peak power plants are often<br />
price-setting, they would make little profit and are unable<br />
to cover long-run marginal costs (LRMC). Without capacity<br />
payments peak plants in the real world thus usually bid<br />
above their SRMC.<br />
2.3.3 CO 2 emissions<br />
The CO 2 emissions of every single plant are modelled<br />
according to their respective generation. The CO 2<br />
emissions of Germany and Europe result from the aggregation<br />
of CO 2 emissions from all respective plants. Table 5<br />
gives an overview of CO 2 emissions per fuel types of power<br />
plants as used in BID3.<br />
The impact on CO 2 price (€/tCO 2 ) of the scenario<br />
considered is not systematically evaluated. A sensitivity<br />
study is performed to justify this approach. It should be<br />
noted that, due to the emissions cap of the ETS system and<br />
changes in the carbon price needed to fulfil the cap,<br />
European CO 2 emissions might adapt in the long run,<br />
beyond the timeframe of 2<strong>02</strong>0–2<strong>02</strong>2.<br />
Fuel type CO 2 emissions [t CO 2 /MWh therm ]<br />
Biomass 0<br />
Coal 0.322<br />
Gas 0.182<br />
Gasoil 0.251<br />
Lignite 0.354<br />
Nuclear 0<br />
Peat 0.420<br />
RES 0<br />
| | Tab. 5.<br />
CO 2 emissions per fuel type.<br />
2.3.4 System capacity margin<br />
Capacity margin is a measure of the tightness of the system<br />
and is analyzed to assess the adequacy of the system. The<br />
capacity margin corresponds to the available resources in<br />
generation and interconnection net the demand, in other<br />
words the available resource capacity that is not needed to<br />
meet demand. The capacity margin is measured in every<br />
hour of the simulation, and the minimum capacity margin<br />
can be used as an indication of the generation adequacy of<br />
the system.<br />
good proxy to estimate redispatch costs. Those costs focus<br />
on thermal power plants generation costs.<br />
2.3.6 Grid losses<br />
The energy efficiency benefit of a transmission/generation<br />
project is measured through the reduction of thermal<br />
losses in the grid. Transmission system loss is calculated<br />
by multiplying the square of line loadings with the line<br />
resistance. As implied form the loss formula, it depends on<br />
the loading of lines in a system and the resistance of each<br />
line. As a result, system losses are dependent on relative<br />
location of system load and generation. Even if the location<br />
and amount of system load remains the same, system loss<br />
can vary depending on the generation dispatch scenario.<br />
This effect is measured by network studies. To calculate the<br />
difference in transmission losses in Germany (in units of<br />
energy [GWh]) attributable to NPPs in Germany, the losses<br />
are computed in two different simulations with the help of<br />
network studies in PSS/E. Losses in 400 kV and 220 kV<br />
transmission grid are included in the study.<br />
3 Results<br />
The study shows several impacts from an accelerated<br />
closure of nuclear power plants in Germany. These can be<br />
split into effects on the market side and effects on the<br />
network side. Comparing the “Reference” and “NPP Out”<br />
scenarios, the following effects on the market side are<br />
obtained:<br />
pp<br />
Decreased social welfare of ~2 billion EUR (bEUR) per<br />
year. Electricity producers gain up to 1.9 bEUR, while<br />
consumers lose 4.3 bEUR per year, totalling in a loss of<br />
social welfare of 5.8 bEUR within 3 years;<br />
pp<br />
Increased wholesale prices in the range of 4–7 EUR/<br />
MWh. Consumer prices will be affected somewhat less<br />
as higher wholesale prices decrease the EEG levy;<br />
pp<br />
Increased power-related CO 2 emissions in Germany by<br />
up to 17.1 million tons per year and in Europe by<br />
36.2 million tons per year, totaling in additional CO 2<br />
emissions of 41.8 million tons in Germany and<br />
89.8 million tons in Europe within 3 years;<br />
pp<br />
Reduced capacity margins of up to 1.46 GW (amounting<br />
to a 25 % reduction), implying a reduced security of<br />
supply;<br />
pp<br />
Reduced power exports from Germany by 20–40 TWh<br />
per year.<br />
After including network constraints, the main results<br />
from the market study are confirmed with the following<br />
highlights:<br />
pp<br />
Increased north to south flows in Germany by up to<br />
4.7 TWh per year in specific regions.<br />
The effects on the network side are:<br />
pp<br />
Increased European redispatch costs by 78 mEUR<br />
between 2<strong>02</strong>0 and 2<strong>02</strong>2;<br />
pp<br />
Increased transmission losses by 8–10 % in 2<strong>02</strong>0 and<br />
2<strong>02</strong>1, resulting in additional costs of about 35 mEUR,<br />
due to an increased need for energy transmission.<br />
Increase by 2 % in 2<strong>02</strong>2 lower due to more favorable<br />
siting of remaining NPPs.<br />
Those results are detailed in the next sections.<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 75<br />
2.3.5 Redispatch costs<br />
Redispatch costs are evaluated as the difference of generation<br />
costs between the BID3 initial optimization and the<br />
converged coupled BID3-PSS/E simulation. It is evaluated<br />
on an hourly basis at the European level. The power mix<br />
obtained after the BID3-PSS/E iteration reflects the<br />
physical constraints of power transmission and as such is a<br />
3.1 Socio-economic welfare<br />
Phasing out NPPs early 2<strong>02</strong>0 leads to annual losses of socioeconomic<br />
welfare in Germany of 1.4–2.4 bEUR totaling in<br />
an overall sum of 5.8 bEUR in the time frame 2<strong>02</strong>0–2<strong>02</strong>2.<br />
The nuclear phase out scenario is analyzed with regards<br />
to changes in socio economic welfare compared to “Reference”<br />
case. The results are highlighted in Figure 7.<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 76<br />
| | Fig. 8.<br />
Average annual wholesale prices.<br />
| | Fig. 7.<br />
Socio-economic welfare, difference to “base” case.<br />
Producer surplus and consumer surplus develop differently<br />
after decommissioning of NPPs. Surplus is partly<br />
redistributed from consumers to producers, with producer<br />
surplus increasing due to higher wholesale prices by<br />
1.0–1.9 bEUR/a between 2<strong>02</strong>0 and 2<strong>02</strong>2 despite the loss<br />
of rent from closed nuclear plants. The benefits in producer<br />
surplus are outweighed by losses in consumer<br />
€/MWh Reference NPP Out<br />
Scarcity Rent SMP Scarcity Rent SMP<br />
2<strong>02</strong>0 1.97 34.17 3.48 38.33<br />
2<strong>02</strong>1 3.88 35.87 6.78 39.64<br />
2<strong>02</strong>2 7.28 38.46 9.44 40.04<br />
| | Tab. 6.<br />
Average scarcity rent and system marginal price.<br />
surplus more than twice the benefit gained. The loss of<br />
consumer surplus per year is ranging from 2.4–4.3 bEUR/a,<br />
summing up to consumer welfare reduced by 10.4 bEUR<br />
over the course of the three analysed years. Differences in<br />
congestion rent are negligible compared to differences in<br />
consumer and producer surplus.<br />
3.2 Wholesale Prices<br />
The development of average annual wholesale prices in<br />
the time frame 2018-2<strong>02</strong>2 is shown in Figure 8. Prices<br />
show an upward movement from <strong>2019</strong> onwards in all three<br />
scenarios and rise from 32.7 EUR/MWh in <strong>2019</strong> to<br />
45.8 EUR/MWh in 2<strong>02</strong>2 in the Base Case scenario. The<br />
increase in wholesale prices is more significant with less<br />
capacity from nuclear power plants and the difference<br />
between the two scenarios is largest in the years 2<strong>02</strong>0 and<br />
2<strong>02</strong>1. The NPP Out scenario shows prices 4–7 EUR/MWh<br />
higher than the Base Case with a maximum difference in<br />
2<strong>02</strong>1 at 46.4 EUR/MWh compared to 39.8 EUR/MWh in<br />
Base Case in that year.<br />
The components of the wholesale price – scarcity rent<br />
and system marginal price – are depicted in Table 6 and<br />
Figure 9. The scarcity rent is on a low level in 2018 and<br />
<strong>2019</strong>, slightly larger than 1 EUR/MWh. As the system gets<br />
tighter in the following years, scarcity rent rises considerably<br />
to levels above 7 EUR/MWh in 2<strong>02</strong>2 in both scenarios,<br />
when nuclear capacity is also strongly reduced in Base<br />
Case. The difference in scarcity rent between NPP Out and<br />
Base Case amounts to 1.5–2.9 EUR/MWh in the period<br />
2<strong>02</strong>0–2<strong>02</strong>2.<br />
System marginal price is at 31.4 EUR/MWh in <strong>2019</strong>. It<br />
rises noticeably in subsequent years to 38.5 EUR/MWh in<br />
2<strong>02</strong>2 in “Base” case and 40.0 EUR/MWh in “NPP Out”<br />
case. Differences between NPP Out and Base Case total up<br />
to 4.2 EUR/MWh in 2<strong>02</strong>0 and 2<strong>02</strong>1, where less nuclear<br />
power plant capacity leads to a shift in the supply curve<br />
and thus a higher system marginal price.<br />
| | Fig. 9.<br />
Average scarcity rent and system marginal price.<br />
| | Fig. 10.<br />
CO 2 emissions in Germany and Europe.<br />
1. Source: Estimation by Federal Environment Agency 2. Source: Federal Environment Agency<br />
3.3 CO 2 emissions<br />
The development of power related CO 2 emissions is<br />
illustrated for both scenarios in Figure 10. German and<br />
European CO 2 emissions show a downward trend.<br />
How ever, the trend of diminishing CO 2 emissions in<br />
Europe is dampened by a shutdown of nuclear power<br />
plants. Increased generation of CCGTs, coal and lignite in<br />
NPP Out and Reduced NPP raise power related CO 2<br />
emissions in Germany and Europe between 2<strong>02</strong>0 and<br />
2<strong>02</strong>2. A complete premature nuclear power plant phase<br />
out leads to higher CO 2 emissions in Germany of 8.2–<br />
17.1 million tons per year (mt/a), amounting to 41.8 mt in<br />
the observed period. European emissions rise by 17.7–<br />
36.2 mt/a, totaling in 89.8 mt. The difference is largest in<br />
the years 2<strong>02</strong>0 and 2<strong>02</strong>1, when the difference in nuclear<br />
capacities is largest compared to Base Case. Around 50 %<br />
of the additional European emissions arise in Germany.<br />
The yearly increased emissions in Germany are equivalent<br />
to total emission of the city of Hamburg every year.<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
| | Fig. 11.<br />
Minimum capacity margin in Germany.<br />
Source BNetzA: Feststellung des Bedarfs an Netzreserve für den Winter<br />
2018/<strong>2019</strong> sowie das Jahr 2<strong>02</strong>0/2<strong>02</strong>1<br />
It should be noted that, due to the emissions cap of the<br />
ETS system and changes in the carbon price needed to<br />
fulfil the cap, European CO 2 emissions might reduce again<br />
in the long run, reducing the long-run CO 2 effect of the<br />
premature nuclear shut down.<br />
3.4 System capacity margin<br />
The minimum capacity margins decrease by 1.46 GW at<br />
most in 2<strong>02</strong>0 in the “NPP Out” case compared to “Base”<br />
case. Capacity margins shown in Figure 11 are margins in<br />
the tightest hour of the analysis. This minimum capacity<br />
margin declines from 6.9 GW in <strong>2019</strong> to 3.0 GW in 2<strong>02</strong>2<br />
due to an ongoing phase out of nuclear, coal and lignite<br />
capacity. In the “NPP Out” case NPP, capacity margins are<br />
reduced even further because of the premature nuclear<br />
phase out. The difference totals up to 1.46 GW (amounting<br />
to a 25 % reduction) in 2<strong>02</strong>0 in NPP Out, implying a<br />
reduced security of supply. As outages are not considered<br />
here, a slightly positive capacity margin signals a certain<br />
risk of demand curtailment. For comparison, the BNetzA<br />
grid reserve plans are provided which are capacities meant<br />
for ensuring successful security of supply even in stressful<br />
situations. As the plants active in the reserve are not<br />
considered in the model, their capacities (2<strong>02</strong>0: 4.1 GW,<br />
2<strong>02</strong>1: 3.3 GW, 2<strong>02</strong>2: 2.8 GW) have to be considered in<br />
addition to the results provided.<br />
A sensitivity study is performed for the weather year<br />
considering 2012 as reference year instead of 2013. The<br />
atypical climate in winter results in a reduction of<br />
minimum capacity margins by ~3 GW and an average<br />
increase in wholesale prices by 5 EUR/MWh out of which<br />
~3 are attributable to scarcity rent and the remaining ~2<br />
to increase in SMP due to moving higher up in the merit<br />
order. This decreases the socio-economic welfare further<br />
by 0.2–0.4 bEUR/a.<br />
3.5 Redisptach Costs<br />
The thermal redispatch costs increase in the “NPP Out”<br />
case relative to the “Base” Case. Those costs increase by<br />
26 million EUR in 2<strong>02</strong>0, 11 million EUR in 2<strong>02</strong>1 and<br />
41 million EUR in 2<strong>02</strong>2. In parallel the generation from<br />
renewable energy sources first increases before decreasing<br />
in 2<strong>02</strong>2 due to the early nuclear phase-out. In total the<br />
costs decrease by 219 million € over the period 2<strong>02</strong>0–2<strong>02</strong>2,<br />
remaining minor compared to the above-stated loss of<br />
social welfare.<br />
Replacing RES is the most expensive form of redispatch<br />
as generators with marginal costs of 0 are replaced with<br />
relatively expensive gas plants. Especially in scenarios<br />
with high wind feed-in in the north of Germany and low<br />
demand in the area, the grid often becomes overloaded<br />
and generation must be redispatched from north to south.<br />
The reason for overloading can be twofold: One possibility<br />
is that the distribution system is overloaded and the power<br />
generated cannot be evacuated to the next transmission<br />
substation. This is a typical issue with small generators<br />
such as wind turbines which are connected to the lower<br />
voltage levels. Since this study focusses on the high voltage<br />
grid only, those constraints are not evaluated. The second<br />
reason for overloading is bottlenecks in the transmission<br />
system where especially north-south lines are frequently<br />
overloaded.<br />
As redispatch in this study is performed at the European<br />
scale, instead of considering the German context only, the<br />
redispatch results are also given for the entirety of Europe.<br />
As Germany is the origin of the redispatch need, it is<br />
reasonable to assume that Germany would have to bear<br />
the cost of such grid stability measures.<br />
3.6 Grid losses<br />
System loss can increase or decrease when NPPs are out of<br />
operation compared to the base case, depending of the<br />
hour considered. On a yearly basis for both year 2<strong>02</strong>0 and<br />
2<strong>02</strong>1, the system transmission energy loss increases by<br />
about 10 % when the NPPs are taken out of operation<br />
compared to Base Case. This represents an increase of<br />
associated costs by close to 35 million euros. For year<br />
2<strong>02</strong>2, the transmission loss increases to 2 % when the<br />
remaining NPPs are out of operation compared to the base<br />
case. The reason for the lower increase in losses in year<br />
2<strong>02</strong>2 compared to other two years is that in year 2<strong>02</strong>2<br />
there are less NPP in Base Case.<br />
3.7 Additional results<br />
The coupled BID3 and PSSE/E analysis enables to extract<br />
further results from the study. A few are presented hereafter.<br />
pp<br />
Power flows: a closer analysis of generation and flow<br />
shifts is performed for the “NPP Out” case compared to<br />
“Base” case in the years 2<strong>02</strong>0–2<strong>02</strong>2 after redispatch<br />
due to grid constraints. The lost generation capacity<br />
from a NPP shut down leads to increased flows from<br />
north to south. The maximum change in flows observed<br />
is an increased flow of 4.7 TWh.<br />
pp<br />
Electricity exports: early electricity exports from<br />
Germany show a decreasing trend after <strong>2019</strong>. In Base<br />
Case, exports drop from 56.7 TWh per year to 25.9 TWh<br />
per year in 2<strong>02</strong>2. Reduced generation from a nuclear<br />
phase-out leads to an even sharper reduction of yearly<br />
electricity exports from Germany. In 2<strong>02</strong>1, annual<br />
exports reduce by almost 90 % in NPP Out to a level of<br />
4.9 TWh, compared to Base Case with 40.2 TWh. These<br />
show a very similar profile in all scenarios with shifts of<br />
~1–3 TWh/month between scenarios. The shifts are<br />
slightly lower in the summer months, when nuclear<br />
availability is typically lower.<br />
4 Discussion<br />
The results obtained from the market study using BID3 are<br />
derived using a well-established modelling practice giving<br />
confidence on the outcomes. The outcomes show negative<br />
consequences from a socio-economic perspective of an<br />
early NPPs shut-down early 2<strong>02</strong>0. The limit of such results<br />
derived with market analysis only is the difference between<br />
the ideal market approach as simulated by BID3 and the<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 77<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 78<br />
reality of power flows and power grid limitations. This<br />
study tackles this limitation by introducing a coupled<br />
market and grid system analysis.<br />
This innovative method enables a good estimation of<br />
grid management measures volumes and costs required to<br />
realize an optimized power mix. However, it contains some<br />
simplification worth mentioning. First, the evaluation is<br />
performed at the European level as a proxy for the German<br />
grid management measures. Since the origin of the effect<br />
– early closure of NPPs – would occur in Germany, this<br />
approximation seems realistic. Second, real life grid<br />
management measures and redispatch contain some<br />
meta-heuristic characteristics: at the level of transmission<br />
system operators (TSOs), responsible to ensure the<br />
stability of the power grid, human-based decisions requiring<br />
engineering judgment are often made. This aspect<br />
makes the evaluation of redispatch volume and costs via a<br />
modelling tool particularly difficult. To quantify the associated<br />
bias, a possible way forward would be an analysis of<br />
grid management measures and costs in previous years<br />
with the couple BID3 – PSS/E approach.<br />
5 Conclusion<br />
This study investigates the effects of nuclear power plants<br />
(NPPs) premature phase-out early 2<strong>02</strong>0 on the German<br />
power system for the years 2<strong>02</strong>0–2<strong>02</strong>2 by carrying out a<br />
model-based market analysis in iterative conjunction with<br />
a power grid system simulation.<br />
Results are generated according to market dispatch<br />
which consequently are adapted to adhere to network<br />
constraints through grid management measures. According<br />
to market dispatch analysis, the early closure of NPPs<br />
early 2<strong>02</strong>0 would reduce the social welfare by ~2 billion<br />
EUR per year. This loss is carried by consumers. Producers<br />
would gain as their higher cost of generation are overcompensated<br />
by the increased wholesale price. The increase in<br />
wholesale prices is in the range of 4–7 EUR/MWh which<br />
feeds through to large consumers directly and is slightly<br />
reduced to a lower EEG levy for smaller consumers.<br />
Capacity margins are reduced by up to ~25 % (1.5 GW)<br />
without NPPs from early 2<strong>02</strong>0 onwards. Those results are<br />
obtained with simulations performed using the reference<br />
weather year of 2013. The choice of that specific weather<br />
year is made to remain as objective as possible since 2013<br />
had average temperatures and RES generation. Some<br />
effects are worsened considering other weather year with<br />
more extreme behavior. A sensitivity study is performed<br />
with the weather 2012 where the cold spell already puts<br />
the system under further stress. CO 2 emissions are also<br />
adversely affected by a premature nuclear phase-out with<br />
an additional 89.9 million tons of CO 2 emitted additionally<br />
over the three years.<br />
With regards to power grid effects with and without<br />
NPPs in the German system, diverging effects occur. The<br />
thermal redispatch costs increase without NPPs by<br />
78 million EUR over the period 2<strong>02</strong>0-2<strong>02</strong>2. In parallel the<br />
generation from renewable energy sources first increases<br />
before decreasing in 2<strong>02</strong>2. In total the grid management<br />
costs decrease by 219 million € over the period 2<strong>02</strong>0–2<strong>02</strong>2,<br />
remaining minor compared to the above-stated loss of<br />
social welfare. The system is stressed additionally by the<br />
departure of NPPs as transmission losses increase (2–10 %<br />
per year) and north to south flows increase by up to<br />
4.7 TWh per year in specific regions.<br />
The study reviewed solely the effects of an accelerated<br />
closure of NPPs early 2<strong>02</strong>0. An extension of nuclear power<br />
plant lifetime beyond the current phase-out timeline<br />
stated in the nuclear power law of 2011 is out of the scope<br />
of this work.<br />
Acknowledgement<br />
The authors would like to acknowledge Pöyry Management<br />
Consulting GmbH and PreussenElektra GmbH efforts<br />
to enable this work. A special thank goes to the ENTSO-E<br />
organization and the German TSO Tennet TSO GmbH,<br />
Amprion GmbH, TransnetBW GmbH, 50Hertz Transmission<br />
GmbH, for their support.<br />
References<br />
[1] O. Renn and JP Marhsall. Coal, nuclear and renewable energy policies in Germany: From the<br />
1950s to the “Energiewende”. Energy Policy, volume 99 p224-232, 2016.<br />
[2] OECD/Nuclear Energy Agency. The Full Costs of Electricity Provision. NEA report No. 7441, 2018.<br />
[3] International Monetary Fund (IMF), World Economic Outlook, April 2017.<br />
[4] Backcasting the GB Balancing Mechanism with BID3. O. Stoica and T. Poffley. Poyry and national<br />
Grid join report, Sept 2017.<br />
[5] https://www.siemens.com/global/en/home/products/energy/services/transmissiondistribution-smart-grid/consulting-and-planning/pss-software/pss-e.html<br />
[6] Audit of the BID3 Pan European Market Model for National Grid. K. Bell and I. Stafell, National<br />
Grid, Oct 2016.<br />
[7] Netzenwicklungsplan Strom, 4 TSOs, Marktmodell BID3 (Kapitel 3.1), 2015.<br />
Authors<br />
Denis Janin<br />
Volker Raffel<br />
PreussenElektra GmbH<br />
Dr. Eckart Lindwedel<br />
Pöyry Management Consulting (Deutschland) GmbH<br />
Prof. Graham Weale<br />
Ruhr Universität Bochum<br />
James Cox<br />
Pöyry Management Consulting (UK) Ltd<br />
Geir Bronmo<br />
Pöyry Norway AS<br />
Feature | Major Trends in Energy Policy and Nuclear Power<br />
Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe<br />
Status, potentials and challenges for baseload application:<br />
European Situation in 2017<br />
Thomas Linnemann and Guido S. Vallana<br />
Introduction Wind power is a cornerstone of rebuilding the electricity supply system completely into a renewable<br />
system, in Germany referred to as “Energiewende” (i. e. energy transition). Wind power is scalable, but as intermittent<br />
renewable energy can only supply electrical power at any time reliably (security of supply) in conjunction with<br />
dispatchable backup systems. This fact has been shown in the first part of the VGB Wind Study, dealing with operating<br />
experience of wind turbines in Germany from 2010 to 2016 [1],[2]. This study states among other things that despite<br />
vigorous expansion of on- and offshore wind power to about 50,000 MW (92 % onshore, 8 % offshore) at year-end 2016<br />
and contrary to the intuitive assumption that widespread distribution of about 28,000 wind turbines, hereinafter<br />
referred to as German wind fleet, should lead to balanced aggregate power output, no increase in annual minimum<br />
power output has been detected since 2010, each of which accounted for less than 1 % of the relevant nominal capacity.<br />
The annual minimum power output reflects the permanently<br />
available aggregate power output (secured capacity) of the<br />
whole German wind fleet by which conventional power plant<br />
capacity can be reduced on a permanent basis. Or in other<br />
words: In every year since 2010 there was always at least one<br />
quarter of an hour in which more than 99 % of the nominal<br />
capacity of the German wind fleet was not avail able and, for<br />
all practical purposes, a requirement for 100 % dispatchable<br />
backup capacity prevailed, although its nominal capacity<br />
had almost doubled at the same time. Intuitive expectations<br />
that electricity generation from widespread wind turbines<br />
would be smoothed to an extent which in turn would allow<br />
the same extent of dispatchable backup capacity to be<br />
dispensed with has therefore not been fulfilled.<br />
Dispatchable backup capacity is essentially necessary<br />
to maintain a permanently stable balance between<br />
temporal variations of outputs from wind turbines and<br />
other power plants fed into the power grid and consumerdriven<br />
temporal demand variations extracting power from<br />
the grid (frequency regulation).<br />
To maintain power grid stability, ancillary services such<br />
as primary control capacity or large rotational inertia are<br />
also necessary to limit widely oscillating frequency<br />
deviations (grid oscillations) − properties that con ventional<br />
power plants with their turbo generators per se possess [3],<br />
but which must be provided separately as additional ancillary<br />
services in case of a largely renewable power supply<br />
system based on wind and solar energy ( photovoltaics).<br />
For grid stability, a secured capacity of power plants<br />
including grid reserve and standby capacities for backup<br />
purposes of currently about 84,000 MW is required in<br />
Germany at the time of annual peak load occurring<br />
between 17:30 and 19:30 during the period from November<br />
to February [4].<br />
If electricity generation from wind power is further<br />
expanded in line with the objectives of the German federal<br />
government, the nominal capacity of the German wind<br />
fleet should exceed this secured capacity of power plants in<br />
several years’ time. From that point on, the dispatchable<br />
backup capacity to be maintained would have to be capped<br />
at about the level of this secured capacity of power plants<br />
which is sufficient for grid stability reasons.<br />
Solar energy (photovoltaics) as a further scalable and<br />
politically designated cornerstone of the German Energiewende<br />
is always 100 % unavailable during the times of<br />
year and day relevant for the annual peak load, as well as<br />
year-round at night, and therefore per se cannot make any<br />
contribution to the secured power plant capacity [4].<br />
At year-end 2017, almost 1.7 million photovoltaic<br />
systems with around 42,400 MW nominal capacity (peak)<br />
were installed throughout Germany, supplying 40 TWh<br />
of electricity year-round [5]. By comparison, net power<br />
consumption amounted to around 540 TWh. This amount<br />
does not include the balance of electricity imports and<br />
electricity exports of almost 55 TWh [6], the auxiliary<br />
electric load of power plants of about 34 TWh [7] or grid<br />
losses at all voltage levels of around 26 TWh [8]. Photovoltaics<br />
therefore contributed around 7.4 % towards<br />
meeting the domestic net power requirement.<br />
Analyses of quarter-hourly time series of power output<br />
from wind turbines and photovoltaic systems in Germany<br />
over several years, scaled up to a nominal capacity of an<br />
average 330,000 MW to obtain 500 TWh electricity from<br />
these two intermittent renewable energy systems (iRES) per<br />
year, lead to a continued high need for dispatchable backup<br />
capacity of 89 % of the annual peak load [9],[10]. This average<br />
iRES nominal capacity includes 51 % of onshore wind<br />
power, 14 % of offshore wind power and 36 % of photovoltaic<br />
systems. The annual electrical energy amount of<br />
500 TWh reflects Germany’s net electricity consumption<br />
plus grid losses minus predictable renewable energy systems<br />
(RES) such as run-of-river and pumped storage power<br />
plants, biomass and geothermal power plants.<br />
The saving in backup capacity of 11 % of the annual<br />
peak load under these conditions is essentially attributable<br />
to the regular night-time load reduction, as high backup<br />
capacities are seldom necessary during the daytime with<br />
electricity generation from solar power. From 2015 to<br />
2017, an average 13 % of the annual hours in which iRES<br />
power outputs of less than 10 % of the iRES nominal<br />
capacity arose were accounted for by daytime hours<br />
between 08:00 and 16:00.<br />
As, at around 130 TWh, slightly more than one quarter<br />
of the iRES annual electric energy would occur at times of<br />
low demand (surplus) and therefore not be directly usable,<br />
the dispatchable backup system would have to provide the<br />
equivalent of these surpluses temporally delayed with a<br />
very low capacity factor of a maximum 20 %.<br />
From one year to the next, weather-related fluctuations<br />
of iRES annual electric energy of at least ±15 % would<br />
have to be factored in [9], with repercussions on the<br />
backup capacity in case of continued efforts to maintain<br />
the current high level of security of supply.<br />
According to annual outage and availability statistics<br />
compiled by the Forum Network Technology/Network<br />
Operation of VDE as German Association for Electrical,<br />
Part 1 * <br />
*) Part 2<br />
to be published<br />
in <strong>atw</strong> 3 (<strong>2019</strong>)<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 79<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 80<br />
Power in MW<br />
65,000<br />
60,000<br />
55,000<br />
50,000<br />
45,000<br />
40,000<br />
35,000<br />
30,000<br />
25,000<br />
20,000<br />
15,000<br />
10,000<br />
5,000<br />
0<br />
WT: Wind turbines<br />
Electronic and Information Technologies, reliability of the<br />
power grid in Germany, reflected by an outage duration of<br />
11.5 minutes per electricity customer in 2016, remains<br />
extremely high [11]. On this basis, the level of security of<br />
supply of end consumers in Germany averaged 99.998 %.<br />
These results are based on the optimal mix of wind<br />
power and photovoltaics providing 100 % of the net annual<br />
electricity consumption of 500 TWh, in which the annual<br />
electric energy to be supplied by the backup system<br />
becomes minimal. Under these conditions the backup<br />
system would have to cover slightly more than one quarter<br />
of the annual electric energy, namely 130 TWh, photovoltaics<br />
around one fifth and wind power the remainder.<br />
In the case of non-dissipative energy storage with unlimited<br />
power input and power output capped at nine tenths<br />
of the annual peak load, iRES production surpluses of<br />
130 TWh on average would be sufficient as backup.<br />
If the previous review is widened to encompass eight<br />
[12] or 27 European countries [13], two limiting cases can<br />
be distinguished:<br />
pp<br />
In the first limiting case without interconnectors, a<br />
separate country analysis is sufficient, and each<br />
European country has to provide an average 23 % [12]<br />
or 24 % [13] of its iRES annual electricity generation<br />
by means of a national dispatchable backup system.<br />
This theoretical limit implies sufficient transmission<br />
capacities within the country in each transport<br />
direction. Such national copper plates are certainly not<br />
realistic in any case.<br />
pp<br />
In the second (theoretical) case, additionally characterised<br />
by the optimum European interconnection via<br />
interconnectors with infinitely large transmission<br />
capacities without transmission losses, this average<br />
falls to 16 % [12] or 15 % [13].<br />
The annual backup energy reduction from 23 % to 16 %<br />
[12] or 24 % to 15 % [13] reflects the maximum benefit<br />
that can be achieved with an optimally interconnected<br />
Europe. The required backup capacity would be reduced<br />
further by an average 13 % of the annual peak load in this<br />
case [12]. For Germany, a total reduction in backup<br />
capacity by about one quarter of the annual peak load<br />
could then be expected. About 46 % of this reduction<br />
would be attributable to the domestic effect and 54 % to<br />
Europe’s effect.<br />
For the interconnectors in an optimally interconnected<br />
Europe, transmission capacities of 831,000 MW would<br />
Number of wind turbines (end of year, rounded)<br />
26,903<br />
21,678<br />
4,100<br />
28,712<br />
22,870<br />
30,979<br />
24,086<br />
33,477<br />
26,268<br />
Year<br />
38,614<br />
29,344<br />
5,066 5,225 5,388 5,840<br />
44,580<br />
32,926<br />
Quarter-hourly resolution<br />
21,600 WT 22,300 WT 23,000 WT 23,800 WT 25,100 WT 26,800 WT 28,200 WT 29,800 WT<br />
Nominal power PN<br />
Maximum PMax<br />
49,592<br />
33,834<br />
Arithmetic mean Pµ<br />
8,851 8,769<br />
56,164<br />
39,408<br />
11,720<br />
Minimum PMin<br />
113 88 115 121 24 105 128 158<br />
2010 2011 2012 2013 2014 2015 2016 2017<br />
Sources: BMWi, BWE, German TSO<br />
| | Fig. 1.<br />
Figures on electricity generation from wind power in Germany since 2010 with the year-end<br />
nominal capacity P N of the German wind fleet, the annual maximum P Max and the annual<br />
minimum P Min as well as the mean value P µ of the power time series.<br />
have to be established, corresponding to twelve times the<br />
European interconnector capacity in 2011. Meanwhile, the<br />
benefit of interconnecting Europe would already approach<br />
97 % of the maximum with six-fold interconnector capacity<br />
compared to 2011 [13].<br />
Attention should be drawn to the fact that Wagner’s<br />
calculations [12] are based on time series for aggregate<br />
power output from wind power and photovoltaics in 2012<br />
available on the internet as transparency data from transmission<br />
system operators, whilst Rodriguez et al. [13] use<br />
weather data from 2000 to 2007 as input for their model<br />
calculations on iRES-based electricity generation.<br />
Therefore, even with quadrupled iRES nominal capacity<br />
compared with the current level in an optimally interconnected<br />
Europe, a comparatively small saving in<br />
dispatchable backup capacity and low capacity factors of<br />
the backup system, for instance of Germany, are to be<br />
expected, with repercussions on its profitability.<br />
Review of electricity generation<br />
from wind power in Germany since 2010<br />
In the first part of the VGB Wind Study [1] electricity generation<br />
from the German wind fleet from 2010 to 2016 has<br />
been analysed. Meanwhile operating data for one<br />
additional year are available and enable an update before<br />
Europe is moved into the spotlight.<br />
In 2017, the nominal capacity of the German wind fleet<br />
increased by a further 12 % year-on-year to roughly<br />
56,000 MW (Figure 1), some 90 % of which was accounted<br />
for by onshore wind power and 10 % by offshore wind<br />
power.<br />
The German wind fleet comprised a total of almost<br />
30,000 turbines at the end of the year. This corresponds to<br />
6 % growth compared with the previous year.<br />
The annual peak power output P Max reached a new alltime<br />
high of almost 40,000 MW in 2017. This all-time high<br />
occurred on 28 October 2017 between 18:15 and 18:30.<br />
Note: All times in connection with quarter-hourly or<br />
hourly data are stated in coordinated universal time (UTC)<br />
in this study.<br />
In the afternoon and evening of that day in October, the<br />
low-pressure system “Herwart” swept across the north and<br />
east of Germany with severe to hurricane-like storm-force<br />
gusts and gale-force winds, caused gusts of up to hurricane<br />
force in Denmark, Poland and the Czech Republic and led<br />
to extremely high power output from wind turbines there<br />
as well.<br />
Due to high, but not too high wind speeds prevailing<br />
over large parts of Germany and its neighbours at times on<br />
that October day, around 70 % of the wind turbines in<br />
Germany fed their nominal capacity into the power grid.<br />
Note: Wind turbines automatically switch off at wind<br />
speeds of around 25 m/s according to preventive measures<br />
(storm deactivation).<br />
Similarly high aggregate power output also occurred in<br />
Germany on 18 March 2017 with the low-pressure system<br />
“Eckart”, which brought severe storm-force gusts to Berlin<br />
and Brandenburg.<br />
Even without these spring and autumn storms, 2017<br />
was an extremely windy year. The mean power output P µ<br />
of the German wind fleet as measure of electrical energy<br />
supplied annually rose by 34 % year-on-year to 11,720 MW.<br />
This corresponds to an annual electric energy of 103 TWh.<br />
Wind power thus for the first time breached the annual<br />
generation threshold of 100 TWh.<br />
The annual minimum power output P Min of 158 MW<br />
occurred on 6 July 2017 between 07:15 and 07:30 and<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
remained − as in the previous seven years − significantly<br />
below 1 % of the nominal capacity P N at year-end.<br />
Comparatively low German wind fleet power outputs<br />
over several consecutive hours of up to 1 % of the nominal<br />
capacity or nearly 562 MW were recorded in January,<br />
June, July, August, September and October, and therefore<br />
in six months of the high-wind year 2017.<br />
Note: A minimum power output of the German wind<br />
fleet of 229 MW has been recorded in 2018, with a nominal<br />
capacity of around 59,000 MW (90 % onshore, 10 %<br />
offshore).<br />
As low power output can occur during both day and<br />
night, the matter of future security of supply cannot be<br />
resolved by expanding electricity generation from photovoltaics.<br />
In their energy performance reports, the German transmission<br />
system operators point out that it is difficult to<br />
make reliable statements about possible unavailable<br />
capacity of volatile renewable energy systems at the time<br />
of the annual peak load. In their responsibility for safe grid<br />
operation they call for such supply-dependent volatile<br />
capacity to be available to at least 99 % of a year in order to<br />
be considered as secured capacity [4].<br />
To this end they regularly evaluate historical time series<br />
of iRES normalised power output in relation to the nominal<br />
capacity as ordered annual load duration curves. From<br />
these curves they derive an aggegate secured capacity for<br />
the German wind fleet of a maximum 1 % of the nominal<br />
capacity, and stress even a restriction to the winter months<br />
would indicate no significant change in this result [4].<br />
In view of the fact that the annual minima of the<br />
German wind fleet power output have all even been found<br />
to amount to less than 0.5 % of the nominal capacity since<br />
2010, this procedure would appear to be justified if the<br />
currently high level of security of supply of 99.998 % [11]<br />
is to be maintained (see Figure 1).<br />
Worthy of mention is the ten-day cold dark doldrums<br />
from 16 to 25 January 2017, during which the weather in<br />
Germany was simultaneously cold, foggy and windless.<br />
The weather conditions led to all wind turbines and photovoltaic<br />
systems in Germany feeding a mere average of just<br />
under 4,600 MW into the grid over these ten days, with an<br />
iRES nominal capacity of around 90,000 MW. Wind power<br />
accounted for three quarters of this iRES average power<br />
output.<br />
On several days the German wind fleet at times supplied<br />
less than 1,800 MW or 2 % of its nominal capacity over<br />
several consecutive hours, while biomass, hydropower and<br />
geothermal energy together contributed a largely constant<br />
power output of 6,300 MW.<br />
During the ten-day dark doldrums, all renewable<br />
energy systems (RES) together covered 15 % of the demand<br />
and produced an average power output of around<br />
11,000 MW.<br />
The RES minimum output of around 7,000 MW<br />
occurred on 23 January 2017 between 00:00 and 00:45.<br />
This corresponded to about 6 % of the RES nominal<br />
capacity [5].<br />
During the cold dark doldrums the load varied between<br />
42,000 MW and 75,000 MW (average: 61,000 MW), so<br />
that available conventional power plants had to contribute<br />
most to meeting demand with power outputs of 33,000 to<br />
67,000 MW [14].<br />
Note: The load has been provided via internet from the<br />
transparency platform of ENTSO-E, the European Network<br />
of Transmission System Operators [1]. It includes grid<br />
losses and can be calculated from gross power generation<br />
Probability in % (CDF)<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
CDF: Cumulative distribution function<br />
Electricity generation from wind power<br />
η A,Min<br />
η A,Max<br />
Normalised power P/PN in %<br />
PMax /PN<br />
| | Fig. 2.<br />
Cumulative probabilities of hourly power output P of the German wind fleet<br />
from 2010 to 2017 normalised to the nominal capacity P N at year-end.<br />
by deducting the auxiliary consumption of power plants,<br />
the balance of imports and exports and the demand of<br />
pumped storage power plants. However, contributions<br />
from German railways’ captive generation, industry-owned<br />
power plants, small combined heat and power units and<br />
small-scale plants based on renewables are not recorded by<br />
German transmission system operators. These account for<br />
around 10 % of the load and are not included in load data<br />
obainable from ENTSO-E. Since the temporal pattern of<br />
these contributions is unknown, load remains unchanged<br />
and is used here to represent the domestic load curve.<br />
These data derived from the January 2017 cold dark<br />
doldrums characterise requirements that have to be<br />
imposed on a backup system which will have to replace the<br />
conventional power plants in future with further iRES<br />
expansion, if the grid is to be operated stably and with<br />
security of supply.<br />
The fact that sustained periods of weak wind occur not<br />
only in Germany but also in other European countries is<br />
demonstrated by the public debate on electricity generation<br />
from wind power in Great Britain, which was down<br />
40 % year-on-year in July 2018. For weeks, the wind fleet<br />
power output ranged from a few hundred to about<br />
3,000 MW, reaching a monthly average of 9 % of the<br />
nominal capacity. When good wind conditions prevail, the<br />
power output in Great Britain typically reaches 9,000 to<br />
10,000 MW [15].<br />
Figure 2 shows cumulative probabilities of the normalised<br />
hourly power output P of the German wind fleet for<br />
the years 2010 to 2017 in relation to the nominal capacity<br />
P N at year-end. CDF denotes the cumulative distribution<br />
function. The ratio of the mean power output P µ to the<br />
nominal capacity P N is defined as capacity factor h A .<br />
It is immediately apparent that the cumulative distribution<br />
functions are not in chronological order corresponding<br />
to the expanded German wind fleet in terms of<br />
nominal capacity. The minimum capacity factor h A,Min of<br />
about 15 % was reached in 2014 at a nominal capacity of<br />
almost 39,000 MW, for instance, and not earlier in 2010<br />
when the development level was lower at around<br />
27,000 MW. Therefore, wind conditions varying from year<br />
to year seem to be one of the main drivers for the capacity<br />
factor of the German wind fleet.<br />
The highest capacity factor h A,Max of 21 % was recorded<br />
in the extremely windy year 2017 when the wind fleet was<br />
at its most developed. In terms of wind strength the years<br />
2015, 2016, 2011, 2012, 2013, 2010 and 2014 follow in<br />
descending order.<br />
Hourly resolution<br />
2017<br />
2016<br />
2015<br />
2014<br />
2013<br />
2012<br />
2011<br />
2010<br />
0<br />
0 10 20 30 40 50 60 70 80 90 100<br />
Sources: ENTSO-E, German TSO<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 81<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 82<br />
Nomoinal power in MW<br />
60,000<br />
50,000<br />
40,000<br />
30,000<br />
20,000<br />
10,000<br />
0<br />
Wind turbines<br />
The Federal Ministry for Economic Affairs and Energy<br />
(BMWi) [5] and the Working Group on Energy Balances<br />
(AGEB) [6] partly report higher values for annual electricity<br />
generation from wind power from 2010 to 2014 than result<br />
from integrating quarter-hourly power time series published<br />
by the German transmission system operators on<br />
their transparency platforms via internet. This can result in<br />
differing capacity factor values for individual years<br />
depending on the relevant data source. As of the year 2015,<br />
these deviations are all less than 5 % of the annual electric<br />
energy supplied.<br />
Note: Where not stated otherwise, this study is based<br />
on the annual electric energy computed from power time<br />
series and nominal capacities at year-end.<br />
With dynamic expansion during the course of the year,<br />
use of the annual mean value of the nominal capacity is<br />
more appropriate. For the German offshore wind fleet<br />
which was expanded strongly in 2017, a capacity factor of<br />
37 % results with the year-end figure for nominal capacity<br />
of 5,400 MW, while the annual mean value of 4,800 MW<br />
leads to a considerably higher capacity factor of 42 %. The<br />
latter takes more appropriate account of the fact that wind<br />
turbines added during the course of the year were only<br />
able to feed-in power on a pro rata temporis basis.<br />
Total nominal power 2017 of 18 countries<br />
≈170,000 MW<br />
DE ES UK FR IT SE PL DK PT NL RO IE AT BE GR FI NO CZ<br />
Europe 2017<br />
| | Fig. 3.<br />
Nominal capacity of wind turbines in 18 European countries at the end of 2017.<br />
PT<br />
IE<br />
ES<br />
UK<br />
FR<br />
NL<br />
BE<br />
NO<br />
DE<br />
DK<br />
SE<br />
IT<br />
AT<br />
CZ<br />
Source: BP Statistical Review<br />
| | Fig. 4.<br />
Overview of 18 European countries analysed. Germany’s direct neighbours are written in red,<br />
all countries further afield in blue.<br />
FI<br />
PL<br />
RO<br />
GR<br />
18 European Countries<br />
AT Austria<br />
BE Belgium<br />
CZ Czech Republic<br />
DE Germany<br />
DK Denmark<br />
ES Spain<br />
FI Finland<br />
FR France<br />
GR Greece<br />
IE Ireland<br />
IT Italy<br />
NL Netherlands<br />
NO Norway<br />
PL Poland<br />
PT Portugal<br />
RO Romania<br />
SE Sweden<br />
UK United Kingdom<br />
Looking at the German wind fleet as a whole, the mean<br />
output of 11,700 MW and the year-end nominal capacity of<br />
56,000 MW result in a capacity factor of 21 % for 2017. The<br />
annual mean value of the nominal capacity of 53,000 MW<br />
results in a marginally higher capacity factor of 22 % on<br />
account of the low leverage of newly added nominal<br />
capacity compared with the existing level. When comparing<br />
with the capacity factor of electricity generation from wind<br />
power in other European countries, relative differences are<br />
of interest, and so calculations for such considerations<br />
should be carried out in a uniform manner for all countries.<br />
Although the capacity factor of the German offshore wind<br />
fleet last year was practically almost double that of the entire<br />
German wind fleet, the quarter-hourly power output of the<br />
German offshore wind fleet fell to 1 % of its nominal capacity<br />
or less in a total of around 261 hours of the 8,760 annual<br />
hours. In 2016 this was 259 hours (2015: 304 hours). Weak<br />
wind phases of this kind occurred in each month of last year,<br />
including pronounced phases lasting several hours in January,<br />
March, April, June, July, August and September. The<br />
power output of the German offshore wind fleet fell at times<br />
in January, April, July, August and September to 0 MW. Over<br />
the entire year, 29 quarter- hourly zero values were recorded.<br />
This means that at the level of development achieved to<br />
date, the German offshore wind fleet is shown to be not<br />
capable of serving as a source of baseload electricity and<br />
cannot replace conventional power plants.<br />
Whilst the nominal capacity of the German wind fleet<br />
has more than doubled since 2010, wind levels depend on<br />
meteorological influencing variables and can vary considerably<br />
from year to year. This is documented by longterm<br />
data on the capacity factor of the German wind fleet<br />
with annual fluctuations in a range of up to ±20 % in<br />
relation to the long-term arithmetical mean [5].<br />
The influence of meteorological factors is apparent, for<br />
example, in Figure 2 in the fact that the German wind fleet<br />
produced up to 50 % of the nominal capacity in 93 % of the<br />
annual hours in 2015 and 2017, when wind levels were<br />
high, but in 2010 and 2014, when wind levels were low,<br />
only achieved at most 38 % and 41 % respectively of<br />
the nominal capacity in 93 % of the annual hours. This<br />
corresponds to a weather-induced variance of around<br />
twelve percentage points.<br />
With low cumulative probabilities and at low normalised<br />
output, differences of this kind between indivi dual<br />
years on account of meteorological influences are barely<br />
discernible. Cumulative probabilities of 100 % were<br />
reached in Germany in the past years at wind fleet power<br />
outputs of 68 to 80 % of the nominal capacity. Or in other<br />
words: The German wind fleet recorded annual power<br />
output maxima of 68 to 80 % of its nominal capacity in the<br />
last eight years. In Germany, therefore, it is never the case<br />
that all wind turbines feed their nominal capacity into the<br />
grid at the same time. But is that also true of other European<br />
countries? Can a similar relationship between the annual<br />
maximum power output P max and the nominal capacity P N<br />
be derived from their power output time series?<br />
On the basis of 108 time series for electricity generation<br />
from onshore and offshore wind power in European countries<br />
between 2010 and 2017 [14], regression analysis<br />
provides the following interrelation to be derived between<br />
the annual maximum power output P max and the nominal<br />
capacity P N at year-end, with a degree of determination of<br />
linear regression of 99 %:<br />
P Max = c Max · P N .<br />
The slope of this linear equation can be expressed as:<br />
c Max = 0.726 ± 0.014.<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Long-term operating experience in various European<br />
countries including Germany thus enables with good<br />
approximation the expectation that, at best, just under<br />
74 % of the nominal capacity of a wind fleet of any one<br />
European country contribute simultaneously to the<br />
maximum power output. As electricity generation from<br />
wind power expands, the difference between the nominal<br />
capacity and the annual maximum power output consequently<br />
increases, see Figure 1.<br />
The data basis cited above also enables an approximate<br />
linear dependency on the nominal capacity P N to be<br />
derived for the mean value P µ with a 96 % degree of<br />
determination:<br />
P µ = c µ · P N .<br />
The slope of this linear equation is expressed as:<br />
c µ = 0.179 ± 0.009.<br />
Long-term operating experience documents here that,<br />
at best, approximately just under one fifth of the nominal<br />
capacity of a wind fleet in any one European country<br />
contributes to the annual electric energy supplied.<br />
Last but not least, the data basis cited above also enables<br />
an approximate linear dependency on the nominal capa city<br />
P N to be derived for the standard deviation P s as a measure<br />
of the dispersion of the power output around the mean<br />
value P µ with a degree of determination of almost 99 %:<br />
P s = c s · P N .<br />
The slope of this linear equation can be expressed as:<br />
c s = 0.145 ± 0.0036.<br />
Based on long-term operating experience, a proportional<br />
increase in power output fluctuations relative to the<br />
nominal capacity can be derived in this case with a factor<br />
of almost 0.15. With further expansion of wind power,<br />
therefore, a further increase in power output fluctuations<br />
is to be expected.<br />
It can therefore be concluded that operating experience<br />
of 2017 confirms the statements made in the first part of<br />
the VGB Wind Study for Germany [1], namely that, from<br />
the point of view of security of supply, wind power has so<br />
far not replaced conventional power plant output. Furthermore,<br />
distribution of wind turbines throughout Germany<br />
is, on its own, clearly not a solution for a reliable and secure<br />
supply of electricity. Complementary technologies are<br />
necessary in conjunction with wind power. This raises the<br />
question as to whether wind turbines distributed widely<br />
throughout Europe could help.<br />
Power in MW<br />
Power in MW<br />
Power in MW<br />
100,000<br />
90,000<br />
80,000<br />
70,000<br />
60,000<br />
50,000<br />
40,000<br />
30,000<br />
20,000<br />
10,000<br />
0<br />
100,000<br />
90,000<br />
80,000<br />
70,000<br />
60,000<br />
50,000<br />
40,000<br />
30,000<br />
20,000<br />
10,000<br />
0<br />
100,000<br />
90,000<br />
80,000<br />
70,000<br />
60,000<br />
50,000<br />
40,000<br />
30,000<br />
20,000<br />
10,000<br />
0<br />
Jan<br />
Jan<br />
Jan<br />
Germany<br />
P N ≈ 56,000 MW<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Germany plus seven countries<br />
P N ≈ 93,000 MW<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Germany plus seventeen countries<br />
P N ≈ 170,000 MW<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Year 2017<br />
Hourly resolution<br />
| | Fig. 5.<br />
Cumulative power time series for electricity generation from wind power in 2017<br />
for Germany (top), for Germany plus seven direct neighbours (centre) and for<br />
Germany plus seventeen countries (bottom).<br />
Dec<br />
Dec<br />
Dec<br />
Source: ENTSO-E<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 83<br />
Electricity generation from wind power<br />
in 18 European countries<br />
In order to answer this question, it is first worth taking a<br />
look at the cumulative nominal capacity of wind turbines<br />
operated in 18 European countries at the end of 2017 or<br />
the total nominal capacity of the European wind fleet of<br />
almost 170,000 MW, 91 % of which was accounted for by<br />
onshore wind turbines and 9 % by offshore wind turbines<br />
(Figure 3) [16]. In 2017, offshore wind turbines were<br />
operated in Belgium (BE), Denmark (DK), Germany (DE),<br />
the Netherlands (NL) and the United Kingdom (UK).<br />
Countries with largely intact time series on electricity<br />
generation from wind power were selected, reflecting 94 % of<br />
the European nominal capacity at the end of 2017 [14],[16].<br />
Starting point of these analyses were transparency data<br />
accessible on the internet from ENTSO-E [14], the German<br />
transmission system operators 50 Hertz Transmission,<br />
Amprion, Tennet TSO and Transnet BW as well as the<br />
European Energy Exchange [17] to [21].<br />
Time series for electric power output from various power<br />
plant types, including wind turbines and photo voltaic<br />
systems, as well as for consumer demand (load) can be<br />
retrieved through these transparency platforms in quarterhourly<br />
to hourly resolution.<br />
On the ENTSO-E transparency platform, all time series<br />
from 2015 on were retrievable in time-synchronised form,<br />
an important factor for analyses of balance between<br />
consumption and generation in different countries.<br />
This enabled consistent retrieval of data according to coordinated<br />
universal time. Additional information on data<br />
qualification and plausibility can be found in the first part<br />
of the VGB Wind Study [1].<br />
Figure 3 shows: Germany alone, with around<br />
56,000 MW, accounted for almost one third of the total<br />
nominal capacity of the European wind fleet, followed at a<br />
clear distance by Spain (14 %), the United Kingdom<br />
(12 %), France (8 %) and Italy (6 %).<br />
Figure 4 shows a map of the 18 European countries<br />
considered here. Germany’s direct neighbours are written<br />
in red, all countries further afield in blue. Germany’s seven<br />
direct neighbours (AT, BE, CZ, DK, FR, NL, PL) currently<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 84<br />
Country P N P Max P µ P Min P s E R E R [16]<br />
in MW in MW in MW in MW in MW in TWh in TWh<br />
DE 56,164 39,231 11,720 165 8,813 1<strong>02</strong>.7 106.6<br />
DK 5,476 4,685 1,644 9 1,154 14.4 14.8<br />
PL 6,397 5,234 1,633 28 1,238 14.3 14.9<br />
CZ 308 237 64 1 51 0.6 0.6<br />
AT 2,828 2,679 768 0 676 6.7 6.5<br />
FR 13,759 10,290 2,608 390 1,887 22.8 24.3<br />
BE 2,843 2,082 572 3 471 5.0 6.6<br />
NL 5,070 4,280 1,255 7 1,010 11.0 10.6<br />
DE+7 92,845 61,773 20,265 1,742 12,840 177.5 184.9<br />
SE 6,691 5,523 1,976 117 1,092 17.3 17.3<br />
FI 2,113 1,607 470 9 361 4.1 4.8<br />
RO 3,<strong>02</strong>9 2,756 834 0 692 7.3 7.4<br />
GR 2,651 1,7<strong>02</strong> 483 16 336 4.2 5.5<br />
IT 9,479 6,696 2,005 40 1,462 17.6 17.7<br />
ES 23,170 15,564 5,384 420 3,017 47.2 49.1<br />
PT 5,316 4,471 1,367 5 988 12.0 12.3<br />
IE 3,127 2,595 825 0 6<strong>02</strong> 7.2 7.4<br />
UK 18,872 11,394 4,726 431 2,507 41.4 49.6<br />
NO 1,162 975 306 6 184 2.7 2.8<br />
DE+17 168,455 91,638 38,639 7,855 16,384 338.5 358.8<br />
| | Tab. 1.<br />
Relevant parameters of electricity generation from wind power of 18 European countries in 2017 with<br />
year-end value of nominal capacity P N , maximum value P Max , mean value P µ , minimum value P Min and<br />
standard deviation P s of hourly power output of the corresponding national wind fleet. Furthermore,<br />
the annual energy ER resulting from 8,760 hourly values is shown and compared with the annual<br />
energy published in the BP Statistical Review of World Energy [16].<br />
account for around one fifth of the nominal capacity of the<br />
European wind fleet, while the other ten countries further<br />
afield (ES, FI, GR, IE, IT, NO, PT, RO, SE, UK) make up<br />
about half of this total nominal capacity.<br />
The yellow dots on the map of Europe symbolise the<br />
wind fleet centers of the individual countries, determined<br />
on the basis of geocoordinates of the largest wind farm<br />
clusters in 2016 [22]. The focus of the German wind fleet<br />
and that of the European wind fleet formed by the<br />
18 countries, at almost 140 km distance apart, are almost<br />
congruent.<br />
The largest distance between wind fleet centers is to be<br />
found with the country pair Finland and Portugal at almost<br />
3,300 km, followed by Spain and Finland (≈ 3,100 km),<br />
Greece and Ireland (≈ 3,000 km), Portugal and Romania,<br />
and Greece and Norway (both ≈ 2,900 km).<br />
On the assumption that all countries are to help each<br />
other out by means of wind power, a mean transport<br />
distance of 1,500 km between two wind fleet centers<br />
results from a total of 153 possible country pairs when<br />
18 countries are considered.<br />
The summation of power outputs of wind fleets of<br />
18 European countries observed here is based on the<br />
extremely simplistic assumption of a copper plate across<br />
Europe, neglecting any losses in the transport and distribution<br />
networks. Or in other words: the aggregate power output<br />
is accessible at a punctiform feed-in point, so to speak.<br />
Figure 5 shows the cumulative time series of the hourly<br />
generation of electricity from wind power for Germany<br />
(top), for Germany plus seven direct neighbours (centre)<br />
and for Germany plus 17 European countries (bottom) in<br />
2017. Table 1 lists supplementary operating parameters<br />
and energy variables.<br />
Firstly, it is apparent that not only do the cumulative<br />
power time series of the wind fleet in Germany (DE) reveal<br />
considerable temporal fluctuations, so too do those of<br />
cumulative wind fleets of Germany plus seven countries<br />
(DE+7) or 17 countries (DE+17).<br />
It is apparent that aggregate power outputs of several<br />
countries are also still correlated, as demonstrated by the<br />
distinct power output maxima and minima, which<br />
evidently often occur simultaneously in many countries.<br />
This raises the question as to whether smoothing effects<br />
can be identified in the transition from one individual<br />
country to several countries.<br />
In a first step, the question can be evaluated on the basis<br />
of the range between the largest and smallest power output<br />
values in relation to the nominal capacity P N .<br />
This range, referred to here as variation range, is<br />
defined as the ratio of the difference of the mean values of<br />
the largest power output values (P Max minus 5 % P N ) and<br />
the smallest power output values (P Min plus 5 % P N ) to the<br />
nominal capacity of the relevant wind fleet.<br />
Applied to the three wind fleets the following picture<br />
emerges: the variation range of the cumulative power time<br />
series falls by one tenth to around 61 % of the nominal<br />
capacity starting from Germany when Germany plus seven<br />
countries are considered together, whereas it decreases by<br />
one third to 46 % for Germany plus 17 countries (DE+17).<br />
A certain degree of smoothing in subsections of the cumulative<br />
power time series therefore appears to take place.<br />
But what statements can be made − in statistical terms<br />
− for the entire cumulative power time series? The variation<br />
coefficient x as ratio of the standard deviation P s to<br />
the mean value P µ is a dimensionless measure of the dispersion<br />
of a time series.<br />
For an individual European country, the variation<br />
coefficient can be estimated as approximately x = c s /c µ<br />
≈ 0.81 with the results of the previously described linear<br />
regression analysis. For an individual European country,<br />
even just small deviations from the mean value by 1.2<br />
standard deviations downwards lead to power outputs<br />
of 0 MW, as already stated with the example of Germany<br />
in [1].<br />
The cumulative power time series of eight European<br />
countries (DE+7), on the other hand, results in a variation<br />
coefficient of x DE+7 ≈ 0.63. Consequently, in this case, only<br />
deviations by 1.6 standard deviations from the mean value<br />
downwards lead to power outputs of 0 MW.<br />
For the cumulative power time series of 18 European<br />
countries (DE+17), an even lower variation coefficient of<br />
x DE+17 ≈ 0.42 results. In this case, only even deviations by<br />
2.4 standard deviations from the mean value downwards<br />
lead to power outputs of 0 MW.<br />
These considerations suggest a degree of balancing<br />
in the generation of electricity from wind power or<br />
smoothing effects when the power time series of European<br />
countries are superimposed. Figure 6 illustrates this<br />
smoothing effect on the basis of the cumulative probabilities<br />
of the normalised hourly power output P of the<br />
European wind fleet for the year 2017 relative to the<br />
nominal capacity P N at the end of the year compared with<br />
the range of cumulative probabilities for Germany from<br />
2010 to 2017.<br />
The European wind fleet reached an annual power<br />
output maximum of 54 % of the nominal capacity and a<br />
capacity factor of 23 %. By comparison, the cumulative<br />
power time series of the hourly power output of individual<br />
years for Germany (see Figure 2) show annual maximum<br />
power output values of around 68 to 80 % of the nominal<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
capacity. For an average individual European country, the<br />
linear regression analysis described above would give in<br />
good approximation annual maximum values of around<br />
73 % of the nominal capacity.<br />
The difference between nominal capacity and annual<br />
maximum power output therefore increases more significantly<br />
when several countries are considered cumulatively<br />
than it does for a single country.<br />
A glance at annual minimum power outputs confirms<br />
that even when considered conservatively neglecting any<br />
grid losses, relatively low permanently available (secured<br />
capacity) power outputs result. In 2017 the result for<br />
the European wind fleet was around 5 % of the nominal<br />
capacity or just under 7,900 MW. By comparison, the<br />
annual minimum value for Germany amounted to 0.3 % of<br />
the nominal capacity or 165 MW, and for Germany plus its<br />
seven direct neighbours to 2 % or almost 1,800 MW.<br />
However, these annual minimum values cannot be<br />
comprehended with simple linear upscaling. At the end of<br />
2017, for example, around one third of the nominal<br />
capacity of the European wind fleet was accounted for by<br />
the German wind fleet. Tripling the German annual<br />
minimum value in order to make a projection would lead<br />
to an expectation of an annual minimum value of 495 MW<br />
for the European wind fleet. In actual fact, this annual<br />
minimum value is almost 48 times higher. A certain degree<br />
of balancing thus demonstrably occurs.<br />
Buttler et al. [23] evaluated time series on electricity<br />
generation from wind power in 2014 in 28 countries of the<br />
European Union based on the copper plate model and in<br />
connection with the cumulative power time series of this<br />
European wind fleet speak of a statistically significant<br />
smoothing effect which leads to a (secured) power output<br />
capable of serving as a source of baseload electricity available<br />
all year round of 4 % of the nominal capacity. The<br />
secured power output of this European wind fleet during<br />
the year increases with restriction to winter months, at<br />
times therefore, to around 9 % of the nominal capacity.<br />
As the cumulative time series of the load of the<br />
European countries in these months is likewise characterised<br />
by distinctly increasing demand, as shown by the<br />
trend line for the hourly load curve of these countries in<br />
Figure 7 (assumption: no grid losses), the evaluation result<br />
does not improve decisively even with consideration of<br />
the electricity generation from wind power during the<br />
course of the year.<br />
The annual mean value of the cumulative time series of<br />
the hourly load in the 18 countries amounted to around<br />
327,000 MW in 2017. If restricted to the four winter months<br />
from November to February, a four-month mean value of<br />
around 366,000 MW results. Were the secured capacity of<br />
the European wind fleet to be doubled on account of the<br />
winter to 10 % of its nominal capacity, the four-month<br />
mean value of the load, which is 39,000 MW higher than<br />
its annual mean value, would face an increase of the secured<br />
capacity of the European wind fleet at times of<br />
around 9,000 MW.<br />
In 2017 the European wind fleet supplied a total of<br />
around 340 TWh of electricity. The total demand for electricity<br />
calculated from the cumulative time series of the<br />
hourly load of the 18 European countries amounted to<br />
around 2,900 TWh.<br />
Wind power contributed approximately 12 % towards<br />
covering the demand for electricity. By comparison, the international<br />
energy statistics for gross power generation of<br />
these 18 European countries in 2017 reveal a level of just<br />
under 3,300 TWh [16].<br />
Probability in % (CDF)<br />
Bandwidth<br />
CDF: Cumulative distribution function<br />
Power in MW<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
Normalised power P/PN in %<br />
| | Fig. 6.<br />
Cumulative probabilities of the hourly power output P of the European wind fleet<br />
normalised to the nominal capacity P N at year-end and the corresponding range of<br />
cumulative probabilities for Germany from 2010 to 2017.<br />
| | Fig. 7.<br />
Electricity generation from wind power and load in 18 European countries in 2017.<br />
On the one hand, the difference of around 400 TWh<br />
between the gross power generation and the demand<br />
calculated from the load results from the power plant<br />
auxiliary electric load, the balance of imports and exports<br />
and the power consumption of pumped storage power<br />
plants in all 18 countries which are not considered in the<br />
hourly load in accordance with the ENTSO-E definition. On<br />
the other hand, not all consumers are depicted to 100 %, for<br />
example the consumption by German industry covered by<br />
its own power plants, which is not recorded publicly.<br />
Figure 7 also illustrates the high temporal correlation<br />
of the hourly load curves in the 18 European countries<br />
with distinct weekly and daily cycles. In the event of loads<br />
being balanced across all countries, these cycles should not<br />
be so pronounced.<br />
Figure 8 shows that the power output of the European<br />
onshore wind fleet (dark blue) is frequently concurrent with<br />
the power output of the European offshore wind fleet<br />
( orange) and that significant temporal output fluctuations<br />
occur. While the European onshore wind fleet had a nominal<br />
capacity of almost 153,000 MW at the end of 2017, offshore<br />
wind turbines with a nominal capacity of 15,500 MW were<br />
in use in five countries: Belgium, Denmark, Germany, the<br />
Netherlands and the United Kingdom.<br />
Unlike in Germany, the annual minimum power output<br />
of the offshore wind fleet in Europe at no time fell to 0 MW<br />
on account of the more widespread distribution of wind<br />
turbines in the North and Baltic Seas, instead amounting<br />
to 89 MW (hourly resolution).<br />
Hourly resolution<br />
0<br />
0 10 20 30 40 50 60 70 80 90 100<br />
500,000<br />
450,000<br />
400,000<br />
350,000<br />
300,000<br />
250,000<br />
200,000<br />
150,000<br />
100,000<br />
50,000<br />
0<br />
Electricity generation from wind power<br />
Nominal power<br />
Jan<br />
η A = Pµ /PN<br />
Year 2017<br />
PMax /PN<br />
Europe 2017<br />
Germany 2010 to 2017<br />
Load curve<br />
Mean<br />
Trend line<br />
Electricity generation from wind power<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Sources: ENTSO-E, ÜNB<br />
Hourly resolution<br />
Dec<br />
Source: ENTSO-E<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 85<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 86<br />
Power in MW<br />
Spearman rank correlation coefficient rS<br />
100,000<br />
Normalised power P/P N in %<br />
90,000<br />
80,000<br />
70,000<br />
60,000<br />
50,000<br />
40,000<br />
30,000<br />
20,000<br />
10,000<br />
0<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
0<br />
This corresponds to just under 0.6 % of the relevant<br />
nominal capacity. Minor contributions of 1 % of the<br />
nominal capacity or less were observed in ten of the 8,760<br />
annual hours, aggregate power outputs of 5 % of the<br />
nominal capacity or less in 319 hours and aggregate power<br />
outputs of less than 10 % in 1,100 hours or in total on<br />
45 days. This means that the European offshore wind fleet,<br />
too, at its current level of development, in practice cannot<br />
serve as a source of baseload electricity.<br />
The normalised aggregate power outputs of the onshore<br />
and offshore wind fleets illustrate that the expansion of<br />
both wind fleets that has taken place so far across Europe is<br />
evidently insufficient for balancing to a degree that would<br />
Jan<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Year 2017<br />
Source: ENTSO-E<br />
| | Fig. 8.<br />
Cumulative time series of the hourly power output of onshore (blue) and offshore<br />
( orange) wind power in 18 European countries in 2017 and normalised cumulative time<br />
series assuming linear growth of the nominal capacity of onshore (blue) and offshore<br />
( orange, in the background) wind power over the course of the year.<br />
0.9<br />
0.8<br />
0.7<br />
0.6<br />
0.5<br />
0.4<br />
0.3<br />
0.2<br />
0.1<br />
0.0<br />
-0.1<br />
Jan<br />
Onshore wind power: P N ≈ 153,000 MW<br />
Offshore wind power: P N ≈ 15,500 MW<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Electricity generation from windpower 2016<br />
BE<br />
NL<br />
PL<br />
NL<br />
DK<br />
CZ<br />
BE<br />
DE<br />
AT<br />
Germany‘s direct neighbours<br />
DE<br />
FR<br />
Negatively correlated country pairs<br />
Onshore wind power<br />
Offshore wind power (underlayed)<br />
Mean distance ∆x in km<br />
Hourly resolution<br />
| | Fig. 9.<br />
Spearman rank correlation coefficient r S as a function of the mean distance ∆x between<br />
national wind fleet centers for 18 countries, calculated on the basis of hourly power time series<br />
in 2016. Besides Belgium and the Netherlands as the country pair with the highest correlation<br />
coefficient, also highlighted in colour are seven of Germany’s direct neighbours, Finland and<br />
Portugal as country pair with the furthest mean distance, as well as Spain and Finland and<br />
Spain and Sweden as the two country pairs with the lowest correlation coefficients.<br />
Dec<br />
Dec<br />
Hourly resolution<br />
Coefficient of determination of trend line: R 2 = 0,7897<br />
-0.2<br />
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000<br />
ES<br />
SE<br />
ES<br />
FI<br />
FI<br />
PT<br />
Source: ENTSO-E<br />
enable backup power plant capacity to be dispensed with<br />
to a perceptible extent: the superimposed aggregate power<br />
outputs of both wind fleets indicate which gaps in power<br />
output can be closed and which peaks will increase further.<br />
The result is disenchanting: gaps are only closed to a<br />
limited extent, peaks continue to increase. The correlation<br />
of the power feed-ins is clearly visible.<br />
This raises the question as to whether better results<br />
could be obtained, as suggested by Grams et al. [24] and<br />
Becker [25], by increased integration of European<br />
countries located far apart from each other. A spatial<br />
correlation analysis and close scrutiny of grid losses are<br />
suitable means of evaluating this idea.<br />
Spatial correlation analysis<br />
Spatial correlation analyses explore from a mathe matical<br />
point of view how data depend on each other. In this case,<br />
the question is whether and to what extent the cumulative<br />
time series for the hourly power output of two national<br />
wind fleets depend on their mean distance from each<br />
other, i.e. correlate spatially.<br />
The correlation coefficient r K is generally a measure of<br />
the direction and strength of a correlation and can assume<br />
values in the range from -1 to +1. It is necessary to<br />
distinguish here between the following cases:<br />
pp<br />
With perfectly correlated data, the correlation coefficient<br />
assumes values of +1 (positive) or -1 ( negative). The<br />
changes are exactly equally strong. The direction of<br />
change, however, is either exactly the same (+1) or<br />
exactly opposite (-1). An example of a perfectly positive<br />
corre lation would be the speeds of two vehicles linked by<br />
a tow bar.<br />
pp<br />
In the case of uncorrelated data, the correlation<br />
coefficient is r K = 0. This result could be expected, for<br />
example, when comparing house numbers with the<br />
shoe sizes of the inhabitants.<br />
pp<br />
With positive correlation, the correlation coefficient<br />
assumes positive values of more than 0 and less than 1.<br />
Positive correlation coefficients could be expected<br />
when comparing body height and shoe size. This would<br />
be a parallel development. As body height increases, so<br />
too, as a general rule, does the shoe size.<br />
pp<br />
With negative correlation, the correlation coefficient<br />
lies in the range from more than -1 to less than 0.<br />
An example for negatively correlated data are the outside<br />
temperature and the number of skiers in a winter<br />
holiday region. This is an opposite development. The<br />
number of skiers generally increases as the outside<br />
temperature decreases.<br />
The spatial correlation analysis to be carried out here was<br />
based on the 18 time series on hourly electricity generation<br />
from wind power for 2016 and the centers of 18 national<br />
wind fleets. The total number n of possible combinations<br />
of country combinations (pairs) can be calculated from the<br />
number z of countries according to the following equation:<br />
n = ½·z·(z−1).<br />
In case of 18 countries a total of 153 possible country<br />
pairs and 153 mean distances ∆x between national wind<br />
fleets have to be considered.<br />
As the power time series for these 18 countries are shown<br />
to be not normally distributed, Spearman’s rank correlation<br />
procedure was selected. This procedure is resistant to outliers<br />
and uses the hourly resolution, converted into ranks, of<br />
time series of electricity generation from wind power of in<br />
each case two national wind fleets to calculate the Spearman<br />
rank correlation coefficient r S for 153 country pairs, hereinafter<br />
referred to in simplified form as correlation coefficient.<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Normalised power P/P N in %<br />
Normalised power P/P N in %<br />
Normalised power P/P N in %<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
0<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
0<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
0<br />
Jan<br />
Jan<br />
Jan<br />
Netherlands<br />
Belgium<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
France<br />
Germany<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Austria<br />
Germany<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Year 2016<br />
∆x ≈ 200 km<br />
r S ≈ 0.8<br />
∆x ≈ 900 km<br />
r S ≈ 0.4<br />
∆x ≈ 600 km<br />
r S ≈ 0.2<br />
| | Fig. 10.<br />
Normalised hourly power output time series of wind fleets of neighbouring countries<br />
with positive Spearman rank correlation coefficients in 2016.<br />
To determine the mean distances between the national<br />
wind fleets, the wind fleet centers of the 18 countries first<br />
had to be established. Weighted position coordinates of<br />
about the five to fifteen largest wind farm clusters of the<br />
relevant country in 2016 formed the basis for this [22].<br />
153 mean distances for the individual national wind fleets<br />
in relation to each other subsequently had to be established.<br />
Using Google Maps, the distances between the centers of<br />
all national wind fleets in relation to each other could be<br />
determined, the result of which is shown in Figure 9.<br />
Belgium and the Netherlands, with a mean distance of<br />
around 200 km between their wind fleet centers, reach the<br />
maximum correlation coefficient of 0.8.<br />
Six of Germany’s direct neighbours, namely the Netherlands,<br />
Denmark, the Czech Republic, Poland, Belgium and<br />
France, record correlation coefficients of 0.4 or more with<br />
mean distances of just under 400 to 900 km. Austria<br />
constitutes an exception, with a correlation coefficient of a<br />
mere 0.2 at a mean distance of just under 600 km. Possible<br />
reasons for the higher level of detachment compared with<br />
Germany’s other direct neighbours could be the mountain<br />
ranges of the Alps and the altitude of the Austrian wind fleet.<br />
Hourly values<br />
Dec<br />
Dec<br />
Dec<br />
Source: ENTSO-E<br />
Normalised power P/P N in %<br />
Normalised power P/P N in %<br />
Normalised power P/P N in %<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
0<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
0<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
0<br />
Jan<br />
Jan<br />
Jan<br />
Portugal<br />
Finland<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Finland<br />
Spain<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Sweden<br />
Spain<br />
Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />
Year 2016<br />
∆x ≈ 3,300 km<br />
r S ≈ −0.003<br />
∆x ≈ 3,100 km<br />
r S ≈ −0.077<br />
∆x ≈ 2,400 km<br />
r S ≈ −0.118<br />
| | Fig. 11.<br />
Normalised hourly power output time series of wind fleets of countries long<br />
distances apart with negative Spearman rank correlation coefficients in 2016.<br />
With all correlation coefficients over 0.4, the power outputs<br />
of the national wind fleets of individual neighbouring<br />
countries develop in a largely synchronised manner, and so<br />
smoothing effects are barely identifiable, or are limited at<br />
most, as illustrated in Figure 10 with examples of hourly<br />
power output in 2016 normalised to the nominal capacity<br />
of wind fleets of Belgium and the Netherlands, Germany<br />
and France, and Germany and Austria.<br />
The normalised aggregate power outputs of these<br />
countries, overlaid like two combs, give an idea of the gaps<br />
in output that could be closed if the wind fleets of these<br />
country pairs were to be coupled, and which peaks would<br />
increase further. The result is that gaps in output are barely<br />
filled, and the peaks increase further. The correlation of<br />
power outputs is clearly visible.<br />
It can therefore be concluded that neighbouring<br />
countries showing consistently positive correlation<br />
coefficients of 0.2 to 0.8, with centers of their national<br />
wind fleets at a distance of 200 to 900 km apart, can<br />
barely make any perceptible contribution to the aspired<br />
cross- border balancing of electricity generation from<br />
wind power.<br />
Hourly resolution<br />
Dec<br />
Dec<br />
Dec<br />
Source: ENTSO-E<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 87<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 88<br />
Analyses on the basis of wind speed measurement data<br />
at 27 locations in the Netherlands confirm correlation<br />
lengths of several hundred kilometres such as these [26].<br />
In France, the annual minimum output of around 2.7 % of<br />
the nominal capacity is strikingly high compared with all of<br />
Germany’s other neighbours. One reason for this could be the<br />
vast French coastline running in westerly ( Atlantic) and<br />
north- westerly (English Channel) direction. Spain and the<br />
United Kingdom likewise display annual minimum values<br />
which are consistently well above 1 % of the nominal capacity.<br />
One would intuitively expect that balancing of electricity<br />
generation from wind power would most likely be<br />
found in those country pairs which are furthest away from<br />
each other or which have the lowest possible correlation<br />
coefficients. However, negative correlation coefficients<br />
only occur at all with 12 of the 153 country pairs.<br />
The national wind fleets of Finland and Portugal are the<br />
furthest apart from each other, at a distance of 3,300 km.<br />
This results in a negative correlation coefficient of -0.003<br />
for these countries. Uncorrelated to slightly opposing<br />
power time series can be expected here. The wind fleet<br />
centers of Spain and Finland are second furthest from each<br />
other, at 3,100 km. These countries also display a negative<br />
correlation coefficient of -0.077. Spain and Sweden have<br />
the lowest correlation coefficient, at -0.118. Their wind<br />
fleet centers are around 2,400 km apart.<br />
Normalised hourly power output time series are again<br />
overlaid like two combs for these distant country pairs in<br />
Figure 11. Although the fraction of blue areas of the corresponding<br />
electricity generation from wind power shown<br />
in the background increases compared with posi tively correlated<br />
time series according to Figure 10, it is apparent<br />
that numerous gaps in output barely balance and many<br />
peaks still correlate with each other, even with uncorrelated<br />
(r S ≈ 0) to slightly negatively correlated (r S < 0) hourly<br />
resolutions of electricity generation from wind power.<br />
Thus a majority of temporal fluctuations in the generation<br />
of electricity from wind power remain, even with<br />
countries far apart from each other. Moreover, the use of<br />
the smoothing effects apparent to some extent requires<br />
electricity to be transmitted over long distances.<br />
Summary<br />
VGB PowerTech has carried out a plausibility check of<br />
electricity generation from wind power in Germany and 17<br />
neighbouring European countries and in the process explored<br />
questions as to whether adequate possibilities for mutual<br />
balancing exist within the interconnected European grid true<br />
to the motto “the wind is always blowing somewhere”.<br />
In the current energy policy environment which,<br />
against the backdrop of the international climate protection<br />
commitments facing Germany, seeks to abandon the<br />
power plant technology proven over decades and create<br />
extensive provision of electricity from renewable energies,<br />
photovoltaics and wind power remain the only scalable<br />
technologies capable of further development for the<br />
Energie wende in the short to medium term. However, they<br />
are always reliant on complementary technologies.<br />
Looking back at the past year in Germany, it can be<br />
concluded that additional operating experience confirms<br />
the statements made in the first part of the VGB Wind<br />
Study: from the perspective of security of supply, wind<br />
power, despite concerted efforts to expand since 2010, has<br />
for all practical purposes not replaced any conventional<br />
power plant capacity. Furthermore, offshore wind power<br />
at its current level of development is shown to be not<br />
capable of serving as a reliable source of baseload power<br />
and cannot replace conventional power plant capacity.<br />
Wind turbine locations spread throughout Germany are<br />
not a solution for a reliable and secure supply of electricity.<br />
Dispatchable complementary technologies are always<br />
necessary in conjunction with wind power.<br />
From a European perspective, it can be concluded on<br />
the basis of 18 countries observed here that although<br />
statistically significant smoothing effects are to be seen,<br />
these only help to a limited extent when it comes to security<br />
of supply: 4 to 5 % of the nominal capacity means with<br />
consideration of unavoidable grid losses that, even at a European<br />
level, dispatchable backup capacity of almost 100<br />
% of the nominal capacity of all European wind turbines<br />
has to be maintained, as long as this has not yet exceeded<br />
the annual peak load in Europe plus reserves.<br />
Acknowledgements<br />
The authors thank Professor Dr. Dr. h.c. mult. Friedrich<br />
Wagner from Max Planck Institute for Plasma Physics in<br />
Greifswald for his valuable suggestions and contributions<br />
to this publication.<br />
Literature<br />
[1] Linnemann, Th.; Vallana, G. S.: Wind energy in Germany and Europe: Status, potentials and<br />
challenges for baseload application, Part 1: Developments in Germany since 2010. VGB PowerTech 97<br />
(2017), No. 8, pp. 70 bis 79.<br />
[2] Linnemann, Th.; Vallana, G. S.: Wind energy in Germany and Europe: Status, potentials and<br />
challenges for baseload application, Part 1: Developments in Germany since 2010. <strong>atw</strong> 62 (2017),<br />
No. 11, pp. 678 to 688.<br />
[3] Weber, H.: Versorgungssicherheit und Systemstabilität beim Übergang zur regenerativen<br />
elektrischen Energieversorgung. VGB PowerTech 94 (2014), No. 8, pp. 26-31.<br />
[4] Bericht der deutschen Übertragungsnetzbetreiber zur Leistungsbilanz 2016 bis 2<strong>02</strong>0.<br />
Version 1.1 dated 30 January 2018. www.netztransparenz.de<br />
[5] BMWi-Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland von 1990 bis 2016.<br />
www.erneuerbare-energien.de<br />
[6] Arbeitsgemeinschaft Energiebilanzen (AGEB): Bruttostromerzeugung in Deutschland ab 1990<br />
nach Energieträgern. www.ag-energiebilanzen.de<br />
[7] BDEW: Stromerzeugung und -verbrauch 2017 in Deutschland. BDEW-Schnellstatistik dated<br />
14 February 2018. www.bdew.de<br />
[8] Bundesnetzagentur: Monitoringbericht 2017. www.bundesnetzagentur.de<br />
[9] Wagner, F.: Surplus from and storage of electricity generated by intermittent sources. European<br />
Physical Journal Plus 131 (2016): 445. https://epjplus.epj.org DOI 10.1140/epjp/i2016-16445-3<br />
[10] Wagner, F.: Überschussstrom und Stromspeicherung unter den Bedingungen intermittierender<br />
Produktion. Tagungsband zur Frühjahrssitzung des Arbeitskreises Energie der Deutschen<br />
Physikalischen Gesellschaft (DPG), Münster, 2017, pp. 54 to 74.<br />
www.dpg-physik.de/veroeffentlichung/ake-tagungsband/tagungsband-ake-2017.pdf<br />
[11] VDE-Infoblatt Störungsstatistik 2016. www.vde.com<br />
[12] Wagner, F.: Considerations for an EU-wide use of renewable energies for electricity generation.<br />
Eur. Phys. J. Plus 129 (2014): 219. https://epjplus.epj.org DOI 10.1140/epjp/i2014-14219-7<br />
[13] Rodriguez, R. A. et al.: Transmission needs across a fully renewable European power system.<br />
Renewable Energy, 63 (2014), pp. 467 to 476. DOI 10.1016/j.renene.2013.10.005<br />
[14] ENTSO-E Transparency Platform. https://transparency.entsoe.eu<br />
[15] Vaughan, A.: UK summer wind drought puts green revolution into reverse. Article dated<br />
27 August 2018. www.theguardian.com<br />
[16] BP Statistical Review of World Energy 2018 − data workbook: www.bp.com<br />
[17] 50 Hertz, www.50hertz.com<br />
[18] Amprion, www.amprion.net<br />
[19] Tennet TSO, www.tennet.eu<br />
[20] Transnet BW, www.transnetbw.de<br />
[21] EEX Transparency, www.eex-transparency.com<br />
[22] Online database on the global wind power market: www.thewindpower.net<br />
[23] Buttler, A.; Dinkel, F.; Franz, S.; Spliethoff, H.: Variability of wind and solar power. An assessment<br />
of the current situation in the European Union based on the year 2014. Energy 106 (2016), pp. 147 to<br />
161. DOI 10.1016/j.energy.2016.03.041<br />
[24] Grams, C. M. et al.: Balancing Europe’s wind-power output through spatial development informed<br />
by weather regimes. Nature Climate Change 7 (2017), pp. 557 to 562, DOI 10.1038/nclimate3338.<br />
[25] Becker, P.: Wetterbedingte Risiken der Stromproduktion aus erneuerbaren Energien durch<br />
kombinierten Einsatz von Windkraft und Photovoltaik reduzieren. Deutscher Wetterdienst (DWD),<br />
6 March 2018, Berlin. www.dwd.de<br />
[26] Baïle, R.; Muzy, J.-F.: Spatial Intermittency of Surface LayerWind Fluctuations at Mesoscale Range.<br />
Physical Review Letters 105 (2010), pp. 254501-1 to 254501-4. DOI 10.1103/PhysRevLett.105.254501<br />
Authors<br />
Dipl.-Ing. Thomas Linnemann<br />
Dipl.-Phys. Guido S. Vallana<br />
VGB PowerTech e.V.<br />
Deilbachtal 173<br />
45257 Essen<br />
Serial | Major Trends in Energy Policy and Nuclear Power<br />
Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana
Lösungen<br />
für die Zukunft<br />
Als Unternehmen von Bouygues Construction sind wir ein vielseitiger Partner für<br />
Industrie und Energiewirtschaft. In ganz Europa entwickeln und bauen wir in der<br />
Kraftanlagen Gruppe modernste Anlagentechnik. Wir bieten individuelle, zukunftsfähige<br />
Lösungen an und bedienen die gesamte Wertschöpfungskette.<br />
Kraftanlagen Heidelberg bietet Dienstleistungen über den ganzen Lebenszyklus<br />
kerntechnischer Anlagen. Dazu zählen der Nachbetrieb und Rückbau kerntechnischer<br />
Anlagen sowie die Planung und Lieferung von Anlagen zur Konditionierung und Entsorgung<br />
von radioaktiven Abfällen. www.kraftanlagen.com/loesungen/nukleartechnik<br />
Gestalten Sie mit uns die Zukunft und bewerben Sie sich online unter<br />
www.karriereportal-ka.gruppe.de<br />
Wir suchen aktuell:<br />
Leiter Strahlenschutz (m/w/d)<br />
Leiter Qualität, Arbeitssicherheit & Umweltschutz (m/w/d)<br />
Performance Manager Kraftwerksstandorte (m/w/d)<br />
Contract Manager (m/w/d)
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Das neue Strahlenschutzrecht (I): Genehmigungen<br />
90<br />
SPOTLIGHT ON NUCLEAR LAW<br />
Christian Raetzke<br />
Wir haben ein neues Strahlenschutzrecht! Das Strahlenschutzgesetz (StrlSchG) ist, nachdem einzelne Elemente –<br />
Definitionen, Verordnungsermächtigungen, die Regelungen zum Notfallschutz – schon zum 1. Oktober 2017 wirksam<br />
wurden, am 31. Dezember 2018 nunmehr vollständig in Kraft getreten. Zum selben Datum ist auch die “Verordnung zur<br />
weiteren Modernisierung des Strahlenschutzrechts” wirksam geworden, die die Änderungen auf der Verordnungsebene<br />
– neue Strahlenschutzverordnung (StrlSchV), weitere Verordnungen, Aufhebung der Röntgenverordnung (RöV)<br />
etc. – umsetzt. Bereits im Januarheft der <strong>atw</strong> konnten Sie, liebe Leserinnen und Leser, dazu die Einführung von Dr.<br />
Goli-Schabnam Akbarian vom Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU) lesen. Mit<br />
diesem Beitrag soll eine kleine Reihe beginnen, die in lockerer Folge erscheinen und Schlaglichter auf einzelne Aspekte<br />
des neuen Rechts werfen wird.<br />
Bei jeder grundlegenden Änderung von Gesetzen und<br />
Verordnungen richtet sich der Blick des Anwenders<br />
notwendig auf Übergangsvorschriften, die die Überleitung<br />
auf das neue Recht gewährleisten sollen. Es handelt sich<br />
hier um §§ 196 bis 218 StrlSchG und §§ 185 bis 200<br />
StrlSchV n.F. (neuer Fassung).<br />
Eine besonders wichtige Frage dabei: was geschieht<br />
mit bestehenden Genehmigungen? Die bekannten<br />
Genehmigungsvorschriften der alten StrlSchV und der<br />
RöV sind in das StrlSchG übernommen und dort teils<br />
zusammengeführt worden. Grundlegende inhaltliche<br />
Änderungen haben sich dabei aber nicht ergeben. So ist es<br />
nur konsequent, dass das Gesetz im Grundsatz die Fortgeltung<br />
der bestehenden Genehmigungen anordnet. Man<br />
muss als Genehmigungsinhaber also nicht etwa einen<br />
neuen Antrag stellen.<br />
Um ein Beispiel zu bringen: Genehmigungen für<br />
den Umgang mit sonstigen radioaktiven Stoffen (§ 7<br />
StrlSchV a.F.) gelten samt aller Nebenbestimmungen als<br />
Genehmigungen nach der hierfür nunmehr einschlägigen<br />
neuen Regelung in § 12 Abs. 1 Nr. 3 StrlSchG fort (siehe<br />
§ 197 Abs. 2 S. 1 StrlSchG); hat sich am 31.12.2018 eine<br />
Genehmigung nach §§ 6, 7 oder 9 AtG auf den Umgang mit<br />
radioaktiven Stoffen gem. § 7 StrlSchV a.F. erstreckt, so<br />
gilt diese Erstreckung als Erstreckung auf einen Umgang<br />
nach § 12 Abs. 1 Nr. 3 StrlSchG fort (§ 197 Abs. 3 StrlSchG).<br />
Eine Anpassung des Genehmigungsbescheides an die neue<br />
Rechtsgrundlage ist rechtlich nicht erforderlich, da das<br />
Gesetz dies bereits für uns macht. Dass im schriftlichen<br />
Bescheid noch die alten “Hausnummern” stehen, ist<br />
unschädlich. Sicherlich macht es aber Sinn, bei der<br />
nächsten Gelegenheit (z. B. Änderung/Verlängerung der<br />
Genehmigung) die neuen Bezüge aufzunehmen.<br />
Zu beachten sind allerdings gewisse Spezialfälle,<br />
in denen das StrlSchG dann doch einzelne neue<br />
oder anspruchsvollere Genehmigungsvoraussetzungen<br />
einführt; hier können sich die Inhaber bestehender<br />
Genehmigungen nicht zurücklehnen, sondern sind<br />
gefordert, innerhalb bestimmter Fristen die entsprechenden<br />
Nachweise zu erbringen. Dies betrifft z. B.<br />
den Umgang mit hochradioaktiven Strahlenquellen. Hier<br />
muss bis 31.12.2<strong>02</strong>0 nachgewiesen sein, dass die neue<br />
Genehmigungsvoraussetzung des § 13 Abs. 4 StrlSchG –<br />
Vorhandensein eines Verfahrens für den Notfall und<br />
geeigneter Kommunikationsverbindungen – erfüllt ist,<br />
siehe § 197 Abs. 2 S. 2 Nr. 1 StrlSchG. Ein anderer solcher<br />
Umgangsfall betrifft die Anwendung am Menschen für<br />
eine Behandlung mit radioaktiven Stoffen und ionisierender<br />
Strahlung. Hier gibt es in § 14 StrlSchG teils<br />
zusätzliche Erfordernisse; § 197 Abs. 2 S. 2 Nr. 2 und 3<br />
StrlSchG setzt den Inhabern bestehender Genehmigungen<br />
eine Frist (Ende 2<strong>02</strong>0 bzw. Ende 2<strong>02</strong>2), entsprechende<br />
Nachweise zu führen.<br />
Eine relevante Änderung betrifft auch Genehmigungen<br />
nach § 16 StrlSchV a.F. für die Beförderung sonstiger<br />
radioaktiver Stoffe. Sie gelten als Genehmigungen nach<br />
§ 27 StrlSchG mit allen Nebenbestimmungen fort, wie<br />
§ 204 StrlSchG anordnet; das kann allerdings für maximal<br />
drei Jahre relevant werden, da dies die höchstmögliche<br />
Genehmigungsdauer ist (vgl. § 16 Abs. 1 S. 3 StrlSchG<br />
a.F.). Die Genehmigung nach § 27 StrlSchG hat die<br />
wichtige Eigenschaft, dass sie – im Gegensatz zur alten<br />
Rechtslage – nunmehr ihren Inhaber zum Strahlenschutzverantwortlichen<br />
macht (§ 69 Abs. 1 Nr. 1 StrlSchG) und<br />
in der Regel die Bestellung von Strahlenschutzbeauftragten<br />
erfordert. Deshalb enthält § 204 Abs. 1 S. 2<br />
StrlSchG eine Übergangsvorschrift, wonach die entsprechende<br />
Fachkunde der Strahlenschutzbeauftragten<br />
bis zum 31.12.2<strong>02</strong>1 nachgewiesen werden muss.<br />
Von Bedeutung ist auch das Schicksal der bestehenden<br />
Freigaberegelungen, die teils in eigenen Freigabebescheiden,<br />
teils in Genehmigungsbescheiden nach § 7<br />
Abs. 3 AtG (Stilllegungs- und Abbaugenehmigungen)<br />
niedergelegt sind. Die Werte für die uneingeschränkte<br />
Freigabe in Anlage III Tabelle 1 StrlSchV a.F. sind in der<br />
Neuregelung in Anlage 4 Tabelle 1 StrlSchV n.F. zum Teil<br />
verändert wurden (sie sind nunmehr identisch mit den<br />
ebenfalls angepassten spezifischen Freigrenzen). Was<br />
geschieht also mit bestehenden Freigaberegelungen? Die<br />
einschlägige Übergangsvorschrift – § 187 StrlSchV n.F. –<br />
enthält dazu zwei Grundaussagen. Die erste: bestehende<br />
Freigabebescheide und Freigaberegelungen in Genehmigungsbescheiden<br />
gelten fort. Die zweite: sie gelten fort mit<br />
der “Maßgabe”, dass die neuen Werte ab dem 1. Januar<br />
2<strong>02</strong>1 einzuhalten sind. Damit sind die Beteiligten aufgefordert,<br />
bestehende Bescheide in den nächsten zwei<br />
Jahren entsprechend anzupassen. Unterbleibt dies aus<br />
irgend einem Grund, sind ab 2<strong>02</strong>1 trotzdem die neuen<br />
Werte zugrunde zu legen.<br />
Fazit: Der Gesetzgeber hat es so eingerichtet, dass<br />
bestehende Bescheide ins neue Recht übernommen<br />
werden. Nur in bestimmten Fällen muss man innerhalb<br />
einer Frist tätig werden, um Nachweise zu geänderten<br />
Genehmigungsvoraussetzungen zu erbringen. Man wird<br />
sehen, ob das in Einzelfällen in der Praxis zu Härten führt<br />
und ob die Übergangsvorschriften wirklich alle denkbaren<br />
Fälle erfassen. Im Allgemeinen aber müssten die Inhaber<br />
von Genehmigungen (und Freigabebescheiden) mit den<br />
neuen Regelungen leben können.<br />
Autor<br />
Rechtsanwalt Dr. Christian Raetzke<br />
CONLAR Consulting on Nuclear Law and Regulation<br />
Beethovenstr. 19<br />
04107 Leipzig, Deutschland<br />
Spotlight on Nuclear Law<br />
The New Radiation Protection Law (I): Official Approvals ı Christian Raetzke
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Piping Stress Analysis of Safety Injection<br />
System of Typical PWR Power Reactor<br />
Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi,<br />
Waseem Siddique and Rustam Khan<br />
This paper covers the piping stress analysis of safety injection system (SIS) of Chashma Nuclear Power Generating<br />
Station, Unit-1of electric power 325 MWe. The analysis of the safety injection system on Peps, an integrated package<br />
which contains PIPESTRESS (the program for analysis of piping) and EDITPIPE (for preprocessing and post processing),<br />
has been performed by dividing it into three lines. These lines have been modeled on Peps computer code using proper<br />
input commands. To fulfill the nuclear regulatory requirements, the analysis of safety class 1 and 2 piping has been<br />
performed using the software. Peps software has provision of stress analysis for various working conditions by defining<br />
different load cases and combination cases as described. Peps results include the determination of loads, moments and<br />
stress ratios at specific sections of the piping structure. This analysis confirms that piping system stresses are within<br />
those limits specified by the ASME code.<br />
1 Introduction<br />
Piping in nuclear industry is different<br />
than that of the conventional power<br />
plant. In a nuclear power plant,<br />
primary side involves the piping for<br />
which the design criteria must be very<br />
stringent and inflexible. It is because<br />
of the reason that primary side contains<br />
radiation source which should be<br />
contained within the prescribed<br />
barriers at any cost. The scope of the<br />
nuclear industry is increasing day by<br />
day. The power production from<br />
nuclear energy is very common these<br />
days. Pakistan is also producing electricity<br />
from nuclear energy as shown in<br />
Figure 1 [1]. In 2014 according to the<br />
report of Nuclear Energy Institute<br />
(NEI), 11 percent of the total electricity<br />
production was through nuclear<br />
energy. The current status according<br />
to International Atomic Energy Agency<br />
(IAEA) is that 454 nuclear reactors<br />
are operating in the world for power<br />
production. These are producing<br />
401.743 GWe and many new countries<br />
are also entering in this industry [1].<br />
Pipes are subjected to any type of<br />
loading which may include operating<br />
weights i.e. pressures, temperatures<br />
or any seismic loads i.e. earthquake.<br />
Moreover, these weights also vary<br />
during different stages of the plant.<br />
For example, startup and shutdown<br />
| | Fig. 1.<br />
Chashma nuclear power plant (Unit 1 and 2).<br />
stages of a plant are different than<br />
normal operations. Similarly, emergency<br />
conditions are very different<br />
from normal conditions. All these<br />
variations make a designer very careful<br />
about the criticality of the piping<br />
layout. Some portions of the power<br />
plant are safety class while others are<br />
non-safety related. These safety class<br />
systems are further categorized into<br />
safety class 1, 2 & 3 on the basis of<br />
their severity. The system involved in<br />
the conventional island are designed<br />
and analyzed differently as compared<br />
to those involved in the nuclear island.<br />
The material requirements and<br />
analysis criterion at interfaces (at<br />
which two classes of the piping meet)<br />
are also different [2].<br />
2 Background<br />
Rui Liu et.al. [3] did piping stress<br />
analysis of nuclear piping for safety<br />
class 2 and 3 on peps. It includes the<br />
introduction to Peps software and the<br />
limiting criterion for the piping stress.<br />
The piping is safe if the stress ratio is<br />
less than unity. Lijing Wen et. al. [4]<br />
studied the stress analysis of reactor<br />
coolant pump nozzle on ANSYS software.<br />
The results show that the design<br />
is within specified limits and satisfy<br />
the intensity requirements for the<br />
system. Pradeep Kumar Singh et. al.<br />
[5] studied the stress analysis of spur<br />
gear on ANSYS software. This paper<br />
shows the procedure of static analysis,<br />
boundary condition and higher<br />
module gears are preferred if large<br />
power is to be transferred. Q Mao<br />
et.al. [6] studied the layout of Qinshan<br />
reactor and evaluated the pipe layout<br />
for pressurizer discharge system.<br />
Z. M. Zhang et.al. [7] studied and<br />
discussed the mechanical behavior of<br />
nuclear piping. They performed the<br />
analysis of safety class 1 piping on<br />
Marc software. J. L. Dong et. al. [8]<br />
performed the stress analysis of tubes<br />
of a 10 MW reactor. The reactor they<br />
considered for their analysis was a gas<br />
cooled reactor. S. T. Dai et. al. [9]<br />
studied and optimized the nozzle<br />
loads for China Advanced Research<br />
Reactor. Both static and dynamic<br />
cases were considered and supports<br />
were also analyzed in accordance with<br />
code requirements. YK Tang et. al.<br />
[10] studied the analysis of a piping<br />
system of z-shape along with its<br />
support failure on ABAQUS-EPGEN<br />
code. The good response after application<br />
of support and the dynamic<br />
behavior of piping under different<br />
loading combinations confirmed the<br />
reliability of the support. J Bock et.al.<br />
[11] studied the outcomes of omission<br />
of piping supports and showed that<br />
impact loadings must be taken into<br />
consideration and a stringent criterion<br />
must be adopted for them. B<br />
Praneeth et. al. [12] studied the<br />
analysis of pressure vessels using<br />
finite element method and proved<br />
that at very high pressure and temperature,<br />
multi-layered pressure vessels<br />
are better than single layer pressure<br />
vessels. The formulas used were found<br />
out to be very easy and simple in<br />
comparison with other techniques.<br />
Piping is the most important and<br />
busiest component in any industry<br />
and hence the piping stress analysis<br />
becomes vital. The piping stress<br />
analysis of safety injection system<br />
includes both safety class 1 and class<br />
2. The piping stress analysis of safety<br />
injection system has not been performed<br />
on Peps software to the<br />
knowledge of the authors. So performing<br />
stress analysis of this system<br />
is a critical and novel problem.<br />
91<br />
ENVIRONMENT AND SAFETY<br />
Environment and Safety<br />
Piping Stress Analysis of Safety Injection System of Typical PWR Power Reactor ı Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
ENVIRONMENT AND SAFETY 92<br />
3 Safety Injection System<br />
The relevant system to be analyzed is<br />
Safety Injection System (SIS) of a<br />
nuclear power plant of 300 MWe<br />
power. It is a safety-related system so<br />
it has no normal operation function.<br />
Safety injection system is designed to<br />
control the temperature of the core as<br />
well hence providing margin in shutdown.<br />
This can happen either in case<br />
of primary or secondary side breakage.<br />
Safety injection system should<br />
maintain the temperature of the clad<br />
| | Fig. 2.<br />
The schematic diagram of safety injection system.<br />
below 1200 °C and the maximum<br />
oxidation by the reaction of the fuel<br />
with the clad below than 16.5 % (of<br />
total thickness) in case of any of the<br />
accidents. The maximum hydrogen<br />
generated should also be maintained<br />
below one percent as described by the<br />
regulatory body. The deformation in<br />
geometry shape should also not<br />
exceed the prescribed limit [13].<br />
To fulfill regulatory requirements<br />
all the piping system must be analyzed<br />
according to the ASME code requirements<br />
in our case [13].These are as<br />
follows:<br />
pp<br />
NCA provides general requirements<br />
pp<br />
NB provides requirements for<br />
safety class 1 equipment<br />
pp<br />
NC provides requirements for<br />
safety class 2 equipment<br />
pp<br />
ND provides requirements for<br />
safety class 3 equipment<br />
pp<br />
NE provides requirements for<br />
concrete related components<br />
pp<br />
NF provides requirements for<br />
supports<br />
pp<br />
NG provides requirements for<br />
support related structures<br />
The codes are to be satisfied in agreement<br />
with the relevant system. These<br />
include NCA, NB, NC, ND and NF<br />
subsections. According to Regulatory<br />
Guide-1.29, even in the case, there is<br />
an earthquake; the system should<br />
perform its function as it is a safety<br />
system. Moreover, Regulatory Guide-<br />
1.47 puts a very severe condition to<br />
ensure any mitigation actions taken in<br />
case of bypass of any protection<br />
system. There should be a constant<br />
monitoring in control room. The pipelines<br />
of SIS selected for safety analysis<br />
are high energy pipelines as working<br />
pressure is greater than 12 MPa and<br />
temperature is above 127 °C. The safe<br />
shutdown earthquake (SSE), operating<br />
basis earthquake (OBE) and these<br />
high operating conditions make these<br />
lines critical from the safety viewpoint.<br />
Therefore, with the aim of satisfying<br />
the ASME codes requirements, load<br />
cases and their combinations have<br />
been developed including OBE and<br />
SSE conditions. The primary stress<br />
intensity must meet the requirement<br />
as given by the Equation 1 [13]:<br />
<br />
(1)<br />
Where,<br />
pp<br />
P is Pressure (design)<br />
pp<br />
B 1 & B 2 are Indices of primary<br />
stresses<br />
pp<br />
I is the Moment of inertia<br />
pp<br />
D o is Pipe outer diameter<br />
pp<br />
t is Wall thickness (nominal)<br />
pp<br />
M i is the moment (due to design<br />
loads)<br />
pp<br />
S m is Stress intensity (allowable)<br />
pp<br />
K is multiplication factor =1.5<br />
Similarly, the primary plus secondary<br />
stress limits must not exceed the<br />
Case<br />
Number<br />
Title<br />
of the Case<br />
100 Operating Weight<br />
101 Thermal Expansion<br />
300 Earthquake<br />
allowable limited as recommended in<br />
ASME code.<br />
4 Analysis on Peps<br />
Peps is an integrated package which<br />
contains PIPESTRESS and EDITPIPE.<br />
PIPESTRESS is the program running<br />
at background for analysis of piping.<br />
The EDITPIPE in Peps is responsible<br />
for preprocessing and post processing.<br />
EDITPIPE runs PIPESTRESS and<br />
related programs and follow progress<br />
of analysis. Piping structures can be<br />
modeled using its pre-processor and<br />
results can be generated using its post<br />
processor. Methodology to work on<br />
Peps includes:<br />
pp<br />
Cases Definition<br />
pp<br />
Preparation of Input File<br />
pp<br />
Modeling on Peps<br />
pp<br />
Running the Simulations<br />
pp<br />
Generating the Stresses Reports<br />
Case definition includes both load<br />
cases and combination cases. The<br />
preparation of an input file involves<br />
different cards. Some of the cards and<br />
their respective commands are:<br />
pp<br />
Identification Card (IDEN)<br />
pp<br />
Title Card (TITL)<br />
pp<br />
Frequency (FREQ)<br />
pp<br />
Load Case(LCAS)<br />
pp<br />
Combination Case (CCAS)<br />
pp<br />
Fatigue Analysis Card (FATG)<br />
pp<br />
Load Set Card (LSET)<br />
Modeling on Peps includes various<br />
commands. Some of them are:<br />
pp<br />
Bend Radius (BRAD)<br />
pp<br />
Tangent or straight pipe (TANG)<br />
pp<br />
Cross section (CROS)<br />
pp<br />
Anchor (ANCH)<br />
After running the simulations successfully,<br />
Peps generates the stress<br />
reports. The safety injection system<br />
involves all the safety class components.<br />
Safety class one components are<br />
those between the check valve and the<br />
header to the reactor coolant system.<br />
It involves the most stringent criteria<br />
in its analysis. While the components<br />
like centrifugal pumps, supports,<br />
piping, accumulator, and refueling<br />
water storage tank are categorized as<br />
safety class two com ponents. Safety<br />
class three involves the injection lines<br />
of the pumps. The analysis of the<br />
safety injection system on Peps has<br />
been performed by dividing it into<br />
three lines as shown in Figure 2.<br />
| | Fig. 3.<br />
A three dimensional model of line#01 prepared on Peps.<br />
400<br />
401<br />
Operating Weight +<br />
Earthquake<br />
Operating Weight +<br />
Thermal Expansion<br />
| | Tab. 1.<br />
Load and combination cases<br />
for line#01 &<strong>02</strong>.<br />
4.1 From RWST to Suction<br />
of SI Pump<br />
The first line is from Refuelling Water<br />
Storage Tank (RWST) to suction of<br />
Safety Injection Pump. Five cases i.e.<br />
Operating Weight, Thermal Expansion,<br />
Earthquake RG 1.60, Operating<br />
Weight + Earthquake and Operating<br />
Environment and Safety<br />
Piping Stress Analysis of Safety Injection System of Typical PWR Power Reactor ı Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
| | Fig. 4.<br />
A three dimensional model of line#01 prepared on Peps.<br />
| | Fig. 5.<br />
A three dimensional model of line#01 prepared on Peps.<br />
ENVIRONMENT AND SAFETY 93<br />
| | Fig. 6.<br />
Line #01 Maximum displacement for load case 100.<br />
| | Fig. 7.<br />
Line #01 Maximum resultant force for load case 100.<br />
Weight + Thermal Expansion have<br />
been defined in Table 1. The input<br />
file was prepared on Peps and a<br />
three dimensional model of piping<br />
structure done on Peps is shown in<br />
Figure 3.<br />
4.2 From Discharge of SI Pump<br />
to the Penetration<br />
The second line is from discharge of<br />
Safety Injection Pump to the penetration.<br />
Again five cases i.e. Operating<br />
Weight, Thermal Expansion, Earthquake,<br />
Operating Weight + Earthquake<br />
and Operating Weight + Thermal Expansion<br />
have been defined as shown<br />
previously in Table 1. The input file<br />
was prepared on Peps and a three<br />
dimensional model of piping structure<br />
done on Peps is shown in Figure 4.<br />
4.3 From Penetration<br />
to RCS Header<br />
The third line is from penetration to<br />
reactor coolant system header. It<br />
requires safety class one analysis for<br />
which different cards in Peps have<br />
been used e.g. load set written as<br />
LSET and fatigue preparation card<br />
written as FATG.<br />
Here we need to perform its fatigue<br />
analysis. Again five cases i.e. Operating<br />
Weight, Thermal Expansion,<br />
Earthquake RG 1.60, Operating<br />
Weight + Earthquake and Operating<br />
Weight + Thermal Expansion have<br />
been defined as shown previously in<br />
Table 1. The input file was prepared<br />
on Peps and a three dimensional<br />
model of piping structure done on<br />
Peps is shown in Figure 5.<br />
5 Results and Discussion<br />
This chapter includes both results of<br />
Peps software. The results obtained<br />
from Peps include displacements,<br />
resultant force, resultant moment and<br />
stresses at each section of the piping<br />
structure. The analysis of the safety<br />
injection system on Peps has been<br />
performed by dividing it into following<br />
three lines:<br />
5.1 From RWST to Suction<br />
of SI Pump<br />
All loading cases have been tabulated<br />
separately along with their highest<br />
stress ratios and the locations of<br />
those points. Here only first five points<br />
have been tabulated. Figure 6 and<br />
Figure 7 show the maximum force<br />
and maximum stresses on line#01<br />
Load<br />
Case<br />
Title<br />
Max. Stress<br />
Ratio<br />
Location<br />
Point<br />
Load<br />
Case<br />
Title<br />
Max. Stress<br />
Ratio<br />
Location<br />
Point<br />
100 Operating Weight 0.928 47<br />
101 Thermal Expansion 0.898 50a<br />
300 Earthquake RG 1.60 0.198 27<br />
400<br />
Operating +<br />
Earthquake<br />
| | Tab. 2.<br />
Summary of the Results for Line#01.<br />
0.331 47<br />
401 Operating + Thermal 0.936 50a<br />
100 Operating Weight 0.473 200<br />
101 Thermal Expansion 0.378 42<br />
300 Earthquake RG 1.60 0.824 42S<br />
400<br />
401<br />
Operating Weight +<br />
Earthquake<br />
Operating Weight +<br />
Thermal<br />
| | Tab. 3.<br />
Summary of the Results for Line#<strong>02</strong>.<br />
0.853 42S<br />
0.5<strong>02</strong> 42<br />
Environment and Safety<br />
Piping Stress Analysis of Safety Injection System of Typical PWR Power Reactor ı Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
ENVIRONMENT AND SAFETY 94<br />
| | Fig. 8.<br />
Line #01 Maximum resultant moment for load case 100.<br />
| | Fig. 9.<br />
Line #01 Maximum stress for load case 100.<br />
Load Case Title Max. Stress Ratio Location Point<br />
100 Operating Weight 0.982 0<br />
101 Thermal Expansion 0.031 5<br />
300 Earthquake RG 1.60 0.094 0<br />
400 Operating Weight + Earthquake 0.363 0<br />
401 Operating Weight + Thermal 0.605 0<br />
| | Tab. 4.<br />
Summary of the Results for Line#03.<br />
piping respectively. Finally, a table<br />
is also included which summarizes<br />
the results for complete line. The<br />
highest stress points for load case-<br />
100 have been shown in Table 2.<br />
5.2 From Discharge of SI Pump<br />
to the Penetration<br />
Unlike line #01, here all loading cases<br />
have not been tabulated separately.<br />
Only a table is included which<br />
summarizes the results for the<br />
complete line. Table 3 includes the<br />
maximum stress ratio for each case<br />
and its point of location.<br />
5.3 From Penetration to RCS<br />
Header<br />
Like line#<strong>02</strong>, only a table is included<br />
which summarizes the results for the<br />
complete line. Table 4 includes the<br />
maximum stress ratio for each case<br />
and its point of location.<br />
6 Conclusions<br />
The analysis of the safety injection<br />
system on Peps, stress analysis tool,<br />
has been performed by dividing it into<br />
three lines. The first line is from<br />
refueling water storage tank (RWST)<br />
to the suction of safety injection (SI)<br />
pump. The second line is from discharge<br />
of SI pump to the penetration<br />
while the third line starts from the<br />
penetration and ends at reactor coolant<br />
system (RCS) header. The analysis<br />
of all these lines has been performed<br />
using the software. The series of steps<br />
followed while working on Peps<br />
included cases definition (both load<br />
cases and combination cases), preparation<br />
of input file, modeling on<br />
Peps, running the simulations and<br />
generating the stress reports. The<br />
preparation of an input file consists of<br />
different cards.<br />
The analysis of a line consisted of<br />
different load and combination cases.<br />
Each case was analyzed and a stress<br />
report was generated. The stress<br />
report included the determination of<br />
displacements, loads, moments and<br />
stress ratios. All the values of stress<br />
ratio were found out to be very less<br />
than unity. This analysis confirmed<br />
that piping system stresses were<br />
within the limits specified by the<br />
ASME code.<br />
Acknowledgement<br />
Authors are grateful to Mr. Rizwan<br />
Mahmood, Mr. Amjad Ali Amjad and<br />
administration of Advanced Computational<br />
Reactor Engineering Lab for<br />
their kind support.<br />
References<br />
[1] J. R. Lamarsh, Introduction to Nuclear Engineering, 3 rd ed., 1975.<br />
[2] F. P. Beer, R. Johnston, J. Dewolf, and D. Mazurek, Mechanics of<br />
Materials, McGraw-Hill, 2 nd ed.: Boston, 2006.<br />
[3] R. Liu, Z. Fu, and T. Li, “Application of Peps in Stress Analysis of<br />
Nuclear Piping,” Journal of Applied Mathe matics and Physics, vol. 1,<br />
p. 57, 2013.<br />
[4] L. Wen, C. Guo, T. Li, and C. Zhang, “Stress Analysis for Reactor<br />
Coolant Pump Nozzle of Nuclear Reactor Pressure Vessel,” Journal<br />
of Applied Mathematics and Physics, vol. 1, p. 62, 2013.<br />
[5] J. Venkatesh and M. P. Murthy, “Design and Structural Analysis<br />
of High Speed Helical Gear Using Ansys,” International Journal of<br />
Engineering Research and Applications, vol. 2, pp. 215-232, 2014.<br />
[6] Q. Mao, W. Wang, and Y. Zhang, “The Stress Analysis Evaluation<br />
and Pipe Support Layout for Pressurizer Discharge System,”<br />
Nuclear Power Engineering, vol. 21, pp. 117-120, 2000.<br />
[7] Z. Zhang, M. Wang, and S. He, “ Mechanical Analysis of the<br />
Nuclear Class 1 Piping in HTR-10,” Journal of Tsinghua University.<br />
Science and Technology, vol. 40, pp. 14-17, 2000.<br />
[8] J. Dong, X. Zhang, D. Yin, and J. Fu, “Stress Analysis of HTR-10<br />
Steam Generator Heat Exchanging Tubes,” Nuclear Power<br />
Engineering, vol. 22, pp. 433-437, 2001.<br />
[9] S. Dai, J. Wang, and Z. Han, “Nozzle Loads Optimization Analysis<br />
of Outflow Primary Loop Piping in China Advanced Research<br />
Reactor,” Atomic Energy Science and Tech nology, vol. 42, pp. 490-<br />
494, 2008.<br />
[10] Y. K. Tang, H. T. Tang, and M. Gonin, “Test Correlation and<br />
Analytical Investigation of Piping Dynamic Response Including<br />
Support Failure,” Nuclear Power Engineering, 1985.<br />
[11] J. Bock and F. Weber, “Comparison of Stresses and Strains<br />
Determined by Linear-Elastic and Elasto-Piastic Analysis for Piping<br />
Systems Subjected to Dynamic Loading,” Nuclear Power Engineering,<br />
1985.<br />
[12] B. Praneeth and T. Rao, “Finite Element Analysis of Pressure<br />
Vessel and Piping Design,” International Journal of Engineering<br />
Trends and Technology- Volume 3 Issue 5-2012, 2012.<br />
[13] A. Boiler and P. V. Code, “Section II Part D,” Properties, The<br />
American Society of Mechanical Engineers, New York, 2001.<br />
Authors<br />
Mazhar Iqbal<br />
Agha Nadeem<br />
Tariq Najam<br />
Kamran Rasheed Qureshi<br />
Waseem Siddique<br />
Rustam Khan<br />
Pakistan Institute of Engineering<br />
and Applied Sciences<br />
Nilore, Islamabad, Pakistan<br />
Environment and Safety<br />
Piping Stress Analysis of Safety Injection System of Typical PWR Power Reactor ı Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Research for the Adequacy Analysis<br />
of Plant System Behaviors During<br />
Abnormal Conditions<br />
Yeong Jin Yu , Ho Cheul Shin and Jae Heung Lee<br />
Because there is no specific analytical tool for plant systems behavior in abnormal conditions, the behavior adequacy<br />
analysis of plant systems only relies on personal experiences and knowledges of the investigator. In order to clear these<br />
difficulties, a standardized behavior analysis method was established and specific analysis tool was developed by using<br />
sequence of event report and alarm list of plant. Two similar events that occurred in the plants with same reactor type<br />
were chosen to verify the established analysis method and the developed analysis tool.<br />
As a results of verification, it was confirmed<br />
that the behavior adequacy of<br />
plant systems as well as identify the<br />
systems with abnormal behaviors and<br />
gain insights for cause analysis. Also,<br />
the established analysis method and<br />
the developed analysis tool were useful<br />
for the behavior analysis of plant<br />
systems in abnormal conditions. In<br />
the future, standards for various plant<br />
abnormal events and additional verification<br />
of this method are needed to<br />
promptly and effectively utilize the<br />
proposed behavior analysis tool.<br />
1 Introduction<br />
A nuclear power plant is designed<br />
conservatively based on the safety<br />
analysis of design basis accidents<br />
(DBA), such as a loss of coolant accident<br />
(LOCA), main steam line break<br />
(MSLB), and steam generator tube<br />
rupture (SGTR), as well as multiple<br />
demonstration tests. Therefore, various<br />
abnormal events that are considered<br />
to be less serious or severe<br />
than DBAs are deemed to be within<br />
the design basis that is conservative in<br />
nature. Such a serious accident that is<br />
used as a basis for plant design is<br />
highly unlikely to take place during<br />
the plant operation; however, abnormal<br />
conditions, such as anticipated<br />
operational occurrences (AOO), are<br />
occasionally found during the plant<br />
operation. Nevertheless, when these<br />
events occur, there is no specific tools<br />
to analyze whether plant systems are<br />
behaving adequately as it should<br />
according to its design. As a result, it is<br />
not easy to determine whether the<br />
plant systems are behaving ade quately<br />
according to its intended design.<br />
Against the backdrop, this research<br />
aims to introduce a method to analyze<br />
the adequacy of system behaviors<br />
during abnormal situations.<br />
2 Development<br />
of methodology<br />
1) Need to classify the AOPlevel<br />
events and conduct<br />
system behavior analysis<br />
Table 1 shows conditions of nuclear<br />
power plant classified by international<br />
standard ANSI N 18.2 [1]. As for<br />
Korea, the nuclear safety laws and<br />
regulations specify the events and<br />
accidents that need to be reported to<br />
the relevant regulatory bodies, including<br />
the ones classified according<br />
to the aforementioned ANSI N 18.2.<br />
As such, the events and accidents that<br />
fall under the category are reported to<br />
the regulatory bodies, and the regulators<br />
are responsible for investigating<br />
the reported events and accidents.<br />
The initial stage of investigation is to<br />
find out whether the system behaviors<br />
were adequately performed or not<br />
according to its intended design.<br />
The behavior adequacy of systems<br />
determined by the safety analysis of<br />
DBAs assumes operator intervention<br />
and an automatic actuation of safety<br />
systems as designed to stabilize plant<br />
condition. During the actual plant<br />
abnormal situations, the systems do<br />
run automatically according to the<br />
design; however, they are also manually<br />
operated by operators according<br />
to the procedures written for the plant<br />
stabilization. Although adequacy<br />
analysis of system behaviors during<br />
abnormal conditions is more complex<br />
than DBA, the current analysis only<br />
relies on personal experiences and<br />
knowledges of the investigator as<br />
there is no specific analytical tools for<br />
such purpose. In order to address such<br />
difficulties, this research paper aims<br />
to introduce a standardized behavior<br />
analysis method for plant systems.<br />
2) Development of event<br />
analysis methodology<br />
A nuclear power plant has trip signals<br />
to protect its reactor and control signals<br />
to maintain the reactor stability.<br />
When various abnormal events, such<br />
as a reactor trip, occur, the systems are<br />
ENVIRONMENT AND SAFETY 95<br />
Condition I<br />
Normal Operation and<br />
Operational Transients<br />
Condition II<br />
Faults of Moderate Frequency<br />
Condition III<br />
Infrequent Faults<br />
Condition IV<br />
Limiting Faults<br />
• Steady-state and Shutdown Operations<br />
• Operation with Permissible Deviations<br />
• Operational Transients, etc.<br />
• Feedwater system malfunctions that result in a decrease in feedwater temperature<br />
• Excessive increase in secondary steam flow<br />
• Turbine trip, etc.<br />
• Complete loss of forced reactor coolant flow<br />
• Loss of coolant accidents resulting from a spectrum of postulated piping breaks<br />
within the reactor coolant pressure boundary<br />
• RCCA misalignment, etc.<br />
• Main steam line break<br />
• Main feedwater line break<br />
• Steam generator tube rupture<br />
• Loss of coolant accidents resulting from a spectrum of postulated piping breaks<br />
within the reactor coolant pressure boundary, etc.<br />
| | Tab. 1.<br />
Classification of NPP conditions according to ANSI N18.2.<br />
Environment and Safety<br />
Research for the Adequacy Analysis of Plant System Behaviors During Abnormal Conditions ı Yeong Jin Yu , Ho Cheul Shin and Jae Heung Lee
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
ENVIRONMENT AND SAFETY 96<br />
started by the connected protection<br />
and control signals, and the operation<br />
history of these safety systems is<br />
recorded on the SOER/Alarm List.<br />
Thus, as a means to analyze system<br />
behaviors, this research focuses on the<br />
SOER/Alarm List as it contains information<br />
on actual abnormal events<br />
that took place in the plants.<br />
Basically, the introduced method<br />
determines the behavior adequacy of<br />
systems in the following manners: two<br />
comparable events are selected and<br />
the SOER/Alarm List of each event is<br />
collected. Then, one SOER/Alarm List<br />
is set as a standard point, and the<br />
other List is moved towards the<br />
standard point to check whether their<br />
alarm names are matching.<br />
The existing string-searching algorithms,<br />
including Sing-Pattern Algorithm,<br />
Native String Search, Knuth-<br />
Morris-Pratt Algorithm, calculates the<br />
percentage of matching words or<br />
sentences in the TEXT being analyzed<br />
as compared to a reference text.[2, 3]<br />
However, if SOER/Alarm lists are<br />
compared with each other using the<br />
existing string-searching algorithms,<br />
the result would simply be the mere<br />
comparison of words or sentences,<br />
rather than an insights into plant’s<br />
physical phenomena (for example,<br />
dead band of alarming actuation<br />
signal, differences caused by system<br />
scan times, etc.) and deeper understanding<br />
of the conditions (for<br />
example, dropping of rods in the<br />
sequence of number 1, 2 and 3, as<br />
compared to 2, 3, and 1). Drawing<br />
such a simple percentage does not<br />
help anyone to understand actual<br />
phenomena that took place in the<br />
plants. To address this situation, this<br />
research p aper intends to introduce<br />
an analysis method of comparing the<br />
SOER/Alarm lists to get the similarity<br />
analysis of system behaviors during<br />
the plant abnormal conditions.<br />
The stages of the SOER/Alarm list<br />
comparative analysis are as follows:<br />
pp<br />
Compare and analyze the number<br />
of matching alarm types between<br />
the lists;<br />
pp<br />
Analyze the weighted value to be<br />
applied on the similarity results;<br />
and<br />
pp<br />
Compensate considering the total<br />
number of alarms on the SOER/<br />
Alarm List.<br />
Considering the above conditions, a<br />
computing program has been developed<br />
in order to conduct the behavior<br />
similarity analysis on the abnormal<br />
plant conditions. When the SOER/<br />
Alarm Lists recorded during the<br />
abnormal conditions are registered into<br />
the program, it generates the<br />
following analysis based on Microsoft’s<br />
Excel as well as Visual-Basic;<br />
pp<br />
Removal of reset alarms on the<br />
SOER/Alarm List;<br />
pp<br />
Acquiring selective reset information<br />
on the SOER/Alarm List;<br />
pp<br />
Arranging alarm names by time on<br />
the SOER/Alarm List;<br />
pp<br />
Arranging systems by time on the<br />
SOER/Alarm List; and<br />
pp<br />
Data processing programming on<br />
the SOER/Alarm List.<br />
3) The result of case analysis<br />
to verify and utilize the<br />
computer program<br />
Two similar events were selected that<br />
occurred in the plants with same reactor<br />
type to apply the SOER/Alarm List<br />
methodology, which is featured in this<br />
research. One event involved a reactor<br />
trip caused by a single reactor coolant<br />
pump (RCP) shutting down, while the<br />
other involved a reactor trip by two<br />
RCPs stopping. Both the power plants<br />
had a 2-loop system and the RCPs<br />
stopped in a different loop in each<br />
case. The result generated by using<br />
the SOER/Alarm List methodology<br />
and tools to analyze system behaviors<br />
Order System Weighted Value Compensation Factor Result<br />
1 13.8kV Power System - - -<br />
2 Reactor Coolant System 0 % 0.5 0 %<br />
3 Reactor Trip Switch Gear System 100 % 1 100 %<br />
4 Control Element Drive Mechanism 100 % 1 100 %<br />
5 Main Turbine system 87.18 % 0.886 77.27 %<br />
6 Turbine Hydraulic Fluid 100 % 1 100 %<br />
7 Steam Bypass Control System 100 % 1 100 %<br />
8 Reactor Power Cutback system 100 % 1 100 %<br />
9 Main Power System 100 % 1 100 %<br />
10 Feed Water System 100 % 1 100 %<br />
11 Reactor Protection System 75 % 0.8 60 %<br />
12 Main Steam System 78.26 % 0.958 75 %<br />
| | Tab. 2.<br />
Analysis result on the system adequacy and similarity of two events.<br />
of two events is featured in following<br />
Table 2.<br />
The analysis on the behaviors and<br />
similarity of these two events concluded<br />
that their system behaviors<br />
during the transient status were<br />
approximately 82.93 % similar. Moreover,<br />
additional analysis on the<br />
systems with dissimilar behaviors<br />
revealed that there was one valve out<br />
of many in the main steam bypass<br />
system that was abnormal.<br />
Based on the result of behavior and<br />
similarity analysis of each system, the<br />
methodology and analysis tools were<br />
verified to be useful in analyzing<br />
behavior adequacy and similarity of<br />
plant systems. As the previously mentioned<br />
result indicates, the method of<br />
analyzing the system behaviors by<br />
comparing similar events not only<br />
helps in determining the behavior<br />
adequacy of systems according to its<br />
design, but also in identifying the<br />
system with abnormal behavior and<br />
conducting cause analysis so that it<br />
can be used for the plant maintenance<br />
activities.<br />
3 Conclusion<br />
The analysis result generated by using<br />
the suggested methodology in this<br />
research paper showed that these two<br />
events showed a high level of similarity<br />
in terms of their behaviors<br />
during abnormal conditions. Furthermore,<br />
the result found that system<br />
behaviors were adequate, while few<br />
systems did not behave as it is supposed<br />
to have according to its design.<br />
As such, by utilizing the method to<br />
analyze similarities of events that<br />
occurred during abnormal situations,<br />
the behavior adequacy of plant<br />
systems could be determined as well<br />
as identify the systems with abnormal<br />
behaviors and gain insights for cause<br />
analysis. The computer program<br />
developed as part of the research also<br />
proved to be useful for the behavior<br />
analysis of plant systems in abnormal<br />
conditions. Thus, the expectation of<br />
the safer operation of the plants would<br />
be possible when using the analysis<br />
methodology; it offers a prompt<br />
and standardized behavior adequacy<br />
analysis as well as a cause analysis<br />
of the systems identified to have<br />
abnormal behaviors.<br />
4 Further study<br />
In order to use the method suggested<br />
in this research as an analysis tool in a<br />
more effective and prompt way, it<br />
would be necessary to establish standards<br />
for various abnormal situations<br />
and further verify this method. After<br />
Environment and Safety<br />
Research for the Adequacy Analysis of Plant System Behaviors During Abnormal Conditions ı Yeong Jin Yu , Ho Cheul Shin and Jae Heung Lee
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
establishing the standards and conducting<br />
additional verification with<br />
other similar events, it would be<br />
necessary to create a foundation so<br />
that system behaviors during various<br />
plant abnormal events are promptly<br />
and effectively analyzed and determined,<br />
and the result can be used for<br />
the plant maintenance activities.<br />
References<br />
[1] American National Standard Revision and Addendum to<br />
Nuclear Safety Criteria for the Pressurized water Reactor Plants,<br />
ANSI N18.2, (1973).<br />
[2] Aoe, J-I.: Computer algorithms: string pattern matching<br />
strategies, IEEE Computer Society Press, (1994).<br />
[3] Knuth D.E., Morris(jr) J.J., Pratt V.R.: Fast pattern matching in<br />
strings, SLAM Journal on Computing 6(1) : 323-350, (1977).<br />
Authors<br />
Yeong Jin Yu<br />
Ho Cheul Shin<br />
Korea Institute of Nuclear Safety<br />
(KINS)<br />
62 Gwahak-ro, Yu-seong, Daejeon,<br />
Korea, 34142<br />
Jae Heung Lee, Ph.D<br />
Computer Engineering<br />
Hanbat National University<br />
Rep. of Korea<br />
Advertisement<br />
ENVIRONMENT AND SAFETY 97<br />
Ihre schriftliche Bewerbung<br />
richten Sie bitte bis zum<br />
20.03.<strong>2019</strong> an:<br />
Dekan der Fakultät für<br />
Georessourcen und<br />
Materialtechnik der<br />
RWTH Aachen, Univ.-Prof.<br />
Dr. Peter A. Kukla,<br />
52056 Aachen.<br />
Gerne können Sie Ihre Bewerbung<br />
auch per E-Mail an:<br />
dekanat@fb5.rwth-aachen.de<br />
senden. Bitte beachten Sie, dass<br />
Gefährdungen der Vertraulichkeit<br />
und der unbefugte Zugriff Dritter<br />
bei einer Kommunikation per unverschlüsselter<br />
E-Mail nicht ausgeschlossen<br />
werden können.<br />
Auf Wunsch kann eine Teilzeitbeschäftigung<br />
ermöglicht werden.<br />
Die RWTH Aachen University ist<br />
als familiengerechte Hochschule<br />
zertiiziert und verfügt über ein<br />
Dual Career Programm. Wir wollen<br />
an der RWTH Aachen University<br />
besonders die Karrieren von<br />
Frauen fördern und freuen uns<br />
daher über Bewerberinnen. Frauen<br />
werden bei gleicher Eignung, Befähigung<br />
und fachlicher Leistung<br />
bevorzugt berücksichtigt, sofern<br />
nicht in der Person eines Mitbewerbers<br />
liegende Gründe überwiegen.<br />
Bewerbungen geeigneter<br />
schwerbehinderter Menschen<br />
sind ausdrücklich erwünscht.<br />
W3 Universitätsprofessur<br />
Untertägige Raumplanung und<br />
Endlagerkonzepte<br />
Fakultät für Georessourcen und Materialtechnik<br />
Zum nächstmöglichen Zeitpunkt wird eine Persönlichkeit gesucht, die dieses Fach in<br />
Forschung und Lehre vertritt. Es sind Aufgaben in den genannten Themenbereichen<br />
zu erfüllen:<br />
- Endlagerkonzepte für verschiedene Wirtsgesteine<br />
- Langzeitsicherheitsanalysen, Langzeitsicherheitsnachweise inkl. Nachweiskonzepte<br />
- Freisetzungsverhalten, Stofftransport und Ausbreitung<br />
- Regulatorische Anforderungen für die Verbringung von Abfällen im geologischen<br />
Untergrund<br />
- Untertägige Raum- und Infrastrukturplanung sowie Modellierung der Nutzung<br />
untertägiger Räume<br />
- Monitoring von Endlagern und Geosystemen<br />
Voraussetzungen sind ein abgeschlossenes Universitätsstudium, Promotion und zusätzliche<br />
wissenschaftliche Leistungen, die durch eine Habilitation, im Rahmen einer<br />
Juniorprofessur, einer wissenschaftlichen Tätigkeit an einer Hochschule, Forschungs-<br />
einrichtung, in Wirtschaft, Verwaltung oder einem anderen gesellschaftlichen Bereich<br />
erbracht wurden. Des Weiteren werden didaktische Fähigkeiten erwartet. Den Bewerbungsunterlagen<br />
sollen Belege über Lehrerfolge beigefügt werden.<br />
Bitte füllen Sie zusätzlich den Bewerbungsfragebogen aus, die Datei nden Sie im<br />
Internet unter http://www.fb5.rwth-aachen.de/Berufung<br />
Die Fakultät sucht bevorzugt eine Pe<br />
Die Fakultät sucht bevorzugt eine Perönlichkeit mit einer Ausbildung in den Ingenieuroder<br />
Geowissenschaften in den Themenbereichen Bergbau, Rohstoffgewinnung<br />
oder Endlagerung mit nachgewiesenen, fundierten Kenntnissen und Erfahrungen im<br />
Themenfeld der Entsorgung radioaktiver Abfälle.<br />
Environment and Safety<br />
Research for the Adequacy Analysis of Plant System Behaviors During Abnormal Conditions ı Yeong Jin Yu , Ho Cheul Shin and Jae Heung Lee
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
98<br />
OPERATION AND NEW BUILD<br />
Design of Control System for On-line<br />
Ultrasonic Testing Device of Nuclear Power<br />
Hollow Flange Bolt Based on LabVIEW<br />
Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang<br />
Hollow flange bolt on-line ultrasonic testing device control system and measurement and control software are<br />
researched and designed. It detects the fatigue damage of the hollow flange bolt of the reactor pressure vessel of the<br />
nuclear power plant. The design, implementation and corresponding detection technology of the hardware and software<br />
of the ultrasonic testing device control system are introduced. The control system drives the mechanical part to<br />
detect by the five DC servo motors on the detection device. The detection process and data are displayed in real time<br />
through the RJ45 Ethernet interface on the LabVIEW detection software interface through the new detection technology.<br />
The research on the control system and the detection technology to realize the automation of the detection of the<br />
hollow flange bolt of the reactor pressure vessel of the nuclear power plant.<br />
1 Introduction<br />
The hollow flange bolt of the reactor<br />
pressure vessel of a nuclear power<br />
plant is a connection fastener between<br />
the reactor pump body and the pump<br />
shell (Figure 1) [1]. It is easy to form<br />
fatigue damage and is an important<br />
vulnerable component in the working<br />
environment of high temperature,<br />
high pressure, high radiation and<br />
alternating stress [2-3]. The ASME<br />
specification and the RCC-M specification<br />
require a full inspection of the<br />
reactor flanged hollow flange bolt to<br />
eliminate safety hazards and ensure<br />
safe and reliable operation of the<br />
nuclear power plant [4-5]. Ultrasonic<br />
non-destructive testing (NDT) is one<br />
of the most frequently used and fast<br />
developing detection technologies in<br />
this field [6], which has been widely<br />
used in almost all industrial detection<br />
| | Fig. 1.<br />
Hollow flange bolt diagram to be detected.<br />
| | Fig. 2.<br />
On-line ultrasonic testing device for nuclear flange bolt based on LabVIEW.<br />
fields, and has a very broad application<br />
prospect in nuclear power<br />
and other new technology industries<br />
[7-8]. At present, ultrasonic testing to<br />
detect the fatigue damage of bolt is a<br />
trend in the current era. M.R. Sun has<br />
independently developed a set of ultrasonic<br />
testing system for reactor<br />
main pressure bolt, which improves<br />
the detection accuracy and signal- tonoise<br />
ratio and solves the automatic<br />
supply of coupling agent, issues such<br />
as emissions and recycling [9].<br />
J. Wang improved the detection sensitivity<br />
of the screw thread tooth root<br />
and fatigue crack by using the small<br />
angle longitudinal wave oblique probe<br />
ultrasonic detection method, and<br />
effectively found the tiny fatigue crack<br />
in the screw thread tooth root and the<br />
internal fatigue crack [10].<br />
As the on-line ultrasonic testing of<br />
the hollow flange bolt in nuclear<br />
power is mostly used manually, the<br />
degree of automation is low, and the<br />
accuracy of the detection data is not<br />
high, the author based on the<br />
LabVIEW research and designs a set of<br />
control system for the on-line ultrasonic<br />
testing device for the nuclear<br />
hollow flange bolt of nuclear power.<br />
2 Overall scheme design of<br />
ultrasonic testing device<br />
The on-line ultrasonic testing device<br />
for nuclear power hollow flange bolt<br />
based on LabVIEW mainly includes<br />
control part, power supply part and<br />
mechanical detection part (Figure 2).<br />
The portable power box is connected<br />
by an aviation plug to provide power<br />
for the whole detection device, and<br />
the upper computer is connected to<br />
the water pump through the RS485<br />
serial port by the shielded twisted pair<br />
cable. The control part is the core of<br />
ultrasonic detection. The upper computer<br />
is connected through the RJ45<br />
Ethernet interface, and the ultrasonic<br />
detection is carried out by the aerial<br />
plug and five DC servo motors to drive<br />
the ultrasonic detection. The location<br />
data of the ultrasonic flaw detection<br />
and the defect data determined<br />
according to the echo signal are<br />
collected through the sensor. Realtime<br />
data will be transmitted to the<br />
host computer, the host computer<br />
data analysis to determine the<br />
damaged portion of the hollow flange<br />
bolt and the degree of damage.<br />
3 Mechanical structure of<br />
ultrasonic testing device<br />
The mechanical structure of the<br />
on-line ultrasonic testing device for<br />
hollow flange bolt mainly includes the<br />
ball screw, the servo motor assembly,<br />
the base and the supporting frame,<br />
the water receiving tray, the foursection<br />
track, the slides and the<br />
detecting platform (the outer frame<br />
assembly, the detecting trolley frame,<br />
the detecting rod rotating mechanism,<br />
the moving Platform.). The equipment<br />
can meet the requirements of<br />
ASME and RCC-M standards for ultrasonic<br />
testing of hollow flange bolt in<br />
nuclear power plants, and is suitable<br />
for ultrasonic testing of various hollow<br />
flange bolt in China. It has high safety<br />
control performance and automatic<br />
diagnosis of detection faults. And<br />
immediately alert to prompt, respond<br />
to the automatic detection requirements<br />
of the current time.<br />
The ball screw drives the rotating<br />
platform of the testing tube to realize<br />
the axial lifting motion, thus realizing<br />
the lifting motion of the ultrasonic<br />
testing tube and carrying out the<br />
ultrasonic testing. The servo motor<br />
component is composed of five DC<br />
servo motors, which are the detecting<br />
platform circumferential rotating<br />
motor, the detecting platform lifting<br />
Operation and New Build<br />
Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
| | Fig. 3.<br />
Mechanical structure diagram of on-line ultrasonic<br />
testing device for hollow flange bolt.<br />
motor, the detecting rod radial adjusting<br />
motor, the detecting rod lifting<br />
motor, and the detecting rod rotating<br />
motor. The servo motors drive the<br />
detection rod and the detection platform<br />
to move, providing the original<br />
power for the movement of the whole<br />
system. The base and frame components<br />
are composed of the base and<br />
supporting frame, which provide<br />
support for the whole mechanical<br />
device and the checked parts (hollow<br />
flange bolt); the four-section track is<br />
fast connected by the fast connection<br />
device and the positioning pin; it is<br />
“tightly held” on the stator water<br />
jacket by the flexible clamping mechanism;<br />
it can be quickly fixed by<br />
the sponge suction device and its<br />
accessory device. The detecting platform<br />
includes the outer frame components,<br />
the testing car frame, the<br />
rotating mechanism of the detecting<br />
rod and the moving platform, and the<br />
sliding seat includes the arc walking<br />
mechanism, the pressing wheel, the<br />
guide wheel and the eccentric wheel.<br />
The outside of the sliding seat is the<br />
guide wheel, the inner side is the<br />
eccentric wheel, and the middle is the<br />
pressure wheel. When the slider is<br />
installed, the position of the eccentric<br />
wheel makes the distance between the<br />
left and right sides the maximum, the<br />
sliding seat is loaded from the track<br />
side, and then the eccentric wheel is<br />
pressed on the orbit with the characteristics<br />
of the eccentric wheel. The<br />
mechanical structure of the ultrasonic<br />
testing device is shown in Figure 3.<br />
4 Control system of ultrasonic<br />
testing device<br />
The control system is the core of ultrasonic<br />
testing, including the upper<br />
computer and the lower computer<br />
(motion controller). The motion controller<br />
continuously receives the command<br />
sent by the host computer,<br />
drives the servo motor to perform<br />
mechanical detection in real time, and<br />
analyzes the ultrasonic flaw detection<br />
position data in real time according to<br />
the defect data determined by the<br />
echo signal and the detection process<br />
stage, and analyzes the data. Optimize<br />
the transfer to the remote management<br />
layer. When the detection<br />
process fails, the upper computer can<br />
timely diagnose and automatically<br />
give an alarm prompt to effectively<br />
ensure the safety of the ultrasonic<br />
detection device.<br />
4.1 Hardware design of<br />
control system for ultrasonic<br />
testing device<br />
4.1.1 Hardware selection of<br />
control system of ultrasonic<br />
testing device<br />
The control system of hollow flange<br />
bolt ultrasonic testing device mainly<br />
includes the control of testing platform,<br />
the motion control of testing rod<br />
and the control of ultrasonic testing<br />
water pallet. The driver receives the<br />
pulse signal from the motion controller<br />
to drive the servo motor. The<br />
servo motor converts the pulse signal<br />
into the angular displacement driving<br />
mechanism for testing. Select the<br />
appropriate motion controller and<br />
driver according to the servo motor<br />
type, parameters, power and other<br />
specifications. As the maxon DC motor<br />
is a high quality DC motor, the use of<br />
high-performance permanent magnets<br />
brings the advantages of compact<br />
structure, high performance and low<br />
inertia to the driver. And because of<br />
the small inertia, DC motor can<br />
achieve very high acceleration, within<br />
500 W of the high precision motor and<br />
drive system, maxon is in the leading<br />
position in the world. So select the<br />
maxon DC motor.<br />
The detecting platform circumferential<br />
rotating motor is divided into<br />
three stages: the start acceleration<br />
phase (duration 0.5 s), the constant<br />
speed phase (duration 3 s), and the<br />
braking phase (duration 0.5 s). The<br />
detecting platform moving speed (v)<br />
is 0.05 m/s, the detecting platform<br />
mass (m) is 30 kg, the gear indexing<br />
circle diameter (d) is 120 mm, the friction<br />
coefficient (f) is 0.05, and the<br />
gear ratio (R) is 12.<br />
The acceleration a:<br />
(1)<br />
External force of detecting platform<br />
F r :<br />
(2)<br />
Detection of gear meshing force F:<br />
(3)<br />
Load torque T L :<br />
(4)<br />
m 1 is the mass of the pinion, r is the<br />
radius of the pinion, because ½ m 1 r 2<br />
can be negligibly small, so the load<br />
torque can be expressed as:<br />
(5)<br />
Motor torque T M :<br />
(6)<br />
Load moment of inertia J L :<br />
(7)<br />
Conversion to the moment of inertia<br />
of the motor shaft J LM :<br />
(8)<br />
The required detecting rod rotating<br />
motor torque T M<br />
> 0.09N · m and<br />
J LM<br />
> 0.375 kg · cm 2 the moment of<br />
inertia .Considering the characteristics<br />
of the maxon motor, choose type<br />
of the detecting rod rotating motor is<br />
maxon RE50 200W 48V.<br />
The quality of the lifting detecting<br />
platform includes the detecting lever,<br />
two motor (the detecting platform<br />
lifting motor,the detecting rod lifting<br />
motor), belt wheel, lift floor, the total<br />
mass (M) is 10kg, the screw dia meter<br />
(D B ) is 25 mm, and the quality is<br />
4.242 kg. Screw lead (P B ) is 0.<strong>02</strong> m.<br />
The ratio of deceleration(R) is 4.3.<br />
The torque of detecting platform<br />
lifting motor can be detected:<br />
(9)<br />
Load moment of inertia J L :<br />
(10)<br />
Conversion to the moment of inertia<br />
of the motor shaft J LM :<br />
(11)<br />
The torque of the detecting platform<br />
lifting motor T M<br />
> 0.74N · m and<br />
J LM<br />
> 4.36 kg · cm 2 the moment of<br />
inertia.Considering the characteristics<br />
of the maxon motor, choose the<br />
detecting platform lifting motor is<br />
maxon RE50 200W 48V.<br />
OPERATION AND NEW BUILD 99<br />
Operation and New Build<br />
Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
OPERATION AND NEW BUILD 100<br />
Because of the small quality of the<br />
detecting rod, combined with the<br />
characteristics of maxon motor, the<br />
type of detecting rod lifting motor is<br />
maxon RE50 200W 48V.<br />
The load (M) of the detecting rod<br />
rotating motor is 0.3 kg, the diameter<br />
(d) of the pulley is 80 mm, the friction<br />
coefficient (μ) of the load and platform<br />
is 0.6, and the deceleration ratio<br />
(R) is 3.7.<br />
Torque motor torque T M :<br />
(12)<br />
Load moment of inertia J L :<br />
(13)<br />
Conversion to the moment of inertia<br />
of the motor shaft J LM :<br />
(14)<br />
The detecting rod rotating motor<br />
torque T M<br />
> 0.19N · m and<br />
J LM<br />
> 0.105 kg · cm 2 the moment of<br />
inertia . Considering the characteristics<br />
of maxon motor, choose the<br />
detecting rod rotating motor is maxon<br />
RE30 60W 48V.<br />
The detecting rod radial adjusting<br />
motor needs to radially displace the<br />
detecting rod with a small mass and<br />
some accessories by ±2 mm to ensure<br />
the alignment port is detected.<br />
Combined with the characteristics of<br />
the maxon motor, the type of the<br />
detecting rod radial adjusting motor is<br />
maxon RE30 60W 48V.<br />
According to the selected servo<br />
motor (maxon RE30 60W 48V, maxon<br />
RE50 200W 48V), the control system<br />
of the ultrasonic detecting device<br />
selects the GALIL DMC-2183 motion<br />
controller. AMP-20540 amplifier<br />
drives the detecting platform circumferential<br />
rotating motor, the detecting<br />
platform lifting motor, AMP-20440<br />
amplifier drives the detecting rod<br />
radial adjusting motor, the detecting<br />
rod lifting motor, the detecting rod<br />
rotating motor. The GALIL DMC-2183<br />
motion controller can be used to<br />
control 8 axes at most. It integrates<br />
motion control and servo amplification<br />
functions.<br />
4.1.2 The design of the hardware<br />
circuit of the control<br />
system of the ultrasonic<br />
testing device<br />
The hardware circuit design of the<br />
ultrasonic detection device control<br />
system (Figure 4) mainly includes the<br />
connection between the controller<br />
and the motor, and the connection between<br />
the controller and I/O. The<br />
GALIL DMC-2183 motion controller<br />
communicates with the host computer<br />
through the RJ45 Ethernet interface.<br />
The DC motor driver GALIL AMP-<br />
20540 and AMP-20440 receive the<br />
pulse signal from the GALIL DMC-<br />
2183 motion controller and drive the<br />
servo motor. The servo motor transforms<br />
the pulse signal into the angular<br />
displacement driving mechanism for<br />
ultrasonic detection, and the encoder<br />
feedback the pulse to the controller to<br />
form the closed loop control in time.<br />
The DC motor driver and the five DC<br />
servo motors are connected with a set<br />
of inductor modules to reduce the<br />
heat of the motor, and the plug is used<br />
as the medium of the cable in series.<br />
The GALIL DMC-2183 motion controller<br />
provides a universal I/O port to<br />
synchronize with external events, 16<br />
channels of digital input and 16<br />
channels of digital output. To prevent<br />
accidental damage caused by direct<br />
connection of the main power supply<br />
with the motion controller, the detection<br />
device adds a relay to the I/O port<br />
of the motion controller. The threeloop<br />
control is realized in the motion<br />
controller. At the same time, the<br />
anti-interference measures such as<br />
reliable grounding, shielding wire for<br />
motor wire and shielding metal shell<br />
for motor are ensured.<br />
4.2 Software design of control<br />
system for ultrasonic<br />
testing device<br />
According to the on-line ultrasonic<br />
testing device system of hollow flange<br />
bolt and the user’s convenience<br />
demand, the modular programming<br />
idea is adopted. In order to shorten<br />
the development time, LabVIEW software<br />
is used to write the program.<br />
LabVIEW is mainly used in different<br />
special toolkits and unified G language<br />
programming methods in data acquisition,<br />
instrument control and other<br />
different fields [11]. In the motion<br />
controller, the parameters such as<br />
positioning, setting speed, setting<br />
acceleration and so on are all pulses,<br />
but the actual motion parameters in<br />
the actual interface are the actual<br />
length, the angle, and so on, the unit<br />
is mm and degree. At the same time,<br />
the position information obtained by<br />
command query motion controller is<br />
pulse, and the position information<br />
such as mm and degree are displayed<br />
on the interface. Therefore, to design<br />
the conversion function, the actual<br />
length and angle in mm and degree<br />
will be converted into pulse, and the<br />
pulse will be converted into mm and<br />
degree. Taking the circumferential<br />
rotating motor of the platform as an<br />
example, the formula for converting<br />
the pulse number to the rotation angle<br />
is as follows:<br />
motor out displacement degree =<br />
motor in displacement pulse ·<br />
small pitch diameter · 360<br />
4 · reduction ratio · encoder<br />
resolution · large pitch diameter<br />
(15)<br />
Figure 5 is a program block diagram<br />
for turning the pulse number of the<br />
detecting platform circumferential<br />
rotating motor to the rotation angle.<br />
The reason that the conversion<br />
function is written in the software<br />
instead of the fixed pulse is that the<br />
| | Fig. 4.<br />
Block diagram of hardware circuit design for ultrasonic testing device<br />
control system.<br />
| | Fig. 5.<br />
Block diagram for turning the pulse number of the detecting platform circumferential rotating motor to<br />
the rotation angle.<br />
Operation and New Build<br />
Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
parameters in the conversion formula<br />
are related to the mechanical parameters,<br />
such as the reduction ratio, the<br />
lead of the screw, and so on. In order to<br />
adapt to the different kind of equipment,<br />
the software will open these<br />
parameters and can be set up according<br />
to different mechanical devices. The<br />
generality of such a device is that the<br />
conversion function calculates pulses<br />
based on the mechani cal parameter<br />
module. The user interface shows the<br />
detection data classification in the<br />
upper computer, set up the mechanical<br />
para meter module, the motion parameter<br />
module, automatically scan the<br />
presupposed parameter module, the<br />
manual scanning module, the servo<br />
motor position and torque display<br />
module, the servo motor switch<br />
module, the data acquisition and<br />
storage module. The LabVIEW controls<br />
the main interface as shown in<br />
Figure 6.<br />
The functions of the software<br />
modules are as follows:<br />
a. Mechanical parameter module. In<br />
order to adapt to the testing of<br />
similar equipment in different<br />
directions, the mechanical parameters<br />
such as the speed reduction<br />
ratio of the five servo motors, the<br />
number of encoder lines, the lead<br />
of the screw, and the diameter of<br />
the gear indexing circle can be<br />
customized respectively.<br />
b. Motion parameter module. The<br />
motion parameters such as acceleration,<br />
speed reduction, manual<br />
presupposition speed, automatic<br />
presupposition speed, back zero<br />
presupposition speed are customized<br />
to meet the detection device at<br />
the appropriate speed.<br />
c. Automatic scanning of presupposition<br />
parameters module. Automatic<br />
scanning is based on the<br />
motion parameters of the detecting<br />
rod lifting motor and the detecting<br />
rod rotating motor, and scanning<br />
section based on the input of the<br />
user. The detecting rod lifting<br />
motor will move between scan<br />
start and scan stop, and the speed<br />
is specified by speed. The motion<br />
range of the detecting rod rotating<br />
motor is between scan start and<br />
scan stop, and the rotation angle of<br />
each cycle is step, so the number of<br />
scavenging segments is (scan stopscan<br />
start)/step.<br />
d. Manual scanning module. Manual<br />
interface is mainly used for manual<br />
control of each axis, including<br />
continuous movement and point<br />
movement control. The continuous<br />
motion control is the input relative<br />
position and the speed of operation,<br />
then click the button, the<br />
motor will move to the relative<br />
position at the set speed, and then<br />
stop. The point control is to hold<br />
the corresponding key, the motor<br />
rotates according to its rotation<br />
direction, releases the key, and the<br />
motor stops.<br />
e. Servo motor position and torque<br />
display module. The operation<br />
phase of the detection is displayed<br />
in the main interface in the manner<br />
of the position and torque of the<br />
five servo motors.<br />
f. Servo motor switch module. When<br />
the signal light turns green, it indicates<br />
that the servo motor has<br />
started, is in the servo state, and<br />
starts to move under the control of<br />
the controller.<br />
g. Data acquisition and storage<br />
module. In accordance with the<br />
requirements of the detection, the<br />
progress of single bolt scanning<br />
and the overall detection progress<br />
are recorded in the upper computer<br />
with the state of the running<br />
bar. The root of the scavenging<br />
section is used to judge the<br />
damaged position of the bolt and<br />
record the analysis in time.<br />
5 Implementation of ultrasonic<br />
testing process<br />
The on-line ultrasonic testing method<br />
for hollow flange bolts introduced in<br />
this paper is a new type of testing<br />
method. The mechanical detecting<br />
device carries the ultrasonic probe to<br />
scan from the inner wall of the hollow<br />
flange bolt center hole by the thin<br />
water layer contact method, and<br />
realizes full-volume ultrasonic testing<br />
on the threaded area of the hollow<br />
flange bolt. After the control rod is<br />
aligned with the inner wall of the<br />
hollow flange bolt, the detection rod is<br />
driven by the detecting rod lifting<br />
motor to complete a rising scan, and<br />
the detecting rod is driven by the<br />
circumferential motor to rotate the<br />
detecting rod 5°, and the detecting rod<br />
lifting motor drives the detecting rod<br />
to complete the lowering. A downward<br />
scan, when reaching the bottom<br />
of the hollow flange bolt, the detection<br />
rod circumferential motor drive<br />
detection lever is rotated 5° again, and<br />
a scan cycle has been completed.<br />
Repeat several times until the end of<br />
the scan, a hollow flange bolt, and<br />
then return to the starting position to<br />
prepare to detect other hollow flange<br />
bolts. The automatic scanning program<br />
is written in the motion controller.<br />
The parameters are expressed<br />
| | Fig. 6.<br />
LabVIEW control the main interface diagram.<br />
| | Fig. 7.<br />
Flow chart of automatic scanning program.<br />
in variable form, and the upper<br />
computer passes the assignment. And<br />
call the program to achieve automatic<br />
scanning. The specific detection process<br />
is shown in Figure 7, and the<br />
variables and their meanings are<br />
shown in Table 1.<br />
OPERATION AND NEW BUILD 101<br />
Operation and New Build<br />
Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
OPERATION AND NEW BUILD 1<strong>02</strong><br />
Variable name<br />
m4step<br />
m4hfstep<br />
Meaning<br />
Motor4 step<br />
(An angle of rotation of a sweep cycle)<br />
m4step/2,<br />
Motor4 half scan cycle rotation angle<br />
m4start Start position of Motor4 =<br />
scan start + (Scavenging section-1) * step<br />
m3start<br />
m3end<br />
motor4<br />
motor3<br />
curseg<br />
totseg<br />
Start position of Motor3 (scan start)<br />
Stop position of Motor3 (scan stop)<br />
The detecting rotating motor<br />
The detector rod lifting motor<br />
Current scavenging section<br />
Total scavenging section number<br />
| | Tab. 1.<br />
The variable in the automatic scanning program.<br />
6 Conclusion<br />
Through testing, the control system of<br />
the nuclear hollow flange bolt on-line<br />
ultrasonic testing device based on<br />
LabVIEW can be automatically and<br />
reliably detected under the required<br />
requirements. The ultrasonic automatic<br />
testing device and technology of<br />
hollow flange bolt have solved the<br />
shortcomings of the pre service and<br />
automatic inspection of the hollow<br />
flange bolt of the nuclear power plant<br />
and the manual inspection, and the<br />
defects of the detection data are not<br />
high, the nuclear radiation, the leak<br />
detection and so on, and the automation<br />
of the ultrasonic inspection<br />
has been promoted, which conforms<br />
to the automation of the present day.<br />
Response. The research and development<br />
of this technology can be applied<br />
not only to nuclear power industry,<br />
but also to the detection of hollow<br />
flange bolt in other industries.<br />
Acknowledgment<br />
We are grateful to the laboratory<br />
equipment provided by the college of<br />
mechanical engineering, Shanghai<br />
University of Engineering Science.<br />
References<br />
1. Huang X.D., Huang H., Hong L., et al.: Development of long<br />
shank repair tool for defect of pressure vessel bolt hole in pressure<br />
vessel of nuclear power plant [J]. Nuclear Power Engineering,<br />
2013, 34(4):161-163.<br />
2. Kim Y.J., Madugula M.K.S.: Behavior of bolted circular flange<br />
connections subject to tensile loading [J]. International Journal of<br />
Steel Structures, 2010, 10(1):65-71.<br />
3. Lei Zhu: Analysis of Failure Cases of Bolted Flange Connections<br />
and Discussion on Relevant Progress[J].Pressure Vessel, 2012,<br />
29(2):42-47.<br />
4. Ong E.H., Fukuzawa K., Chang J.Y.: The 4th ASME-ISPS/JSME-IIP<br />
joint international conference on micromechatronics for information<br />
and precision equipment, Santa Clara, California, USA [J].<br />
Microsystem Technologies, 2013, 19(9-10):1267-1268.<br />
5. Faidy C.: Comparison and Harmonization of French RCCM and<br />
ASME CODE [C]. 18th international conference on nuclear<br />
engineering. 2010:425-431.<br />
6. Felice M V, Zheng F. Sizing of flaws using ultrasonic bulk wave<br />
testing: a review[J]. Ultrasonics, 2018, 88:26.<br />
7. Renke Jing, Jianzeng Li, Hai lin Zhou: Research Progress of<br />
Ultrasonic Nondestructive Testing Technology[J]. Foreign Electronic<br />
Measurement Technology, 2012, 31(7): 28-30.<br />
8. Dragunov Y.G., Strelkov B.P., Arefyev A.A., et al.: Nondestructive<br />
testing of equipment and pipelines in nuclear power<br />
plants with RBMK[J]. Atomic Energy, 2012, 113(1):57-63.<br />
9. Maorong Sun, Chengze Liu: Design and Implementation of<br />
Ultrasonic Inspection and Control System for Main Bolt of Reactor<br />
Pressure Vessel [J].Electronic Design Engineering, 2014 (12):<br />
89-91.<br />
10. Jun Wang, Jiakai Qian, Tianze Che: Ultrasonic inspection of<br />
internal cylinder bolt for high pressure cylinder of nuclear power<br />
station turbine [J]. NDT, 2013, 35 (5): 68-70.<br />
11. Guler H., Turkoglu I., Ata F.: Designing Intelligent Mechanical<br />
Ventilator and User Interface Using LabVIEW® [J]. Arabian Journal<br />
for Science & Engineering, 2014, 39(6):4805-4813.<br />
Authors<br />
Wenchao Lu<br />
Huibin Yang<br />
Juan Yan<br />
Chengbo Kang<br />
College of Mechanical and<br />
Automotive Engineering<br />
Shanghai University<br />
of Engineering Science<br />
Shanghai , China<br />
Imprint<br />
| | Editorial Advisory Board<br />
Frank Apel<br />
Erik Baumann<br />
Dr. Erwin Fischer<br />
Carsten George<br />
Eckehard Göring<br />
Florian Gremme<br />
Dr. Ralf Güldner<br />
Carsten Haferkamp<br />
Christian Jurianz<br />
Dr. Guido Knott<br />
Prof. Dr. Marco K. Koch<br />
Ulf Kutscher<br />
Herbert Lenz<br />
Jan-Christan Lewitz<br />
Andreas Loeb<br />
Dr. Thomas Mull<br />
Dr. Ingo Neuhaus<br />
Dr. Joachim Ohnemus<br />
Prof. Dr. Winfried Petry<br />
Dr. Tatiana Salnikova<br />
Dr. Andreas Schaffrath<br />
Dr. Jens Schröder<br />
Norbert Schröder<br />
Prof. Dr. Jörg Starflinger<br />
Prof. Dr. Bruno Thomauske<br />
Dr. Brigitte Trolldenier<br />
Dr. Walter Tromm<br />
Dr. Hans-Georg Willschütz<br />
Dr. Hannes Wimmer<br />
Ernst Michael Züfle<br />
| | Editorial Office<br />
Christopher Weßelmann (Editor in Chief)<br />
Im Tal 121, 45529 Hattingen, Germany<br />
Phone: +49 2324 4397723<br />
Fax: +49 2324 4397724<br />
E-mail: editorial@nucmag.com<br />
Martin Schneibel (Editor)<br />
INFORUM, Berlin, Germany<br />
Phone: +49 30 498555-43<br />
Fax: +49 30 498555-18<br />
E-Mail: martin.schneibel@nucmag.com<br />
| | Official Journal of<br />
Kerntechnische Gesellschaft e. V. (KTG)<br />
| | Publisher<br />
INFORUM Verlags- und<br />
Verwaltungsgesellschaft mbH<br />
Robert-Koch-Platz 4, 10115 Berlin, Germany<br />
Phone: +49 30 498555-30<br />
Fax: +49 30 498555-18<br />
www.nucmag.com<br />
| | General Manager<br />
Christian Wößner<br />
| | Advertising and Subscription<br />
Petra Dinter-Tumtzak<br />
Phone: +49 30 498555-30<br />
Fax: +49 30 498555-18<br />
E-mail: petra.dinter@nucmag.com<br />
| | Layout<br />
zi.zero Kommunikation<br />
Antje Zimmermann<br />
Berlin, Germany<br />
| | Printing<br />
inpuncto:asmuth<br />
druck + medien gmbh<br />
Baunscheidtstraße 11, 53113 Bonn, Germany<br />
| | Price List for Advertisement<br />
Valid as of 1 January <strong>2019</strong><br />
Published monthly, 9 issues per year<br />
Germany:<br />
Per issue/copy (incl. VAT, excl. postage) 24.- €<br />
Annual subscription (incl. VAT and postage) 187.- €<br />
All EU member states without VAT number:<br />
Per issue/copy (incl. VAT, excl. postage) 24.- €<br />
Annual subscription (incl. VAT, excl. postage) 187.- €<br />
EU member states with VAT number<br />
and all other countries:<br />
Per issues/copy (no VAT, excl. postage) 22.43 €<br />
Annual subscription (no VAT, excl. postage) 174.77 €<br />
| | Copyright<br />
The journal and all papers and photos contained in it are protected by<br />
copyright. Any use made thereof outside the Copyright Act without the<br />
consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />
mbH, is prohibited. This applies to reproductions, translations, microfilming<br />
and the input and incorporation into electronic systems. The<br />
individual author is held responsible for the contents of the respective<br />
paper. Please address letters and manuscripts only to the Editorial Staff<br />
and not to individual persons of the association´s staff. We do not<br />
assume any responsibility for unrequested contributions.<br />
Signed articles do not necessarily represent the views of the editorial.<br />
ISSN 1431-5254<br />
Operation and New Build<br />
Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Simulation of KSMR Core Zero Power<br />
Conditions Using the Monte Carlo Code<br />
Serpent<br />
Yousef Alzaben, Victor H. Sanchez-Espinoza and Robert Stieglitz<br />
1 Introduction Karlsruhe Small Modular Reactor (KSMR) core has been developed at Karlsruhe Institute of<br />
Technology (KIT) based on the Korean System-Integrated Modular Advanced ReacTor (SMART) design [1]. A previous<br />
investigation [2] has been accomplished for a generic SMART core based on available public data. That study concluded<br />
the need for additional investigations. The KSMR core share many features of the SMART core, for example both have<br />
the same number of fuel assemblies (FAs) in the core; FAs are based on 17x17 fuel pin arrays PWR proven technology;<br />
the reactor core is loaded with low-enriched uranium fuel and cooled and moderated with light water. However, what<br />
differentiates them is that the KSMR core is operated without boron. To compensate for high excess reactivity at<br />
Beginning of Cycle (BOC), the KSMR core utilizes a number of burnable poison rods.<br />
In terms of safety, the KSMR core has a<br />
high negative Moderator Temperature<br />
Coefficient (MTC) which is a result of<br />
the absence of boron in the moderator.<br />
Hence, this feature is translated<br />
into an increased inherent core safety<br />
performance. Nevertheless, a high<br />
negative MTC could potentially make<br />
the core critical even with All-Rods-<br />
Inserted (ARI) in case of overcooling<br />
accidents such as main steam line<br />
break. Therefore, control rods should<br />
be designed properly to provide<br />
enough shutdown margin and eventually<br />
prevent recriticality in overcooling<br />
events.<br />
Currently, the KSMR is planned to<br />
have once-through fuel cycle as employed<br />
in mPower [3]. Conceptually,<br />
such a fuel cycle strategy has an<br />
advantage over multi- fuel cycle by<br />
reducing outages period due to refueling.<br />
On the other hand, single batch<br />
fuel loading does not effectively utilize<br />
fuel compared to multi-batches loading<br />
which can be noticed clearly by the<br />
linear reactivity model [4].<br />
The objective of this paper is to (a)<br />
generally address the challenges facing<br />
PWR- based SMRs core design;<br />
predict the: (b) reactivity change from<br />
hot to cold zero power; (c) cold shutdown<br />
margin; (d) fuel and moderator<br />
reactivity coefficient; and (e) 3D<br />
assembly- wise power distribution of<br />
the KSMR core by using the Monte<br />
Carlo tool Serpent.<br />
2 Used simulation tool<br />
Serpent [5] is a dedicated reactor<br />
physics code developed by VTT that<br />
performs stochastic modeling of particles<br />
using the Monte Carlo method. It<br />
uses continues energy rather than<br />
multi- group energy microscopic cross<br />
sections. In which the latter relay on<br />
an approximate self- shielding treatment<br />
in resonance regions. Unlike<br />
deterministic codes, Serpent has a<br />
flexible geometrical capability which<br />
allows high degree of accuracy to<br />
model complex geometries. For<br />
example, an explicit modeling of the<br />
structures surrounding the KSMR core<br />
(baffle, barrel, neutron pads, etc.) as<br />
well as axial structural details (spacer<br />
grids, end plugs, upper and lower<br />
nozzles, etc.) were modeled to account<br />
for their influence on core reactivity.<br />
Serpent has the capability to accurately<br />
represent S(α,β) thermal scattering<br />
data for 1H at any selected temperature<br />
through the use of linear interpolation<br />
between S(α,β) thermal scattering<br />
data [6]. Also, to treat cross section<br />
temperature-dependent data by<br />
using Doppler broadening preprocessor<br />
that is similar to the one used<br />
in NJOY [7]. Both features yielded<br />
a better estimation of feedback coefficients<br />
for the KSMR core. The Serpent<br />
version and nuclear data library used<br />
in the current work is 2.1.27 and<br />
ENDF/B-VII.0, respectively. In this<br />
work, Serpent source files have been<br />
modified to produce legacy Visualization<br />
Toolkit (VTK) [8] file for<br />
post-processing purposes.<br />
3 Core design and<br />
model description<br />
The design philosophy behind the<br />
KSMR core is to adopt many proven<br />
technology features from PWR technologies<br />
with an emphasis of not using<br />
soluble boron in the coolant. The<br />
advantage of having the boron-free<br />
operation is reflected in the elimination<br />
of the probability of boron dilution<br />
accidents. This issue is highly important<br />
for severe accidents especially if<br />
reflooding of the reactor core by seawater<br />
is considered. In such an event,<br />
core recriticality is mostly probable.<br />
The KSMR core differs from advanced<br />
PWRs (such as EPR, AP1000,<br />
etc.) in terms of core size and fraction<br />
of rodded FAs. The KSMR core has few<br />
FAs in the core (57 FAs) with approximately<br />
half of the active length (2 m)<br />
of PWRs. Due to that, an increased<br />
neutron leakage is expected. The<br />
fewer number of FAs in the core leads<br />
to fewer degrees of freedom compared<br />
to large reactors. These two aspects<br />
make the design of the KSMR a challenging<br />
process. The fraction of<br />
rodded FAs in the KSMR core is 72%<br />
whereas in PWRs is below 50% [9].<br />
The higher number of control rods in<br />
the core is due to the use of boron-free<br />
coolant. The Cold Zero Power (CZP)<br />
and Hot Zero Power (HZP) operating<br />
A<br />
| | Fig. 1.<br />
Serpent model of KSMR core.<br />
Control Rod<br />
Top Nozzle<br />
A<br />
Spacer Grids<br />
Core Barrel<br />
Bottom Nozzle<br />
Core Baffle<br />
Neutron Pad<br />
Burnable Poison<br />
Rod<br />
Guide Tube<br />
Spacer Grid<br />
Fuel Rod<br />
Reactor<br />
Pressure Vessel<br />
103<br />
RESEARCH AND INNOVATION<br />
Research and Innovation<br />
Simulation of KSMR Core Zero Power Conditions Using the Monte Carlo Code Serpent ı Yousef Alzaben, Victor H. Sanchez-Espinoza and Robert Stieglitz
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
RESEARCH AND INNOVATION 104<br />
conditions for the KSMR are defined<br />
as follows:<br />
pp<br />
Cold Zero Power (CZP): Refers to a<br />
pressure of 0.1 MPa with both fuel<br />
and coolant temperatures at 300 K.<br />
pp<br />
Hot Zero Power (HZP): Refers to a<br />
pressure of 15 MPa with both fuel<br />
and coolant at 569.15 K.<br />
The detailed Serpent model for the<br />
KSMR core is presented in Figure 1.<br />
4 Zero power results<br />
The simulations performed for the<br />
KSMR core include excess reactivity at<br />
CZP and HZP; cold shutdown margin;<br />
reactivity feedback coefficients; and<br />
3D assembly-wise power distribution.<br />
In addition, a sensitivity study was<br />
performed to measure the influence<br />
of core baffle, barrel, neutron pad,<br />
spacer grids, and RPV on core<br />
reactivity.<br />
Due to the inherent stochastic<br />
nature of Monte Carlo method, an<br />
adequate number of particles were<br />
used to establish reliable eigenvalue<br />
and 3D assembly-wise power distribution<br />
results. For each simulation,<br />
fission source convergence was monitored<br />
by Shannon entropy diagnosis<br />
of a mesh-based fission source data.<br />
This diagnosis led to a proper selection<br />
of the number of inactive cycles.<br />
For all cases mentioned above:<br />
200,000 particles/cycle; 2,000 cycles;<br />
and 300 inactive cycles were used.<br />
4.1 Excess reactivity<br />
The excess reactivity was simulated by<br />
extracting all control rods out of the<br />
core. Table 1 summarizes the excess<br />
reactivity at CZP and HZP conditions.<br />
At CZP 15,490 ±4<br />
At HZP 8,243 ±4<br />
Excess Reactivity (pcm)<br />
| | Tab. 1.<br />
KSMR core excess reactivity at CZP and HZP.<br />
4.2 Cold shutdown margin<br />
(CSDM)<br />
CSDM is defined as the amount of<br />
reactivity needed to make a reactor<br />
core in subcriticality condition at CZP.<br />
It is simulated by fully inserting all<br />
(shutdown and control) rods in the<br />
core. Taking a conservative approach,<br />
the CSDM was calculated instead of<br />
Hot SDM since the highest reactivity<br />
excess is at CZP. In normal practices,<br />
CSDM is evaluated with the highest<br />
worth control rod stuck outside the<br />
active core. In the KSMR core, the<br />
CSDM with single failure of highest<br />
control rod worth was found to be<br />
(-6,936 ±7) pcm.<br />
(a) Reactivity vs. Fuel Temperature<br />
(a) Reactivity vs. Fuel Temperature<br />
| | Fig. 2.<br />
KSMR reactivity trends vs. (a) fuel and (b) moderator temperature.<br />
Fuel Temperature Coefficient (pcm/K)* -2.06<br />
Moderator Temperature Coefficient (pcm/K)* -55.04<br />
| | Tab. 2.<br />
KSMR fuel and moderator temperature coefficients.<br />
* The statistical uncertainty at 1σ was found to be < 0.1 pcm/K<br />
4.3 Reactivity feedback<br />
coefficients<br />
Reactivity feedback coefficients are<br />
generally defined as a difference between<br />
two core reactivity states per a<br />
change in a given parameter. In this<br />
work, it was divided into two parts:<br />
Fuel Temperature Coefficient (FTC)<br />
and Moderator Temperature Coefficient<br />
(MTC). FTC is defined as the<br />
reactivity change due to an increase of<br />
fuel temperature per fuel temperature<br />
change, whereas the MTC is defined<br />
as the reactivity change due to an<br />
increase of moderator temperature<br />
and its corresponding density per<br />
moderator temperature change. The<br />
reactivity feedback coefficients were<br />
calculated at All-Rods-Out (ARO) as<br />
follows:<br />
pp<br />
Fuel Temperature Coefficient (FTC):<br />
The moderator temperature and<br />
density were both kept at HZP<br />
condition (569.15 K and 0.73371 g/<br />
cm 3 ) whereas fuel temperature was<br />
increased from 569.15 K to 769.15 K<br />
in 100 K step. Then, these results<br />
were fit linearly and the FTC was<br />
found from the slope of the fit line,<br />
as shown in Figure 2.<br />
pp<br />
Moderator Temperature Coefficient<br />
(MTC): The fuel temperature was<br />
Normalized Power Distribution<br />
| | Fig. 3.<br />
3D power distribution at HZP and ARO for the KSMR core.<br />
(b) Reactivity vs. Moderator Temperature<br />
(b) Reactivity vs. Moderator Temperature<br />
kept at HZP condition (569.15 K),<br />
then both moderator temperature<br />
and density were increased from<br />
569.15 K (0.73371 g/cm 3 ) to<br />
596.15 K (0.67056 g/cm 3 ) in 13.5 K<br />
step. After that, these results were<br />
fit quadratically and the MTC was<br />
found by evaluating the derivative<br />
of the fitted equation at 569.15 K,<br />
as shown in Figure 2.<br />
The reason behind fitting these data<br />
quadratically is the non-linearity relationship<br />
between moderator temperature<br />
and density. At high temperatures<br />
an increase in the moderator<br />
temperature causes a larger reduction<br />
in density compared to an identical<br />
increase at low moderator temperatures.<br />
The reactivity feedback coefficients<br />
for the KSMR core are presented<br />
in Table 2.<br />
4.4 3D assembly-wise power<br />
distribution<br />
In addition to the eigenvalue simulations<br />
at zero power, Serpent was also<br />
used to produce 3D assembly-wise<br />
normalized power distribution and its<br />
associated statistical uncertainty for<br />
the KSMR core at HZP and ARO. The<br />
axial discretization for scoring power<br />
Statistical Uncertainty<br />
Research and Innovation<br />
Simulation of KSMR Core Zero Power Conditions Using the Monte Carlo Code Serpent ı Yousef Alzaben, Victor H. Sanchez-Espinoza and Robert Stieglitz
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
data was set to be 20 axial regions.<br />
Figure 3 presents the 3D normalized<br />
power distribution and Figure 4<br />
zooms into the hot channel (highest<br />
power FA) axial power distribution.<br />
4.5 Sensitivity analysis<br />
A sensitivity study was performed on<br />
the KSMR to study the impact of<br />
including detailed radial and axial<br />
structures (core baffle, barrel, neutron<br />
pad, RPV, and spacer grids) on core<br />
reactivity. The simulation was performed<br />
by calculating the reactivity<br />
worth of each of the mentioned structures<br />
at HZP and ARO. The main<br />
objective of this study is investigating<br />
the worthiness of including these<br />
structures in cross section generations.<br />
Table 3 summarizes the outcomes<br />
of this study.<br />
Reactivity worth<br />
(pcm)<br />
Core baffle 404 ±4<br />
Core barrel<br />
Neutron pads<br />
RPV<br />
Negligible †<br />
Spacer grids 237 ±4<br />
| | Tab. 3.<br />
Reactivity worth for core baffle, barrel, neutron<br />
pad, RPV, and spacer grids.<br />
†<br />
The reactivity worth was found to be < 10 pcm<br />
5 Discussions and<br />
conclusions<br />
The KSMR core design has been investigated<br />
at (cold and hot) zero power<br />
and BOC conditions. The carried out<br />
investigation focused on evaluating<br />
the inherent safety features and the<br />
adequacy of the control system by<br />
using the Monte Carlo tool Serpent.<br />
The investigation process showed a<br />
remarkable performance of the KSMR<br />
at zero power.<br />
The excess reactivity, CSDM, reactivity<br />
coefficient, and power distribution<br />
have been analyzed. The excess<br />
reactivity of the KSMR was found to<br />
be (15,490 ± 4) pcm at CZP, which<br />
represents the highest possible excess<br />
reactivity in the core at BOC. In order<br />
to offset this large excess reactivity, a<br />
proper control system was designed.<br />
The control system must provide<br />
enough shutdown margin when all<br />
control rods in a reactor core are<br />
inserted in order to be an effective<br />
control system. In the KSMR core, the<br />
shutdown margin at the highest reactivity<br />
condition possible (CZP and<br />
failure of highest control rod worth)<br />
was found to be (-6,936 ±7) pcm.<br />
| | Fig. 4.<br />
Axial normalized power distribution at the highest power FA for the KSMR core.<br />
This result proves the effectiveness of<br />
the designed control system.<br />
Since the KSMR core was designed<br />
with boron-free moderator, the MTC<br />
was expected to be much higher<br />
compared to soluble boron operated<br />
reactors. The MTC was found to be<br />
(-55.04 ±0.10) pcm/K. This large<br />
negative feedback coefficient may<br />
affect the core reactivity in case of<br />
overcooling accidents. A further investigation<br />
is required to insure that the<br />
control system can always provide<br />
sufficient negative reactivity in any<br />
possible accident scenario. The FTC of<br />
the KSMR core revealed similar results<br />
compared to large PWR which was<br />
(-2.06 ±0.01) pcm/K.<br />
The normalized power distribution<br />
of the KSMR presented an interesting<br />
behavior in which high power amount<br />
was around the bottom and top of the<br />
core. It can be noticed from Figure 3<br />
and Figure 4 that higher power peak<br />
is found at the bottom of the core<br />
compared to the top of the core. This<br />
result is due to the fact that control<br />
rods are always presented in the top<br />
reflector when they are fully withdrawn.<br />
A further investigation is<br />
suggested to demonstrate the power<br />
peaking factor is within the acceptable<br />
limits when control rods at<br />
critical position and HFP condition.<br />
Last but not the least, a sensitivity<br />
study was performed for the KSMR<br />
core which showed the importance of<br />
including core baffle and spacer grids<br />
on the calculation of core reactivity.<br />
The outcome of this study will be used<br />
in generating cross sections of the<br />
KSMR. The next step of analyzing the<br />
KSMR core is transient and HFP simulation.<br />
The former investigation will<br />
be possible by generating cross<br />
sections at different fuel and coolant<br />
temperatures to be used later in core<br />
simulators such as PARCS or DYN3D.<br />
The latter investigation will be<br />
possible thanks to the KIT coupled<br />
code Serpent-Subchanflow [10].<br />
References<br />
1. K. B. Park, “SMART: An Early Deployable Integral Reactor for<br />
Multi-Purpose Applications”, INPRO Dialogue Forum on Nuclear<br />
Energy Innovations: CUC for Small & Medium-sized Nuclear Power<br />
Reactors, 10-14 October 2011, Vienna, Austria.<br />
2. Y. Alzaben, V. Sanchez, R.Stieglitz, “Neutronics Safety-Related<br />
Investigations of a Generic SMART Core with State-of-the-Art<br />
Tools”, NUTHOS-11, Gyeongju, Korea, October 9-13, 2016.<br />
3. M. J. Scarangella, “An Extended Conventional Fuel Cycle for the<br />
B&W mPower Small Modular Nuclear Reactor”, PHYSOR 2012,<br />
Knoxville, Tennessee, April 15-20, 2012.<br />
4. M. J. Driscoll, T. J. Downar and E. E. Pilat, “The Linear Reactivity<br />
Model for Nuclear Fuel Management”, La Grange Park, Ill., USA:<br />
American Nuclear Society, 1990.<br />
5. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, and T. Kaltiaisenaho.<br />
“The Serpent Monte Carlo code: Status, development<br />
and applications in 2013.” Ann. Nucl. Energy, 82 (2015) 142-150.<br />
6. T. Viitanen, and J. Leppänen, “New Interpolation Capabilities<br />
For Thermal Scattering Data In Serpent 2”, PHYSOR 2016, Sun<br />
Valley, ID, May 1–5, 2016.<br />
7. T. Viitanen, and J. Leppänen. “New Data processing features in<br />
the Serpent Monte Carlo code.” Journal of the Korean Physical<br />
Society, 59 (2011) 1365-1368.<br />
8. The VTK User’s Guide, Kitware, Inc., 11th Edition, 2010.<br />
9. J.-J. Ingremeau, and M. Cordiez, “Flexblue® core design:<br />
optimisation of fuel poisoning for a soluble boron free core with<br />
full or half core refuelling”, EPJ Nuclear Sci. Technol. 1, 11 (2015).<br />
10. M. Daeubler, A. Ivanov, B. L. Sjenitzer, V. Sanchez, R. Stieglitz,<br />
R. Macian-Juan, “High-fidelity Coupled Monte Carlo Neutron<br />
Transport and Thermal-hydraulic Simulations using Serpent 2/<br />
SUBCHANFLOW”, Annals of Nuclear Energy, Volume 83, September<br />
2015, Pages 352–375.<br />
Authors<br />
Yousef Alzaben<br />
Victor H. Sanchez-Espinoza<br />
Robert Stieglitz<br />
Karlsruhe Institute of Technology<br />
(KIT) – Campus Nord<br />
Neutron Physics and Reactor<br />
Technology Institute (INR)<br />
Reactor Physics and Dynamics<br />
Group (RPD)<br />
Hermann-von-Helmholtz-Platz 1<br />
76344 Eggenstein-Leopoldshafen<br />
Germany<br />
RESEARCH AND INNOVATION 105<br />
Research and Innovation<br />
Simulation of KSMR Core Zero Power Conditions Using the Monte Carlo Code Serpent ı Yousef Alzaben, Victor H. Sanchez-Espinoza and Robert Stieglitz
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Special Topic | A Journey Through 50 Years AMNT<br />
106<br />
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />
Am 7. und 8. Mai<br />
<strong>2019</strong> begehen wir<br />
das 50. Jubiläum<br />
unserer Jahrestagung<br />
Kerntechnik. Zu<br />
diesem Anlass öffnen<br />
wir unser <strong>atw</strong>-Archiv<br />
für Sie und präsentieren<br />
Ihnen in jeder<br />
Ausgabe einen<br />
historischen Artikel.<br />
DAtF-KTG-Reaktortagung 1971 in Bonn<br />
Die Reaktortagung 1971, die, wie die vorjährige Tagung in Berlin, vom Deutschen Atomforum gemeinsam mit der<br />
Kerntechnischen Gesellschaft im DAtF abgehalten wurde, erwies sich wieder als die umfassendste Veranstaltung auf<br />
nuklearem Gebiet in der BRD. Damit hat sich zweifellos diese Tagung, die, nach den früheren spezielleren Reaktortheorietagungen,<br />
zum dritten Mal in dieser Form für das gesamte Reaktorgebiet abgehalten wurde, endgültig durchgesetzt.<br />
Tagungsumfang und Teilnehmerzahl berechtigen zum Vergleich mit den alljährlichen ANS-AIF- Wintertagungen<br />
in den USA, auch wenn diese noch wesentlich monströser sind. Außerhalb der USA hat sich die deutsche Reaktortagung<br />
jedenfalls zur größten nationalen Veranstaltung dieser Art entwickelt.<br />
Die Teilnehmerzahl lag wiederum höher als erwartet. Mehr<br />
als 1500 Fachleute aus Kernforschung und -technik, aus<br />
Energiewirtschaft und aus den Genehmigungs behörden<br />
besuchten vom 30.3. bis 2.4.1971 in Bonn Übersichtsvorträge,<br />
Podiumsdiskussion und die Plenarveranstaltung in<br />
der Beethovenhalle sowie Kurzvorträge in der Universität.<br />
Die große Hörerzahl ist nicht nur ein Kompliment für die<br />
Organisatoren der Tagung, sondern auch ein Beweis für<br />
das Wachsen des Feldes. Sie bereitet den Organisatoren<br />
aber auch manchen Kummer: überraschenderweise hat<br />
sich herausgestellt, daß in der Bundesrepublik kaum Städte<br />
zu finden sind, in denen eine Plenarveranstaltung mit 1500<br />
Teilnehmern und eine größere Anzahl paralleler Sitzungen<br />
mit jeweils einigen hundert Hörern am gleichen Ort abgehalten<br />
werden können, wie dies z. B. bei der Reaktortagung<br />
1970 in der Berliner Kongreßhalle möglich war. In Bonn<br />
mußten die Teilnehmer zwischen Beethovenhalle (vormittags)<br />
und Universität (nachmittags) pendeln, wobei die<br />
Platzverhältnisse, gemessen z. B. an der Frankfurter<br />
Tagung, noch relativ günstig waren.<br />
Die wissenschaftliche Leitung der Tagung hatte wieder<br />
der Präsident der Kerntechnischen Gesellschaft, Prof. Dr.<br />
W. Häfele, der in seiner Eröffnungsansprache auf die Fortschritte<br />
der Kernenergieentwicklung im vergangenen Jahr<br />
und das jetzt beschleunigte Wachstum der Kernenergiekapazität<br />
in der ganzen Welt und vor allem auch in der<br />
BRD hinwies. In einem Jahr, in dem mit fünf Kernkraftwerksaufträgen<br />
mit zusammen ca. 5000 MW gerechnet<br />
wird, von denen vier bereits jetzt bestellt oder so gut<br />
wie bestellt sind, in dem außerdem mit dem ersten österreichischen<br />
Kernkraftwerk ein weiterer Exporterfolg<br />
errungen wurde und in dem sowohl von der Seite der<br />
Versorgungssicherheit als auch von der Wirtschaftlichkeit<br />
her die Kernenergie sich klarer denn je als Spitzenreiter<br />
ausweisen kann, haben die Reaktorfachleute natürlich<br />
allen Grund zum Optimismus. Kernkraftwerken kommt ja<br />
neben steigendem volkswirtschaftlichen Nutzen und<br />
abgesehen vom unumgänglichen Bedarf gerade auch im<br />
Sinne der schärfer formulierten Forderungen des Umweltschutzes<br />
große Bedeutung zu.<br />
Die vier Veranstaltungsvormittage waren mit zwölf<br />
Übersichtsvorträgen, einem Plenarvortrag und einer<br />
Podiumsdiskussion ausgefüllt. An den Nachmittagen<br />
wurden in fünf parallelen Sitzungsreihen über 200 Fachvorträge<br />
gehalten. Man mag über die große Anzahl der<br />
Kurzvorträge geteilter Meinung sein, ganz sicher rechtfertigt<br />
sie jedoch der Wunsch, möglichst vielen jüngeren<br />
Wissenschaftlern ein Podium für ihre eigenen Arbeiten zu<br />
bieten. Daß diese Möglichkeit erwünscht ist, beweisen 374<br />
eingereichte Kurzvorträge, aus denen 208 ausgewählt<br />
wurden. Das Auswahlproblem, das in dieser Zeitschrift bereits<br />
vor der Tagung diskutiert wurde (vgl. <strong>atw</strong> 4/71,<br />
S. 169), lieferte auch während der Tagung noch vielfältigen<br />
Gesprächsstoff. Die Kritik entzündete sich nicht<br />
zuletzt an dem Proporz, der einer sachlichen Auswahl<br />
offensichtlich in erster Linie im Wege steht.<br />
Eine besonders starke Resonanz fanden die sowohl von<br />
der Thematik her als auch in der Wahl der Referenten als<br />
überdurchschnittlich gut einzustufenden Übersichtsvorträge,<br />
die ihrem Zweck der interdisziplinären Information<br />
und Kommunikation voll gerecht wurden. Ausgehend von<br />
der zunehmenden Bedeutung der Elektrizität für unsere<br />
Gesellschaft und von Berichten über den Stand der beiden<br />
Reaktorbaulinien der nächsten Generation, wurde die<br />
wegen ihrer Aktualität mit besonderer Spannung erwartete<br />
Themengruppe über die Wechselwirkung von Kernenergie<br />
und Umwelt, die in drei Vorträgen von der physiologischen,<br />
technischen und Strahlenschutzseite her beleuchtet<br />
wurde, zu einem Höhepunkt der diesjährigen Tagung.<br />
Großes Interesse fand auch die Übersicht über die den<br />
Reaktorfachleuten meist nicht so geläufige Nutzung<br />
radioaktiver Stoffe. Die Vorträge des letzten Vormittags<br />
gaben ein recht umfassendes und geschlossenes Bild über<br />
den Stand der Brennstoffkreislaufindustrie bis hin zur<br />
Behandlung und Lagerung der radioaktiven Abfälle. Nicht<br />
unerwähnt sollen zwei außerhalb von geschlossenen<br />
Themenkreisen stehende Übersichtsvorträge bleiben, in<br />
denen zukunftsträchtige reaktortechnische Gebiete<br />
referiert wurden, nämlich der Prozeßrechnereinsatz in<br />
Kernkraftwerken, der bislang noch mehr oder weniger<br />
passiv erfolgt, und das Incore-Thermionik-Reaktorprojekt,<br />
an dem in Forschungszentren und von Entwicklungsgruppen<br />
in der Industrie für die Energieversorgung von<br />
Fernsehsatelliten mit großem Nachdruck gearbeitet wird.<br />
Ein weiterer Höhepunkt der Reaktortagung, der auch<br />
in engem thematischen Zusammenhang mit den Übersichtsvorträgen<br />
zu Umweltschutzfragen stand, war die<br />
Podiumsdiskussion über das Thema „Kernenergie und<br />
Gesellschaft”. Unter der Leitung des bekannten Fernsehmoderators<br />
R. Appel äußerten zunächst Repräsentanten<br />
der drei Bundestagsfraktionen Fragen und Meinungen<br />
zum Gesamtgebiet Kernenergie, die dann von Vertretern<br />
der kerntechnischen Industrie, der Elektrizitätsversorgungsunternehmen,<br />
des Bundesgesundheitsamtes, der<br />
Special Topic | A Journey Through 50 Years AMNT<br />
1971 DAtF-KTG-Meeting on Reactors in Bonn
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Reaktorsicherheitskommission und des Bundesministeriums<br />
für Bildung und Wissenschaft aufgegriffen und<br />
beantwortet wurden. Die Teilnehmer des Panels forderten<br />
eine noch wesentlich bessere und rückhaltlosere Unterrichtung<br />
der Öffentlichkeit über alle Fragen der Kernenergienutzung,<br />
insbesondere soweit sie Sicherheitsfragen<br />
berühren. In diesem Sinne versuchten am nächsten<br />
Tag der wissenschaftliche Tagungsleiter und zahlreiche<br />
Teilnehmer mit Demonstranten vor Beginn der Plenarveranstaltung<br />
über Sicherheitsprobleme in Zusammenhang<br />
mit der Kernenergienutzung zu diskutieren. Der fruchtlose<br />
Versuch einer Diskussion mit einer Gruppe, die überwiegend<br />
aus dem Thema fernstehenden Frauen und<br />
Kindern bestand, unterstreicht den guten Willen der Kerntechniker<br />
zur sachlichen Diskussion und sollte jedenfalls<br />
nicht zur Resignation seitens der Fachleute führen. Daß<br />
Demonstrationen dieser Art zustande kommen, ist letzten<br />
Endes doch wirklichem Informationsbedürfnis und<br />
mangelnder Informationsarbeit zuzuschreiben.<br />
Im Mittelpunkt der vom Präsidialmitglied des DAtF,<br />
Prof. Dr. H. Goeschel, eröffneten Plenarveranstaltung<br />
stand der Festvortrag von Dr. H. Frewer „Energieverbund<br />
zwischen nuklearen und konventionellen Kraftwerken”.<br />
Nachdem Prof. Goeschel darauf hingewiesen hatte, daß<br />
von den deutschen Reaktorbaufirmen als Vorleistung in<br />
den letzten 15 Jahren Verluste von weit über 500 Mio. DM<br />
verbucht werden mußten, unterstrich Dr. Frewer, daß die<br />
Sicherheitsauflagen für Bau und Betrieb der Kern reaktoren<br />
in der Bundesrepublik einen derart perfektionierten Stand<br />
erreicht haben, daß die internationale Konkurrenzfähigkeit<br />
der deutschen Reaktorindustrie vor allem in<br />
dritten Ländern bereits geschmälert sei. Zur verstärkten<br />
Nutzung der Kernenergie in der BRD führte er aus, daß der<br />
wirtschaftlich optimale Einsatz von Kernkraftwerken nur<br />
durch eine integrierte Verbundoptimierung aller Energieträger<br />
erreicht werden könne. Das Deutsche Atomforum<br />
führte gleichzeitig mit der Reaktortagung in der<br />
Beethoven halle eine nicht nur für die Teilnehmer, sondern<br />
noch mehr für eine breitere Öffentlichkeit bestimmte<br />
Ausstellung „Kernenergie – friedlich genutzt“ durch, die<br />
ein anschauliches Bild der verschiedenen zur Kernenergienutzung<br />
gehörenden Gebiete und Entwicklungen, vor<br />
allem auch in der Bundesrepublik, zeigte.<br />
Die nachfolgenden Kurzberichte über die einzelnen<br />
Sitzungen können und sollen wieder nur Tendenzen und<br />
nur in wenigen Fällen besonders interessierende Einzelentwicklungen<br />
hervorheben.<br />
1 Reaktoranalysis<br />
Den an der Auslegung des Reaktorkerns arbeitenden<br />
Wissenschaftlern bot sich mit 80 Vorträgen aus den<br />
Bereichen der Physik, Sicherheit und Thermohydraulik ein<br />
breites Spektrum an Informationen.<br />
An dieser Stelle seien einige allgemeine Bemerkungen<br />
und persönliche Eindrücke zur Sektion 1 festgehalten,<br />
bezüglich Details der Einzelbeiträge sei auf die in Kürze<br />
erscheinende Compact-Sammlung der Konferenz hingewiesen<br />
(am Rande sei bemerkt, daß die Herausgabe und<br />
die ansprechende Aufmachung der Compacts der Berliner<br />
Tagung wesentlich das Ansehen der Tagung gefördert<br />
haben dürften). Wenn man bedenkt, daß etwa 70 weitere<br />
Anmeldungen zurückgestellt wurden, so läßt dies darauf<br />
schließen, daß offenbar die Reaktoranalysis eine gewisse<br />
Sonderstellung im Vergleich zu den anderen Sektionen<br />
einnimmt. Dies ist zunächst sicher eine Folge des großen,<br />
umfassenden Gebietes, das die Reaktoranalysis umschließt.<br />
Es drängt sich die Frage auf, ob es sich hier nicht<br />
| | Die Podiumsdiskussion über „Kernenergie und Gesellschaft“<br />
auf der Reaktortagung 1971.<br />
eher um zwei Sektionen handelt – und man sucht nach<br />
einer möglichen Trennlinie. Würde man diese bei der<br />
Thermohydraulik ziehen, so wären allerdings nur 11 Vorträge<br />
der jetzigen Tagung daruntergefallen. Zweifellos<br />
wird das gerade genannte Teilgebiet im Laufe der nächsten<br />
Jahre ein zunehmendes Interesse finden, so daß das jetzt<br />
vorliegende stärkere Übergewicht der Physik zurückgehen<br />
dürfte.<br />
Wo liegen die sachlichen Schwerpunkte der Sektion 1?<br />
Wenden wir uns zunächst den Physikbeiträgen zu. In<br />
der Reaktortheorie kommt zweifellos der Erstellung<br />
mehr dimensionaler Reaktorprogramme eine zentrale<br />
Bedeutung zu. Dies wird natürlich durch die Ver größerung<br />
an Speicherkapazität und an Rechengeschwindigkeit<br />
moderner Computer mit bedingt, jedoch auch durch<br />
den Wunsch nach größerer Genauigkeit der Vorhersage<br />
nuklearer Parameter. Berechnungen von statischen und<br />
zeitabhängigen Neutronenverteilungen in zwei und<br />
drei Raum-Dimensionen wurden diskutiert, ebenso<br />
die Effektivität von Programmsystemen. Als besonders<br />
interessant ist dem Verfasser dabei die Bestimmung<br />
dreidimensionaler Flußverteilungen mit Hilfe von Stoßwahrscheinlichkeiten<br />
im Gedächtnis geblieben.<br />
Das Reaktorcore wird hierbei in Quader aufgeteilt,<br />
wobei die Kopplung zwischen diesen über die ein- und<br />
auslaufenden Ströme vermittelt wird.<br />
Die theoretische Analyse schneller Reaktoren scheint<br />
ebenfalls einen Schritt weitergekommen zu sein. Obwohl<br />
einige noch nicht verstandene Diskrepanzen zwischen<br />
Theorie und Experiment vorliegen und man in z. T.<br />
beeindruckenden experimentellen Versuchsreihen dabei<br />
ist, diese Unterschiede aufzuklären (z. B. die Bestimmung<br />
von ß eff ), wurde z. B. bei der Analyse einer Vielzahl von<br />
kritischen Anordnungen eine Genauigkeit in der Vorhersage<br />
der Kritikalität von besser als 1 % erreicht. Man<br />
hat damit also etwa die gleiche Unsicherheit wie bei der<br />
nuklearen Analyse thermischer Reaktoren erreicht. Dieses<br />
Ergebnis sollte jedoch nicht darüber hinwegtäuschen, daß<br />
zufällige Kompensationseffekte durchaus noch mit im<br />
Spiel sein können. Auf der experimentellen Seite können<br />
die Meßverfahren in kriti- tischen Anordnungen als weitgehend<br />
etabliert angesehen werden. Leider hörte man<br />
nichts über die Analyse des Reaktorrauschens bei Leistung,<br />
ein Gebiet, das einige Gruppen bearbeiten, das jedoch<br />
offenbar nur langsam Fortschritte macht. Die breit<br />
angelegte Versuchsreihe zur Physik von Plutonium- Uran-<br />
Brennstoff in Leichtwassergittern ist im Hinblick auf die<br />
Rezyklierung des Brennstoffs in thermischen Reaktoren<br />
besonders hervorzuheben.<br />
Der Bereich der Reaktordynamik und Sicherheit<br />
erscheint, verglichen mit seiner Bedeutung, etwas unterrepräsentiert.<br />
Dazu muß man beachten, daß über viele mit<br />
107<br />
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />
Special Topic | A Journey Through 50 Years AMNT<br />
1971 DAtF-KTG-Meeting on Reactors in Bonn
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
108<br />
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />
der Reaktorsicherheit verbundene Fragen auch in Sektion 2<br />
berichtet wurde. In der Reaktordynamik werden von einigen<br />
Gruppen mehrdimensionale ortsabhängige Neutronik-<br />
Programme entwickelt oder auch bereits eingesetzt, während<br />
meist auf eine entsprechend aufwendige Behandlung<br />
thermo- und hydrodynamischer Rückwirkungen noch verzichtet<br />
wird. Eine klar überschaubare und abgerundete<br />
Darstellung der sicherheitstechnischen Relevanz dieser<br />
Methoden wurde allerdings noch nicht gegeben.<br />
In der Thermohydraulik fanden die Beiträge zur Quervermischung<br />
des Kühlmittels und der Strömungsverteilung<br />
um Blockaden in Rohrbündeln großes Interesse.<br />
Hierzu ist zu sagen, daß man über eine parametrisierte<br />
Darstellung der Vorgänge noch nicht wesentlich hinausgekommen<br />
ist; es muß noch viel Arbeit in die theoretische<br />
Interpretation hineingesteckt werden. Dies ist nicht sehr<br />
verwunderlich, denn die vollständige Beschreibung der<br />
einfacheren Probleme ohne Quervermischung ist bereits<br />
sehr aufwendig. Schon eingangs wurde gesagt, daß dieser<br />
Bereich der Reaktoranalysis der Wichtigkeit entsprechend<br />
eine stärkere und dabei koordinierte Bearbeitung erfordert.<br />
In diesem Sinne wäre auch die Bildung einer Fachgruppe<br />
Thermohydraulik der KTG sehr zu begrüßen.<br />
2 Reaktorbauelemente und -komponenten<br />
In dieser Sektion, für die die Bezeichnung „Reaktorkomponenten<br />
und -kreisläufe” vielleicht besser wäre, wurden<br />
36 Vorträge gehalten. Davon bezogen sich etwa 14 auf<br />
Anwendungen in natriumgekühlten, 12 in wassergekühlten<br />
und 7 in gasgekühlten Reaktoren. Die restlichen<br />
Vorträge lassen sich nicht ohne weiteres in dieses etwas<br />
willkürliche Schema einordnen.<br />
Die eigentlichen Reaktorkomponenten waren etwas<br />
schwach vertreten. Die Gesamtzahl der Vorträge täuscht<br />
bei dieser Beurteilung, da in der Sektion eine Reihe von<br />
Vorträgen gehalten wurden, die ihrem Inhalt nach besser<br />
anderen Sektionen zuzuordnen sind. So gehören z. B. die<br />
acht Vorträge der Untersektion Kernwerkstoffe thematisch<br />
fast ausschließlich zur Sektion 4. Die reaktorbauende<br />
Industrie sollte ermuntert werden, aus ihrem reichen<br />
Erfahrungsschatz gerade für diese Sektion etwas mehr<br />
beizusteuern. Ansätze dazu waren auf dem Gebiet der<br />
Leichtwasserreaktoren vorhanden, aber es hätte auch hier<br />
mehr sein können.<br />
Bei den Vorträgen, die sich mit der Natriumtechnologie<br />
befaßten, war naturgemäß ein größerer Anteil theoretischer<br />
Natur, wie etwa die digitale Störfallsimulierung für<br />
das Dampferzeugersystem des SNR oder Berechnungen<br />
zum Druckaufbau in natriumbeheizten Dampferzeugern<br />
bei etwaigen Na-H 2 O-Reaktionen sowie Vergleiche<br />
zwischen austenitischen und ferritischen Na/Na-Wärmeaustauschern.<br />
Immerhin standen zumindest teilweise<br />
Versuchsergebnisse zur Abstützung der Rechnungen oder<br />
zum Vergleich zur Verfügung. Einen noch größeren Anteil<br />
hatten Analysen-, Meß- und Nachweisverfahren in<br />
Natrium kühlkreisläufen. Hier beginnen sich die Erfahrungen<br />
mit den in Betrieb befindlichen Versuchsanlagen<br />
auszuwirken bzw. jene Erfahrungen, die bei der<br />
Planung und dem Bau weit umfangreicherer, noch nicht in<br />
Betrieb befindlicher Anlagen einschließlich des KNK<br />
gewonnen wurden. Gerade diese kurz vor ihrer Inbetriebnahme<br />
stehenden Anlagen, die auch in einem Übersichtsvortrag<br />
vorgestellt wurden, werden einen weiteren<br />
wichtigen Beitrag zur Reife der Natriumtechnologie<br />
liefern. Zwei Vorträge über Handhabungseinrichtungen<br />
und Reinigung natriumbenetzter Teile machten deutlich,<br />
daß auf diesem Gebiet ein großer Erfahrungsschatz<br />
vorliegt, mit dem der vielfach als sehr problematisch angesehene<br />
Umgang mit Natrium beherrschbar sein sollte.<br />
Auch werden bald Großversuche mit dem Drehdeckelabdichtsystem<br />
des SNR und der Brennelementwechselmaschine<br />
im Natriumbetrieb beginnen.<br />
Die mehr theoretischen Vorträge auf dem Gebiet der<br />
wassergekühlten Reaktoren galten der Sprödbruchanalyse<br />
von Druckgefäßen für Druckwasserreaktoren bei Kaltwasser<br />
einspeisung zur Kernnotkühlung und den Kriterien<br />
zur Auslegung der Sicherheitsumschließung für Siedewasserreaktoren.<br />
Für erstere wurde mit Hilfe der Bruchmechanik<br />
gezeigt, daß der hypothetische Störfall auch nach<br />
einer langen Einsatzzeit des Druckbehälters nicht zu<br />
Sprödbruchschäden an diesem führt. Der zweite Vortrag<br />
ließ erkennen, daß bei der heute in Deutschland üblichen<br />
Bauweise des Sicherheitsbehälters mit Druckabbausystem<br />
zusammen mit der Anordnung des Turbinenkreislaufes im<br />
Reaktorgebäude bei richtiger Auslegung alle denkbaren<br />
Störfälle sicher beherrscht werden können. Die Her stellung<br />
großer Druckgefäße und ein Vergleich von Ergebnissen<br />
der Verfahrens- und Fertigungsprüfung bei Schweißplattierungen<br />
solcher Druckgefäße waren Themen weiterer<br />
Vorträge. Da nahtlos geschmiedete Flanschringe für große<br />
Reaktordruckbehälter nur in den USA und in Japan hergestellt<br />
werden können, schmiedet man in der BRD zwei<br />
Halbringe und vereinigt diese durch Elektroschlackeschweißung,<br />
über die ebenfalls berichtet wurde. Vor der<br />
mechanischen Bearbeitung erfolgt eine Vergütung des so<br />
geschweißten Ringes. Letzte Rundschweißnähte am<br />
Behälter werden zum Teil aus Transportgründen auf der<br />
Baustelle ausgeführt. Der Prüfaufwand ist beträchtlich,<br />
jedoch erforderlich, besonders da die Erfahrungen der<br />
Hersteller und Prüfer noch nicht allzu groß sind.<br />
Bei den Armaturen für Druckwasserreaktoren ist ein<br />
deutlicher Zug zur Typisierung erkennbar. Für die<br />
Bestellung und Lagerhaltung auch auf der Baustelle wird<br />
EDV eingesetzt. Da der Einzelprüfaufwand groß ist, wird<br />
bei Siemens ein umfangreicher Armaturenprüfstand<br />
erstellt, der es gestattet, alle Armaturen bei Betriebsbedingungen<br />
zu testen. Für die Dampfleitungen bei Siedewasser<br />
reaktoren werden neuerdings eigenmediumsbetätigte<br />
Schnellschlußarmaturen eingesetzt, die mit<br />
einer noch höheren Sicherheit schließen als die bisher verwendeten.<br />
Die Erfahrungen mit den Hauptkühlmittelpumpen<br />
von Druckwasserreaktoren (ähnliches gilt auch<br />
für Siedewasserreaktoren) haben gezeigt, daß mit der<br />
Bauart „Außenliegender angeflanschter Motor und<br />
berührungsfreie, hydrostatisch wirkende Wellendichtung”<br />
Laufzeiten von 20.000 h erreicht werden. Zur Messung des<br />
Neutronenflusses in Reaktoren wurde ein Verfahren mit<br />
Wechselstromkanal und Kreuzkorrelation entwickelt,<br />
welches gestattet, beim An- bzw. Abfahren den Fluß über<br />
7 1/2 Dekaden mit der gleichen Anordnung linear zu<br />
messen. Für die Erfassung der Neutronenflußverteilung in<br />
großen Cores wurde ein sehr interessantes Meßverfahren<br />
vorgestellt, welches beim KKS (Stade) in Kombination mit<br />
dem Prozeßrechner gestattet, innerhalb von 10 Minuten<br />
eine komplette Flußverteilung an 32 über den Querschnitt<br />
des Cores verteilten Positionen und über die gesamte<br />
Länge des Cores zu ermitteln. Das System soll nachträglich<br />
auch in Lingen eingebaut werden.<br />
Auf dem Gebiet der gasgekühlten Reaktoren wurde<br />
u. a. über eine in Ispra entwickelte Innenisolierung für<br />
Spannbetonbehälter berichtet. Es wird schwierig sein,<br />
dieses Konzept industriell einzuführen, da in Westeuropa<br />
und den USA bereits Erfahrungen mit etwas anderen<br />
Systemen vorliegen. Für den THTR in Schmehausen<br />
Special Topic | A Journey Through 50 Years AMNT<br />
1971 DAtF-KTG-Meeting on Reactors in Bonn
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
werden auf Grund einer Zuverlässigkeitsanalyse linear in<br />
den Kugelhaufen einfahrbare Abschaltstäbe einem spiralbohrerähnlichen<br />
Drehstabkonzept vorgezogen. Die<br />
Regelung des Gasmassenstromes wird beim THTR über<br />
Frequenzsteuerung der integrierten Asynchronmotoren<br />
vorgenommen, wobei die Frequenzgeneratoren von drehzahlsteuerbaren<br />
Dampfturbinen angetrieben werden.<br />
Andere Regelungsmöglichkeiten wurden diskutiert. Bei<br />
Langzeitversuchen an Dampferzeugermaterialien in einer<br />
für einen HTR repräsentativen Gasatmosphäre wurden<br />
keine Kohlenstoffablagerungen festgestellt, obwohl Ha-<br />
Diffusion auftrat. Anhand von wärme- und strömungstechnischen<br />
Untersuchungen in Luft und Helium unter<br />
höheren Drücken wurden Vorteile von schraubenförmig<br />
gewendelten Rohrpaketen mit gleichbleibender kleiner<br />
Längsteilung für Dampferzeuger herausgestellt. Die Einhaltung<br />
gewisser Wandabstände ist für eine gleichmäßige<br />
Gasabkühlung von großer Bedeutung. Bei Graphiteinbauten<br />
lassen sich durch Pyrokohlenstoffschichten an<br />
der Oberfläche und in den Poren die Korrosions- und<br />
mecha nischen Eigenschaften erheblich verbessern. Als<br />
Pyrolysegas ist Propan günstiger als Methan. Rechnungen<br />
zeigten, daß bei hohen Temperaturen (ab 950 °C) und Vorhandensein<br />
von Spannungen Ha in den Graphit ein dringen<br />
und mehrere mm unter der Oberfläche durch Korrosion<br />
von C eine Vermorschung hervorrufen kann, so daß evtl.<br />
später Stücke der Oberfläche ausbrechen können. Ein Verfahren<br />
zur Bestimmung der Kühlmitteigeschwindigkeit<br />
mit Hilfe von korrelierten Thermoelementsignalen ist für<br />
verschiedene Fluide anwendbar.<br />
In der Untersektion Kernwerkstoffe befaßten sich<br />
mehrere Vorträge mit technologischen Fragen wie Ausscheidungsverhalten,<br />
Verträglichkeitsbedingungen mit<br />
dem Brennstoff und dem Kühlmittel, Festigkeitseigenschaften,<br />
Einfluß der Neutronenbestrahlung (Hochtemperaturstrahlungsversprödung)<br />
bei Hüllrohrwerkstoffen für<br />
natrium- und dampfgekühlte Reaktoren. Hauptsächlich<br />
wurden hochwarmfeste austenitische Stähle und Superlegierungen<br />
aus den Inconel-, Incoloy- und Hastelloyreihen<br />
diskutiert. Weiterhin wurde gezeigt, daß längsnahtgeschweißte<br />
Zircaloy-Hüllrohre nahtlos gezogenen gleichwertig<br />
sein können, und eine Methode zur zerstörungsfreien<br />
Bestimmung von niedrigen HJ-Konzentrationen in<br />
Metallen, angewendet auf die Diffusion von Ha in Zircaloy-<br />
Yttriumkombinationen, vorgestellt. Mit dem Problem der<br />
Fertigung von Abstandshaltern für stabbündelförmigc<br />
Brennelemente befaßte sich ein weiterer Vortrag.<br />
3 Bau und Betrieb<br />
von kerntechnischen Anlagen<br />
In der Sektion 3 wurden die Themen „Reaktorbetriebserfahrungen”,<br />
„Sicherheit und Umwelt”, „EDV in der<br />
Kerntechnik” und „Wiederholungsprüfungen” behandelt.<br />
In rasch wachsendem Maße fallen auch in der BRD<br />
Betriebserfahrungen an. Dementsprechend nahmen die<br />
diesem Thema gewidmeten Kurzvorträge einen breiten<br />
Raum ein. Ein zentrales Thema bei den zusammenfassenden<br />
Darstellungen über die bisherigen Betriebserfahrungen<br />
mit Leichtwasserreaktoren stellte das Verhalten<br />
der Brennelemente dar. Sowohl Wirtschaftlichkeitsfragen<br />
im Zusammenhang mit der betriebsnahen Brennelement-<br />
Einsatzplanung als auch die bisherigen Erfahrungen mit<br />
Brennelemenlschäden wurden ausführlich diskutiert.<br />
Die Planung des BE-Einsatzes unterliegt Forderungen,<br />
die einerseits aus dem Energieversorgungssystem, in das<br />
das Kraftwerk integriert ist, andererseits aus dem Kraftwerk<br />
selbst gestellt werden. Welche Betriebsvariablcn zu<br />
berücksichtigen sind und wie die BE-Einsatzplanung den<br />
Erfordernissen kurzfristig angepaßt werden kann, wurde<br />
an typischen Beispielen für beide Leichtwasserreaktortypen<br />
beschrieben. Besonders hingewiesen wurde auf die<br />
Möglichkeiten einer Verlängerung der reaktivitätsbedingten<br />
Zyklusdauer bei Siedewasserreaktoren unter<br />
weitgehender Erhaltung der Lastwechselflexibilität.<br />
Eine Verkürzung der durch BE-Wechsel und parallel<br />
dazu laufende Inspektions-, Wartungs- und Reparaturarbeiten<br />
bedingten – in der jährlichen Verfügbarkeit nicht<br />
erfaßten – Stillstands-Zeiten erscheint durch langfristige<br />
Planung, betriebsmäßige Maßnahmen und Berücksichtigung<br />
bei der Aus legung von Systemen möglich. In den<br />
Vorträgen wurden Einzelheiten solcher Maßnahmen, z. B.<br />
auch in bezug auf die Verbesserung der Gerätetechnik und<br />
der Ausstattung der Kernkraftwerke, mitgeteilt.<br />
In einer überraschend großen Zahl von Vorträgen<br />
wurde das Thema Brennelementschäden aufgegriffen. Die<br />
rasche Aufklärung der bisher in deutschen Reaktoranlagen<br />
bekanntgewordenen BE- Schäden hat zwar auch sicherheitstechnisches<br />
Interesse; die intensiven Bemühungen<br />
der Industrie um diesen Problemkreis sind jedoch vor<br />
allem wirtschaftlich begründet: Der deutliche Trend zu<br />
großen Leistungseinheiten zwingt zur Erhöhung der<br />
Leistungsdichte in Reaktorkernen. Ein vertieftes Verständnis<br />
des komplexen Zusammenspiels der Schadensursachen<br />
ist deshalb notwendig. Hierzu wurden die in den<br />
vergangenen Jahren erzielten Fortschritte aufgezeigt.<br />
Weitere Vorträge befaßten sich mit Versuchen zur Verkürzung<br />
des Anfahrvorganges durch Synchronisation und<br />
Belastung der Turbine vor Erreichen des Reaktornenndruckes,<br />
mit den Mechanismen, die den Änderungen der<br />
Kühlmittelaktivität bei Variation der Reaktorbetriebsbedingungen<br />
zugrunde liegen, sowie mit den Ursachen für<br />
Reaktorschnellabschaltungen. Letztere liegen vornehmlich<br />
im konventionellen Teil. Die jährliche Verfügbarkeit<br />
der Kernkraftwerke nähert sich den Werten für konventionelle<br />
Kraftwerke.<br />
Bei den Betriebserfahrungen mit der SNEAK stand die<br />
Pu-Kontamination und ihre Beherrschung im Mittelpunkt<br />
der Darstellung. Ergebnisse von experimentellen und<br />
theoretischen Untersuchungen aus dem KFZ Karlsruhe<br />
ergänzten den Bericht. Die wohl umfangreichsten<br />
Betriebserfahrungen liegen bei den Anlagen AVR und<br />
MZFR vor. Vertreter der AVR berichteten über Experimente<br />
zum Langzeitverhalten des AVR bei simulierten<br />
Störfällen. Die Ergebnisse veranschaulichten erneut die<br />
bekannten sicherheitstechnischen Vorzüge dieses Reaktortyps.<br />
Weitere Vorträge waren der Handhabung der kugelförmigen<br />
Brennelemente des AVR gewidmet. Die Geräte<br />
zur Handhabung waren zum Teil aufgrund von Betriebserfahrungen<br />
entwickelt worden. Obwohl der MZFR in den<br />
vergangenen Jahren mit einigen Schwierigkeiten zu<br />
kämpfen hatte, haben die mit dem Betrieb des MZFR<br />
gewonnenen positiven Erfahrungen mit dazu geführt, daß<br />
in Argentinien das Projekt Atucha realisiert wird. Die<br />
für einen wirtschaftlichen Betrieb von D 2 0-Reaktoren<br />
wichtigen Fragen des BE-Wechsels und des H 2 O-Verlustes<br />
standen im Vordergrund der Vorträge über den MZFR.<br />
Beim Themenkreis Sicherheit und Umwelt berichteten<br />
Vertreter des KFZ Karlsruhe über die Umweltbelastung<br />
durch ein natriumgekühltes Schnellbrüter-Kraftwerk und<br />
Sicherheitsprobleme der technischen Radiochemie auf<br />
Grundlage der WAK. Der Problemkreis Sicherheit und<br />
Umwelt kam, gemessen an der Bedeutung, die diesem<br />
Thema international allgemein beigemessen wird,<br />
eindeutig zu kurz.<br />
109<br />
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />
Special Topic | A Journey Through 50 Years AMNT<br />
1971 DAtF-KTG-Meeting on Reactors in Bonn
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
110<br />
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />
| | Atomgegner demonstrierten vor der Beethoven-Halle<br />
(Bonn, Reaktortagung 1971).<br />
Die Darstellungen über die Verwendung der EDV in der<br />
Kerntechnik widmeten sich dem passiven Einsatz der Prozeßrechner<br />
im Kernkraftwerk KRB sowie Entwicklungsarbeiten<br />
im Rahmen des OECD-Programmes in Halden<br />
(Norwegen). Die Entwicklungsarbeiten zielen auch auf<br />
den aktiven Einsatz von Prozeßrechnern ab, z. B. bei der<br />
Regelung des Reaktors und bei der Erfassung von den<br />
Reaktor gefährdenden Situationen. Ein weiterer Vortrag<br />
behandelte den Prozeßrechnereinsatz für hoch mechanisierte<br />
Fertigungen am Beispiel der Brennstabfertigung.<br />
In den vergangenen Jahren sind erhebliche Anstrengungen<br />
unternommen worden, Methoden zur wirkungsvollen<br />
Wiederholungsprüfung von Komponenten in Kernenergieanlagen<br />
zu entwickeln. Die Themen behandelten<br />
die Vor-Ort-Prüfung von hochwirksamen Schwebstoffiltern<br />
und die Methoden sowie Ergebnisse der ersten<br />
wiederkehrenden Inspektion des Reaktordruckbehälters<br />
KWO. Erheblicher Aufwand wurde getrieben, um die<br />
von der Industrie entwickelten US-Meßtechniken sowie<br />
optische Prüfverfahren an die speziellen Gegebenheiten<br />
anzupassen. Für eine auch nur andeutungsweise erschöpfende<br />
Darstellung der bei den wiederkehrenden<br />
Inspektionen erhaltenen Ergebnisse und für die daraus zu<br />
ziehenden Schlußfolgerungen fehlte wohl die erforderliche<br />
Zeit.<br />
4 Brennstoffkreislauf<br />
Von insgesamt 48 Vorträgen befaßten sich 28 Vorträge mit<br />
den wissenschaftlichen Grundlagen, der Technologie und<br />
den Betriebserfahrungen von Brennelementen. Die<br />
übrigen Vorträge verteilten sich auf den Bereich des<br />
Brennstoffkreislaufes. Dazu sind sinngemäß noch praktisch<br />
alle acht Vorträge der Sitzung „Kernwerkstoffe” aus<br />
der Sektion 2 zu rechnen. Die meisten dieser Vorträge<br />
wären fachlich wohl zweckmäßiger mit bei der Sektion 4<br />
einzuordnen gewesen. Der Überblick über diese somit<br />
recht breit angelegte Sektion wurde allerdings durch die<br />
zeitweise bis zu 3 Parallel sitzungen erschwert, überdies<br />
entstand der Eindruck, daß eine Konzentrierung auf<br />
ausgewählte Teilgebiete dieses breiten Gesamt-Themenkreises<br />
innerhalb einer solchen Tagung für einige<br />
Sondergebiete (z. B. Wiederaufbereitung) noch besser den<br />
technisch-wissenschaftlichen Stand hätte hervortreten<br />
lassen. Diese Schwerpunktauswahl müßte dann natürlich<br />
von Jahr zu Jahr wechseln.<br />
An den Sitzungen über das Gebiet Brennelemente für<br />
Wasserreaktoren sollte hervorgehoben werden, daß nunmehr<br />
in zunehmendem Maße Bestrahlungsresultate aus<br />
den in Deutschland nach kommerziellen Maßstäben in<br />
Betrieb befindlichen Kernkraftwerken zur Diskussion<br />
gestellt werden. So fand ein Referat über Nach bestrahlungsuntersuchungen<br />
an Zircaloy-2 als Hüllmaterial<br />
aus den Siedewasserreaktoren VAK und KRB entsprechende<br />
Beachtung. Besonderes Interesse verdienen<br />
auch die referierten Resultate über Ergebnisse zum<br />
thermischen Kriechen von plutoniumhaltigen oxidischen<br />
Brennstoffen.<br />
Auf dem Gebiet der Brennelemente für schnelle<br />
Reaktoren interessieren vor allem die sich verdichtenden<br />
Hinweise auf die möglicherweise abbrandbegrenzende<br />
Bedeutung der chemischen Wechselwirkung zwischen<br />
höher abgebranntem Brennstoff und der Hülle. Die Referate<br />
zum Hüllwerkstoffverhalten (in Sektion 2) und zu<br />
einigen speziellen Brennstoffproblemen brachten weitere<br />
wissenschaftlich interessante Details, die im wesent lichen<br />
bereits bekannte Vorstellungen weiter festigten. Aus<br />
einigen wenigen Referaten über fortschrittliche Hochleistungsbrennstoffe<br />
sind interessante Ansätze für die<br />
weitere erforderliche Entwicklungsarbeit erkennbar.<br />
Der Stand der Entwicklung von Brennelementen für<br />
Hochtemperaturreaktoren ergab sich aus den sehr übersichtlich<br />
angelegten Referaten über die Fortschritte bei der<br />
Brennelementherstellung für den THTR sowie über den<br />
Stand der Bestrahlungserfahrung, insbesondere das Bestrahlungsverhalten<br />
der AVR-Brennelemente, die eine für<br />
den Reaktorbetrieb unerwartet günstige Entwicklung der<br />
Spaltgasfreisetzung aufwiesen. Mehrere Referate über<br />
mehr grundlagenorientierte Untersuchungen zum Spaltproduktverhalten<br />
von HTR-Brennstoffen demonstrieren<br />
allerdings auch den heute noch aufgewendeten Untersuchungsumfang<br />
auf diesem Gebiet.<br />
Unter den Referaten über Brennelemente für andere<br />
Reaktoren beeindruckte bei den modernen MTR-<br />
Elementen der erforderliche fertigungstechnische Aufwand,<br />
bei der Technologie der ITR-Brennelemente die<br />
Vielseitigkeit interessanter Detailprobleme. Unter dem<br />
Titel Brennstoffkreislaui und Anreicherung interessierte<br />
besonders eine ausführliche Analyse gegenwärtiger und<br />
zukünftiger Brennstoffkreislaufkosten von Leichtwasserreaktoren.<br />
Die beiden in Deutschland zur Zeit im Aufbau<br />
befindlichen Verfahren zur Anreicherung – einerseits nach<br />
dem Trenndüsenverfahren, andererseits mittels Zentrifugen<br />
– stehen beide im Stadium der Errichtung von<br />
Anlagen unter wirtschaftlichen Aspekten. Die der Öffentlichkeit<br />
leichter zugänglichen Arbeiten am Trenndüsen<br />
verfahren schilderten den abgeschlossenen Aufbau der<br />
Prototypen der größeren Trennstufen. Seitens des Zentrifugenverfahrens<br />
überwogen mehr theoretische Wirtschaftlichkeitsbetrachtungen.<br />
Auf dem Gebiet der Wiederaufarbeitung konzen trierten<br />
sich die Referate und Diskussionen auf die Probleme beim<br />
Brennstoff schneller Brutreaktoren und von Hochtemperaturreaktoren.<br />
Die halbtechnische Miniaturextraktionsanlage<br />
in Karlsruhe ist nahezu betriebsbereit, die entsprechende<br />
Anlage in Jülich hat noch nicht dieses Stadium<br />
erreicht.<br />
Von den vier Referaten zur Spaltstoffkontrolle dürfte<br />
insbesondere ein Referat von Vertretern der IAEO interessieren,<br />
das die heutige Auffassung dieser Organisation zu<br />
diesem auch mit politischen Problemen belasteten Fragen<br />
hier widerspiegelt. Aus Karlsruhe wurden Vorstellungen<br />
über ein rationelles Überwachungssystem der in Frage<br />
kommenden Anlagen beigesteuert.<br />
Aus der Sitzung Prozeßinstrumentierung und Behandlung<br />
radioaktiver Abfälle interessiert naturgemäß<br />
besonders das zweite Thema. Ein Referat brachte jedoch<br />
Special Topic | A Journey Through 50 Years AMNT<br />
1971 DAtF-KTG-Meeting on Reactors in Bonn
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
auch interessante Aspekte zur automatischen Überwachung<br />
von Aufbereitungsanlagen. Zur Behandlung radioaktiver<br />
Abfälle kann das erfreuliche Resümee gezogen<br />
werden, daß heute ein System von Maßnahmen und Einrichtungen<br />
existiert, das es erlaubt, den bereits in größeren<br />
Mengen anfallenden niedrig und mittel aktiven Abfall zu<br />
verarbeiten und auch bei sehr hohen Ansprüchen an die<br />
Sicherheit einer Endlagerung zuzuführen. Dieses Stadium<br />
ist für den hochaktiven Abfall noch nicht erreicht. Allerdings<br />
rechnet man mit einer erheblichen Steigerung des<br />
Anfalls erst ab etwa 1980.<br />
5 Reaktorkonzepte und<br />
Wirtschaftlichkeitsfragen<br />
In dieser Sektion wurden von 36 eingereichten Vorträgen<br />
19 in das Programm aufgenommen und 16 auf der Tagung<br />
vorgetragen.<br />
Vorherrschend bei den einzelnen Vorträgen war die<br />
Darstellung von Reaktorkonzepten; Fragen der Wirtschaftlichkeit<br />
wurden wenig oder gar nicht behandelt. Alle Ausführungen<br />
bezogen sich auf Reaktoren fortgeschrittener<br />
Bauart bis hin zu dem futuristischen Konzept des Fusionsreaktors.<br />
Einige Vorträge über die Wirtschaftlichkeit, vor<br />
allem der bestehenden Reaktorgeneration, waren anderen<br />
Sektionen zugeordnet, was die Übersicht etwas erschwerte.<br />
Wirtschaftlichkeitsfragen der Kernenergie allgemein<br />
wurden nur in einigen Übersichtsvorträgen angesprochen.<br />
Einen breiten Raum haben naturgemäß die Schnellen<br />
Brutreaktoren und die Hochtemperaturreaktoren eingenommen,<br />
die als fortgeschrittene Reaktorkonzepte in<br />
Deutschland gleichrangig entwickelt werden. Leider sind<br />
beide Vorträge über das Konzept natriumgekühlter Schneller<br />
Brutreaktoren der SNR-Linie ausgefallen, so daß der<br />
Übersichtsvortrag über den „Stand der Entwicklung des<br />
Schnellen natriumgekühlten Reaktors (SNR)” die einzige<br />
Informationsquelle über dieses Reaktorkonzept auf der Tagung<br />
darstellte. Das ist umso bedauerlicher, als die gerade<br />
in den letzten Wochen und Monaten in verstärktem Maße<br />
geführte Diskussion über den Natriumbrüter das große Interesse<br />
an diesem Reaktortyp gezeigt hat; so wurde eine<br />
ausgezeichnete Plattform für sachliche Information nicht<br />
ausreichend genutzt.<br />
Die beiden noch verbleibenden Vorträge über natriumgekühlte<br />
Reaktoren befaßten sich mit für Karbid-Brennstoff<br />
geeigneten Brennelementkonzepten und mit der<br />
Brennelementhandhabung bei dem geplanten Forschungsreaktor<br />
FR3.<br />
Eine große Zuhörerschaft fand K. Wirtz bei seinem<br />
Vortrag über Gasgekühlte Schnelle Brutreaktoren vor.<br />
Wirtz bezog sich auf das inzwischen fertiggestellte<br />
deutsche Memorandum zur Gaskühlung Schneller<br />
Reaktoren und hält danach die 1. Generation des Gasbrüters<br />
(mit Dampfturbine und Oxidbrennstoff in Stahlhülle)<br />
nicht für eine Folgegeneration oder eine sogenannte<br />
„back-up”-Lösung des Natriumbrüters, sondern für einen<br />
Wettbewerber, da dieser in hohem Umfange auf die<br />
bisherigen Entwicklungen beim Natriumbrüter (nukleare<br />
und neutronische Untersuchungen und Brennelemententwicklung)<br />
und beim HTR (Druckgefäß, Gebläse,<br />
Wärmetauscher) zurückgreifen kann.<br />
Zwei weitere Vorträge über gasgekühlte Brutreaktoren<br />
erläuterten das Brennelementkonzept, die Coreauslegung,<br />
das Anlagenkonzept, die Sicherheit und Wirtschaftlichkeit<br />
der im Rahmen des Memorandums untersuchten<br />
Varianten gasgekühlter Reaktoren.<br />
Der Vortrag und die Diskussion über den THTR 300<br />
zeichneten sich durch viele Details aus, von denen einige<br />
sonst im allgemeinen nicht öffentlich genannt werden. So<br />
wurde z. B. die Poenale je Monat Lieferverzug mit<br />
0,75 Mio. DM, die Poenale bei Nichterfüllung des Auftrags<br />
mit 20 Mio. DM beziffert. Die im Juli 1970 ausgesprochene<br />
Bauabsichtserklärung (Letter of Intent) ist seit Dez. 1970<br />
rechtsgültig; mit der Vertragsunterzeichnung wird für Mai<br />
1971 gerechnet. Nach einer zehnmonatigen Bauvorlaufzeit<br />
soll die vertragliche Lieferzeit am 1.10.1971 beginnen<br />
und am 1.11.1976 enden. Die Gesamtkosten einschließlich<br />
Kernbrennstoff, bauzuge höriger Forschungs- und Entwicklungsarbeiten,<br />
Eigen leistungen des Bauherrn sowie<br />
Bauzinsen werden 690 Mio. DM betragen. Neben der<br />
Stromerzeugung werden auch der Erzeugung von Prozeßwärme<br />
aus HTR gute Chancen eingeräumt. Dies gilt<br />
besonders dann, wenn sich der rasche Preisanstieg fossiler<br />
Energieträger fortsetzt. Im Hinblick auf dieses Marktpotential<br />
wurden von Jülicher Seite bereits recht detaillierte<br />
Vorstellungen zur Äthylenerzeugung mittels HTR<br />
vorgetragen.<br />
Erstmals auf einer Reaktortagung wurde über Konzepte<br />
von Incore-Thermionik-Reaktoren (ITR) und Fusionsreaktoren<br />
berichtet. Der ITR kann wegen seiner sehr hohen<br />
Anlagekosten nicht mit kommerziellen Kraftwerken<br />
konkurrieren, er eignet sich jedoch wegen seines geringen<br />
Gewichts und des Fehlens beweglicher Teile zur Energieversorgung<br />
von Satelliten. Die Ausgangsleistung kann von<br />
20 kW el ohne große Mehraufwendungen auf 150 kW el<br />
gesteigert werden. Im Leistungsbereich unter 20 kW el<br />
konkurriert der schnelle Wärmerohr-Thermionik-Reaktor<br />
mit dem ITR; über dieses Reaktorkonzept wurde ebenfalls<br />
berichtet.<br />
Die möglichen Reaktorkonzepte eines Fusionsreaktors<br />
wurden in einer sehr übersichtlichen Zusammenfassung<br />
dargestellt. Dabei wurden auch einige der Probleme<br />
deutlich gemacht, die zur Verwirklichung der kontrollierten<br />
Kernfusion noch gelöst werden müssen. Neben den<br />
Stabilitätsproblemen der Einschließung des Plasmas und<br />
der Leistungsregelung werden es vor allem Materialprobleme<br />
sein, die die Materialprobleme der Spaltreaktoren<br />
weit in den Schatten stellen. Als Beispiel wurde<br />
die Behälterwand des plasma-erfüllten Ringraumes<br />
genannt, die bei einer Temperatur von 1000 °C einer intensiven<br />
Bestrahlung durch Neutronen von 14 MeV bis zu<br />
einer Dosis von einigen 10 23 n/cm 2 ausgesetzt ist.<br />
Zur Lösung der Materialprobleme wurden Bestrahlungen<br />
in möglichst schnellem Neutronenfluß bis zu<br />
hohen Dosen als vordringlich bezeichnet. Eine hohe Dringlichkeit<br />
für die Entwicklung von Fusionsreaktoren ist<br />
jedoch nach Meinung des Berichterstatters nicht gegeben,<br />
da einerseits die Spaltreaktoren (einschl. Brutreaktoren)<br />
den Energiebedarf der Menschheit bis weit über das Jahr<br />
2000 hinaus werden decken können und andererseits ein<br />
wirtschaftlicher Vorteil der Fusionsreaktoren (trotz der<br />
niedrigen Brennstoffkosten) noch nicht in Sicht ist.<br />
In der Diskussion wurde vorgeschlagen, den Lithium-<br />
Brutmantel mit einem U-238-Brutmantel als Neutronenvervielfacher<br />
zu kombinieren. Dabei käme gleichzeitig die<br />
hohe Energieausbeute einer U-238-Spaltung (ca. 200 MeV<br />
gegenüber 17,5 MeV bei einer D-T- Fusionsreaktion) dem<br />
Prozeß zugute.<br />
Berichterstatter<br />
Sektion 1: H. Küsters, Karlsruhe<br />
Sektion 2: F. Scholz, Jülich<br />
Sektion 3: H. J. Lehmann und A. Tietze, Köln<br />
Sektion 4: H. Weidinger, Großwelzheim<br />
Sektion 5: D. Faude und G. Woite, Karlsruhe<br />
111<br />
SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />
Special Topic | A Journey Through 50 Years AMNT<br />
1971 DAtF-KTG-Meeting on Reactors in Bonn
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
112<br />
Inside<br />
WiN Germany<br />
KTG INSIDE<br />
Highlights zum Jahreswechsel<br />
Die Mitgliederversammlung 2018 von WiN Germany<br />
(Women in Nuclear) fand am Standort der For schungs-<br />
Neutronenquelle Heinz-Maier-Leibnitz (FRM II), auf dem<br />
Gelände des Forschungszentrums in Garching statt.<br />
Prof. Dr. Peter Müller-Buschbaum, wissenschaftlicher<br />
Leiter des FRM II und Dr. Anton Kastenmüller, technischer<br />
Leiter, begrüßten die WiNers herzlich und gaben einen<br />
Überblick über die Geschichte der Forschungsreaktoren<br />
und die Aktivitäten am FRM II. Vier Mitarbeiterinnen in<br />
Führungsfunktionen stellten ihre Funktionen sowie auch<br />
ihre sehr unterschiedlichen Karrierewege vor.<br />
Im Rahmen der Mitgliederversammlung feiert WiN<br />
Germany zudem ihr 10-jähriges Vereinsjubiläum. Dr. Ralf<br />
Güldner, Präsident des DAtF, hielt die Festrede zum Gala-<br />
Abend. Er betonte, dass Frauen eine<br />
wichtige Rolle in der internationalen<br />
Nuklearindustrie sowie bei Forschung<br />
und Entwicklung einnehmen. „Qualifikationen,<br />
Mut und Engagement sind<br />
die Türöffner für die Karrieren von<br />
Frauen in unserer Branche“, betonte er.<br />
Neu gewählt wurde auch der Vorstand,<br />
den jetzt Martina Etzmuß<br />
( Finanzen und Spenden), Irmie<br />
Niemeyer (Bildung), Chantal Greul<br />
(Präsidentin), Karin Reiche (Kommunikation)<br />
und Jutta Jené (Sprecherin)<br />
bilden. Jutta Jené hat ihr Amt als<br />
Präsidentin nach 6 Jahren zur Ver fügung gestellt. „Ich<br />
freue mich sehr, den Vereinsvorsitz an Chantal weitergeben<br />
zu können. Sie wird frischen Wind bringen, was einem<br />
Verein immer gut tut“, hob sie bei ihrer letzten Rede als<br />
| | Dr. Ralf Güldner, Präsident des DAtF, während<br />
seiner Festrede im Rahmen des 10-jährigen<br />
WiN-Jubiläums.<br />
| | Der neu gewählte Vorstand von WiN Germany: Von links: Martina Etzmuß<br />
(Finanzen und Spenden), Irmie Niemeyer (Bildung), Chantal Greul<br />
(Präsidentin), Karin Reiche (Kommunikation), Jutta Jené (Sprecherin).<br />
| | Die schwedischen und deutschen Teilnehmerinnen des bilateralen Treffens<br />
in Ringhals, Schweden.<br />
Präsidentin hervor. Chantal Greul, Projektleitung für die<br />
stoffliche Produktkontrolle von Abfallgebinden bei der Fa.<br />
Safetec, wurde gewählt und freut sich auf ihr Amt. „Ich<br />
möchte den Verein WiN Germany in den kommenden<br />
Jahren noch stärker auf das Thema Kompetenzen ausrichten<br />
und versuchen, insbesondere jungen Frauen bei<br />
uns einen Platz anzubieten. Dazu ist die Weiterführung<br />
des WiN-Preises von besonderer Bedeutung“, betonte sie.<br />
Seit 2011 wird jährlich von WiN Germany e.V. der mit<br />
500 Euro dotierte WiN Germany-Preis für besondere<br />
Leistungen von jungen Frauen in einem Fachgebiet im<br />
nuklearen Bereich verliehen. 2018 ging der Preis, nach<br />
Tonya Vitova (2011) und Emilia von Fritsch (2015), zum<br />
dritten Mal an eine junge Wissenschaftlerin des KIT,<br />
Karlsruhe. Ausgezeichnet wurde Bianca Schacherl für ihre<br />
am INE angefertigte Masterarbeit zu Thema „Structural<br />
investigation of Np interacted with illite by HR-XANES and<br />
EXAFS“. Bianca Schacherl wird ihre Arbeit zudem auf dem<br />
„Young Scientists‘ Workshop“ des 50. AMNT, 7. und 8. Mai<br />
<strong>2019</strong> in Berlin, präsentieren.<br />
Zuvor im Jahr war WiN erneut international unterwegs.<br />
Am 18./19. Oktober 2018 fand das bilaterale Treffen<br />
mit WiN Schweden in Ringhals statt. Seit 2009 treffen sich<br />
regelmäßig schwedische und deutsche WiNerinnen. Am<br />
Kernkraftwerksstandort Ringhals sind vier Blöcke in Betrieb<br />
und es ist einer der wenigen Standorte weltweit mit<br />
sowohl Siede- und Druckwasserreaktoren. Nach der Begrüßungsrede<br />
von Björn Linde, CEO Ringhals, gab es die<br />
Möglichkeit, das Maschinenhaus von Block 4 zu besichtigen.<br />
Der Abend des ersten Tages klang beim gemeinsamen<br />
Networken aus. Fachvorträge über den Rückbau, dort<br />
eingesetzte Verfahren, sowie die Entwicklung der Kernenergie<br />
in Schweden und Deutschland rundeten das Programm<br />
am letzten Tag ab. Ein besonderes Schmankerl: Im<br />
Rahmen eines interaktiven Vortrags zweier schwedischer<br />
Unternehmensberater wurden kleine Gruppen gebildet, in<br />
denen die Bedeutung eines Netzwerkes, der Kerntechnik<br />
und das Wirken in beiden Ländern erörtert wurden. Mit<br />
vielen Ideen, neuen fachlichen Erkenntnissen und tollen<br />
Eindrücken ging es für die deutschen WiNerinnen dann<br />
wieder zurück nach Hause.<br />
KTG Inside
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Holen Sie sich jetzt das KTG-/AMNT-Schnupperpaket<br />
Ein Jahr freie Mitgliedschaft in der Jungen Generation der KTG<br />
und gebührenfreie Teilnahme am 50. Annual Meeting on Nuclear<br />
Technology (AMNT <strong>2019</strong>).<br />
Empfehlen Sie das Schnupperpaket gern an andere Interessenten!<br />
››<br />
Antrag: „Youngster's Package“ auf www.amnt<strong>2019</strong>.com.<br />
113<br />
NEWS<br />
7. – 8. Mai <strong>2019</strong><br />
Estrel Convention Center Berlin, Deutschland<br />
Herzlichen Glückwunsch!<br />
Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />
und wünscht ihnen weiterhin alles Gute!<br />
März <strong>2019</strong><br />
88 Jahre | 1931<br />
17. Dipl.-Ing. Hans Waldmann, Schwabach<br />
86 Jahre | 1933<br />
30. Dipl.-Phys. Dieter Pleuger, Kiedrich<br />
84 Jahre | 1935<br />
<strong>02</strong>. Dipl.-Ing. Joachim Hospe, München<br />
83 Jahre | 1936<br />
19. Dr. Hermann Hinsch, Hannover<br />
81 Jahre | 1938<br />
14. Dr. Peter Paetz, Bergisch Gladbach<br />
80 Jahre | 1939<br />
01. Prof. Dr. Günter Höhlein, Unterhaching<br />
79 Jahre | 1940<br />
01. Dipl.-Ing. Wolfgang Stumpf, Moers<br />
03. Dipl.-Ing. Eberhard Schomer, Erlangen<br />
18. Dipl.-Ing. Friedhelm Hülsmann, Garbsen<br />
76 Jahre | 1943<br />
16. Dipl.-Ing. Jochen Heinecke, Kürten<br />
75 Jahre | 1944<br />
<strong>02</strong>. Dr. Peter Schnur, Hannover<br />
10. Prof. Dr. Reinhard Odoj, Hürtgenwald<br />
11. Hamid Mehrfar, Dormitz<br />
70 Jahre | 1949<br />
05. Hans Gawor, Bad Honnef<br />
65 Jahre | 1954<br />
13. Dr. Helmut Steiner, Dillingen<br />
60 Jahre | 1959<br />
14. Peter Knoll, Clausthal-Zellerfeld<br />
50 Jahre | 1969<br />
13. Dipl.-Ing. Uta Naumann, Waldshut-<br />
Tiengen<br />
27. Dipl.-Ing. Christoph Mertens, Essen<br />
40 Jahre | 1979<br />
06. Markus Kotzanek, Eggolsheim<br />
<br />
9. Mai 2018 ı Greaeme William Catto<br />
Buch am Erlbach<br />
2. Juni 2018 ı Edwin Rupp<br />
Trier<br />
Juni 2018 ı Dr. Norbert Rauffmann<br />
Babenhausen<br />
28. Juli 2018 ı Dr. Rolf Hüper<br />
Karlsruhe<br />
28. Juli 2018 ı<br />
Dipl.-Phys. Eberhard Ricken<br />
Overath<br />
29. August 2018 ı Dr. Manfred Simon<br />
Hirschberg<br />
9. September 2018 ı<br />
Dr. Gerhard Heusener<br />
Bruchsal<br />
15. Dezember 2018 ı<br />
Dr. H.-Jochen Rütten<br />
Jülich<br />
Die KTG verliert in ihnen langjährige<br />
aktive Mitglieder, denen sie ein<br />
ehrendes Andenken bewahren wird.<br />
Ihren Familien gilt unsere Anteilnahme.<br />
Wenn Sie künftig eine<br />
Erwähnung Ihres<br />
Geburtstages in der<br />
<strong>atw</strong> wünschen, teilen<br />
Sie dies bitte der KTG-<br />
Geschäftsstelle mit.<br />
KTG Inside<br />
Verantwortlich<br />
für den Inhalt:<br />
Die Autoren.<br />
Lektorat:<br />
Natalija Cobanov,<br />
Kerntechnische<br />
Gesellschaft e. V.<br />
(KTG)<br />
Robert-Koch-Platz 4<br />
10115 Berlin<br />
T: +49 30 498555-50<br />
F: +49 30 498555-51<br />
E-Mail:<br />
natalija.cobanov@<br />
ktg.org<br />
www.ktg.org<br />
Top<br />
The IAEA and climate change:<br />
Adaptation, monitoring and<br />
mitigation<br />
(iaea) Climate change is one of the<br />
biggest environmental challenges<br />
affecting humanity today, causing a<br />
dangerous rise in sea levels and disturbances<br />
to the water cycle and leading<br />
to more frequent extreme weather<br />
events. The IAEA helps Member States<br />
combat climate change on a variety of<br />
fronts: mitigating the production and<br />
release of greenhouse gases (GHGs)<br />
and monitoring and adapting to their<br />
negative effects.<br />
Atmospheric levels of GHGs have<br />
fluctuated for billions of years,<br />
primarily due to natural orbital, solar<br />
and volcanic activities. Since the<br />
middle of the eighteenth century,<br />
anthropogenic factors have steadily<br />
increased the concentration of CO 2 in<br />
the Earth’s atmosphere, from approximately<br />
278 parts per million to over<br />
400 parts per million as of 2016,<br />
according to the United Nations<br />
Framework Convention on Climate<br />
Change. This is in addition to substantial<br />
increases in the concentration<br />
of other potent GHGs, including<br />
methane and nitrous oxide.<br />
“Dealing with the effects of climate<br />
change is not just one country’s<br />
problem – it’s the problem of the<br />
entire planet,” said Martin Krause,<br />
Director at the IAEA’s Department of<br />
Technical Cooperation. “That is why<br />
the IAEA supports its Member States<br />
in enhancing understanding of how<br />
nuclear science and technology can<br />
offset some of the consequences of<br />
climate change.”<br />
Adaptation<br />
Some of the most acute effects of<br />
climatic changes are global increases<br />
in water scarcity and food shortages,<br />
News
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
114<br />
NEWS<br />
| | The IAEA helps countries use nuclear science<br />
and technology to combat climate change.<br />
(Infographic: R. Kenn/IAEA)<br />
the loss of biodiversity and more<br />
frequent climate-induced natural disasters.<br />
Unseasonably high temperatures<br />
in winter and spring, unpredictable<br />
weather and very short rainy<br />
seasons contribute to water scarcity in<br />
many regions. This, in turn, greatly affects<br />
agricultural systems, global food<br />
chains and, in particular, small-scale<br />
farmers and herders.<br />
To help communities and countries<br />
adapt, the IAEA supports activities in<br />
plant breeding, soil and crop management,<br />
livestock production and insect<br />
pest control. For example, Sudan is<br />
using nuclear science and IAEA assistance<br />
to help more than 35 million<br />
people cope with climate change.<br />
Activities include breeding new plant<br />
varieties that are drought and heat<br />
tolerant; setting up and optimizing<br />
irrigation systems that save water<br />
and fertilizer as well as improving<br />
crop yields; and combating diseasecarrying<br />
insects with a nuclear-based<br />
insect pest control method called the<br />
sterile insect technique (SIT).<br />
Monitoring<br />
As the international community works<br />
towards long term solutions to the consequences<br />
of climate change, reliable<br />
data on how GHGs cause the changes<br />
occurring on land, in the oceans and<br />
throughout the atmosphere are critical.<br />
The IAEA uses a variety of nuclear<br />
techniques, pri marily isotopic, to identify<br />
and monitor the risks and threats<br />
associated with GHG emissions, and<br />
then shares that data with Member<br />
States to help further research and<br />
the formulation of sustainable climate<br />
policies. Costa Rica, for example, has<br />
worked with the IAEA to quantify<br />
carbon capture and monitor GHG<br />
emissions from the dairy and agricultural<br />
sectors. Data that Costa Rican<br />
scientists gain from stable isotope<br />
analysers, which help quantify carbon<br />
emissions, facilitate efforts to move<br />
farming towards carbon neutrality.<br />
emissions. The IAEA provides support<br />
to Member States to assess the development<br />
of their energy systems and<br />
helps them study how nuclear energy<br />
could play a role in energy generation.<br />
A well-informed and knowledgeable<br />
group of professionals is essential to<br />
develop and maintain sustainable<br />
national energy policies.<br />
The IAEA is conducting a coordinated<br />
research project with Member<br />
States on how domestic energy<br />
policies can contribute towards<br />
countries’ obligations under the 2015<br />
Paris Agreement on climate change.<br />
Through adaptation to and monitoring<br />
of the adverse consequences of<br />
climate change and the mitigation of<br />
GHG emissions, the IAEA works with<br />
its Member States to preserve and<br />
restore the environment and protect<br />
energy systems from climate-related<br />
weather events and disasters.<br />
| | www.iaea.org<br />
World<br />
Bernard Fontana’s statement<br />
– EPR: the first Generation III+<br />
nuclear reactor enters<br />
commercial operation<br />
(framatome) The Taishan 1 EPR reactor<br />
in China has now entered the commercial<br />
operation phase. Following<br />
the first chain reaction which took<br />
place on June 6, 2018, then successful<br />
connection to the power grid on June<br />
29 and the achievement of 100%<br />
power on October 30, this new milestone<br />
marks the final step of this major<br />
project.<br />
As designer of the EPR, Framatome,<br />
now part of the EDF group, is delighted<br />
to witness the commercial start-up of<br />
the Taishan 1 project, a milestone that<br />
rewards the teams’ sustained efforts<br />
over recent years. I especially thank<br />
our employees around the world for<br />
their unwavering commitment through<br />
this great adventure. I also want to<br />
state how proud I am that we can count<br />
among the people of Framatome, professionals<br />
with such proven expertise<br />
in the design and manufacture of<br />
reactor components, I&C and nuclear<br />
fuel systems, as well as in reactor<br />
construction, commissioning, test and<br />
maintenance. For six decades now, we<br />
have been capitalizing on this experience<br />
for the safe and reliable operation<br />
of our customers’ nuclear reactors<br />
around the world.<br />
Today, Framatome is involved in the<br />
construction and commissioning of six<br />
EPR reactors worldwide: 2 units in<br />
China at Taishan, 1 unit in Finland at<br />
Olkiluoto, 1 unit in France at Flamanville,<br />
and 2 units in the United Kingdom<br />
at Hinkley Point. The company will be<br />
contributing all its expertise as NSSS<br />
specialist to serve future new build EPR<br />
reactor projects alongside EDF.<br />
The EPR reactor, flagship<br />
of the French nuclear industry<br />
The EPR is a “Generation III+” nuclear<br />
reactor, which means that it benefits<br />
from significant technological advances<br />
in terms of nuclear and occupational<br />
safety. Its design incorporates<br />
the operational experience (OPEX)<br />
from around one hundred nuclear<br />
reactor projects built by Framatome<br />
all around the world. The EPR reactor<br />
offers economic benefits for electrical<br />
utility customers, including reduced<br />
generating costs, enhanced fuel use,<br />
reduced waste volumes, increased<br />
operating flexibility, optimized outage<br />
times and improved operating ergonomics<br />
leading to health benefits for<br />
personnel.<br />
The EPR reactor generates a net<br />
electrical power output of 1,650 MW,<br />
making it the largest electrical generating<br />
unit ever built, designed for a<br />
service life of 60 years.<br />
| | www.framatome.com<br />
Towards more sustainable<br />
nuclear energy with<br />
non-electric applications:<br />
Opportunities and challenges<br />
(iaea) There is considerable potential<br />
for increasing the use of excess heat<br />
from electricity generation by nuclear<br />
power plants to desalinate seawater,<br />
produce hydrogen for the heavy industry,<br />
decarbonize the transport sector,<br />
and supply heat to residential and<br />
commercial uses: Nuclear cogeneration<br />
can offer sustainable and economic<br />
solutions for meeting the<br />
increasing demand in heat energy<br />
markets. However, as experts at an<br />
IAEA meeting agreed last week, for<br />
Mitigation<br />
Mitigating climate change is the long<br />
term goal, which requires approaches<br />
and technology that will reduce GHG<br />
| | EPR: Generation III+ nuclear reactor enters commercial operation<br />
News
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
these nuclear co-generation products<br />
to enter the commercial market on a<br />
large scale, several challenges and<br />
barriers have to be overcome.<br />
Representatives from both countries<br />
operating nuclear power plants,<br />
as well as nuclear newcomers, technology<br />
developers and potential customers,<br />
discussed the pros and cons of<br />
non-electric applications of nuclear<br />
energy during the 16 th Dialogue Forum<br />
of the IAEA’s International Project for<br />
Innovative Nuclear Reactors and Fuel<br />
Cycles (INPRO). Since 2010, these fora<br />
have focused on different aspects of<br />
developing sustainable nuclear energy<br />
systems and the related complex relationships<br />
among tech nology suppliers,<br />
customers and other stakeholders.<br />
Participants presented ongoing<br />
cogeneration projects and plans or<br />
considerations in countries embarking<br />
on nuclear power. If such new comer<br />
countries decide to include cogeneration<br />
in their nuclear energy planning,<br />
they should begin planning those<br />
applications right from the beginning,<br />
participants recommended.<br />
“Nuclear cogeneration is very important,<br />
particularly if nuclear power is<br />
to expand much more broadly in energy<br />
markets to meet the need for clean<br />
and sustainable energy, while helping<br />
to mitigate climate change through<br />
avoidance of carbon emissions,” said<br />
Mikhail Chudakov, IAEA Deputy<br />
Director General and Head of the<br />
Department of Nuclear Energy.<br />
Traditionally, the primary focus of<br />
nuclear power has been on electricity<br />
generation. But as early as 1956, the<br />
Calder Hall nuclear power plant in the<br />
UK provided both electricity and process<br />
heat to site facilities. There are<br />
examples in several other countries of<br />
district heating, industrial process heat<br />
and seawater desalination. Despite<br />
these examples, nuclear cogeneration<br />
systems never really took off, for various<br />
economic and regulatory reasons<br />
as well as for lack of public support.<br />
With changes in technology and the<br />
regulatory environment in many countries,<br />
the conditions for cogenerations<br />
have improved substantially.<br />
| | www.iaea.org<br />
European Committee<br />
supports € 2.4 billion budget<br />
for Euratom R&D<br />
(nucnet) The €2.4bn budget proposed<br />
for the 2<strong>02</strong>1-2<strong>02</strong>5 Euratom research<br />
and training programme is proportionate<br />
to its objectives and should<br />
be maintained regardless of Brexit,<br />
the European Economic and Social<br />
Committee said.<br />
In an opinion adopted at its<br />
December plenary session, the committee<br />
said it backed the European<br />
Commission’s proposal on the<br />
Euratom research and training programme<br />
for 2<strong>02</strong>1-2<strong>02</strong>5. The programme<br />
is part of the 2<strong>02</strong>1-2<strong>02</strong>7<br />
Horizon Europe framework programme<br />
for research and innovation<br />
and will run for five years, with a<br />
possible two-year extension.<br />
The committee said the UK’s withdrawal<br />
from the EU should be handled<br />
with the utmost care. “We need to be<br />
very careful if the time comes for the<br />
UK not to be part of the Euratom programme<br />
any longer,” a statement said.<br />
“We have to pay attention in particular<br />
to research already in progress,<br />
shared infrastructure and the social<br />
impact on staff. Working conditions<br />
are a priority, both on British soil and<br />
elsewhere.”.<br />
| | europa.eu<br />
Reactors<br />
Turkey grants ‘Limited Permit’<br />
for Unit 2 at Akkuyu<br />
nuclear station<br />
(nucnet) The Turkish Atomic Energy<br />
Authority has granted Akkuyu Nuclear,<br />
the company building Turkey’s first<br />
commercial nuclear power station, a<br />
limited works permit for the construction<br />
of the station’s second unit,<br />
Rosatom has announced.<br />
Russia’s state nuclear corporation,<br />
which is the major consortium partner<br />
for the project, said the TAEK issued<br />
the permit after a review of documents<br />
submitted by Akkuyu Nuclear.<br />
Rosatom said the documents included<br />
a preliminary safety analysis<br />
report, a probabilistic safety assessment<br />
and “other documents confirming<br />
safety of the power unit”.<br />
Akkuyu Nuclear must now obtain a<br />
construction licence to start pouring<br />
concrete for the foundation slab for<br />
Akkuyu-2, which will mark the formal<br />
start of construction.<br />
In April 2018, Turkey confirmed to<br />
the International Atomic Energy<br />
Agency that construction of Akkuyu-1<br />
had begun.<br />
The IAEA said four units with a<br />
total capacity of 4,800 MW using<br />
Russian VVER technology are planned<br />
for construction.<br />
The four units at the site on the<br />
Mediterranean coast, 500 kilometres<br />
south of Ankara, are scheduled to be<br />
in commercial operation by 2<strong>02</strong>6.<br />
| | www.akkunpp.com<br />
First concrete poured<br />
for Hinkley Point<br />
reactor base<br />
(nucnet) First concrete has been<br />
poured for the first part of the reactor<br />
base at the Hinkley Point C nuclear<br />
power station under construction in<br />
Somerset, England, EDF Energy said<br />
yesterday.<br />
The company said on social media<br />
that workers poured concrete for<br />
the Unit 1 reactor base, which will<br />
provide a solid platform for the reactor<br />
building.<br />
The first 2,000-cubic-metre portion<br />
was poured over 30 hours to a<br />
thickness of 3.2 metres. Four more<br />
pours will follow before the raft will<br />
be complete, scheduled in <strong>2019</strong>, EDF<br />
Energy said.<br />
EDF Energy is building two<br />
Generation III EPR units at Hinkley<br />
Point C. The station is expected to<br />
provide 7% of Britain’s electricity<br />
needs when fully operational.<br />
| | www.edf.com<br />
Company News<br />
Westinghouse announces<br />
initial organizational<br />
changes<br />
(westinghouse) Westinghouse Electric<br />
Company, a global leader in nuclear<br />
technology, fuels and services, today<br />
announced the company will be<br />
implementing the first phase of organizational<br />
changes to enhance focus<br />
on its customer base and to strengthen<br />
its global services and supply chain<br />
management capabilities.<br />
These organizational changes<br />
will strengthen Westinghouse’s sales<br />
and delivery model by aligning<br />
accountability for product and service<br />
delivery with the regions and ensuring<br />
optimized global sourcing. The<br />
company expects to have all phases<br />
of the implementation completed<br />
by the beginning of the third quarter<br />
<strong>2019</strong>.<br />
“Westinghouse has been on a<br />
journey to transform the way in<br />
which we deliver our products and<br />
services to our customers in the<br />
most effective manner that will build<br />
value for the business,” said President<br />
and Chief Executive Officer José<br />
Emeterio Gutiérrez. “The changes<br />
will be a catalyst as we continue to<br />
focus on strengthening the company’s<br />
core business and our global supply<br />
chain, and continuously work toward<br />
a standard of excellence in quality,<br />
safety, client service and innovation.”<br />
115<br />
NEWS<br />
News
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
Operating Results October 2018<br />
116<br />
NEWS<br />
Plant name Country Nominal<br />
capacity<br />
Type<br />
gross<br />
[MW]<br />
net<br />
[MW]<br />
Operating<br />
time<br />
generator<br />
[h]<br />
Energy generated, gross<br />
[MWh]<br />
Month Year Since<br />
commissioning<br />
Time availability<br />
[%]<br />
Energy availability<br />
[%] *) Energy utilisation<br />
[%] *)<br />
Month Year Month Year Month Year<br />
OL1 Olkiluoto BWR FI 910 880 722 654 124 5 655 213 260 309 399 96.87 85.89 95.51 84.78 96.49 85.18<br />
OL2 Olkiluoto BWR FI 910 880 745 684 577 6 263 365 250 562 546 100.00 94.51 99.98 93.74 99.88 93.31<br />
KCB Borssele PWR NL 512 484 745 375 201 2 768 365 160 975 284 99.61 75.27 99.61 74.89 98.35 74.21<br />
KKB 1 Beznau 7) PWR CH 380 365 745 283 604 2 <strong>02</strong>4 621 126 770 708 100.00 74.47 100.00 73.89 100.19 72.93<br />
KKB 2 Beznau 7) PWR CH 380 365 745 282 343 2 625 167 133 790 040 100.00 95.68 100.00 95.53 99.74 94.60<br />
KKG Gösgen 7) PWR CH 1060 1010 745 788 210 7 118 799 312 313 386 100.00 92.92 99.99 95.95 99.81 49.83<br />
KKM Mühleberg BWR CH 390 373 745 286 000 2 505 860 126 844 005 100.00 91.41 99.95 90.59 98.43 88.07<br />
CNT-I Trillo PWR ES 1066 1003 745 791 074 6 713 847 245 738 271 100.00 87.40 100.00 87.11 98.97 85.77<br />
Dukovany B1 PWR CZ 500 473 745 369 483 2 948 721 111 579 203 100.00 82.15 100.00 81.67 99.19 80.83<br />
Dukovany B2 PWR CZ 500 473 745 366 765 2 883 752 107 506 290 100.00 80.80 100.00 80.26 98.46 79.05<br />
Dukovany B3 PWR CZ 500 473 745 369 068 3 458 813 106 081 240 100.00 96.85 99.46 96.52 99.08 94.81<br />
Dukovany B4 PWR CZ 500 473 0 0 2 649 692 105 921 433 0 73.83 0 73.49 0 72.63<br />
Temelin B1 PWR CZ 1080 1030 745 798 219 6 287 344 112 768 638 100.00 80.29 99.94 80.00 99.<strong>02</strong> 79.69<br />
Temelin B2 1) PWR CZ 1080 1030 708 764 694 6 177 801 107 667 747 95.03 78.74 94.65 78.55 94.86 78.37<br />
Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 37.01 0 36.99 0 37.11<br />
Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 46.61 0 46.46 0 46.70<br />
Doel 3 PWR BE 1056 1006 745 798 954 2 380 278 253 549 500 100.00 31.35 99.98 30.59 101.17 30.74<br />
Doel 4 2) PWR BE 1084 1033 0 0 5 638 809 260 184 650 0 71.09 0 70.95 0 70.55<br />
Tihange 1 2) PWR BE 1009 962 291 265 903 6 799 173 297 638 048 39.04 93.54 38.70 93.29 35.32 92.53<br />
Tihange 2 2) PWR BE 1055 1008 0 0 5 7<strong>02</strong> 393 254 651 930 0 74.84 0 74.04 0 74.49<br />
Tihange 3 2) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 29.30 0 29.26 0 29.33<br />
Operating Results October 2018<br />
Plant name<br />
Type<br />
Nominal<br />
capacity<br />
gross<br />
[MW]<br />
net<br />
[MW]<br />
Operating<br />
time<br />
generator<br />
[h]<br />
Energy generated, gross<br />
[MWh]<br />
Time availability<br />
[%]<br />
Energy availability<br />
[%] *) Energy utilisation<br />
[%] *)<br />
Month Year Since Month Year Month Year Month Year<br />
commissioning<br />
KBR Brokdorf DWR 1480 1410 745 928 633 8 467 560 348 659 619 100.00 88.72 92.74 83.39 83.69 78.03<br />
KKE Emsland 4) DWR 1406 1335 745 1 045 658 9 470 174 344 793 457 100.00 93.74 99.99 93.60 99.88 92.31<br />
KWG Grohnde DWR 1430 1360 745 992 864 8 949 793 375 577 372 100.00 91.37 99.97 89.93 92.50 85.19<br />
KRB C Gundremmingen SWR 1344 1288 745 998 164 8 404 075 328 983 968 100.00 88.48 100.00 88.01 99.21 85.23<br />
KKI-2 Isar DWR 1485 1410 745 1 085 989 9 972 082 351 570 405 100.00 94.55 99.97 94.29 97.87 91.72<br />
KKP-2 Philippsburg DWR 1468 14<strong>02</strong> 745 1 <strong>02</strong>3 019 8 935 688 364 103 204 100.00 88.75 99.89 88.57 91.98 82.<strong>02</strong><br />
GKN-II Neckarwestheim 1,2) DWR 1400 1310 0 0 7 914 800 328 037 934 0 79.86 0 79.58 0 77.62<br />
*)<br />
Net-based values<br />
(Czech and Swiss<br />
nuclear power<br />
plants gross-based)<br />
1)<br />
Refueling<br />
2)<br />
Inspection<br />
3)<br />
Repair<br />
4)<br />
Stretch-out-operation<br />
5)<br />
Stretch-in-operation<br />
6)<br />
Hereof traction supply<br />
7)<br />
Incl. steam supply<br />
8)<br />
New nominal<br />
capacity since<br />
January 2016<br />
9)<br />
Data for the Leibstadt<br />
(CH) NPP will<br />
be published in a<br />
further issue of <strong>atw</strong><br />
BWR: Boiling<br />
Water Reactor<br />
PWR: Pressurised<br />
Water Reactor<br />
Source: VGB<br />
Key enhancements include:<br />
Creation of customer-focused business<br />
units serving the existing nuclear<br />
operating fleet with single points of accountability<br />
for both sales and delivery<br />
for existing nuclear operating plants.<br />
Development of a new business<br />
unit with accountability for key<br />
growth areas related to the specific<br />
stages of plant lifecycle solutions<br />
including new plant delivery; plant<br />
deconstruction, decommissioning<br />
and remediation services; and government<br />
services.<br />
Establishment of an operations<br />
delivery support function to build<br />
Global Supply Chain into a best-inclass<br />
organization that will support the<br />
business units through a robust procurement<br />
organization. This function<br />
will also provide global engineering,<br />
manufacturing and other technical capabilities<br />
in order to ensure our<br />
customers receive the full breadth of<br />
Westinghouse’s global products, innovations<br />
and technical capabilities.<br />
This strengthened business unit<br />
model is a further evolution of Westinghouse’s<br />
operating model. Under<br />
this model, the Chief Operating<br />
Officer role has been restructured as<br />
part of a broader reorganization of the<br />
com pany. As a result, Chief Operating<br />
Officer Mark Marano has elected to<br />
retire.<br />
Commenting on the transition,<br />
Gutiérrez stated, “Mark has done an<br />
outstanding job supporting the company<br />
during his tenure at Westinghouse<br />
and during our Chapter 11<br />
process and beyond, as the Chief<br />
Operating Officer. We thank Mark for<br />
his leadership during this critical time<br />
in Westinghouse’s transformation and<br />
for his service to the industry.”<br />
David Howell will be president of<br />
Americas Operating Plant Services<br />
with continued responsibilities for<br />
commercial execution, with the added<br />
responsibility of delivery. The change<br />
leverages David’s strong operations<br />
background as well as the close relationships<br />
he has built with customers.<br />
Bill Poirier will be president of the<br />
EMEA Operating Plant Services<br />
business unit on an interim basis while<br />
the company conducts an external<br />
search. A well-respected global industry<br />
leader with more than 44 years<br />
with Westinghouse, he has extensive<br />
experience in all aspects of civil<br />
commercial nuclear power. Bill has<br />
supported operating plants in Europe,<br />
News
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
as well the startup of several new<br />
plants in Asia. He has been an instrumental<br />
leader for Westinghouse in<br />
China throughout the company’s<br />
construction and startup of the<br />
world’s first AP1000® nuclear power<br />
plants.<br />
David Durham will be president of<br />
the newly established Plant Solutions<br />
business unit, with accountability for<br />
the development of key growth areas<br />
related to the specific stages of the<br />
commercial nuclear plant lifecycle.<br />
These areas include his existing<br />
responsibilities of new plant delivery<br />
in which Westinghouse continues its<br />
business model by providing technology,<br />
engineering and procurement<br />
services in a deliberative manner,<br />
as well as government services.<br />
David will expand his responsibilities<br />
to include plant deconstruction,<br />
decommissioning and remediation<br />
services.<br />
Pavan Pattada is a new addition<br />
to the Westinghouse leadership team<br />
as executive vice president, Global<br />
Operations Services. Most recently a<br />
senior executive with Eaton Corporation,<br />
he will lead the Global Operations<br />
Services organization with scope<br />
including Global Supply Chain,<br />
Nuclear Fuel, Global Components<br />
Manufacturing, Global Instrumentation<br />
and Control and Global Engineering<br />
Services. Under Pavan’s leadership,<br />
these areas will become global<br />
operations and excellence hubs built<br />
to support the business units in their<br />
delivery of Westinghouse’s products<br />
and services around the world while<br />
reducing costs.<br />
| | www.westinghousenuclear.com<br />
Market data<br />
(All information is supplied without<br />
guarantee.)<br />
Nuclear Fuel Supply<br />
Market Data<br />
Information in current (nominal)<br />
U.S.-$. No inflation adjustment of<br />
prices on a base year. Separative work<br />
data for the formerly “secondary<br />
market”. Uranium prices [US-$/lb<br />
U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />
0.385 kg U]. Conversion prices [US-$/<br />
kg U], Separative work [US-$/SWU<br />
(Separative work unit)].<br />
2014<br />
pp<br />
Uranium: 28.10–42.00<br />
pp<br />
Conversion: 7.25–11.00<br />
pp<br />
Separative work: 86.00–98.00<br />
Uranium<br />
Prize range: Spot market [USD*/lb(US) U 3O 8]<br />
140.00<br />
120.00<br />
100.00<br />
80.00<br />
60.00<br />
40.00<br />
20.00<br />
0.00<br />
Yearly average prices in real USD, base: US prices (1982 to1984) *<br />
Year<br />
* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />
Separative work: Spot market price range [USD*/kg UTA]<br />
180.00<br />
160.00<br />
140.00<br />
120.00<br />
100.00<br />
80.00<br />
60.00<br />
40.00<br />
20.00<br />
0.00<br />
Jan. 2012<br />
* Actual nominal USD prices, not real prices referring to a base year.<br />
Jan. 2013<br />
Year<br />
Jan. 2014<br />
Jan. 2015<br />
2015<br />
pp<br />
Uranium: 35.00–39.75<br />
pp<br />
Conversion: 6.25–9.50<br />
pp<br />
Separative work: 58.00–92.00<br />
2016<br />
pp<br />
Uranium: 18.75–35.25<br />
pp<br />
Conversion: 5.50–6.75<br />
pp<br />
Separative work: 47.00–62.00<br />
2017<br />
pp<br />
Uranium: 19.25–26.50<br />
pp<br />
Conversion: 4.50–6.75<br />
pp<br />
Separative work: 39.00–50.00<br />
2018<br />
January to June 2018<br />
pp<br />
Uranium: 21.75–24.00<br />
pp<br />
Conversion: 6.00–9.50<br />
pp<br />
Separative work: 35.00–42.00<br />
February 2018<br />
pp<br />
Uranium: 21.25–22.50<br />
pp<br />
Conversion: 6.25–7.25<br />
pp<br />
Separative work: 37.00–40.00<br />
March 2018<br />
pp<br />
Uranium: 20.50–22.25<br />
pp<br />
Conversion: 6.50–7.50<br />
pp<br />
Separative work: 36.00–39.00<br />
April 2018<br />
pp<br />
Uranium: 20.00–21.75<br />
pp<br />
Conversion: 7.50–8.50<br />
pp<br />
Separative work: 36.00–39.00<br />
May 2018<br />
pp<br />
Uranium: 21.75–22.80<br />
pp<br />
Conversion: 8.00–8.75<br />
pp<br />
Separative work: 36.00–39.00<br />
June 2018<br />
pp<br />
Uranium: 22.50–23.75<br />
pp<br />
Conversion: 8.50–9.50<br />
pp<br />
Separative work: 35.00–38.00<br />
Jan. 2016<br />
) 1<br />
Jan. 2017<br />
Jan. 2018<br />
2015<br />
Jan. <strong>2019</strong><br />
Source: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />
2018<br />
Uranium prize range: Spot market [USD*/lb(US) U 3O 8]<br />
140.00<br />
) 1<br />
| | Uranium spot market prices from 1980 to 2018 and from 2008 to 2018. The price range is shown.<br />
In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />
120.00<br />
100.00<br />
80.00<br />
60.00<br />
40.00<br />
20.00<br />
0.00<br />
* Actual nominal USD prices, not real prices referring to a base year. Year<br />
Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />
July 2018<br />
pp<br />
Uranium: 23.00–25.90<br />
pp<br />
Conversion: 9.00–10.50<br />
pp<br />
Separative work: 34.00–38.00<br />
August 2018<br />
pp<br />
Uranium: 25.50–26.50<br />
pp<br />
Conversion: 11.00–14.00<br />
pp<br />
Separative work: 34.00–38.00<br />
September 2018<br />
pp<br />
Uranium: 26.50–27.50<br />
pp<br />
Conversion: 12.00–13.00<br />
pp<br />
Separative work: 38.00–40.00<br />
October 2018<br />
pp<br />
Uranium: 27.30–29.00<br />
pp<br />
Conversion: 12.00–15.00<br />
pp<br />
Separative work: 37.00–40.00<br />
| | Source: Energy Intelligence<br />
www.energyintel.com<br />
Cross-border Price<br />
for Hard Coal<br />
Cross-border price for hard coal in<br />
[€/t TCE] and orders in [t TCE] for<br />
use in power plants (TCE: tonnes of<br />
coal equivalent, German border):<br />
2012: 93.<strong>02</strong>; 27,453,635<br />
2013: 79.12, 31,637,166<br />
2014: 72.94, 30,591,663<br />
2015: 67.90; 28,919,230<br />
2016: 67.07; 29,787,178<br />
2017: 91.28, 25,739,010<br />
2018<br />
I. quarter: 89.88; 5,838,003<br />
II. quarter: 88.8258; 4,341,359<br />
| | Source: BAFA, some data provisional<br />
www.bafa.de<br />
Jan. 2012<br />
Conversion: Spot conversion price range [USD*/kgU]<br />
14.00<br />
12.00<br />
10.00<br />
8.00<br />
6.00<br />
4.00<br />
2.00<br />
0.00<br />
Jan. 2013<br />
* Actual nominal USD prices, not real prices referring to a base year. Year<br />
Source: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />
| | Separative work and conversion market price ranges from 2008 to 2018. The price range is shown.<br />
)1<br />
In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.<br />
) 1<br />
Jan. 2012<br />
Jan. 2013<br />
Jan. 2014<br />
Jan. 2014<br />
Jan. 2015<br />
Jan. 2015<br />
Jan. 2016<br />
Jan. 2016<br />
Jan. 2017<br />
Jan. 2017<br />
Jan. 2018<br />
Jan. 2018<br />
Jan. <strong>2019</strong><br />
Jan. <strong>2019</strong><br />
117<br />
NEWS<br />
News
<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />
118<br />
NUCLEAR TODAY<br />
John Shepherd is a<br />
journalist who has<br />
covered the nuclear<br />
industry for the past<br />
20 years and is<br />
currently editor-in-chief<br />
of UK-based Energy<br />
Storage Publishing.<br />
Links to reference<br />
sources:<br />
World Energy Outlook<br />
2018 – https://<br />
bit.ly/2PW2Ub6<br />
The Nuclear Power<br />
Dilemma: Declining<br />
Profits, Plant Closures,<br />
and the Threat of<br />
Rising Carbon<br />
Emissions – https://<br />
bit.ly/2AN1zup<br />
World Nuclear News<br />
report – https://<br />
bit.ly/2D9ZmLn<br />
Nuclear Has Every Reason to Plan<br />
for a New Energy Horizon<br />
John Shepherd<br />
The global electricity sector is experiencing its most dramatic transformation since its creation more than a century<br />
ago. That was part of the conclusion reached by the International Energy Agency (IEA) in a fascinating report recently<br />
released by the Paris-based agency.<br />
On the face of it, supporters of expanding the role of<br />
nuclear energy would not have found much to cheer about<br />
in the World Energy Outlook 2018 report – although I<br />
should stress at the outset the report was fair and balanced.<br />
One might conclude, however, the report offered a<br />
gloomy outlook for nuclear. For example, the IEA forecast<br />
that the share of generation from nuclear plants – the<br />
second-largest source of low-carbon electricity today after<br />
hydropower – would remain at around 10 % by 2040.<br />
The report said global electricity generation would increase<br />
by some 60 % (15,000 TWh) between 2017 and 2040<br />
under the IEA’s ‘new policies scenario’. “Fossil fuels remain<br />
the major source for electricity generation, but their share<br />
falls from around two-thirds today to under 50 % by 2040.”<br />
Coal and renewables will “switch their position in the<br />
power mix”, according to the report. “The share of coal<br />
declines from around 40 % today to a quarter in 2040 while<br />
that of renewables grows from a quarter to just over 40 %<br />
over the same period. The share of natural gas remains<br />
steady at over 20 %.”<br />
Hydropower remains the largest low-carbon source of<br />
electricity in the new policies scenario, contributing 15 %<br />
of total generation in 2040. Renewables altogether account<br />
for more than 70 % of the increase in electricity generation.<br />
Solar PV costs are projected to fall by more than 40 %<br />
to 2040, “underpinning a nine-fold growth in solar PV<br />
generation, mainly in China, India and the US”.<br />
Meanwhile, some two-thirds of today’s nuclear fleet in<br />
advanced economies is more than 30 years old. And as the<br />
IEA report points out, decisions to extend, or shut down,<br />
this capacity “will have significant implications for energy<br />
security, investment and emissions”.<br />
The IEA sees China becoming the country with the<br />
largest generation of nuclear-based electricity as the<br />
nuclear fleet in advanced economies ages.<br />
However, as the IEA itself acknowledged, “the world is<br />
gradually building a different kind of energy system, but<br />
cracks are visible in the key pillars”. Those pillars include<br />
affordability (think falling PV and wind costs but climbing<br />
oil prices). On reliability, risks to oil and gas supply remain<br />
(as recent events in Venezuela show). There is also the<br />
question of sustainability. According to the IEA, after three<br />
flat years, global energy-related carbon dioxide (CO 2 )<br />
emissions rose by 1.6 % in 2017 “and the early data suggest<br />
continued growth in 2018”.<br />
I would argue it is these ‘key pillars’ that still offer<br />
the best chance for a new generation of nuclear power<br />
generating facilities through to 2040 and beyond.<br />
Some of those nations that have not had the ‘luxury’ of<br />
abundant supplies of clean electricity to drive economic<br />
growth surely agree. Take for example India. As World<br />
Nuclear News has reported, India currently expects to bring<br />
21 new nuclear power reactors with a combined generating<br />
capacity of 15,700 MWe into operation by 2031.<br />
In addition, the nuclear industry has every reason to<br />
look beyond the horizon of the next 20 years and think<br />
about how technological developments can play in role in<br />
advancing a new generation of nuclear.<br />
New initiatives that hold promise include a proposed<br />
US pilot programme to produce high-assay low-enriched<br />
uranium (HALEU) in hopes of accelerating the next<br />
generation of nuclear reactors.<br />
The US Department of Energy (DOE) issued a notice of<br />
intent in January <strong>2019</strong> to invest in the pilot project.<br />
According to the president and CEO of the Nuclear Energy<br />
Institute, Maria Korsnick, the move “demonstrates<br />
continued confidence in the success of the next generation<br />
of advanced nuclear reactors and for new fuel options for<br />
the existing fleet”.<br />
In terms of sustainability, nuclear still has everything<br />
going for it. The world’s supply of uranium is more than<br />
adequate to meet projected requirements for the foreseeable<br />
future, regardless of the role that nuclear energy<br />
ultimately plays in meeting future electricity demand and<br />
global climate objectives, according to the main findings of<br />
the latest edition of Uranium 2018: Resources, Production<br />
and Demand, also known as the ‘Red Book’.<br />
However, the Red Book, which is jointly prepared every<br />
two years by the Nuclear Energy Agency and the International<br />
Atomic Energy Agency, said significant investment<br />
and technical expertise would be required to ensure these<br />
uranium resources can be brought into production in a<br />
timely manner, including from mines currently under care<br />
and maintenance.<br />
The world’s identified uranium resources are reported<br />
to be 6,142,200 tonnes of uranium metal (tU), which can<br />
be recovered at a cost of $ 130 per kilogramme or less.<br />
“These are recoverable, reasonably assured and inferred<br />
resources and this represents an increase of 7.4 % on the<br />
total reported in 2016,” the Red Book said. However, the<br />
publication cautioned that while some of these increases<br />
are due to new discoveries, the majority results from<br />
re-evaluations of previously identified uranium resources<br />
– and “strong market conditions will be fundamental to<br />
attracting the required investment to the industry”.<br />
And beyond the facts that support the case for nuclear,<br />
even the hardest hearts previously set against the technology<br />
are melting. Towards the end of 2018, the Union of<br />
Concerned Scientists (UCS) overturned its longstanding<br />
opposition by issuing a report that urged federal and state<br />
policies in the US to help preserve safely operating nuclear<br />
plants that were at risk of premature closure.<br />
The UCS has seen the light – and said its call was<br />
necessary to ensure nuclear’s low-carbon energy was not<br />
replaced by fossil fuels.<br />
The shift in position of the UCS is every bit as important<br />
as when environmentalist James Lovelock upset the Green<br />
movement by coming out in favour of nuclear energy.<br />
Nuclear can clearly still win over hearts and minds on its<br />
merits and record. It deserves investment to fulfil its<br />
essential role as part of a clean energy solution for the<br />
future.<br />
Author<br />
John Shepherd<br />
Nuclear Today<br />
Nuclear Has Every Reason to Plan for a New Energy Horizon ı John Shepherd
Kommunikation und<br />
Training für Kerntechnik<br />
Atomrecht 360° kompakt<br />
Seminar:<br />
Atomrecht – Was Sie wissen müssen<br />
Seminarinhalte<br />
ı<br />
ı<br />
ı<br />
ı<br />
Einführung: Was muss ich wissen, wenn es um Atomrecht geht?<br />
Atomrecht 360° im Schnelldurchlauf<br />
ı Atomverwaltung<br />
ı Neuorganisation der Entsorgung<br />
ı Genehmigungsverfahren<br />
Vertrags- und Haftungsrecht im Nuklearbereich<br />
Nuklearhaftung<br />
Seminarziel<br />
In dem Seminar werden die wichtigsten Bereiche des deutschen Atomrechts<br />
(mit ausgewählten Verbindungen ins EU- und internationale Atomrecht) im Überblick<br />
behandelt sowie das Vertrags- und Haftungsrecht im Bereich Atomrecht beleuchtet.<br />
Termin<br />
4. Juni <strong>2019</strong><br />
09:00 bis 17:00 Uhr<br />
Veranstaltungsort<br />
Geschäftsstelle der INFORUM<br />
Robert-Koch-Platz 4<br />
10115 Berlin<br />
Teilnahmegebühr<br />
898,– € ı zzgl. 19 % USt.<br />
Im Preis inbegriffen sind:<br />
ı Seminarunterlagen<br />
ı Teilnahmebescheinigung<br />
ı Pausenverpflegung<br />
inkl. Mittagessen<br />
Zielgruppe<br />
ı<br />
Fach- und Führungskräfte, Projektleiter und -mitarbeiter, Techniker, Energiewirtschaftler,<br />
Öffentlichkeitsarbeiter sowie Juristen anderer Fachbereiche<br />
Maximale Teilnehmerzahl: 12 Personen<br />
Referenten<br />
Dr. Christian Raetzke | Rechtsanwalt Leipzig<br />
Akos Frank LL. M. (SULS Boston) | Experte für Handelsrecht, Group Senior Legal Counsel, NKT A/S;<br />
Referent der OECD NEA International School of Nuclear Law<br />
Wir freuen uns auf Ihre Teilnahme!<br />
Kontakt<br />
INFORUM<br />
Verlags- und Verwaltungsgesellschaft<br />
mbH<br />
Robert-Koch-Platz 4<br />
10115 Berlin<br />
Petra Dinter-Tumtzak<br />
Fon +49 30 498555-30<br />
Fax +49 30 498555-18<br />
seminare@kernenergie.de<br />
Bei Fragen zur Anmeldung<br />
rufen Sie uns bitte an oder<br />
senden uns eine E-Mail.
Bewerben Sie sich jetzt<br />
für das<br />
KTG-Scholarship<br />
www.amnt<strong>2019</strong>.com<br />
7. – 8. Mai <strong>2019</strong><br />
Estrel Convention Center Berlin, Deutschland<br />
www.unserejahrestagung.de<br />
#50AMNT<br />
In Deutschland führend<br />
– international einzigartig<br />
Profitieren Sie von der Expertise und<br />
dem Austausch mit der Community und unterstützen<br />
Sie Ihre 50. Jahrestagung Kerntechnik als:<br />
› Fachbesucher<br />
› Aussteller<br />
› Sponsor<br />
Registrieren Sie sich jetzt<br />
› www.amnt<strong>2019</strong>.com<br />
Key Topics<br />
Outstanding Know-How & Sustainable Innovations<br />
Enhanced Safety & Operation Excellence<br />
Decommissioning Experience & Waste Management Solutions<br />
Medien Partner<br />
Unsere Jahrestagung – das Original seit 50 Jahren.