01.02.2019 Views

atw 2019-02

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nucmag.com<br />

<strong>2019</strong><br />

2<br />

71<br />

Contribution of NPPs<br />

to the Energy Transition<br />

79 ı Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe<br />

90 ı Spotlight on Nuclear Law<br />

The New Radiation Protection Law (I): Official Approvals<br />

91 ı Environment and Safety<br />

Piping Stress Analysis of Safety Injection System<br />

of Typical PWR Power Reactor<br />

ISSN · 1431-5254<br />

24.– €<br />

106 ı Special Topic | A Journey Through 50 Years AMNT<br />

1971 DAtF-KTG-Meeting on Reactors in Bonn<br />

Register Now!


#50AMNT<br />

www.amnt<strong>2019</strong>.com<br />

Take a Glimpse into the Future<br />

Technolution – The Co-Evolution<br />

Between Techology and Humankind<br />

› Matthias Horx ‹<br />

Trend Researcher and Futurologist,<br />

Austria<br />

Tuesday, 7 th Mai <strong>2019</strong>, 6:30 pm<br />

Media Partners<br />

Celebrate with us our 50 th anniversary


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

The Same Procedure<br />

63<br />

Anyone who is enthusiastic about the construction of a nuclear power plant today must consider the fact that this<br />

plant will technically still run in 80 or even 100 years under politically reliable framework conditions. For nuclear power<br />

plants that are in operation today, even for 30 to 40 years, technical operating lives of 60 years are a matter of course,<br />

and in the USA, for example, 80 years are undergoing technical and regulatory evaluation. As far as the guarantee of<br />

continued highest safety levels is concerned, statements are very clear: A “retirement loan” is not granted, nor does it<br />

have to, since highest safety is also guaranteed for running plants by ongoing quality management and for new technical<br />

findings by retrofitting.<br />

Such long-term prospects also raise the question of<br />

whether sufficient nuclear fuel is available worldwide as a<br />

raw material at all. The answer is given periodically, every<br />

two years, with the comprehensive report “Uranium:<br />

Resources, Production and Demand” by the Nuclear<br />

Energy Agency (NEA) of the Organisation for Economic<br />

Development (OECD) and the International Atomic<br />

Energy Agency (IAEA). Since the mid-1960s, the two<br />

organizations have been publishing this analysis of the<br />

global nuclear fuel market, reserves and resources. The<br />

Red Book offers a detailed and reliable insight into the<br />

current situation of the entire uranium and nuclear fuel<br />

supply. The Red Book also provides an outlook on demand<br />

and supply forecasts for the coming decades. The data in<br />

the 27 th edition, which has now been published, have been<br />

compiled with the support of 41 member states of both<br />

organisations and analyses by NEA and IAEA experts. They<br />

reflect the state of knowledge on 45 countries with nuclear<br />

fuel resources and/or requirements as of 1 January 2017.<br />

In addition, other aspects of nuclear fuel supply are<br />

outlined, such as environmental protection and price<br />

development.<br />

The opening statement is unequivocal: With the<br />

demand level of 2016, sufficient uranium is known<br />

worldwide to supply for 130 years. Further nuclear fuel<br />

resources have been identified, but are not yet taken into<br />

account because they are not strategically necessary!<br />

On the uranium supply side, the Red Book again<br />

identifies an increase in resources compared to 2015:<br />

According to the list classified by costs step by step, a total<br />

of 7.989 million tonnes of uranium at production costs<br />


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

EDITORIAL 64<br />

Es bleibt dabei<br />

Liebe Leserin, lieber Leser, wer sich heute für den Bau eines Kernkraftwerks begeistert, muss damit rechnen,<br />

dass diese Anlage unter politisch verlässlichen Rahmenbedingungen technisch gesehen noch in 80 oder gar 100 Jahren<br />

laufen wird. Für Kernkraftwerke, die heute in Betrieb sind, auch schon seit 30 bis 40 Jahren, sind technische Laufzeiten<br />

von 60 Jahren eine Selbstverständlichkeit und zum Beispiel in den USA sind 80 Jahre in der technischen und<br />

regulatorischen Prüfung. Was die Gewährleistung von weiterhin höchsten Sicherheitsniveaus betrifft, so sind Aussagen<br />

sehr eindeutig: Ein „Alterskredit“ wird nicht gewährt, muss er auch nicht, da höchste Sicherheit auch bei laufenden<br />

Anlagen durch das laufende Qualitätsmanagement und bei neuen technischen Erkenntnissen durch Nachrüstungen<br />

gewährleistet wird.<br />

1) Uranium 2018:<br />

Resources, Production<br />

and Demand,<br />

A Joint Report by<br />

the OECD Nuclear<br />

Energy Agency and<br />

the International<br />

Atomic Energy<br />

Agency, NEA No.<br />

7413, Paris, 2018<br />

Mit solchen Langfristperspektiven stellt sich auch die<br />

Frage, ob überhaupt ausreichend Kernbrennstoff weltweit<br />

als Rohstoff zur Verfügung steht. Die Antwort darauf gibt<br />

es periodisch, alle zwei Jahre, mit dem umfassenden<br />

Bericht „Uranium: Resources, Production and Demand“<br />

von Nuclear Energy Agency (NEA) der Organisation for<br />

Economic Development (OECD) und Internationaler<br />

Atom energie-Organisation (IAEO). Seit Mitte der 1960er-<br />

Jahre veröffentlichen die beiden Organisationen diese<br />

Analyse zum weltweiten Kernbrennstoffmarkt, den<br />

Reserven und Ressourcen. Das Red Book bietet einen<br />

detaillierten und verlässlichen Einblick in die aktuelle<br />

Situation der gesamten Uran- und Kernbrennstoff versorgung.<br />

Zudem liefert das Red Book einen Ausblick auf<br />

die Bedarfs- und Versorgungsprognose der kommenden<br />

Jahrzehnte. Die Daten der jetzt veröffentlichten 27. Ausgabe<br />

sind mit Unterstützung von inzwischen 41<br />

Mitgliedsstaaten beider Organisationen sowie Analysen<br />

der Experten von NEA und IAEO ermittelt worden. Sie<br />

spiegeln den Wissensstand zu 45 Staaten mit Kernbrennstoffressourcen<br />

und/oder -bedarf zum Stichtag 1. Januar<br />

2017 wider. Darüber hinaus werden weitere Aspekte der<br />

Kernbrennstoffversorgung umrissen, wie z.B. Umweltschutz<br />

und Preisentwicklung.<br />

Eindeutig ist das Eingangsstatement: Mit dem Bedarfsniveau<br />

des Jahres 2016 ist weltweit ausreichend Uran<br />

zur Versorgung für 130 Jahre bekannt. Weitere Kernbrennstoffressourcen<br />

sind identifiziert, werden aber, da<br />

strategisch nicht erforderlich, noch nicht berücksichtigt!<br />

Aufseiten der Uranversorgung identifiziert das Red<br />

Book wiederum einen Ressourcenzuwachs im Vergleich<br />

zum Jahr 2015: Entsprechend der stufenweise nach Kosten<br />

klassifizierten Aufstellung werden am Stichtag 1. Januar<br />

2017 insgesamt 7,989 Mio. t Uran zu Gewinnungskosten<br />


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 05.03.<strong>2019</strong><br />

17.09.<strong>2019</strong><br />

Ihr Weg durch Genehmigungs- und Aufsichtsverfahren RA Dr. Christian Raetzke <strong>02</strong>.04.<strong>2019</strong><br />

22.10.<strong>2019</strong><br />

Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 03.04.<strong>2019</strong> Berlin<br />

Atomrecht – Was Sie wissen müssen<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chancen und Regularien<br />

3 Kommunikation und Politik<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

RA Kay Höft M. A.<br />

O. L. Kreuzer<br />

Dr.-Ing. Wolfgang Steinwarz<br />

Berlin<br />

Berlin<br />

04.06.<strong>2019</strong> Berlin<br />

12.06. - 13.06.<strong>2019</strong> Berlin<br />

Schlüsselfaktor Interkulturelle Kompetenz –<br />

International verstehen und verstanden werden<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Angela Lloyd 20.03.<strong>2019</strong> Berlin<br />

Dr. Nikolai A. Behr 05.11. - 06.11.<strong>2019</strong> Berlin<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

Dr. Matthias Bauerfeind<br />

RA Dr. Christian Raetzke<br />

12.<strong>02</strong>. - 13.<strong>02</strong>.<strong>2019</strong><br />

18.03. - 19.03.<strong>2019</strong><br />

04.04. - 05.04.<strong>2019</strong><br />

25.06. - 26.06.<strong>2019</strong><br />

Berlin<br />

24.09. - 25.09.<strong>2019</strong> Berlin<br />

3 Nuclear English<br />

Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 10.04. - 11.04.<strong>2019</strong><br />

18.09. - 19.09.<strong>2019</strong><br />

Enhancing Your Nuclear English Devika Kataja 22.05. - 23.05.<strong>2019</strong> Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Berlin<br />

Erfolgreicher Wissenstransfer in der Kern technik –<br />

Methoden und praktische Anwendung<br />

Veränderungsprozesse gestalten – Heraus forderungen<br />

meistern, Beteiligte gewinnen<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

26.03. - 27.03.<strong>2019</strong> Berlin<br />

26.11. - 27.11.<strong>2019</strong> Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

66<br />

Issue 2 | <strong>2019</strong><br />

February<br />

CONTENTS<br />

Contents<br />

Editorial<br />

The Same Procedure E/G 63<br />

Inside Nuclear with NucNet<br />

Financing New Nuclear: Is RAB Model the Right Way Forward? 68<br />

DAtF Notes 69<br />

Calendar 70<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants<br />

to the Energy Transition in Germany 71<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe 79<br />

Spotlight on Nuclear Law<br />

The New Radiation Protection Law (I): Official Approvals G 90<br />

Environment and Safety<br />

Piping Stress Analysis of Safety Injection System<br />

of Typical PWR Power Reactor 91<br />

Environment and Safety<br />

Research for the Adequacy Analysis of Plant System Behaviors<br />

During Abnormal Conditions 95<br />

Operation and New Build<br />

Design of Control System for On-line Ultrasonic Testing Device<br />

of Nuclear Power Hollow Flange Bolt Based on LabVIEW 98<br />

Research and Innovation<br />

Simulation of KSMR Core Zero Power Conditions<br />

Using the Monte Carlo Code Serpent 103<br />

Special Topic | A Journey Through 50 Years AMNT<br />

1971 DAtF-KTG-Meeting on Reactors in Bonn G 106<br />

Cover:<br />

Isar NPP in Germany. Isar 2 (left) was the<br />

third NPP worldwide that produced more<br />

than 350 billion kWh of electricity.<br />

Copyright: PreussenElektra GmbH<br />

KTG Inside 112<br />

News 113<br />

Nuclear Today<br />

Nuclear Has Every Reason to Plan for a New Energy Horizon 118<br />

G<br />

E/G<br />

= German<br />

= English/German<br />

Imprint 1<strong>02</strong><br />

Contents


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Feature<br />

Major Trends in Energy Policy<br />

and Nuclear Power<br />

71 Contribution of Nuclear Power Plants<br />

to the Energy Transition in Germany<br />

67<br />

CONTENTS<br />

Denis Janin, Eckart Lindwedel,<br />

Volker Raffel, Graham Weale, James Cox and Geir Bronmo<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

79 Wind Energy in Germany<br />

and Europe<br />

Thomas Linnemann and Guido S. Vallana<br />

Spotlight on Nuclear Law<br />

90 The New Radiation Protection Law (I): Official Approvals<br />

Das neue Strahlenschutzrecht (I): Genehmigungen<br />

Christian Raetzke<br />

Environment and Safety<br />

91 Piping Stress Analysis of Safety Injection System<br />

of Typical PWR Power Reactor<br />

Mazhar Iqbal, Agha Nadeem, Tariq Najam,<br />

Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan<br />

Special Topic | A Journey Through 50 Years AMNT<br />

106 1971 DAtF-KTG-Meeting on Reactors in Bonn<br />

DAtF-KTG-Reaktortagung 1971 in Bonn<br />

Nuclear Today<br />

118 Nuclear Has Every Reason to Plan for a New Energy Horizon<br />

John Shepherd<br />

Contents


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

68<br />

INSIDE NUCLEAR WITH NUCNET<br />

Financing New Nuclear:<br />

Is RAB Model the Right Way Forward?<br />

David Dalton, NucNet<br />

The United Kingdom (UK) is considering a new method of funding to make sure new plants can get built.<br />

The UK government has confirmed it is exploring<br />

the “right ways” to finance new nuclear,<br />

including through potential government investment<br />

in the Wylfa Newydd nuclear power station on the<br />

isle of Anglesey in North Wales and a regulated asset base,<br />

or RAB, model for future projects.<br />

Business secretary Greg Clark said in a speech on the<br />

future of the energy market that “if nuclear is sufficiently<br />

competitive, then it is worth, in my view, turning that<br />

option into a commitment.”<br />

He said there has been “some criticism” of the<br />

prospective cost of the Hinkley Point C nuclear station<br />

project, but in its efforts to bring down costs the government<br />

is looking into financing options for new-build.<br />

“It is also why we recently announced a nuclear industry<br />

deal with its emphasis on the need to reduce the costs [of<br />

new nuclear] by 30 % through increasing modularisation<br />

and advanced manufacturing,” Mr Clark said.<br />

France’s state-controlled EDF, through its UK division<br />

EDF Energy, is building two EPR units at Hinkley Point C<br />

with the financial participation of China’s General Nuclear<br />

Power Corporation (CGN). The cost of the project is<br />

estimated at almost £ 20 bn.<br />

The financing for the project proved controversial.<br />

The deal struck with EDF Energy to build what is Britain’s<br />

first new nuclear power project in a generation has been<br />

criticised by the National Audit Office (NAO) because it<br />

guarantees the company a strike price of £ 92.50 per<br />

megawatt- hour of electricity, well above current market<br />

prices.<br />

The agreement means EDF will receive £ 92.50 for each<br />

MWh of electricity from the station that it sells into the<br />

market for 35 years. EDF will receive top-up payments –<br />

ultimately paid for by electricity bill-payers – if the market<br />

price is lower. Conversely, payments will flow in the<br />

opposite direction if wholesale prices rise above the strike<br />

price.<br />

The core of the issue is the upfront cost of financing major<br />

infrastructure projects like nuclear plants. According to<br />

the NAO it has not been commercially viable for private<br />

developers to build new generating capacity without<br />

government support. “The forecast revenues available in<br />

the wholesale electricity market do not cover the high<br />

upfront costs and other risks of building, operating and<br />

decommissioning low-carbon power plants,” the NAO said.<br />

Mr Clark’s speech is the clearest indication yet that the<br />

government is open to RAB, essentially a type of contract<br />

drawn up with the backing of government which calculates<br />

the costs and profits of a project before it is started, and<br />

allocates an investor’s profits from day one.<br />

A government regulator sets a fixed number, the RAB,<br />

which attempts to account for all the future costs involved<br />

in the completion of a project. The regulator then also sets<br />

a fixed rate of return for the investors based on those costs.<br />

Dieter Helm, the British economist and academic, says<br />

RAB would solve the problem for nuclear developers of<br />

“time inconsistency and the operating contract” – the risks<br />

to the developer that the government will renege on its<br />

part of the deal and that the plant will be forced off the<br />

system by the investment decisions of others, in particular<br />

where low-carbon investment is decided by and subsidised<br />

by government.<br />

“The RAB mechanism is honoured by the regulator and<br />

the regulator is itself backed by statute, so ultimately this<br />

duty is backed by the government,” Mr Helm wrote in a<br />

recent paper.<br />

“Because there is regulatory protection against time<br />

inconsistency and because ultimately the government<br />

stands behind the regulator and the duty to finance<br />

functions, investors treat the RAB as a very solid<br />

securitisable asset.”<br />

Nuclear power is “always and everywhere political”<br />

because it involves capital intensive and long-lived assets,<br />

and because it comes with environmental, military and<br />

technology specific risks on a scale which no private<br />

market can handle on its own, Mr Helm said.<br />

Nuclear waste lasts for many generations and plans<br />

for the storage of that waste remain a work-in-progress.<br />

Decommissioning is far into the future and cannot be left<br />

to limited liability private companies.<br />

Nuclear has important military dimensions and<br />

terrorist- related risks. Accidents, however unlikely, may<br />

create large-scale consequences, which private limited<br />

liabilities companies cannot fully provide for.<br />

According to Mr Helm, these characteristics that<br />

nuclear is a societal and political matter, over many<br />

generations. Nuclear safety regulation, nuclear funds for<br />

decommissioning, nuclear waste storage and nuclear<br />

security and secrecy remain for the state, and cannot be<br />

contracted out to private project developers.<br />

What can be contracted out to private companies is<br />

the construction and operation of nuclear power stations<br />

– in principle. In practice, most nuclear developers are<br />

state-owned, in whole or in part, and all have close links to<br />

government.<br />

“This is because of the technology and also the specific<br />

endemic challenges of project developments,” Mr Helm<br />

said. “There are unsurprisingly no purely private sector<br />

nuclear projects anywhere in the world.”<br />

Apart from Hinkley Point C, which is in the early stages<br />

of construction, there are three other new nuclear projects<br />

on the drawing board in the UK.<br />

Horizon Nuclear Power is planning to build two UK<br />

Advanced Boiling Water Reactors at Wylfa Newydd. CGN<br />

and EDF Energy have formed a joint venture with plans to<br />

build a single China-designed HPR1000 plant at Bradwell<br />

B in Essex, southeast England, a project CGN has said<br />

could use the RAB model. EDF wants to begin construction<br />

of two EPR units at the Sizewell C nuclear power station on<br />

the east coast of England by the end of 2<strong>02</strong>1.<br />

However, Toshiba announced earlier this month it had<br />

decided to wind up NuGen, the company overseeing plans<br />

Inside Nuclear with NucNet<br />

Financing New Nuclear: Is RAB Model the Right Way Forward?


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Notes<br />

Return of Waste<br />

from Nuclear Fuel Reprocessing<br />

Until 2005, the reprocessing of spent nuclear fuel was the planned<br />

way. By the year 1994, it was even the legal requirement. Therefore<br />

the spent fuel elements were transported to France and Great<br />

Britain for reprocessing. For this purpose, the operators of the<br />

German nuclear power plants have signed contracts with the<br />

operators of the reprocessing facilities in La Hague and Sellafield.<br />

The radioactive waste caused by the reprocessing will be returned<br />

to Germany. To reflect this DAtF has published a new edition of the<br />

brochure on the management of the return of waste from nuclear<br />

fuel reprocessing.<br />

LA HAGUE<br />

SELLAFIELD<br />

DATF EDITORIAL NOTES<br />

69<br />

pp<br />

How does the conditioning of the radioactive waste work?<br />

pp<br />

How is this waste stored temporarily?<br />

pp<br />

Which organizations are responsible for authorization?<br />

Answers to these questions and more information can be found in<br />

the new edition of:<br />

Return of Waste<br />

from Nuclear Fuel Reprocessing<br />

33<br />

Now available for download at www.kernenergie.de<br />

(German)<br />

Rücknahme von Abfällen<br />

aus der Wiederaufarbeitung<br />

For further details please contact:<br />

Nicolas Wendler<br />

DAtF<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

E-mail: presse@kernenergie.de<br />

www.kernenergie.de<br />

to build three Westinghouse Generation III+ AP1000 units<br />

at the Moorside site in northwest England.<br />

Toshiba said it was winding up NuGen because of its<br />

inability to find a buyer and the ongoing costs it was<br />

incurring. The company said finding the right financing<br />

model was an issue. Before the wind-up was confirmed,<br />

NuGen chief executive Tom Samson said the RAB model<br />

should be considered, although it was not clear if this was<br />

ever the case.<br />

Author<br />

NucNet<br />

The Independent Global Nuclear News Agency<br />

Editor responsible for this story: David Dalton<br />

Editor in Chief, NucNet<br />

Avenue des Arts 56<br />

1000 Brussels, Belgium<br />

www.nucnet.org<br />

DAtF Notes


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Calendar<br />

70<br />

<strong>2019</strong><br />

CALENDAR<br />

05.<strong>02</strong>.-07.<strong>02</strong>.<strong>2019</strong><br />

Nordic Nuclear Forum. Helsinki, Finland, FinNuclear,<br />

www.nordicnuclearforum.fi/conference<br />

25.<strong>02</strong>.-26.<strong>02</strong>.<strong>2019</strong><br />

Symposium Anlagensicherung. Hamburg,<br />

Germany, TÜV NORD Akademie, www.tuev-nord.de<br />

03.03.-07.03.<strong>2019</strong><br />

WM Symposia – WM<strong>2019</strong>. Phoenix, AZ, USA,<br />

www.wmsym.org<br />

05.03.-06.03.<strong>2019</strong><br />

VI. International Power Plants Summit.<br />

Istanbul, Turkey, INPPS Fair,<br />

www.nuclearpowerplantssummit.com<br />

10.03.-15.03.<strong>2019</strong><br />

83. Annual Meeting of DPG and DPG Spring<br />

Meeting of the Atomic, Molecular, Plasma Physics<br />

and Quantum Optics Section (SAMOP),<br />

incl. Working Group on Energy. Rostock, Germany,<br />

Deutsche Physikalische Gesellschaft e.V.,<br />

www.dpg-physik.de<br />

10.03.-14.03.<strong>2019</strong><br />

The 9 th International Symposium On<br />

Supercritical- Water-Cooled Reactors (ISSCWR-9).<br />

Vancouver, British Columbia, Canada, Canadian<br />

Nuclear Society (CNS), www.cns-snc.ca<br />

11.03.-13.03.<strong>2019</strong><br />

18 th Workshop of the European ALARA Network:<br />

ALARA in Decommissioning and Site Remediation.<br />

Marcoule, France, European ALARA Network<br />

www.eu-alara.net<br />

11.03.-12.03.<strong>2019</strong><br />

Carnegie International Nuclear Policy Conference.<br />

Washington D.C., U.S.A., Carnegie Endownment for<br />

International Peace, carnegieendowment.org<br />

<br />

24.03.-28.03.<strong>2019</strong><br />

RRFM <strong>2019</strong> – <strong>2019</strong> the European Research<br />

Reactor Conference. Jordan, IGORR, the International<br />

Group Operating Research Reactors and European<br />

Nuclear Society (ENS), www.euronuclear.org<br />

25.03.-27.03.<strong>2019</strong><br />

Cyber Security Implementation Workshop.<br />

Boston MA, USA, Nuclear Energy Institute (NEI),<br />

www.nei.org<br />

01.04.-03.04.<strong>2019</strong><br />

CIENPI – 13 th China International Exhibition on<br />

Nuclear Power Industry. Beijing, China,<br />

Coastal International, www.coastal.com.hk<br />

09.04.-11.04.<strong>2019</strong><br />

World Nuclear Fuel Cycle <strong>2019</strong>. Shanghai, China,<br />

World Nuclear Association (WNA), Miami, Florida,<br />

USA, www.wnfc.info<br />

ATOMEXPO <strong>2019</strong>. Sochi, Russia,<br />

<strong>2019</strong>.atomexpo.ru/en/<br />

15.04.-16.04.<strong>2019</strong><br />

07.05.-08.05.<strong>2019</strong><br />

50 th Annual Meeting on Nuclear Technology<br />

AMNT <strong>2019</strong> | 50. Jahrestagung Kerntechnik.<br />

Berlin, Germany, DAtF and KTG,<br />

www.amnt<strong>2019</strong>.com – Register Now!<br />

15.05.-17.05.<strong>2019</strong><br />

1 st International Conference of Materials,<br />

Chemistry and Fitness-For-Service Solutions<br />

for Nuclear Systems. Toronto, Canada, Canadian<br />

Nuclear Society (CNS), www.cns-snc.ca<br />

16.05.-17.05.<strong>2019</strong><br />

Emergency Power Systems at Nuclear Power<br />

Plants. Munich, Germany, TÜV SÜD,<br />

www.tuev-sued.de/eps-symposium<br />

24.05.-26.05.<strong>2019</strong><br />

International Topical Workshop on Fukushima<br />

Decommissioning Research – FDR<strong>2019</strong>.<br />

Fukushima, Japan, The University of Tokyo,<br />

fdr<strong>2019</strong>.org<br />

29.05.-31.05.<strong>2019</strong><br />

Global Nuclear Power Tech. Seoul, South Korea,<br />

Korea Electric Engineers Association,<br />

electrickorea.org/eng<br />

03.06.-05.06.<strong>2019</strong><br />

Nuclear Energy Assembly. Washington DC, USA,<br />

Nuclear Energy Institute (NEI), www.nei.org<br />

03.06.-07.06.<strong>2019</strong><br />

World Nuclear University Short Course:<br />

The World Nuclear Industry Today.<br />

Rio de Janeiro, Brazil, World Nuclear University,<br />

www.world-nuclear-university.org<br />

04.06.-07.06.<strong>2019</strong><br />

FISA <strong>2019</strong> and EURADWASTE ‘19. 9 th European<br />

Commission Conferences on Euratom Research<br />

and Training in Safety of Reactor Systems and<br />

Radioactive Waste Management. Pitesti, Romania,<br />

www.nucleu2<strong>02</strong>0.eu<br />

24.06.-28.06.<strong>2019</strong><br />

<strong>2019</strong> International Conference on the Management<br />

of Spent Fuel from Nuclear Power Reactors.<br />

Vienna, Austria, International Atomic Energy Agency<br />

(IAEA), www.iaea.org<br />

23.06.-27.06.<strong>2019</strong><br />

World Nuclear University Summer Institute.<br />

Romania and Switzerland, World Nuclear University,<br />

www.world-nuclear-university.org<br />

21.07.-24.07.<strong>2019</strong><br />

14 th International Conference on CANDU Fuel.<br />

Mississauga, Ontario, Canada, Canadian Nuclear<br />

Society (CNS), www.cns-snc.ca<br />

28.07.-01.08.<strong>2019</strong><br />

Radiation Protection Forum. Memphis TN, USA,<br />

Nuclear Energy Institute (NEI), www.nei.org<br />

29.07.-<strong>02</strong>.08.<strong>2019</strong><br />

27 th International Nuclear Physics Conference<br />

(INPC). Glasgow, Scotland, inpc<strong>2019</strong>.iopconfs.org<br />

04.08.-09.08.<strong>2019</strong><br />

PATRAM <strong>2019</strong> – Packaging and Transportation<br />

of Radioactive Materials Symposium.<br />

New Orleans, LA, USA. www.patram.org<br />

21.08.-30.08.<strong>2019</strong><br />

Frédéric Joliot/Otto Hahn (FJOH) Summer School<br />

FJOH-<strong>2019</strong> – Innovative Reactors: Matching the<br />

Design to Future Deployment and Energy Needs.<br />

Karlsruhe, Germany, Nuclear Energy Division<br />

of Commissariat à l’énergie atomique et aux<br />

énergies alternatives (CEA) and Karlsruher Institut<br />

für Technologie (KIT), www.fjohss.eu<br />

04.09.-06.09.<strong>2019</strong><br />

World Nuclear Association Symposium <strong>2019</strong>.<br />

London, UK, World Nuclear Association (WNA),<br />

www.wna-symposium.org<br />

04.09.-05.09.<strong>2019</strong><br />

VGB Congress <strong>2019</strong> – Innovation in Power<br />

Generation. Salzburg, Austria, VGB PowerTech e.V.,<br />

www.vgb.org<br />

08.09.-11.09.<strong>2019</strong><br />

4 th Nuclear Waste Management,<br />

Decommissioning and Environmental Restoration<br />

(NWMDER). Ottawa, Canada, Canadian Nuclear<br />

Society (CNS), www.cns-snc.ca<br />

09.09.-12.09.<strong>2019</strong><br />

24 th World Energy Congress. Abu Dhabi, UAE,<br />

www.wec24.org<br />

09.09.-12.09.<strong>2019</strong><br />

Jahrestagung <strong>2019</strong> – Fachverband für<br />

Strahlenschutz | Strahlenschutz und Medizin.<br />

Würzburg, Germany,<br />

www.fs-ev.org/jahrestagung-<strong>2019</strong><br />

16.09.-20.09.<strong>2019</strong><br />

63 rd Annual Conference of the IAEA. Vienna,<br />

Austria, International Atomic Energy Agency (IAEA),<br />

www.iaea.org/about/governance/<br />

general-conference<br />

22.10.-25.10.<strong>2019</strong><br />

SWINTH-<strong>2019</strong> Specialists Workshop on Advanced<br />

Instrumentation and Measurement Techniques<br />

for Experiments Related to Nuclear Reactor<br />

Thermal Hydraulics and Severe Accidents.<br />

Livorno, Italy, www.nineeng.org/swinth<strong>2019</strong>/<br />

23.10.- 24.10.<strong>2019</strong><br />

Chemistry in Power Plants. Würzburg, Germany,<br />

VGB PowerTech e.V., www.vgb.org/en/<br />

chemie_im_kraftwerk_<strong>2019</strong>.html<br />

27.10.-30.10.<strong>2019</strong><br />

FSEP CNS International Meeting on Fire Safety<br />

and Emergency Preparedness for the Nuclear<br />

Industry. Ottawa, Canada, Canadian Nuclear Society<br />

(CNS), www.cns-snc.ca<br />

12.11.-14.11.<strong>2019</strong><br />

International Conference on Nuclear<br />

Decommissioning – ICOND <strong>2019</strong>. Eurogress<br />

Aachen, Aachen Institute for Nuclear Training GmbH,<br />

www.icond.de<br />

25.11.-29-11.<strong>2019</strong><br />

International Conference on Research Reactors:<br />

Addressing Challenges and Opportunities to<br />

Ensure Effectiveness and Sustainability.<br />

Buenos Aires, Argentina, International Atomic<br />

Energy Agency (IAEA), www.iaea.org/events/<br />

conference-on-research-reactors-<strong>2019</strong><br />

This is not a full list and may be subject to change.<br />

Calendar


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants to<br />

the Energy Transition in Germany<br />

Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo<br />

This study investigates the contribution of nuclear power plants (NPPs) to the German Energy Transition by analysing<br />

the effects of an early closure of NPPs early 2<strong>02</strong>0. According to the German law, the seven NPPs remaining today in<br />

operation will be shut-down successively by 2<strong>02</strong>2 at the latest. Until then NPPs generate competitive, CO 2 -free and<br />

dispatchable power supporting the German power system and the other energy transition objectives. This work<br />

quantifies the impact of an early phase-out of NPPs in Germany and at the European level. A coupled market and grid<br />

system analysis is performed. The Pöyry’s in-house market model BID3 and the grid analysis software tool PSS/E,<br />

simulating the electrical behaviour of the power grid using the transmission system planning, are applied. This approach<br />

enables a consideration of power grid actual flows, model power redispatch measures and an evaluation of the<br />

associated costs. In a nutshell a premature shut down of German NPPs already by the end of <strong>2019</strong> would cost over<br />

5 billion EUR to the German social welfare, increase CO 2 emissions by up to 90 million tons and raise wholesale power<br />

prices between 4 to 7 EUR/MWh. As for grid stability aspects, without NPPs on the grid from January 2<strong>02</strong>0 onwards,<br />

the capacity margins would be reduced by 1.5 GW, the redispatch costs of thermal power plants would increase while<br />

the measures associated with renewables energies curtailment would decrease. This research was performed by the<br />

independent analysis of Pöyry Management Consulting at the request of PreussenElektra in 2018.<br />

1 Introduction<br />

According to the German law, the seven nuclear power<br />

plants (NPPs) remaining today in operation will be shut<br />

down successively by 31st December 2<strong>02</strong>2 at the latest, as<br />

shown in Figure 1 [1]. Until then, NPPs generate competitive,<br />

dispatchable and CO 2 -free power [2] supporting<br />

the German energy transition (Energiewende) objectives.<br />

This work quantifies the contribution of NPPs to the<br />

German energy transition during the period 01.01.2<strong>02</strong>0<br />

until 31.12.2<strong>02</strong>2. The study investigates the scenario of<br />

an early closure of all NPPs early 2<strong>02</strong>0 and focuses on<br />

energy economics and power grid consequences. A<br />

coupled market and grid system analysis is performed<br />

using the market model BID3 [4] and the PSS/E tool [5]<br />

simulating the electrical behaviour of the power grid using<br />

the transmission system planning. This work was performed<br />

by the independent analysis of Pöyry Management<br />

Consulting GmbH at the initiative of PreussenElektra<br />

GmbH in 2018.<br />

2 Method<br />

2.1 Scenarios<br />

The independent and widely accepted by industry players<br />

“Pöyry Central Scenario” is used as the base input. It is<br />

Pöyry’s most likely view of the development of the<br />

electricity market and the broader economic environment<br />

and is introduced hereafter. In this study, two scenarios for<br />

NPPs phase-out in Germany are investigated:<br />

pp<br />

the “Reference” case: NPPs will shut-down according<br />

to their latest authorized date of operation as specified<br />

in German atomic law and shown in Figure 1. This<br />

scenario is equal to the Pöyry Central Scenario.<br />

pp<br />

the “NPP Out” case: in which all seven today operating<br />

NPPs are shut-down by the end of <strong>2019</strong>.<br />

The specific assumptions are described in the next<br />

paragraphs, including the logic for the choice of 2013<br />

as reference for the weather year.<br />

2.1.1 Pöyry Central Scenario<br />

Pöyry’s independent and widely accepted “Central<br />

Scenario” is used as basis for this study. “Central” represents<br />

a midway alternative between two more extreme<br />

Low and High scenarios and represents Pöyry’s most likely<br />

| | Fig. 1.<br />

Latest NPP operation date according to German law. Source: Federal<br />

Ministry for the Environment, Nature Protection and Nuclear Safety<br />

(Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit).<br />

view of the development of the electricity market and<br />

broader economic environment. This view is based on<br />

market expertise from all European countries, planned<br />

and announced power plant and interconnector commissioning<br />

and decommissioning, and projections of external<br />

factors such as currency exchange rates, inflation, commodity<br />

prices and electricity demand. This section provides<br />

an overview of the core assumptions defining the<br />

“Central Scenario”. These assumptions may be classified<br />

under the following headings:<br />

pp<br />

economic assumptions<br />

The real exchange rates are derived from projections<br />

of nominal exchange rates and inflation. Within the<br />

modelling, the real exchange rates are used to convert<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 71<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 72<br />

Real Exchange Rates<br />

Annual Inflation Rates<br />

US$ per £1 US$ per €1 £ per €1 US UK Eurozone<br />

2018 1.30 1.17 0.87 2.2% 2.5% 1.5%<br />

<strong>2019</strong> 1.35 1.23 0.88 2.2% 2.1% 1.6%<br />

2<strong>02</strong>0 1.40 1.22 0.84 2.1% 2.1% 1.8%<br />

2<strong>02</strong>1 & 2<strong>02</strong>2 1.46 1.22 0.84 2.0% 2.0% 2.0%<br />

| | Tab. 1.<br />

Inflation and real exchange rate (2016 Money).<br />

dollar- denominated oil and coal price projections Euros.<br />

Table 1 shows the real exchange rates and the annual<br />

inflation rates for the US, UK and the Eurozone that are<br />

assumed in the modelling.<br />

Nominal exchange rates for 2018-2<strong>02</strong>0 are based on<br />

the median composite Bloomberg forecast from up to 50<br />

financial institutions. The farthest (2<strong>02</strong>0) nominal<br />

exchange rate is taken as the assumed long-term forecast<br />

and kept constant for the following years. Inflation rates<br />

for 2018–<strong>2019</strong> are derived using the median composite<br />

CPI forecasts from Bloomberg. In 2<strong>02</strong>0 the inflation rate<br />

trends between the <strong>2019</strong> value and the long-term (from<br />

2<strong>02</strong>1 onwards) assumption of 2 % in all three economic<br />

areas. The real exchange rates therefore fluctuate until<br />

2<strong>02</strong>0 in line with the inflation rate and the nominal<br />

exchange rate differentials that occur to 2<strong>02</strong>0.<br />

pp<br />

generation capacity<br />

The projected generation capacity for Germany is based on<br />

three main components: plant which already exist or is<br />

under construction, generic new power plant (in the longterm,<br />

based on need and economic viability); and renewable<br />

development (based primarily on policy and targets).<br />

With regards to plant existing or under construction, the<br />

status is taken from several sources including company’s<br />

annual reports, the German federal agency for power grid<br />

(Bundesnetzagentur) power plant list and Pöyry’s own<br />

market intelligence. A more rapid phase-out of coal power<br />

plants as being currently considered by the German<br />

government in 2018 is not modelled. The construction of<br />

new fossil generation as generic new power plant results<br />

has a negligible impact on the rather short time period<br />

study considered here. With regards to renewable energy<br />

sources (RES) development the current renewable<br />

capacity plans are considered.<br />

pp<br />

electricity demand<br />

The projections for electricity demand in Germany are<br />

produced using Pöyry’s demand model. This is an<br />

[TWh] 2<strong>02</strong>0 2<strong>02</strong>1 2<strong>02</strong>2<br />

Demand DE 551.8 551.5 550.9<br />

| | Tab. 2.<br />

Projected annual electricity consumption.<br />

econometric model which assumes a long-term relationship<br />

between electricity demand and Gross Domestic<br />

Product (GDP). The base demand in Germany for each<br />

future year is calculated by using annual GDP growth<br />

assumptions based on International Monetary Fund (IMF)<br />

projections [3].<br />

In addition to the underlying demand development due<br />

to economic growth or recession, the demand model also<br />

captures the impact of energy efficiency measures and the<br />

shift of energy demand from other fuels in the transport<br />

and heat sectors into electricity. Temperature corrections<br />

are also applied to historical demand values to mitigate the<br />

impact of extreme (cold or warm) weather years on future<br />

demand projections. The reference weather year of 2013 is<br />

selected as basis for this study. The choice of this weather<br />

year is explained in §2.1.3. The resulting electricity<br />

demand development (average year) can be found in<br />

Table 2.<br />

pp<br />

interconnectors<br />

Because of its geographical location within Europe, the<br />

German power grid is interconnected with nine neighboring<br />

countries: Austria, Czech Republic, Denmark,<br />

France, Luxembourg, Poland, Sweden, Switzerland and<br />

the Netherlands. The current interconnectors as well as<br />

the projects planned for realization in time frame up to<br />

2<strong>02</strong>3 are considered in this study according to ENTSO-E<br />

data. Regarding intra-German transmission capacities, the<br />

assumptions of the German TSO’s on the German grid are<br />

used in this study, which are in line with ENTSO-E assumptions<br />

for the investigated period 2<strong>02</strong>0–2<strong>02</strong>2. Specifically,<br />

the Elbe 2 grid project planned for realization in <strong>2019</strong> is<br />

considered operational.<br />

pp<br />

fuel and CO 2 prices<br />

Fuel and CO 2 prices are exogenous parameters inserted<br />

into Pöyry’s power market modelling tool BID3. These<br />

prices are determined with the help of models specific to<br />

each commodity, expect for lignite. For lignite no model<br />

exists as fuel costs depend only on the production costs of<br />

this energy source. An overview of all projected fuel prices<br />

as well as historic prices for reference can be found in<br />

Figure 2.<br />

pp<br />

storage<br />

Batteries are not modelled in this study. Although they are<br />

being built in Germany, they are only operating in the<br />

ancillary services market so far and there is no evidence<br />

showing the introduction of batteries into the day-ahead<br />

market in the modelled time frame.<br />

| | Fig. 2.<br />

Fuel prices overview.<br />

Dashed line represents historical prices, solid line projections.<br />

Sources: Historical prices – MCIS (Coal), Thompson Reuters (CO 2 ), ICIS Heren (Gas), EIA (HSFO);<br />

Projections – Pöyry Management Consulting interpolated with forwards from API2 (Coal), Thompson<br />

Reuters (CO 2 ), ICIS Heren (Gas), ICE (HSFO); Lignite based on fundamental production economics<br />

2.1.2 NPPs phase-out scenarios<br />

According to the German atomic low, the seven NPPs<br />

operating today, with a total installed capacity of<br />

9,509 MW, will be shut-down successively by the end of<br />

2<strong>02</strong>2 at the latest, as highlighted in Table 3. The plant<br />

closures are modelled according to the German Atomic<br />

law latest NPPs shut-down dates. This scenario is referred<br />

to as “Reference” case in this study. The reference scenario<br />

is used to benchmark the outcomes obtained from the<br />

“NPP Out” case.<br />

The “NPP Out” case is the alternative scenario considered.<br />

It assumes the premature closure of all remaining<br />

seven NPP as of 01.01.2<strong>02</strong>0, as highlighted in Table 3.<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

MW <strong>2019</strong> 2<strong>02</strong>0 2<strong>02</strong>1 2<strong>02</strong>2 2<strong>02</strong>3<br />

Reference 9,509 8,107 8,107 4,049 0<br />

NPP Out 9,509 0 0 0 0<br />

| | Tab. 3.<br />

Nuclear capacity per scenario.<br />

2.1.3 Selection of reference weather year<br />

A reference weather year is required to model both the<br />

demand and the generation from RES. The weather choice<br />

is rather sensitive as it could impact substantially the study<br />

outcomes. The weather year 2013 is selected from the<br />

available set of weather years (2010–2014). This choice<br />

is motivated by 2013 “average behavior”: 2013 is close<br />

to average with regards to wholesale price, renewable<br />

gen eration and peak prices. An overview of the two<br />

parameters for the years under consideration can be found<br />

in Figure 3 and Figure 4 with the deviation from average<br />

given in Table 4. By not selecting a more extreme weather<br />

year such as 2011 the authors aim to remain as objective<br />

and robust as possible in the study’s outcomes.<br />

2012 is a second candidate as both wholesale price and<br />

renewable generation deviation are in a reasonable range.<br />

Due to the cold winter spells end of January and early February<br />

however, the year shows atypical price peaks and<br />

would therefore distort the overall results too much. An<br />

overview of the effect of cold spells on the 200 highest<br />

prices per year can be found in Figure 4. To assess the effects<br />

of a change in weather year on the results of this<br />

study, a sensitivity analysis with 2012 weather year is performed.<br />

2.2 Modelling tools<br />

A multistage process described in this section is followed in<br />

this work to properly assess the role of NPPs in the German<br />

power system. The two scenarios described in §2.1 are<br />

modelled using Pöyry’s proprietary fundamental market<br />

modelling software BID3 combined with grid modelling<br />

and analysis via PSS/E.<br />

2.2.1 Power market modelling and BID3<br />

Pöyry’s in-house, fundamental model BID3 [6] [7], models<br />

the market dispatch of all generation facilities in Europe.<br />

BID3 can model the behavior of individual power plants of<br />

all fuel types as well as renewable generators. It simulates<br />

all 8760 hours per year, generating hourly wholesale<br />

prices. An overview is shown in Figure 5.<br />

The output of all generators is jointly optimized for<br />

economic costs for each hour of the modelled time period.<br />

The result of the process is a fundamental view of what the<br />

market prices, power plant dispatch, cross-zonal interconnection<br />

flows and total cost of generation in each<br />

scenario will be on an hourly resolution. In this modelling<br />

process, price zones are optimized jointly such that for<br />

Germany the entire price zone is optimized disregarding<br />

any internal transmission capacity restrictions while for<br />

instance Sweden is split into four price zones. All zones are<br />

optimized simultaneously and so is the market flow between<br />

them. All evaluations are realized at the European scale.<br />

2.2.2 System modelling and PPS/E<br />

PSS/E is a transmission system planning and analysis<br />

software developed by Siemens Power Technologies International<br />

(Siemens PTI). The Siemens PTI PSS/E software<br />

product is an integrated program providing power flow,<br />

short circuit and dynamic simulation. In this study PSS/E is<br />

applied to the European Network of Transmission System<br />

| | Fig. 3.<br />

Weather years 2010–2014 wholesale price and RES generation.<br />

| | Fig. 4.<br />

Peak Prices in Weather Years 2010 – 2014<br />

[EUR/MWh].<br />

| | Fig. 5.<br />

Pöyry BID3 Overview.<br />

Weather<br />

year<br />

Wholesale<br />

price<br />

Operators for Electricity (ENTSO-E) high voltage system<br />

data of the Central European synchronous area. The software<br />

simulates substations as nodes to which power lines,<br />

loads, generators, and auxiliary devices such as shunt reactors/capacitors<br />

are connected. For the load flow calculations<br />

performed in this study, power lines are modelled as<br />

impedances with loss-causing resistance and power-factor<br />

altering reactance. Generators are modelled by providing<br />

maximum and minimum real power deliverable as well as<br />

available range in terms of reactive power. The maximum<br />

real power is provided by BID3 and is a result of market<br />

modelling. Loads are modelled as constant active and<br />

reactive power based on the ENTSO-E Ten-Year Network<br />

Development Plan 2016 (TYNDP2016) dataset. Loads and<br />

generators connected below 220 kV voltage level are aggregated<br />

to loads and/or generators at the buses where they<br />

are connected to the high voltage grid. Flows to countries<br />

outside the synchronous areas, i.e. through DC lines, are<br />

set as fixed flows using hourly flow data from BID3.<br />

Renewable<br />

Generation<br />

2010 +9.9 % -6.5 %<br />

2011 -3.5 % +7.7 %<br />

2012 +4.2 % +2.2 %<br />

2013 -1.6 % -2.7 %<br />

2014 +9.0 % -0.8 %<br />

| | Tab. 4.<br />

Deviation from average of the weather years<br />

2010–2014.<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 73<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 74<br />

| | Fig. 6.<br />

Iteration between BID3 and PSS/E.<br />

With this setup, the Central European synchronous<br />

area can be modelled in its entirety. By altering the power<br />

output of the plants in Germany, PSS/E can reduce lineloadings<br />

in all lines to below 70 % of maximum capacity<br />

with a 10 % relaxation factor. It means PSS/E aims at<br />

clearing congestion with 70 % nominal derating factor<br />

but, if that is not possible, loads up to 80 % are allowed. As<br />

the result some lines are loaded between 70 % and 80 %.<br />

This alteration is done with the objective of changing plant<br />

outputs to a minimal level, i.e. with limiting disturbance of<br />

generation schedule. PSS/E however does not consider<br />

cost of generation as a parameter when altering generation<br />

levels and therefore creates a non-optimal solution from<br />

an economic point of view. 70–80 % line loading is used as<br />

a reasonable proxy for fulfilling the n-1 criterion since<br />

contingency analyses, requiring dynamic analysis, are not<br />

performed in this study. To receive a dispatch that is both,<br />

economically optimized and preventing line overloading, a<br />

coupling between BID3 and PSS/E is implemented.<br />

2.2.3 Iteration between BID3 and PSS/E<br />

BID3 and PSS/E have complementary strengths with BID3<br />

focusing on market dispatch and PSS/E on system stability.<br />

In combination the two software can form a full redispatch<br />

model on an hourly level.<br />

As starting point, the market dispatch is calculated in<br />

BID3 where each market zone is represented as one<br />

node with transmission constraints of interconnectors as<br />

boundaries between them. Within the software, the power<br />

plants are then activated such that all loads can be served<br />

at minimum total cost. From this calculation, a dispatching<br />

schedule for all power plants is derived which can serve as<br />

input for the next phase of the computation.<br />

Simultaneously, the ENTSO-E grid data is loaded into<br />

PSS/E and a run based on reference dispatching schedules<br />

from ENTSO-E is created. The dispatch results and loads<br />

from BID3 then replace the original data and the system is<br />

rerun. With the market dispatch given, several lines in the<br />

system are overloaded. Overloading in the German system<br />

are resolved using PSS/E corrective action as described in<br />

§2.2.2. Since PSS/E does not economically optimize its<br />

redispatch, an interface back to BID3 is required.<br />

This interface is implemented by splitting Germany into<br />

nine virtual zones set such that critical lines cross zonal<br />

borders and setting cross-zonal transmission limits. These<br />

transmission limits are then based on the cross-zonal<br />

transmission flow in PSS/E for all 8760 hours of the year<br />

after the corrective action analysis where line overloading<br />

is reduced. By then performing the market dispatch on a<br />

zonal basis, the BID3 dispatch is forced to respect major<br />

line capacity restrictions.<br />

As BID3 however only “sees” the transmission constraints<br />

between the zones and not within them, PSS/E<br />

and BID3 need to be run iteratively until the market<br />

dispatch satisfies the systems constraints. The iteration<br />

thus consists of PSS/E generating maximum flow<br />

constraints between the zones, BID3 running with these<br />

constraints and deriving a dispatching schedule which<br />

PSS/E again adapts resulting in new flow constraints. The<br />

iteration is performed five times until the market redispatch<br />

no longer causes any significant overloading. An<br />

overview of the process can be seen in Figure 6.<br />

2.3 Metrics<br />

The main quantified indicators highlighting the study<br />

outcomes are described hereafter.<br />

2.3.1 Socio-economic welfare<br />

The socio-economic welfare is defined as a measure of the<br />

economic impact of the power system to the society. In this<br />

study, it refers to the amount of cost or gains incurred by<br />

producers, consumers and through congestion in interconnectors<br />

between countries. The three components of<br />

the socio-economic welfare have been assessed:<br />

pp<br />

Producer surplus is the gross margin achieved by<br />

producers. It is defined as the value of electricity sold<br />

minus the variable costs of generation (mainly fuel and<br />

CO 2 ).<br />

Producer surplus = total generation * wholesale price –<br />

generation cost<br />

pp<br />

Consumer surplus is the value of uninterrupted<br />

electricity supply to consumers. Consumer surplus is<br />

defined as the difference between value of lost load and<br />

wholesale price.<br />

Consumer surplus = (Value lost load – wholesale price) *<br />

total generation<br />

pp<br />

Congestion rent is the cost of utilizing an interconnector.<br />

It is defined as the costs saving resulting of<br />

energy flow across the border multiplied by the amount<br />

of energy transferred across the border.<br />

The investment and building costs of new generation<br />

capacity such as gas plant, RES or interconnections are not<br />

considered in this study. However, it is important to<br />

mention that part or all of the producer surplus is needed<br />

to cover fixed costs and therefore avoid the impression that<br />

any positive surplus represents a form of super normal<br />

profits. The approach of focusing only the variable costs is<br />

motivated by the scenarios looked at: only the NPPs<br />

installed capacity varies between both scenarios as the<br />

short time frame considered would not permit the building<br />

of new generation and grid capacity in the “NPP Out”<br />

scenario.<br />

2.3.2 Wholesale prices<br />

The wholesale price is a combination of short-run marginal<br />

costs (system marginal price) and a premium during<br />

periods of a tight system (scarcity rent), although in the<br />

last decade the incidence of such premiums at all, let alone<br />

of any significant size, has been very infrequent. Both<br />

components are added to form the wholesale price.<br />

In the real world, market participants submit bids<br />

which are sorted to construct the so-called “merit order”.<br />

These bids are largely reflective of the short-term marginal<br />

costs of a plant such as fuel cost and machine wear. This is<br />

modelled as the system marginal price (SMP).<br />

As the more expensive plants are often price setting and<br />

would thus not generate a profit, these plants need to<br />

bid above their SMP to cover their fixed costs such as<br />

personnel, land lease, return on capital employed, etc.<br />

This is modelled as scarcity rent (SR).<br />

The SMP is based on short-term costs and reflects the<br />

difference between staying idle and generating power for<br />

the most expensive plant in that hour. Modelling of the<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

system marginal price is very similar to the merit-order<br />

used in power exchanges. The power plants are ordered by<br />

marginal price and plants are activated up until the current<br />

demand has been satisfied. Power plants have restraints on<br />

them such as minimum on- and off-times causing slight<br />

distortions in the merit order. BID3 optimizes the system<br />

such that overall costs of generation are the lowest. The<br />

system marginal price is therefore the result of the<br />

economic optimization and in principle comparable to the<br />

merit-order price if every power plant would only bid its<br />

short-term costs.<br />

Scarcity rent is used to replicate strategic bidding at<br />

tight system status where suppliers bid above their shortrun<br />

marginal costs. In BID3 all plants bid their short-run<br />

marginal costs (SRMC). As peak power plants are often<br />

price-setting, they would make little profit and are unable<br />

to cover long-run marginal costs (LRMC). Without capacity<br />

payments peak plants in the real world thus usually bid<br />

above their SRMC.<br />

2.3.3 CO 2 emissions<br />

The CO 2 emissions of every single plant are modelled<br />

according to their respective generation. The CO 2<br />

emissions of Germany and Europe result from the aggregation<br />

of CO 2 emissions from all respective plants. Table 5<br />

gives an overview of CO 2 emissions per fuel types of power<br />

plants as used in BID3.<br />

The impact on CO 2 price (€/tCO 2 ) of the scenario<br />

considered is not systematically evaluated. A sensitivity<br />

study is performed to justify this approach. It should be<br />

noted that, due to the emissions cap of the ETS system and<br />

changes in the carbon price needed to fulfil the cap,<br />

European CO 2 emissions might adapt in the long run,<br />

beyond the timeframe of 2<strong>02</strong>0–2<strong>02</strong>2.<br />

Fuel type CO 2 emissions [t CO 2 /MWh therm ]<br />

Biomass 0<br />

Coal 0.322<br />

Gas 0.182<br />

Gasoil 0.251<br />

Lignite 0.354<br />

Nuclear 0<br />

Peat 0.420<br />

RES 0<br />

| | Tab. 5.<br />

CO 2 emissions per fuel type.<br />

2.3.4 System capacity margin<br />

Capacity margin is a measure of the tightness of the system<br />

and is analyzed to assess the adequacy of the system. The<br />

capacity margin corresponds to the available resources in<br />

generation and interconnection net the demand, in other<br />

words the available resource capacity that is not needed to<br />

meet demand. The capacity margin is measured in every<br />

hour of the simulation, and the minimum capacity margin<br />

can be used as an indication of the generation adequacy of<br />

the system.<br />

good proxy to estimate redispatch costs. Those costs focus<br />

on thermal power plants generation costs.<br />

2.3.6 Grid losses<br />

The energy efficiency benefit of a transmission/generation<br />

project is measured through the reduction of thermal<br />

losses in the grid. Transmission system loss is calculated<br />

by multiplying the square of line loadings with the line<br />

resistance. As implied form the loss formula, it depends on<br />

the loading of lines in a system and the resistance of each<br />

line. As a result, system losses are dependent on relative<br />

location of system load and generation. Even if the location<br />

and amount of system load remains the same, system loss<br />

can vary depending on the generation dispatch scenario.<br />

This effect is measured by network studies. To calculate the<br />

difference in transmission losses in Germany (in units of<br />

energy [GWh]) attributable to NPPs in Germany, the losses<br />

are computed in two different simulations with the help of<br />

network studies in PSS/E. Losses in 400 kV and 220 kV<br />

transmission grid are included in the study.<br />

3 Results<br />

The study shows several impacts from an accelerated<br />

closure of nuclear power plants in Germany. These can be<br />

split into effects on the market side and effects on the<br />

network side. Comparing the “Reference” and “NPP Out”<br />

scenarios, the following effects on the market side are<br />

obtained:<br />

pp<br />

Decreased social welfare of ~2 billion EUR (bEUR) per<br />

year. Electricity producers gain up to 1.9 bEUR, while<br />

consumers lose 4.3 bEUR per year, totalling in a loss of<br />

social welfare of 5.8 bEUR within 3 years;<br />

pp<br />

Increased wholesale prices in the range of 4–7 EUR/<br />

MWh. Consumer prices will be affected somewhat less<br />

as higher wholesale prices decrease the EEG levy;<br />

pp<br />

Increased power-related CO 2 emissions in Germany by<br />

up to 17.1 million tons per year and in Europe by<br />

36.2 million tons per year, totaling in additional CO 2<br />

emissions of 41.8 million tons in Germany and<br />

89.8 million tons in Europe within 3 years;<br />

pp<br />

Reduced capacity margins of up to 1.46 GW (amounting<br />

to a 25 % reduction), implying a reduced security of<br />

supply;<br />

pp<br />

Reduced power exports from Germany by 20–40 TWh<br />

per year.<br />

After including network constraints, the main results<br />

from the market study are confirmed with the following<br />

highlights:<br />

pp<br />

Increased north to south flows in Germany by up to<br />

4.7 TWh per year in specific regions.<br />

The effects on the network side are:<br />

pp<br />

Increased European redispatch costs by 78 mEUR<br />

between 2<strong>02</strong>0 and 2<strong>02</strong>2;<br />

pp<br />

Increased transmission losses by 8–10 % in 2<strong>02</strong>0 and<br />

2<strong>02</strong>1, resulting in additional costs of about 35 mEUR,<br />

due to an increased need for energy transmission.<br />

Increase by 2 % in 2<strong>02</strong>2 lower due to more favorable<br />

siting of remaining NPPs.<br />

Those results are detailed in the next sections.<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 75<br />

2.3.5 Redispatch costs<br />

Redispatch costs are evaluated as the difference of generation<br />

costs between the BID3 initial optimization and the<br />

converged coupled BID3-PSS/E simulation. It is evaluated<br />

on an hourly basis at the European level. The power mix<br />

obtained after the BID3-PSS/E iteration reflects the<br />

physical constraints of power transmission and as such is a<br />

3.1 Socio-economic welfare<br />

Phasing out NPPs early 2<strong>02</strong>0 leads to annual losses of socioeconomic<br />

welfare in Germany of 1.4–2.4 bEUR totaling in<br />

an overall sum of 5.8 bEUR in the time frame 2<strong>02</strong>0–2<strong>02</strong>2.<br />

The nuclear phase out scenario is analyzed with regards<br />

to changes in socio economic welfare compared to “Reference”<br />

case. The results are highlighted in Figure 7.<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 76<br />

| | Fig. 8.<br />

Average annual wholesale prices.<br />

| | Fig. 7.<br />

Socio-economic welfare, difference to “base” case.<br />

Producer surplus and consumer surplus develop differently<br />

after decommissioning of NPPs. Surplus is partly<br />

redistributed from consumers to producers, with producer<br />

surplus increasing due to higher wholesale prices by<br />

1.0–1.9 bEUR/a between 2<strong>02</strong>0 and 2<strong>02</strong>2 despite the loss<br />

of rent from closed nuclear plants. The benefits in producer<br />

surplus are outweighed by losses in consumer<br />

€/MWh Reference NPP Out<br />

Scarcity Rent SMP Scarcity Rent SMP<br />

2<strong>02</strong>0 1.97 34.17 3.48 38.33<br />

2<strong>02</strong>1 3.88 35.87 6.78 39.64<br />

2<strong>02</strong>2 7.28 38.46 9.44 40.04<br />

| | Tab. 6.<br />

Average scarcity rent and system marginal price.<br />

surplus more than twice the benefit gained. The loss of<br />

consumer surplus per year is ranging from 2.4–4.3 bEUR/a,<br />

summing up to consumer welfare reduced by 10.4 bEUR<br />

over the course of the three analysed years. Differences in<br />

congestion rent are negligible compared to differences in<br />

consumer and producer surplus.<br />

3.2 Wholesale Prices<br />

The development of average annual wholesale prices in<br />

the time frame 2018-2<strong>02</strong>2 is shown in Figure 8. Prices<br />

show an upward movement from <strong>2019</strong> onwards in all three<br />

scenarios and rise from 32.7 EUR/MWh in <strong>2019</strong> to<br />

45.8 EUR/MWh in 2<strong>02</strong>2 in the Base Case scenario. The<br />

increase in wholesale prices is more significant with less<br />

capacity from nuclear power plants and the difference<br />

between the two scenarios is largest in the years 2<strong>02</strong>0 and<br />

2<strong>02</strong>1. The NPP Out scenario shows prices 4–7 EUR/MWh<br />

higher than the Base Case with a maximum difference in<br />

2<strong>02</strong>1 at 46.4 EUR/MWh compared to 39.8 EUR/MWh in<br />

Base Case in that year.<br />

The components of the wholesale price – scarcity rent<br />

and system marginal price – are depicted in Table 6 and<br />

Figure 9. The scarcity rent is on a low level in 2018 and<br />

<strong>2019</strong>, slightly larger than 1 EUR/MWh. As the system gets<br />

tighter in the following years, scarcity rent rises considerably<br />

to levels above 7 EUR/MWh in 2<strong>02</strong>2 in both scenarios,<br />

when nuclear capacity is also strongly reduced in Base<br />

Case. The difference in scarcity rent between NPP Out and<br />

Base Case amounts to 1.5–2.9 EUR/MWh in the period<br />

2<strong>02</strong>0–2<strong>02</strong>2.<br />

System marginal price is at 31.4 EUR/MWh in <strong>2019</strong>. It<br />

rises noticeably in subsequent years to 38.5 EUR/MWh in<br />

2<strong>02</strong>2 in “Base” case and 40.0 EUR/MWh in “NPP Out”<br />

case. Differences between NPP Out and Base Case total up<br />

to 4.2 EUR/MWh in 2<strong>02</strong>0 and 2<strong>02</strong>1, where less nuclear<br />

power plant capacity leads to a shift in the supply curve<br />

and thus a higher system marginal price.<br />

| | Fig. 9.<br />

Average scarcity rent and system marginal price.<br />

| | Fig. 10.<br />

CO 2 emissions in Germany and Europe.<br />

1. Source: Estimation by Federal Environment Agency 2. Source: Federal Environment Agency<br />

3.3 CO 2 emissions<br />

The development of power related CO 2 emissions is<br />

illustrated for both scenarios in Figure 10. German and<br />

European CO 2 emissions show a downward trend.<br />

How ever, the trend of diminishing CO 2 emissions in<br />

Europe is dampened by a shutdown of nuclear power<br />

plants. Increased generation of CCGTs, coal and lignite in<br />

NPP Out and Reduced NPP raise power related CO 2<br />

emissions in Germany and Europe between 2<strong>02</strong>0 and<br />

2<strong>02</strong>2. A complete premature nuclear power plant phase<br />

out leads to higher CO 2 emissions in Germany of 8.2–<br />

17.1 million tons per year (mt/a), amounting to 41.8 mt in<br />

the observed period. European emissions rise by 17.7–<br />

36.2 mt/a, totaling in 89.8 mt. The difference is largest in<br />

the years 2<strong>02</strong>0 and 2<strong>02</strong>1, when the difference in nuclear<br />

capacities is largest compared to Base Case. Around 50 %<br />

of the additional European emissions arise in Germany.<br />

The yearly increased emissions in Germany are equivalent<br />

to total emission of the city of Hamburg every year.<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

| | Fig. 11.<br />

Minimum capacity margin in Germany.<br />

Source BNetzA: Feststellung des Bedarfs an Netzreserve für den Winter<br />

2018/<strong>2019</strong> sowie das Jahr 2<strong>02</strong>0/2<strong>02</strong>1<br />

It should be noted that, due to the emissions cap of the<br />

ETS system and changes in the carbon price needed to<br />

fulfil the cap, European CO 2 emissions might reduce again<br />

in the long run, reducing the long-run CO 2 effect of the<br />

premature nuclear shut down.<br />

3.4 System capacity margin<br />

The minimum capacity margins decrease by 1.46 GW at<br />

most in 2<strong>02</strong>0 in the “NPP Out” case compared to “Base”<br />

case. Capacity margins shown in Figure 11 are margins in<br />

the tightest hour of the analysis. This minimum capacity<br />

margin declines from 6.9 GW in <strong>2019</strong> to 3.0 GW in 2<strong>02</strong>2<br />

due to an ongoing phase out of nuclear, coal and lignite<br />

capacity. In the “NPP Out” case NPP, capacity margins are<br />

reduced even further because of the premature nuclear<br />

phase out. The difference totals up to 1.46 GW (amounting<br />

to a 25 % reduction) in 2<strong>02</strong>0 in NPP Out, implying a<br />

reduced security of supply. As outages are not considered<br />

here, a slightly positive capacity margin signals a certain<br />

risk of demand curtailment. For comparison, the BNetzA<br />

grid reserve plans are provided which are capacities meant<br />

for ensuring successful security of supply even in stressful<br />

situations. As the plants active in the reserve are not<br />

considered in the model, their capacities (2<strong>02</strong>0: 4.1 GW,<br />

2<strong>02</strong>1: 3.3 GW, 2<strong>02</strong>2: 2.8 GW) have to be considered in<br />

addition to the results provided.<br />

A sensitivity study is performed for the weather year<br />

considering 2012 as reference year instead of 2013. The<br />

atypical climate in winter results in a reduction of<br />

minimum capacity margins by ~3 GW and an average<br />

increase in wholesale prices by 5 EUR/MWh out of which<br />

~3 are attributable to scarcity rent and the remaining ~2<br />

to increase in SMP due to moving higher up in the merit<br />

order. This decreases the socio-economic welfare further<br />

by 0.2–0.4 bEUR/a.<br />

3.5 Redisptach Costs<br />

The thermal redispatch costs increase in the “NPP Out”<br />

case relative to the “Base” Case. Those costs increase by<br />

26 million EUR in 2<strong>02</strong>0, 11 million EUR in 2<strong>02</strong>1 and<br />

41 million EUR in 2<strong>02</strong>2. In parallel the generation from<br />

renewable energy sources first increases before decreasing<br />

in 2<strong>02</strong>2 due to the early nuclear phase-out. In total the<br />

costs decrease by 219 million € over the period 2<strong>02</strong>0–2<strong>02</strong>2,<br />

remaining minor compared to the above-stated loss of<br />

social welfare.<br />

Replacing RES is the most expensive form of redispatch<br />

as generators with marginal costs of 0 are replaced with<br />

relatively expensive gas plants. Especially in scenarios<br />

with high wind feed-in in the north of Germany and low<br />

demand in the area, the grid often becomes overloaded<br />

and generation must be redispatched from north to south.<br />

The reason for overloading can be twofold: One possibility<br />

is that the distribution system is overloaded and the power<br />

generated cannot be evacuated to the next transmission<br />

substation. This is a typical issue with small generators<br />

such as wind turbines which are connected to the lower<br />

voltage levels. Since this study focusses on the high voltage<br />

grid only, those constraints are not evaluated. The second<br />

reason for overloading is bottlenecks in the transmission<br />

system where especially north-south lines are frequently<br />

overloaded.<br />

As redispatch in this study is performed at the European<br />

scale, instead of considering the German context only, the<br />

redispatch results are also given for the entirety of Europe.<br />

As Germany is the origin of the redispatch need, it is<br />

reasonable to assume that Germany would have to bear<br />

the cost of such grid stability measures.<br />

3.6 Grid losses<br />

System loss can increase or decrease when NPPs are out of<br />

operation compared to the base case, depending of the<br />

hour considered. On a yearly basis for both year 2<strong>02</strong>0 and<br />

2<strong>02</strong>1, the system transmission energy loss increases by<br />

about 10 % when the NPPs are taken out of operation<br />

compared to Base Case. This represents an increase of<br />

associated costs by close to 35 million euros. For year<br />

2<strong>02</strong>2, the transmission loss increases to 2 % when the<br />

remaining NPPs are out of operation compared to the base<br />

case. The reason for the lower increase in losses in year<br />

2<strong>02</strong>2 compared to other two years is that in year 2<strong>02</strong>2<br />

there are less NPP in Base Case.<br />

3.7 Additional results<br />

The coupled BID3 and PSSE/E analysis enables to extract<br />

further results from the study. A few are presented hereafter.<br />

pp<br />

Power flows: a closer analysis of generation and flow<br />

shifts is performed for the “NPP Out” case compared to<br />

“Base” case in the years 2<strong>02</strong>0–2<strong>02</strong>2 after redispatch<br />

due to grid constraints. The lost generation capacity<br />

from a NPP shut down leads to increased flows from<br />

north to south. The maximum change in flows observed<br />

is an increased flow of 4.7 TWh.<br />

pp<br />

Electricity exports: early electricity exports from<br />

Germany show a decreasing trend after <strong>2019</strong>. In Base<br />

Case, exports drop from 56.7 TWh per year to 25.9 TWh<br />

per year in 2<strong>02</strong>2. Reduced generation from a nuclear<br />

phase-out leads to an even sharper reduction of yearly<br />

electricity exports from Germany. In 2<strong>02</strong>1, annual<br />

exports reduce by almost 90 % in NPP Out to a level of<br />

4.9 TWh, compared to Base Case with 40.2 TWh. These<br />

show a very similar profile in all scenarios with shifts of<br />

~1–3 TWh/month between scenarios. The shifts are<br />

slightly lower in the summer months, when nuclear<br />

availability is typically lower.<br />

4 Discussion<br />

The results obtained from the market study using BID3 are<br />

derived using a well-established modelling practice giving<br />

confidence on the outcomes. The outcomes show negative<br />

consequences from a socio-economic perspective of an<br />

early NPPs shut-down early 2<strong>02</strong>0. The limit of such results<br />

derived with market analysis only is the difference between<br />

the ideal market approach as simulated by BID3 and the<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 77<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 78<br />

reality of power flows and power grid limitations. This<br />

study tackles this limitation by introducing a coupled<br />

market and grid system analysis.<br />

This innovative method enables a good estimation of<br />

grid management measures volumes and costs required to<br />

realize an optimized power mix. However, it contains some<br />

simplification worth mentioning. First, the evaluation is<br />

performed at the European level as a proxy for the German<br />

grid management measures. Since the origin of the effect<br />

– early closure of NPPs – would occur in Germany, this<br />

approximation seems realistic. Second, real life grid<br />

management measures and redispatch contain some<br />

meta-heuristic characteristics: at the level of transmission<br />

system operators (TSOs), responsible to ensure the<br />

stability of the power grid, human-based decisions requiring<br />

engineering judgment are often made. This aspect<br />

makes the evaluation of redispatch volume and costs via a<br />

modelling tool particularly difficult. To quantify the associated<br />

bias, a possible way forward would be an analysis of<br />

grid management measures and costs in previous years<br />

with the couple BID3 – PSS/E approach.<br />

5 Conclusion<br />

This study investigates the effects of nuclear power plants<br />

(NPPs) premature phase-out early 2<strong>02</strong>0 on the German<br />

power system for the years 2<strong>02</strong>0–2<strong>02</strong>2 by carrying out a<br />

model-based market analysis in iterative conjunction with<br />

a power grid system simulation.<br />

Results are generated according to market dispatch<br />

which consequently are adapted to adhere to network<br />

constraints through grid management measures. According<br />

to market dispatch analysis, the early closure of NPPs<br />

early 2<strong>02</strong>0 would reduce the social welfare by ~2 billion<br />

EUR per year. This loss is carried by consumers. Producers<br />

would gain as their higher cost of generation are overcompensated<br />

by the increased wholesale price. The increase in<br />

wholesale prices is in the range of 4–7 EUR/MWh which<br />

feeds through to large consumers directly and is slightly<br />

reduced to a lower EEG levy for smaller consumers.<br />

Capacity margins are reduced by up to ~25 % (1.5 GW)<br />

without NPPs from early 2<strong>02</strong>0 onwards. Those results are<br />

obtained with simulations performed using the reference<br />

weather year of 2013. The choice of that specific weather<br />

year is made to remain as objective as possible since 2013<br />

had average temperatures and RES generation. Some<br />

effects are worsened considering other weather year with<br />

more extreme behavior. A sensitivity study is performed<br />

with the weather 2012 where the cold spell already puts<br />

the system under further stress. CO 2 emissions are also<br />

adversely affected by a premature nuclear phase-out with<br />

an additional 89.9 million tons of CO 2 emitted additionally<br />

over the three years.<br />

With regards to power grid effects with and without<br />

NPPs in the German system, diverging effects occur. The<br />

thermal redispatch costs increase without NPPs by<br />

78 million EUR over the period 2<strong>02</strong>0-2<strong>02</strong>2. In parallel the<br />

generation from renewable energy sources first increases<br />

before decreasing in 2<strong>02</strong>2. In total the grid management<br />

costs decrease by 219 million € over the period 2<strong>02</strong>0–2<strong>02</strong>2,<br />

remaining minor compared to the above-stated loss of<br />

social welfare. The system is stressed additionally by the<br />

departure of NPPs as transmission losses increase (2–10 %<br />

per year) and north to south flows increase by up to<br />

4.7 TWh per year in specific regions.<br />

The study reviewed solely the effects of an accelerated<br />

closure of NPPs early 2<strong>02</strong>0. An extension of nuclear power<br />

plant lifetime beyond the current phase-out timeline<br />

stated in the nuclear power law of 2011 is out of the scope<br />

of this work.<br />

Acknowledgement<br />

The authors would like to acknowledge Pöyry Management<br />

Consulting GmbH and PreussenElektra GmbH efforts<br />

to enable this work. A special thank goes to the ENTSO-E<br />

organization and the German TSO Tennet TSO GmbH,<br />

Amprion GmbH, TransnetBW GmbH, 50Hertz Transmission<br />

GmbH, for their support.<br />

References<br />

[1] O. Renn and JP Marhsall. Coal, nuclear and renewable energy policies in Germany: From the<br />

1950s to the “Energiewende”. Energy Policy, volume 99 p224-232, 2016.<br />

[2] OECD/Nuclear Energy Agency. The Full Costs of Electricity Provision. NEA report No. 7441, 2018.<br />

[3] International Monetary Fund (IMF), World Economic Outlook, April 2017.<br />

[4] Backcasting the GB Balancing Mechanism with BID3. O. Stoica and T. Poffley. Poyry and national<br />

Grid join report, Sept 2017.<br />

[5] https://www.siemens.com/global/en/home/products/energy/services/transmissiondistribution-smart-grid/consulting-and-planning/pss-software/pss-e.html<br />

[6] Audit of the BID3 Pan European Market Model for National Grid. K. Bell and I. Stafell, National<br />

Grid, Oct 2016.<br />

[7] Netzenwicklungsplan Strom, 4 TSOs, Marktmodell BID3 (Kapitel 3.1), 2015.<br />

Authors<br />

Denis Janin<br />

Volker Raffel<br />

PreussenElektra GmbH<br />

Dr. Eckart Lindwedel<br />

Pöyry Management Consulting (Deutschland) GmbH<br />

Prof. Graham Weale<br />

Ruhr Universität Bochum<br />

James Cox<br />

Pöyry Management Consulting (UK) Ltd<br />

Geir Bronmo<br />

Pöyry Norway AS<br />

Feature | Major Trends in Energy Policy and Nuclear Power<br />

Contribution of Nuclear Power Plants to the Energy Transition in Germany ı Denis Janin, Eckart Lindwedel, Volker Raffel, Graham Weale, James Cox and Geir Bronmo


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe<br />

Status, potentials and challenges for baseload application:<br />

European Situation in 2017<br />

Thomas Linnemann and Guido S. Vallana<br />

Introduction Wind power is a cornerstone of rebuilding the electricity supply system completely into a renewable<br />

system, in Germany referred to as “Energiewende” (i. e. energy transition). Wind power is scalable, but as intermittent<br />

renewable energy can only supply electrical power at any time reliably (security of supply) in conjunction with<br />

dispatchable backup systems. This fact has been shown in the first part of the VGB Wind Study, dealing with operating<br />

experience of wind turbines in Germany from 2010 to 2016 [1],[2]. This study states among other things that despite<br />

vigorous expansion of on- and offshore wind power to about 50,000 MW (92 % onshore, 8 % offshore) at year-end 2016<br />

and contrary to the intuitive assumption that widespread distribution of about 28,000 wind turbines, hereinafter<br />

referred to as German wind fleet, should lead to balanced aggregate power output, no increase in annual minimum<br />

power output has been detected since 2010, each of which accounted for less than 1 % of the relevant nominal capacity.<br />

The annual minimum power output reflects the permanently<br />

available aggregate power output (secured capacity) of the<br />

whole German wind fleet by which conventional power plant<br />

capacity can be reduced on a permanent basis. Or in other<br />

words: In every year since 2010 there was always at least one<br />

quarter of an hour in which more than 99 % of the nominal<br />

capacity of the German wind fleet was not avail able and, for<br />

all practical purposes, a requirement for 100 % dispatchable<br />

backup capacity prevailed, although its nominal capacity<br />

had almost doubled at the same time. Intuitive expectations<br />

that electricity generation from widespread wind turbines<br />

would be smoothed to an extent which in turn would allow<br />

the same extent of dispatchable backup capacity to be<br />

dispensed with has therefore not been fulfilled.<br />

Dispatchable backup capacity is essentially necessary<br />

to maintain a permanently stable balance between<br />

temporal variations of outputs from wind turbines and<br />

other power plants fed into the power grid and consumerdriven<br />

temporal demand variations extracting power from<br />

the grid (frequency regulation).<br />

To maintain power grid stability, ancillary services such<br />

as primary control capacity or large rotational inertia are<br />

also necessary to limit widely oscillating frequency<br />

deviations (grid oscillations) − properties that con ventional<br />

power plants with their turbo generators per se possess [3],<br />

but which must be provided separately as additional ancillary<br />

services in case of a largely renewable power supply<br />

system based on wind and solar energy ( photovoltaics).<br />

For grid stability, a secured capacity of power plants<br />

including grid reserve and standby capacities for backup<br />

purposes of currently about 84,000 MW is required in<br />

Germany at the time of annual peak load occurring<br />

between 17:30 and 19:30 during the period from November<br />

to February [4].<br />

If electricity generation from wind power is further<br />

expanded in line with the objectives of the German federal<br />

government, the nominal capacity of the German wind<br />

fleet should exceed this secured capacity of power plants in<br />

several years’ time. From that point on, the dispatchable<br />

backup capacity to be maintained would have to be capped<br />

at about the level of this secured capacity of power plants<br />

which is sufficient for grid stability reasons.<br />

Solar energy (photovoltaics) as a further scalable and<br />

politically designated cornerstone of the German Energiewende<br />

is always 100 % unavailable during the times of<br />

year and day relevant for the annual peak load, as well as<br />

year-round at night, and therefore per se cannot make any<br />

contribution to the secured power plant capacity [4].<br />

At year-end 2017, almost 1.7 million photovoltaic<br />

systems with around 42,400 MW nominal capacity (peak)<br />

were installed throughout Germany, supplying 40 TWh<br />

of electricity year-round [5]. By comparison, net power<br />

consumption amounted to around 540 TWh. This amount<br />

does not include the balance of electricity imports and<br />

electricity exports of almost 55 TWh [6], the auxiliary<br />

electric load of power plants of about 34 TWh [7] or grid<br />

losses at all voltage levels of around 26 TWh [8]. Photovoltaics<br />

therefore contributed around 7.4 % towards<br />

meeting the domestic net power requirement.<br />

Analyses of quarter-hourly time series of power output<br />

from wind turbines and photovoltaic systems in Germany<br />

over several years, scaled up to a nominal capacity of an<br />

average 330,000 MW to obtain 500 TWh electricity from<br />

these two intermittent renewable energy systems (iRES) per<br />

year, lead to a continued high need for dispatchable backup<br />

capacity of 89 % of the annual peak load [9],[10]. This average<br />

iRES nominal capacity includes 51 % of onshore wind<br />

power, 14 % of offshore wind power and 36 % of photovoltaic<br />

systems. The annual electrical energy amount of<br />

500 TWh reflects Germany’s net electricity consumption<br />

plus grid losses minus predictable renewable energy systems<br />

(RES) such as run-of-river and pumped storage power<br />

plants, biomass and geothermal power plants.<br />

The saving in backup capacity of 11 % of the annual<br />

peak load under these conditions is essentially attributable<br />

to the regular night-time load reduction, as high backup<br />

capacities are seldom necessary during the daytime with<br />

electricity generation from solar power. From 2015 to<br />

2017, an average 13 % of the annual hours in which iRES<br />

power outputs of less than 10 % of the iRES nominal<br />

capacity arose were accounted for by daytime hours<br />

between 08:00 and 16:00.<br />

As, at around 130 TWh, slightly more than one quarter<br />

of the iRES annual electric energy would occur at times of<br />

low demand (surplus) and therefore not be directly usable,<br />

the dispatchable backup system would have to provide the<br />

equivalent of these surpluses temporally delayed with a<br />

very low capacity factor of a maximum 20 %.<br />

From one year to the next, weather-related fluctuations<br />

of iRES annual electric energy of at least ±15 % would<br />

have to be factored in [9], with repercussions on the<br />

backup capacity in case of continued efforts to maintain<br />

the current high level of security of supply.<br />

According to annual outage and availability statistics<br />

compiled by the Forum Network Technology/Network<br />

Operation of VDE as German Association for Electrical,<br />

Part 1 * <br />

*) Part 2<br />

to be published<br />

in <strong>atw</strong> 3 (<strong>2019</strong>)<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 79<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 80<br />

Power in MW<br />

65,000<br />

60,000<br />

55,000<br />

50,000<br />

45,000<br />

40,000<br />

35,000<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

WT: Wind turbines<br />

Electronic and Information Technologies, reliability of the<br />

power grid in Germany, reflected by an outage duration of<br />

11.5 minutes per electricity customer in 2016, remains<br />

extremely high [11]. On this basis, the level of security of<br />

supply of end consumers in Germany averaged 99.998 %.<br />

These results are based on the optimal mix of wind<br />

power and photovoltaics providing 100 % of the net annual<br />

electricity consumption of 500 TWh, in which the annual<br />

electric energy to be supplied by the backup system<br />

becomes minimal. Under these conditions the backup<br />

system would have to cover slightly more than one quarter<br />

of the annual electric energy, namely 130 TWh, photovoltaics<br />

around one fifth and wind power the remainder.<br />

In the case of non-dissipative energy storage with unlimited<br />

power input and power output capped at nine tenths<br />

of the annual peak load, iRES production surpluses of<br />

130 TWh on average would be sufficient as backup.<br />

If the previous review is widened to encompass eight<br />

[12] or 27 European countries [13], two limiting cases can<br />

be distinguished:<br />

pp<br />

In the first limiting case without interconnectors, a<br />

separate country analysis is sufficient, and each<br />

European country has to provide an average 23 % [12]<br />

or 24 % [13] of its iRES annual electricity generation<br />

by means of a national dispatchable backup system.<br />

This theoretical limit implies sufficient transmission<br />

capacities within the country in each transport<br />

direction. Such national copper plates are certainly not<br />

realistic in any case.<br />

pp<br />

In the second (theoretical) case, additionally characterised<br />

by the optimum European interconnection via<br />

interconnectors with infinitely large transmission<br />

capacities without transmission losses, this average<br />

falls to 16 % [12] or 15 % [13].<br />

The annual backup energy reduction from 23 % to 16 %<br />

[12] or 24 % to 15 % [13] reflects the maximum benefit<br />

that can be achieved with an optimally interconnected<br />

Europe. The required backup capacity would be reduced<br />

further by an average 13 % of the annual peak load in this<br />

case [12]. For Germany, a total reduction in backup<br />

capacity by about one quarter of the annual peak load<br />

could then be expected. About 46 % of this reduction<br />

would be attributable to the domestic effect and 54 % to<br />

Europe’s effect.<br />

For the interconnectors in an optimally interconnected<br />

Europe, transmission capacities of 831,000 MW would<br />

Number of wind turbines (end of year, rounded)<br />

26,903<br />

21,678<br />

4,100<br />

28,712<br />

22,870<br />

30,979<br />

24,086<br />

33,477<br />

26,268<br />

Year<br />

38,614<br />

29,344<br />

5,066 5,225 5,388 5,840<br />

44,580<br />

32,926<br />

Quarter-hourly resolution<br />

21,600 WT 22,300 WT 23,000 WT 23,800 WT 25,100 WT 26,800 WT 28,200 WT 29,800 WT<br />

Nominal power PN<br />

Maximum PMax<br />

49,592<br />

33,834<br />

Arithmetic mean Pµ<br />

8,851 8,769<br />

56,164<br />

39,408<br />

11,720<br />

Minimum PMin<br />

113 88 115 121 24 105 128 158<br />

2010 2011 2012 2013 2014 2015 2016 2017<br />

Sources: BMWi, BWE, German TSO<br />

| | Fig. 1.<br />

Figures on electricity generation from wind power in Germany since 2010 with the year-end<br />

nominal capacity P N of the German wind fleet, the annual maximum P Max and the annual<br />

minimum P Min as well as the mean value P µ of the power time series.<br />

have to be established, corresponding to twelve times the<br />

European interconnector capacity in 2011. Meanwhile, the<br />

benefit of interconnecting Europe would already approach<br />

97 % of the maximum with six-fold interconnector capacity<br />

compared to 2011 [13].<br />

Attention should be drawn to the fact that Wagner’s<br />

calculations [12] are based on time series for aggregate<br />

power output from wind power and photovoltaics in 2012<br />

available on the internet as transparency data from transmission<br />

system operators, whilst Rodriguez et al. [13] use<br />

weather data from 2000 to 2007 as input for their model<br />

calculations on iRES-based electricity generation.<br />

Therefore, even with quadrupled iRES nominal capacity<br />

compared with the current level in an optimally interconnected<br />

Europe, a comparatively small saving in<br />

dispatchable backup capacity and low capacity factors of<br />

the backup system, for instance of Germany, are to be<br />

expected, with repercussions on its profitability.<br />

Review of electricity generation<br />

from wind power in Germany since 2010<br />

In the first part of the VGB Wind Study [1] electricity generation<br />

from the German wind fleet from 2010 to 2016 has<br />

been analysed. Meanwhile operating data for one<br />

additional year are available and enable an update before<br />

Europe is moved into the spotlight.<br />

In 2017, the nominal capacity of the German wind fleet<br />

increased by a further 12 % year-on-year to roughly<br />

56,000 MW (Figure 1), some 90 % of which was accounted<br />

for by onshore wind power and 10 % by offshore wind<br />

power.<br />

The German wind fleet comprised a total of almost<br />

30,000 turbines at the end of the year. This corresponds to<br />

6 % growth compared with the previous year.<br />

The annual peak power output P Max reached a new alltime<br />

high of almost 40,000 MW in 2017. This all-time high<br />

occurred on 28 October 2017 between 18:15 and 18:30.<br />

Note: All times in connection with quarter-hourly or<br />

hourly data are stated in coordinated universal time (UTC)<br />

in this study.<br />

In the afternoon and evening of that day in October, the<br />

low-pressure system “Herwart” swept across the north and<br />

east of Germany with severe to hurricane-like storm-force<br />

gusts and gale-force winds, caused gusts of up to hurricane<br />

force in Denmark, Poland and the Czech Republic and led<br />

to extremely high power output from wind turbines there<br />

as well.<br />

Due to high, but not too high wind speeds prevailing<br />

over large parts of Germany and its neighbours at times on<br />

that October day, around 70 % of the wind turbines in<br />

Germany fed their nominal capacity into the power grid.<br />

Note: Wind turbines automatically switch off at wind<br />

speeds of around 25 m/s according to preventive measures<br />

(storm deactivation).<br />

Similarly high aggregate power output also occurred in<br />

Germany on 18 March 2017 with the low-pressure system<br />

“Eckart”, which brought severe storm-force gusts to Berlin<br />

and Brandenburg.<br />

Even without these spring and autumn storms, 2017<br />

was an extremely windy year. The mean power output P µ<br />

of the German wind fleet as measure of electrical energy<br />

supplied annually rose by 34 % year-on-year to 11,720 MW.<br />

This corresponds to an annual electric energy of 103 TWh.<br />

Wind power thus for the first time breached the annual<br />

generation threshold of 100 TWh.<br />

The annual minimum power output P Min of 158 MW<br />

occurred on 6 July 2017 between 07:15 and 07:30 and<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

remained − as in the previous seven years − significantly<br />

below 1 % of the nominal capacity P N at year-end.<br />

Comparatively low German wind fleet power outputs<br />

over several consecutive hours of up to 1 % of the nominal<br />

capacity or nearly 562 MW were recorded in January,<br />

June, July, August, September and October, and therefore<br />

in six months of the high-wind year 2017.<br />

Note: A minimum power output of the German wind<br />

fleet of 229 MW has been recorded in 2018, with a nominal<br />

capacity of around 59,000 MW (90 % onshore, 10 %<br />

offshore).<br />

As low power output can occur during both day and<br />

night, the matter of future security of supply cannot be<br />

resolved by expanding electricity generation from photovoltaics.<br />

In their energy performance reports, the German transmission<br />

system operators point out that it is difficult to<br />

make reliable statements about possible unavailable<br />

capacity of volatile renewable energy systems at the time<br />

of the annual peak load. In their responsibility for safe grid<br />

operation they call for such supply-dependent volatile<br />

capacity to be available to at least 99 % of a year in order to<br />

be considered as secured capacity [4].<br />

To this end they regularly evaluate historical time series<br />

of iRES normalised power output in relation to the nominal<br />

capacity as ordered annual load duration curves. From<br />

these curves they derive an aggegate secured capacity for<br />

the German wind fleet of a maximum 1 % of the nominal<br />

capacity, and stress even a restriction to the winter months<br />

would indicate no significant change in this result [4].<br />

In view of the fact that the annual minima of the<br />

German wind fleet power output have all even been found<br />

to amount to less than 0.5 % of the nominal capacity since<br />

2010, this procedure would appear to be justified if the<br />

currently high level of security of supply of 99.998 % [11]<br />

is to be maintained (see Figure 1).<br />

Worthy of mention is the ten-day cold dark doldrums<br />

from 16 to 25 January 2017, during which the weather in<br />

Germany was simultaneously cold, foggy and windless.<br />

The weather conditions led to all wind turbines and photovoltaic<br />

systems in Germany feeding a mere average of just<br />

under 4,600 MW into the grid over these ten days, with an<br />

iRES nominal capacity of around 90,000 MW. Wind power<br />

accounted for three quarters of this iRES average power<br />

output.<br />

On several days the German wind fleet at times supplied<br />

less than 1,800 MW or 2 % of its nominal capacity over<br />

several consecutive hours, while biomass, hydropower and<br />

geothermal energy together contributed a largely constant<br />

power output of 6,300 MW.<br />

During the ten-day dark doldrums, all renewable<br />

energy systems (RES) together covered 15 % of the demand<br />

and produced an average power output of around<br />

11,000 MW.<br />

The RES minimum output of around 7,000 MW<br />

occurred on 23 January 2017 between 00:00 and 00:45.<br />

This corresponded to about 6 % of the RES nominal<br />

capacity [5].<br />

During the cold dark doldrums the load varied between<br />

42,000 MW and 75,000 MW (average: 61,000 MW), so<br />

that available conventional power plants had to contribute<br />

most to meeting demand with power outputs of 33,000 to<br />

67,000 MW [14].<br />

Note: The load has been provided via internet from the<br />

transparency platform of ENTSO-E, the European Network<br />

of Transmission System Operators [1]. It includes grid<br />

losses and can be calculated from gross power generation<br />

Probability in % (CDF)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

CDF: Cumulative distribution function<br />

Electricity generation from wind power<br />

η A,Min<br />

η A,Max<br />

Normalised power P/PN in %<br />

PMax /PN<br />

| | Fig. 2.<br />

Cumulative probabilities of hourly power output P of the German wind fleet<br />

from 2010 to 2017 normalised to the nominal capacity P N at year-end.<br />

by deducting the auxiliary consumption of power plants,<br />

the balance of imports and exports and the demand of<br />

pumped storage power plants. However, contributions<br />

from German railways’ captive generation, industry-owned<br />

power plants, small combined heat and power units and<br />

small-scale plants based on renewables are not recorded by<br />

German transmission system operators. These account for<br />

around 10 % of the load and are not included in load data<br />

obainable from ENTSO-E. Since the temporal pattern of<br />

these contributions is unknown, load remains unchanged<br />

and is used here to represent the domestic load curve.<br />

These data derived from the January 2017 cold dark<br />

doldrums characterise requirements that have to be<br />

imposed on a backup system which will have to replace the<br />

conventional power plants in future with further iRES<br />

expansion, if the grid is to be operated stably and with<br />

security of supply.<br />

The fact that sustained periods of weak wind occur not<br />

only in Germany but also in other European countries is<br />

demonstrated by the public debate on electricity generation<br />

from wind power in Great Britain, which was down<br />

40 % year-on-year in July 2018. For weeks, the wind fleet<br />

power output ranged from a few hundred to about<br />

3,000 MW, reaching a monthly average of 9 % of the<br />

nominal capacity. When good wind conditions prevail, the<br />

power output in Great Britain typically reaches 9,000 to<br />

10,000 MW [15].<br />

Figure 2 shows cumulative probabilities of the normalised<br />

hourly power output P of the German wind fleet for<br />

the years 2010 to 2017 in relation to the nominal capacity<br />

P N at year-end. CDF denotes the cumulative distribution<br />

function. The ratio of the mean power output P µ to the<br />

nominal capacity P N is defined as capacity factor h A .<br />

It is immediately apparent that the cumulative distribution<br />

functions are not in chronological order corresponding<br />

to the expanded German wind fleet in terms of<br />

nominal capacity. The minimum capacity factor h A,Min of<br />

about 15 % was reached in 2014 at a nominal capacity of<br />

almost 39,000 MW, for instance, and not earlier in 2010<br />

when the development level was lower at around<br />

27,000 MW. Therefore, wind conditions varying from year<br />

to year seem to be one of the main drivers for the capacity<br />

factor of the German wind fleet.<br />

The highest capacity factor h A,Max of 21 % was recorded<br />

in the extremely windy year 2017 when the wind fleet was<br />

at its most developed. In terms of wind strength the years<br />

2015, 2016, 2011, 2012, 2013, 2010 and 2014 follow in<br />

descending order.<br />

Hourly resolution<br />

2017<br />

2016<br />

2015<br />

2014<br />

2013<br />

2012<br />

2011<br />

2010<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Sources: ENTSO-E, German TSO<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 81<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 82<br />

Nomoinal power in MW<br />

60,000<br />

50,000<br />

40,000<br />

30,000<br />

20,000<br />

10,000<br />

0<br />

Wind turbines<br />

The Federal Ministry for Economic Affairs and Energy<br />

(BMWi) [5] and the Working Group on Energy Balances<br />

(AGEB) [6] partly report higher values for annual electricity<br />

generation from wind power from 2010 to 2014 than result<br />

from integrating quarter-hourly power time series published<br />

by the German transmission system operators on<br />

their transparency platforms via internet. This can result in<br />

differing capacity factor values for individual years<br />

depending on the relevant data source. As of the year 2015,<br />

these deviations are all less than 5 % of the annual electric<br />

energy supplied.<br />

Note: Where not stated otherwise, this study is based<br />

on the annual electric energy computed from power time<br />

series and nominal capacities at year-end.<br />

With dynamic expansion during the course of the year,<br />

use of the annual mean value of the nominal capacity is<br />

more appropriate. For the German offshore wind fleet<br />

which was expanded strongly in 2017, a capacity factor of<br />

37 % results with the year-end figure for nominal capacity<br />

of 5,400 MW, while the annual mean value of 4,800 MW<br />

leads to a considerably higher capacity factor of 42 %. The<br />

latter takes more appropriate account of the fact that wind<br />

turbines added during the course of the year were only<br />

able to feed-in power on a pro rata temporis basis.<br />

Total nominal power 2017 of 18 countries<br />

≈170,000 MW<br />

DE ES UK FR IT SE PL DK PT NL RO IE AT BE GR FI NO CZ<br />

Europe 2017<br />

| | Fig. 3.<br />

Nominal capacity of wind turbines in 18 European countries at the end of 2017.<br />

PT<br />

IE<br />

ES<br />

UK<br />

FR<br />

NL<br />

BE<br />

NO<br />

DE<br />

DK<br />

SE<br />

IT<br />

AT<br />

CZ<br />

Source: BP Statistical Review<br />

| | Fig. 4.<br />

Overview of 18 European countries analysed. Germany’s direct neighbours are written in red,<br />

all countries further afield in blue.<br />

FI<br />

PL<br />

RO<br />

GR<br />

18 European Countries<br />

AT Austria<br />

BE Belgium<br />

CZ Czech Republic<br />

DE Germany<br />

DK Denmark<br />

ES Spain<br />

FI Finland<br />

FR France<br />

GR Greece<br />

IE Ireland<br />

IT Italy<br />

NL Netherlands<br />

NO Norway<br />

PL Poland<br />

PT Portugal<br />

RO Romania<br />

SE Sweden<br />

UK United Kingdom<br />

Looking at the German wind fleet as a whole, the mean<br />

output of 11,700 MW and the year-end nominal capacity of<br />

56,000 MW result in a capacity factor of 21 % for 2017. The<br />

annual mean value of the nominal capacity of 53,000 MW<br />

results in a marginally higher capacity factor of 22 % on<br />

account of the low leverage of newly added nominal<br />

capacity compared with the existing level. When comparing<br />

with the capacity factor of electricity generation from wind<br />

power in other European countries, relative differences are<br />

of interest, and so calculations for such considerations<br />

should be carried out in a uniform manner for all countries.<br />

Although the capacity factor of the German offshore wind<br />

fleet last year was practically almost double that of the entire<br />

German wind fleet, the quarter-hourly power output of the<br />

German offshore wind fleet fell to 1 % of its nominal capacity<br />

or less in a total of around 261 hours of the 8,760 annual<br />

hours. In 2016 this was 259 hours (2015: 304 hours). Weak<br />

wind phases of this kind occurred in each month of last year,<br />

including pronounced phases lasting several hours in January,<br />

March, April, June, July, August and September. The<br />

power output of the German offshore wind fleet fell at times<br />

in January, April, July, August and September to 0 MW. Over<br />

the entire year, 29 quarter- hourly zero values were recorded.<br />

This means that at the level of development achieved to<br />

date, the German offshore wind fleet is shown to be not<br />

capable of serving as a source of baseload electricity and<br />

cannot replace conventional power plants.<br />

Whilst the nominal capacity of the German wind fleet<br />

has more than doubled since 2010, wind levels depend on<br />

meteorological influencing variables and can vary considerably<br />

from year to year. This is documented by longterm<br />

data on the capacity factor of the German wind fleet<br />

with annual fluctuations in a range of up to ±20 % in<br />

relation to the long-term arithmetical mean [5].<br />

The influence of meteorological factors is apparent, for<br />

example, in Figure 2 in the fact that the German wind fleet<br />

produced up to 50 % of the nominal capacity in 93 % of the<br />

annual hours in 2015 and 2017, when wind levels were<br />

high, but in 2010 and 2014, when wind levels were low,<br />

only achieved at most 38 % and 41 % respectively of<br />

the nominal capacity in 93 % of the annual hours. This<br />

corresponds to a weather-induced variance of around<br />

twelve percentage points.<br />

With low cumulative probabilities and at low normalised<br />

output, differences of this kind between indivi dual<br />

years on account of meteorological influences are barely<br />

discernible. Cumulative probabilities of 100 % were<br />

reached in Germany in the past years at wind fleet power<br />

outputs of 68 to 80 % of the nominal capacity. Or in other<br />

words: The German wind fleet recorded annual power<br />

output maxima of 68 to 80 % of its nominal capacity in the<br />

last eight years. In Germany, therefore, it is never the case<br />

that all wind turbines feed their nominal capacity into the<br />

grid at the same time. But is that also true of other European<br />

countries? Can a similar relationship between the annual<br />

maximum power output P max and the nominal capacity P N<br />

be derived from their power output time series?<br />

On the basis of 108 time series for electricity generation<br />

from onshore and offshore wind power in European countries<br />

between 2010 and 2017 [14], regression analysis<br />

provides the following interrelation to be derived between<br />

the annual maximum power output P max and the nominal<br />

capacity P N at year-end, with a degree of determination of<br />

linear regression of 99 %:<br />

P Max = c Max · P N .<br />

The slope of this linear equation can be expressed as:<br />

c Max = 0.726 ± 0.014.<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Long-term operating experience in various European<br />

countries including Germany thus enables with good<br />

approximation the expectation that, at best, just under<br />

74 % of the nominal capacity of a wind fleet of any one<br />

European country contribute simultaneously to the<br />

maximum power output. As electricity generation from<br />

wind power expands, the difference between the nominal<br />

capacity and the annual maximum power output consequently<br />

increases, see Figure 1.<br />

The data basis cited above also enables an approximate<br />

linear dependency on the nominal capacity P N to be<br />

derived for the mean value P µ with a 96 % degree of<br />

determination:<br />

P µ = c µ · P N .<br />

The slope of this linear equation is expressed as:<br />

c µ = 0.179 ± 0.009.<br />

Long-term operating experience documents here that,<br />

at best, approximately just under one fifth of the nominal<br />

capacity of a wind fleet in any one European country<br />

contributes to the annual electric energy supplied.<br />

Last but not least, the data basis cited above also enables<br />

an approximate linear dependency on the nominal capa city<br />

P N to be derived for the standard deviation P s as a measure<br />

of the dispersion of the power output around the mean<br />

value P µ with a degree of determination of almost 99 %:<br />

P s = c s · P N .<br />

The slope of this linear equation can be expressed as:<br />

c s = 0.145 ± 0.0036.<br />

Based on long-term operating experience, a proportional<br />

increase in power output fluctuations relative to the<br />

nominal capacity can be derived in this case with a factor<br />

of almost 0.15. With further expansion of wind power,<br />

therefore, a further increase in power output fluctuations<br />

is to be expected.<br />

It can therefore be concluded that operating experience<br />

of 2017 confirms the statements made in the first part of<br />

the VGB Wind Study for Germany [1], namely that, from<br />

the point of view of security of supply, wind power has so<br />

far not replaced conventional power plant output. Furthermore,<br />

distribution of wind turbines throughout Germany<br />

is, on its own, clearly not a solution for a reliable and secure<br />

supply of electricity. Complementary technologies are<br />

necessary in conjunction with wind power. This raises the<br />

question as to whether wind turbines distributed widely<br />

throughout Europe could help.<br />

Power in MW<br />

Power in MW<br />

Power in MW<br />

100,000<br />

90,000<br />

80,000<br />

70,000<br />

60,000<br />

50,000<br />

40,000<br />

30,000<br />

20,000<br />

10,000<br />

0<br />

100,000<br />

90,000<br />

80,000<br />

70,000<br />

60,000<br />

50,000<br />

40,000<br />

30,000<br />

20,000<br />

10,000<br />

0<br />

100,000<br />

90,000<br />

80,000<br />

70,000<br />

60,000<br />

50,000<br />

40,000<br />

30,000<br />

20,000<br />

10,000<br />

0<br />

Jan<br />

Jan<br />

Jan<br />

Germany<br />

P N ≈ 56,000 MW<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Germany plus seven countries<br />

P N ≈ 93,000 MW<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Germany plus seventeen countries<br />

P N ≈ 170,000 MW<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Year 2017<br />

Hourly resolution<br />

| | Fig. 5.<br />

Cumulative power time series for electricity generation from wind power in 2017<br />

for Germany (top), for Germany plus seven direct neighbours (centre) and for<br />

Germany plus seventeen countries (bottom).<br />

Dec<br />

Dec<br />

Dec<br />

Source: ENTSO-E<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 83<br />

Electricity generation from wind power<br />

in 18 European countries<br />

In order to answer this question, it is first worth taking a<br />

look at the cumulative nominal capacity of wind turbines<br />

operated in 18 European countries at the end of 2017 or<br />

the total nominal capacity of the European wind fleet of<br />

almost 170,000 MW, 91 % of which was accounted for by<br />

onshore wind turbines and 9 % by offshore wind turbines<br />

(Figure 3) [16]. In 2017, offshore wind turbines were<br />

operated in Belgium (BE), Denmark (DK), Germany (DE),<br />

the Netherlands (NL) and the United Kingdom (UK).<br />

Countries with largely intact time series on electricity<br />

generation from wind power were selected, reflecting 94 % of<br />

the European nominal capacity at the end of 2017 [14],[16].<br />

Starting point of these analyses were transparency data<br />

accessible on the internet from ENTSO-E [14], the German<br />

transmission system operators 50 Hertz Transmission,<br />

Amprion, Tennet TSO and Transnet BW as well as the<br />

European Energy Exchange [17] to [21].<br />

Time series for electric power output from various power<br />

plant types, including wind turbines and photo voltaic<br />

systems, as well as for consumer demand (load) can be<br />

retrieved through these transparency platforms in quarterhourly<br />

to hourly resolution.<br />

On the ENTSO-E transparency platform, all time series<br />

from 2015 on were retrievable in time-synchronised form,<br />

an important factor for analyses of balance between<br />

consumption and generation in different countries.<br />

This enabled consistent retrieval of data according to coordinated<br />

universal time. Additional information on data<br />

qualification and plausibility can be found in the first part<br />

of the VGB Wind Study [1].<br />

Figure 3 shows: Germany alone, with around<br />

56,000 MW, accounted for almost one third of the total<br />

nominal capacity of the European wind fleet, followed at a<br />

clear distance by Spain (14 %), the United Kingdom<br />

(12 %), France (8 %) and Italy (6 %).<br />

Figure 4 shows a map of the 18 European countries<br />

considered here. Germany’s direct neighbours are written<br />

in red, all countries further afield in blue. Germany’s seven<br />

direct neighbours (AT, BE, CZ, DK, FR, NL, PL) currently<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 84<br />

Country P N P Max P µ P Min P s E R E R [16]<br />

in MW in MW in MW in MW in MW in TWh in TWh<br />

DE 56,164 39,231 11,720 165 8,813 1<strong>02</strong>.7 106.6<br />

DK 5,476 4,685 1,644 9 1,154 14.4 14.8<br />

PL 6,397 5,234 1,633 28 1,238 14.3 14.9<br />

CZ 308 237 64 1 51 0.6 0.6<br />

AT 2,828 2,679 768 0 676 6.7 6.5<br />

FR 13,759 10,290 2,608 390 1,887 22.8 24.3<br />

BE 2,843 2,082 572 3 471 5.0 6.6<br />

NL 5,070 4,280 1,255 7 1,010 11.0 10.6<br />

DE+7 92,845 61,773 20,265 1,742 12,840 177.5 184.9<br />

SE 6,691 5,523 1,976 117 1,092 17.3 17.3<br />

FI 2,113 1,607 470 9 361 4.1 4.8<br />

RO 3,<strong>02</strong>9 2,756 834 0 692 7.3 7.4<br />

GR 2,651 1,7<strong>02</strong> 483 16 336 4.2 5.5<br />

IT 9,479 6,696 2,005 40 1,462 17.6 17.7<br />

ES 23,170 15,564 5,384 420 3,017 47.2 49.1<br />

PT 5,316 4,471 1,367 5 988 12.0 12.3<br />

IE 3,127 2,595 825 0 6<strong>02</strong> 7.2 7.4<br />

UK 18,872 11,394 4,726 431 2,507 41.4 49.6<br />

NO 1,162 975 306 6 184 2.7 2.8<br />

DE+17 168,455 91,638 38,639 7,855 16,384 338.5 358.8<br />

| | Tab. 1.<br />

Relevant parameters of electricity generation from wind power of 18 European countries in 2017 with<br />

year-end value of nominal capacity P N , maximum value P Max , mean value P µ , minimum value P Min and<br />

standard deviation P s of hourly power output of the corresponding national wind fleet. Furthermore,<br />

the annual energy ER resulting from 8,760 hourly values is shown and compared with the annual<br />

energy published in the BP Statistical Review of World Energy [16].<br />

account for around one fifth of the nominal capacity of the<br />

European wind fleet, while the other ten countries further<br />

afield (ES, FI, GR, IE, IT, NO, PT, RO, SE, UK) make up<br />

about half of this total nominal capacity.<br />

The yellow dots on the map of Europe symbolise the<br />

wind fleet centers of the individual countries, determined<br />

on the basis of geocoordinates of the largest wind farm<br />

clusters in 2016 [22]. The focus of the German wind fleet<br />

and that of the European wind fleet formed by the<br />

18 countries, at almost 140 km distance apart, are almost<br />

congruent.<br />

The largest distance between wind fleet centers is to be<br />

found with the country pair Finland and Portugal at almost<br />

3,300 km, followed by Spain and Finland (≈ 3,100 km),<br />

Greece and Ireland (≈ 3,000 km), Portugal and Romania,<br />

and Greece and Norway (both ≈ 2,900 km).<br />

On the assumption that all countries are to help each<br />

other out by means of wind power, a mean transport<br />

distance of 1,500 km between two wind fleet centers<br />

results from a total of 153 possible country pairs when<br />

18 countries are considered.<br />

The summation of power outputs of wind fleets of<br />

18 European countries observed here is based on the<br />

extremely simplistic assumption of a copper plate across<br />

Europe, neglecting any losses in the transport and distribution<br />

networks. Or in other words: the aggregate power output<br />

is accessible at a punctiform feed-in point, so to speak.<br />

Figure 5 shows the cumulative time series of the hourly<br />

generation of electricity from wind power for Germany<br />

(top), for Germany plus seven direct neighbours (centre)<br />

and for Germany plus 17 European countries (bottom) in<br />

2017. Table 1 lists supplementary operating parameters<br />

and energy variables.<br />

Firstly, it is apparent that not only do the cumulative<br />

power time series of the wind fleet in Germany (DE) reveal<br />

considerable temporal fluctuations, so too do those of<br />

cumulative wind fleets of Germany plus seven countries<br />

(DE+7) or 17 countries (DE+17).<br />

It is apparent that aggregate power outputs of several<br />

countries are also still correlated, as demonstrated by the<br />

distinct power output maxima and minima, which<br />

evidently often occur simultaneously in many countries.<br />

This raises the question as to whether smoothing effects<br />

can be identified in the transition from one individual<br />

country to several countries.<br />

In a first step, the question can be evaluated on the basis<br />

of the range between the largest and smallest power output<br />

values in relation to the nominal capacity P N .<br />

This range, referred to here as variation range, is<br />

defined as the ratio of the difference of the mean values of<br />

the largest power output values (P Max minus 5 % P N ) and<br />

the smallest power output values (P Min plus 5 % P N ) to the<br />

nominal capacity of the relevant wind fleet.<br />

Applied to the three wind fleets the following picture<br />

emerges: the variation range of the cumulative power time<br />

series falls by one tenth to around 61 % of the nominal<br />

capacity starting from Germany when Germany plus seven<br />

countries are considered together, whereas it decreases by<br />

one third to 46 % for Germany plus 17 countries (DE+17).<br />

A certain degree of smoothing in subsections of the cumulative<br />

power time series therefore appears to take place.<br />

But what statements can be made − in statistical terms<br />

− for the entire cumulative power time series? The variation<br />

coefficient x as ratio of the standard deviation P s to<br />

the mean value P µ is a dimensionless measure of the dispersion<br />

of a time series.<br />

For an individual European country, the variation<br />

coefficient can be estimated as approximately x = c s /c µ<br />

≈ 0.81 with the results of the previously described linear<br />

regression analysis. For an individual European country,<br />

even just small deviations from the mean value by 1.2<br />

standard deviations downwards lead to power outputs<br />

of 0 MW, as already stated with the example of Germany<br />

in [1].<br />

The cumulative power time series of eight European<br />

countries (DE+7), on the other hand, results in a variation<br />

coefficient of x DE+7 ≈ 0.63. Consequently, in this case, only<br />

deviations by 1.6 standard deviations from the mean value<br />

downwards lead to power outputs of 0 MW.<br />

For the cumulative power time series of 18 European<br />

countries (DE+17), an even lower variation coefficient of<br />

x DE+17 ≈ 0.42 results. In this case, only even deviations by<br />

2.4 standard deviations from the mean value downwards<br />

lead to power outputs of 0 MW.<br />

These considerations suggest a degree of balancing<br />

in the generation of electricity from wind power or<br />

smoothing effects when the power time series of European<br />

countries are superimposed. Figure 6 illustrates this<br />

smoothing effect on the basis of the cumulative probabilities<br />

of the normalised hourly power output P of the<br />

European wind fleet for the year 2017 relative to the<br />

nominal capacity P N at the end of the year compared with<br />

the range of cumulative probabilities for Germany from<br />

2010 to 2017.<br />

The European wind fleet reached an annual power<br />

output maximum of 54 % of the nominal capacity and a<br />

capacity factor of 23 %. By comparison, the cumulative<br />

power time series of the hourly power output of individual<br />

years for Germany (see Figure 2) show annual maximum<br />

power output values of around 68 to 80 % of the nominal<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

capacity. For an average individual European country, the<br />

linear regression analysis described above would give in<br />

good approximation annual maximum values of around<br />

73 % of the nominal capacity.<br />

The difference between nominal capacity and annual<br />

maximum power output therefore increases more significantly<br />

when several countries are considered cumulatively<br />

than it does for a single country.<br />

A glance at annual minimum power outputs confirms<br />

that even when considered conservatively neglecting any<br />

grid losses, relatively low permanently available (secured<br />

capacity) power outputs result. In 2017 the result for<br />

the European wind fleet was around 5 % of the nominal<br />

capacity or just under 7,900 MW. By comparison, the<br />

annual minimum value for Germany amounted to 0.3 % of<br />

the nominal capacity or 165 MW, and for Germany plus its<br />

seven direct neighbours to 2 % or almost 1,800 MW.<br />

However, these annual minimum values cannot be<br />

comprehended with simple linear upscaling. At the end of<br />

2017, for example, around one third of the nominal<br />

capacity of the European wind fleet was accounted for by<br />

the German wind fleet. Tripling the German annual<br />

minimum value in order to make a projection would lead<br />

to an expectation of an annual minimum value of 495 MW<br />

for the European wind fleet. In actual fact, this annual<br />

minimum value is almost 48 times higher. A certain degree<br />

of balancing thus demonstrably occurs.<br />

Buttler et al. [23] evaluated time series on electricity<br />

generation from wind power in 2014 in 28 countries of the<br />

European Union based on the copper plate model and in<br />

connection with the cumulative power time series of this<br />

European wind fleet speak of a statistically significant<br />

smoothing effect which leads to a (secured) power output<br />

capable of serving as a source of baseload electricity available<br />

all year round of 4 % of the nominal capacity. The<br />

secured power output of this European wind fleet during<br />

the year increases with restriction to winter months, at<br />

times therefore, to around 9 % of the nominal capacity.<br />

As the cumulative time series of the load of the<br />

European countries in these months is likewise characterised<br />

by distinctly increasing demand, as shown by the<br />

trend line for the hourly load curve of these countries in<br />

Figure 7 (assumption: no grid losses), the evaluation result<br />

does not improve decisively even with consideration of<br />

the electricity generation from wind power during the<br />

course of the year.<br />

The annual mean value of the cumulative time series of<br />

the hourly load in the 18 countries amounted to around<br />

327,000 MW in 2017. If restricted to the four winter months<br />

from November to February, a four-month mean value of<br />

around 366,000 MW results. Were the secured capacity of<br />

the European wind fleet to be doubled on account of the<br />

winter to 10 % of its nominal capacity, the four-month<br />

mean value of the load, which is 39,000 MW higher than<br />

its annual mean value, would face an increase of the secured<br />

capacity of the European wind fleet at times of<br />

around 9,000 MW.<br />

In 2017 the European wind fleet supplied a total of<br />

around 340 TWh of electricity. The total demand for electricity<br />

calculated from the cumulative time series of the<br />

hourly load of the 18 European countries amounted to<br />

around 2,900 TWh.<br />

Wind power contributed approximately 12 % towards<br />

covering the demand for electricity. By comparison, the international<br />

energy statistics for gross power generation of<br />

these 18 European countries in 2017 reveal a level of just<br />

under 3,300 TWh [16].<br />

Probability in % (CDF)<br />

Bandwidth<br />

CDF: Cumulative distribution function<br />

Power in MW<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Normalised power P/PN in %<br />

| | Fig. 6.<br />

Cumulative probabilities of the hourly power output P of the European wind fleet<br />

normalised to the nominal capacity P N at year-end and the corresponding range of<br />

cumulative probabilities for Germany from 2010 to 2017.<br />

| | Fig. 7.<br />

Electricity generation from wind power and load in 18 European countries in 2017.<br />

On the one hand, the difference of around 400 TWh<br />

between the gross power generation and the demand<br />

calculated from the load results from the power plant<br />

auxiliary electric load, the balance of imports and exports<br />

and the power consumption of pumped storage power<br />

plants in all 18 countries which are not considered in the<br />

hourly load in accordance with the ENTSO-E definition. On<br />

the other hand, not all consumers are depicted to 100 %, for<br />

example the consumption by German industry covered by<br />

its own power plants, which is not recorded publicly.<br />

Figure 7 also illustrates the high temporal correlation<br />

of the hourly load curves in the 18 European countries<br />

with distinct weekly and daily cycles. In the event of loads<br />

being balanced across all countries, these cycles should not<br />

be so pronounced.<br />

Figure 8 shows that the power output of the European<br />

onshore wind fleet (dark blue) is frequently concurrent with<br />

the power output of the European offshore wind fleet<br />

( orange) and that significant temporal output fluctuations<br />

occur. While the European onshore wind fleet had a nominal<br />

capacity of almost 153,000 MW at the end of 2017, offshore<br />

wind turbines with a nominal capacity of 15,500 MW were<br />

in use in five countries: Belgium, Denmark, Germany, the<br />

Netherlands and the United Kingdom.<br />

Unlike in Germany, the annual minimum power output<br />

of the offshore wind fleet in Europe at no time fell to 0 MW<br />

on account of the more widespread distribution of wind<br />

turbines in the North and Baltic Seas, instead amounting<br />

to 89 MW (hourly resolution).<br />

Hourly resolution<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

500,000<br />

450,000<br />

400,000<br />

350,000<br />

300,000<br />

250,000<br />

200,000<br />

150,000<br />

100,000<br />

50,000<br />

0<br />

Electricity generation from wind power<br />

Nominal power<br />

Jan<br />

η A = Pµ /PN<br />

Year 2017<br />

PMax /PN<br />

Europe 2017<br />

Germany 2010 to 2017<br />

Load curve<br />

Mean<br />

Trend line<br />

Electricity generation from wind power<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Sources: ENTSO-E, ÜNB<br />

Hourly resolution<br />

Dec<br />

Source: ENTSO-E<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 85<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 86<br />

Power in MW<br />

Spearman rank correlation coefficient rS<br />

100,000<br />

Normalised power P/P N in %<br />

90,000<br />

80,000<br />

70,000<br />

60,000<br />

50,000<br />

40,000<br />

30,000<br />

20,000<br />

10,000<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

This corresponds to just under 0.6 % of the relevant<br />

nominal capacity. Minor contributions of 1 % of the<br />

nominal capacity or less were observed in ten of the 8,760<br />

annual hours, aggregate power outputs of 5 % of the<br />

nominal capacity or less in 319 hours and aggregate power<br />

outputs of less than 10 % in 1,100 hours or in total on<br />

45 days. This means that the European offshore wind fleet,<br />

too, at its current level of development, in practice cannot<br />

serve as a source of baseload electricity.<br />

The normalised aggregate power outputs of the onshore<br />

and offshore wind fleets illustrate that the expansion of<br />

both wind fleets that has taken place so far across Europe is<br />

evidently insufficient for balancing to a degree that would<br />

Jan<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Year 2017<br />

Source: ENTSO-E<br />

| | Fig. 8.<br />

Cumulative time series of the hourly power output of onshore (blue) and offshore<br />

( orange) wind power in 18 European countries in 2017 and normalised cumulative time<br />

series assuming linear growth of the nominal capacity of onshore (blue) and offshore<br />

( orange, in the background) wind power over the course of the year.<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

Jan<br />

Onshore wind power: P N ≈ 153,000 MW<br />

Offshore wind power: P N ≈ 15,500 MW<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Electricity generation from windpower 2016<br />

BE<br />

NL<br />

PL<br />

NL<br />

DK<br />

CZ<br />

BE<br />

DE<br />

AT<br />

Germany‘s direct neighbours<br />

DE<br />

FR<br />

Negatively correlated country pairs<br />

Onshore wind power<br />

Offshore wind power (underlayed)<br />

Mean distance ∆x in km<br />

Hourly resolution<br />

| | Fig. 9.<br />

Spearman rank correlation coefficient r S as a function of the mean distance ∆x between<br />

national wind fleet centers for 18 countries, calculated on the basis of hourly power time series<br />

in 2016. Besides Belgium and the Netherlands as the country pair with the highest correlation<br />

coefficient, also highlighted in colour are seven of Germany’s direct neighbours, Finland and<br />

Portugal as country pair with the furthest mean distance, as well as Spain and Finland and<br />

Spain and Sweden as the two country pairs with the lowest correlation coefficients.<br />

Dec<br />

Dec<br />

Hourly resolution<br />

Coefficient of determination of trend line: R 2 = 0,7897<br />

-0.2<br />

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000<br />

ES<br />

SE<br />

ES<br />

FI<br />

FI<br />

PT<br />

Source: ENTSO-E<br />

enable backup power plant capacity to be dispensed with<br />

to a perceptible extent: the superimposed aggregate power<br />

outputs of both wind fleets indicate which gaps in power<br />

output can be closed and which peaks will increase further.<br />

The result is disenchanting: gaps are only closed to a<br />

limited extent, peaks continue to increase. The correlation<br />

of the power feed-ins is clearly visible.<br />

This raises the question as to whether better results<br />

could be obtained, as suggested by Grams et al. [24] and<br />

Becker [25], by increased integration of European<br />

countries located far apart from each other. A spatial<br />

correlation analysis and close scrutiny of grid losses are<br />

suitable means of evaluating this idea.<br />

Spatial correlation analysis<br />

Spatial correlation analyses explore from a mathe matical<br />

point of view how data depend on each other. In this case,<br />

the question is whether and to what extent the cumulative<br />

time series for the hourly power output of two national<br />

wind fleets depend on their mean distance from each<br />

other, i.e. correlate spatially.<br />

The correlation coefficient r K is generally a measure of<br />

the direction and strength of a correlation and can assume<br />

values in the range from -1 to +1. It is necessary to<br />

distinguish here between the following cases:<br />

pp<br />

With perfectly correlated data, the correlation coefficient<br />

assumes values of +1 (positive) or -1 ( negative). The<br />

changes are exactly equally strong. The direction of<br />

change, however, is either exactly the same (+1) or<br />

exactly opposite (-1). An example of a perfectly positive<br />

corre lation would be the speeds of two vehicles linked by<br />

a tow bar.<br />

pp<br />

In the case of uncorrelated data, the correlation<br />

coefficient is r K = 0. This result could be expected, for<br />

example, when comparing house numbers with the<br />

shoe sizes of the inhabitants.<br />

pp<br />

With positive correlation, the correlation coefficient<br />

assumes positive values of more than 0 and less than 1.<br />

Positive correlation coefficients could be expected<br />

when comparing body height and shoe size. This would<br />

be a parallel development. As body height increases, so<br />

too, as a general rule, does the shoe size.<br />

pp<br />

With negative correlation, the correlation coefficient<br />

lies in the range from more than -1 to less than 0.<br />

An example for negatively correlated data are the outside<br />

temperature and the number of skiers in a winter<br />

holiday region. This is an opposite development. The<br />

number of skiers generally increases as the outside<br />

temperature decreases.<br />

The spatial correlation analysis to be carried out here was<br />

based on the 18 time series on hourly electricity generation<br />

from wind power for 2016 and the centers of 18 national<br />

wind fleets. The total number n of possible combinations<br />

of country combinations (pairs) can be calculated from the<br />

number z of countries according to the following equation:<br />

n = ½·z·(z−1).<br />

In case of 18 countries a total of 153 possible country<br />

pairs and 153 mean distances ∆x between national wind<br />

fleets have to be considered.<br />

As the power time series for these 18 countries are shown<br />

to be not normally distributed, Spearman’s rank correlation<br />

procedure was selected. This procedure is resistant to outliers<br />

and uses the hourly resolution, converted into ranks, of<br />

time series of electricity generation from wind power of in<br />

each case two national wind fleets to calculate the Spearman<br />

rank correlation coefficient r S for 153 country pairs, hereinafter<br />

referred to in simplified form as correlation coefficient.<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Normalised power P/P N in %<br />

Normalised power P/P N in %<br />

Normalised power P/P N in %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Jan<br />

Jan<br />

Jan<br />

Netherlands<br />

Belgium<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

France<br />

Germany<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Austria<br />

Germany<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Year 2016<br />

∆x ≈ 200 km<br />

r S ≈ 0.8<br />

∆x ≈ 900 km<br />

r S ≈ 0.4<br />

∆x ≈ 600 km<br />

r S ≈ 0.2<br />

| | Fig. 10.<br />

Normalised hourly power output time series of wind fleets of neighbouring countries<br />

with positive Spearman rank correlation coefficients in 2016.<br />

To determine the mean distances between the national<br />

wind fleets, the wind fleet centers of the 18 countries first<br />

had to be established. Weighted position coordinates of<br />

about the five to fifteen largest wind farm clusters of the<br />

relevant country in 2016 formed the basis for this [22].<br />

153 mean distances for the individual national wind fleets<br />

in relation to each other subsequently had to be established.<br />

Using Google Maps, the distances between the centers of<br />

all national wind fleets in relation to each other could be<br />

determined, the result of which is shown in Figure 9.<br />

Belgium and the Netherlands, with a mean distance of<br />

around 200 km between their wind fleet centers, reach the<br />

maximum correlation coefficient of 0.8.<br />

Six of Germany’s direct neighbours, namely the Netherlands,<br />

Denmark, the Czech Republic, Poland, Belgium and<br />

France, record correlation coefficients of 0.4 or more with<br />

mean distances of just under 400 to 900 km. Austria<br />

constitutes an exception, with a correlation coefficient of a<br />

mere 0.2 at a mean distance of just under 600 km. Possible<br />

reasons for the higher level of detachment compared with<br />

Germany’s other direct neighbours could be the mountain<br />

ranges of the Alps and the altitude of the Austrian wind fleet.<br />

Hourly values<br />

Dec<br />

Dec<br />

Dec<br />

Source: ENTSO-E<br />

Normalised power P/P N in %<br />

Normalised power P/P N in %<br />

Normalised power P/P N in %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Jan<br />

Jan<br />

Jan<br />

Portugal<br />

Finland<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Finland<br />

Spain<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Sweden<br />

Spain<br />

Feb Mrz Apr May Jun Jul Aug Sep Oct Nov<br />

Year 2016<br />

∆x ≈ 3,300 km<br />

r S ≈ −0.003<br />

∆x ≈ 3,100 km<br />

r S ≈ −0.077<br />

∆x ≈ 2,400 km<br />

r S ≈ −0.118<br />

| | Fig. 11.<br />

Normalised hourly power output time series of wind fleets of countries long<br />

distances apart with negative Spearman rank correlation coefficients in 2016.<br />

With all correlation coefficients over 0.4, the power outputs<br />

of the national wind fleets of individual neighbouring<br />

countries develop in a largely synchronised manner, and so<br />

smoothing effects are barely identifiable, or are limited at<br />

most, as illustrated in Figure 10 with examples of hourly<br />

power output in 2016 normalised to the nominal capacity<br />

of wind fleets of Belgium and the Netherlands, Germany<br />

and France, and Germany and Austria.<br />

The normalised aggregate power outputs of these<br />

countries, overlaid like two combs, give an idea of the gaps<br />

in output that could be closed if the wind fleets of these<br />

country pairs were to be coupled, and which peaks would<br />

increase further. The result is that gaps in output are barely<br />

filled, and the peaks increase further. The correlation of<br />

power outputs is clearly visible.<br />

It can therefore be concluded that neighbouring<br />

countries showing consistently positive correlation<br />

coefficients of 0.2 to 0.8, with centers of their national<br />

wind fleets at a distance of 200 to 900 km apart, can<br />

barely make any perceptible contribution to the aspired<br />

cross- border balancing of electricity generation from<br />

wind power.<br />

Hourly resolution<br />

Dec<br />

Dec<br />

Dec<br />

Source: ENTSO-E<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 87<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 88<br />

Analyses on the basis of wind speed measurement data<br />

at 27 locations in the Netherlands confirm correlation<br />

lengths of several hundred kilometres such as these [26].<br />

In France, the annual minimum output of around 2.7 % of<br />

the nominal capacity is strikingly high compared with all of<br />

Germany’s other neighbours. One reason for this could be the<br />

vast French coastline running in westerly ( Atlantic) and<br />

north- westerly (English Channel) direction. Spain and the<br />

United Kingdom likewise display annual minimum values<br />

which are consistently well above 1 % of the nominal capacity.<br />

One would intuitively expect that balancing of electricity<br />

generation from wind power would most likely be<br />

found in those country pairs which are furthest away from<br />

each other or which have the lowest possible correlation<br />

coefficients. However, negative correlation coefficients<br />

only occur at all with 12 of the 153 country pairs.<br />

The national wind fleets of Finland and Portugal are the<br />

furthest apart from each other, at a distance of 3,300 km.<br />

This results in a negative correlation coefficient of -0.003<br />

for these countries. Uncorrelated to slightly opposing<br />

power time series can be expected here. The wind fleet<br />

centers of Spain and Finland are second furthest from each<br />

other, at 3,100 km. These countries also display a negative<br />

correlation coefficient of -0.077. Spain and Sweden have<br />

the lowest correlation coefficient, at -0.118. Their wind<br />

fleet centers are around 2,400 km apart.<br />

Normalised hourly power output time series are again<br />

overlaid like two combs for these distant country pairs in<br />

Figure 11. Although the fraction of blue areas of the corresponding<br />

electricity generation from wind power shown<br />

in the background increases compared with posi tively correlated<br />

time series according to Figure 10, it is apparent<br />

that numerous gaps in output barely balance and many<br />

peaks still correlate with each other, even with uncorrelated<br />

(r S ≈ 0) to slightly negatively correlated (r S < 0) hourly<br />

resolutions of electricity generation from wind power.<br />

Thus a majority of temporal fluctuations in the generation<br />

of electricity from wind power remain, even with<br />

countries far apart from each other. Moreover, the use of<br />

the smoothing effects apparent to some extent requires<br />

electricity to be transmitted over long distances.<br />

Summary<br />

VGB PowerTech has carried out a plausibility check of<br />

electricity generation from wind power in Germany and 17<br />

neighbouring European countries and in the process explored<br />

questions as to whether adequate possibilities for mutual<br />

balancing exist within the interconnected European grid true<br />

to the motto “the wind is always blowing somewhere”.<br />

In the current energy policy environment which,<br />

against the backdrop of the international climate protection<br />

commitments facing Germany, seeks to abandon the<br />

power plant technology proven over decades and create<br />

extensive provision of electricity from renewable energies,<br />

photovoltaics and wind power remain the only scalable<br />

technologies capable of further development for the<br />

Energie wende in the short to medium term. However, they<br />

are always reliant on complementary technologies.<br />

Looking back at the past year in Germany, it can be<br />

concluded that additional operating experience confirms<br />

the statements made in the first part of the VGB Wind<br />

Study: from the perspective of security of supply, wind<br />

power, despite concerted efforts to expand since 2010, has<br />

for all practical purposes not replaced any conventional<br />

power plant capacity. Furthermore, offshore wind power<br />

at its current level of development is shown to be not<br />

capable of serving as a reliable source of baseload power<br />

and cannot replace conventional power plant capacity.<br />

Wind turbine locations spread throughout Germany are<br />

not a solution for a reliable and secure supply of electricity.<br />

Dispatchable complementary technologies are always<br />

necessary in conjunction with wind power.<br />

From a European perspective, it can be concluded on<br />

the basis of 18 countries observed here that although<br />

statistically significant smoothing effects are to be seen,<br />

these only help to a limited extent when it comes to security<br />

of supply: 4 to 5 % of the nominal capacity means with<br />

consideration of unavoidable grid losses that, even at a European<br />

level, dispatchable backup capacity of almost 100<br />

% of the nominal capacity of all European wind turbines<br />

has to be maintained, as long as this has not yet exceeded<br />

the annual peak load in Europe plus reserves.<br />

Acknowledgements<br />

The authors thank Professor Dr. Dr. h.c. mult. Friedrich<br />

Wagner from Max Planck Institute for Plasma Physics in<br />

Greifswald for his valuable suggestions and contributions<br />

to this publication.<br />

Literature<br />

[1] Linnemann, Th.; Vallana, G. S.: Wind energy in Germany and Europe: Status, potentials and<br />

challenges for baseload application, Part 1: Developments in Germany since 2010. VGB PowerTech 97<br />

(2017), No. 8, pp. 70 bis 79.<br />

[2] Linnemann, Th.; Vallana, G. S.: Wind energy in Germany and Europe: Status, potentials and<br />

challenges for baseload application, Part 1: Developments in Germany since 2010. <strong>atw</strong> 62 (2017),<br />

No. 11, pp. 678 to 688.<br />

[3] Weber, H.: Versorgungssicherheit und Systemstabilität beim Übergang zur regenerativen<br />

elektrischen Energieversorgung. VGB PowerTech 94 (2014), No. 8, pp. 26-31.<br />

[4] Bericht der deutschen Übertragungsnetzbetreiber zur Leistungsbilanz 2016 bis 2<strong>02</strong>0.<br />

Version 1.1 dated 30 January 2018. www.netztransparenz.de<br />

[5] BMWi-Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland von 1990 bis 2016.<br />

www.erneuerbare-energien.de<br />

[6] Arbeitsgemeinschaft Energiebilanzen (AGEB): Bruttostromerzeugung in Deutschland ab 1990<br />

nach Energieträgern. www.ag-energiebilanzen.de<br />

[7] BDEW: Stromerzeugung und -verbrauch 2017 in Deutschland. BDEW-Schnellstatistik dated<br />

14 February 2018. www.bdew.de<br />

[8] Bundesnetzagentur: Monitoringbericht 2017. www.bundesnetzagentur.de<br />

[9] Wagner, F.: Surplus from and storage of electricity generated by intermittent sources. European<br />

Physical Journal Plus 131 (2016): 445. https://epjplus.epj.org DOI 10.1140/epjp/i2016-16445-3<br />

[10] Wagner, F.: Überschussstrom und Stromspeicherung unter den Bedingungen intermittierender<br />

Produktion. Tagungsband zur Frühjahrssitzung des Arbeitskreises Energie der Deutschen<br />

Physikalischen Gesellschaft (DPG), Münster, 2017, pp. 54 to 74.<br />

www.dpg-physik.de/veroeffentlichung/ake-tagungsband/tagungsband-ake-2017.pdf<br />

[11] VDE-Infoblatt Störungsstatistik 2016. www.vde.com<br />

[12] Wagner, F.: Considerations for an EU-wide use of renewable energies for electricity generation.<br />

Eur. Phys. J. Plus 129 (2014): 219. https://epjplus.epj.org DOI 10.1140/epjp/i2014-14219-7<br />

[13] Rodriguez, R. A. et al.: Transmission needs across a fully renewable European power system.<br />

Renewable Energy, 63 (2014), pp. 467 to 476. DOI 10.1016/j.renene.2013.10.005<br />

[14] ENTSO-E Transparency Platform. https://transparency.entsoe.eu<br />

[15] Vaughan, A.: UK summer wind drought puts green revolution into reverse. Article dated<br />

27 August 2018. www.theguardian.com<br />

[16] BP Statistical Review of World Energy 2018 − data workbook: www.bp.com<br />

[17] 50 Hertz, www.50hertz.com<br />

[18] Amprion, www.amprion.net<br />

[19] Tennet TSO, www.tennet.eu<br />

[20] Transnet BW, www.transnetbw.de<br />

[21] EEX Transparency, www.eex-transparency.com<br />

[22] Online database on the global wind power market: www.thewindpower.net<br />

[23] Buttler, A.; Dinkel, F.; Franz, S.; Spliethoff, H.: Variability of wind and solar power. An assessment<br />

of the current situation in the European Union based on the year 2014. Energy 106 (2016), pp. 147 to<br />

161. DOI 10.1016/j.energy.2016.03.041<br />

[24] Grams, C. M. et al.: Balancing Europe’s wind-power output through spatial development informed<br />

by weather regimes. Nature Climate Change 7 (2017), pp. 557 to 562, DOI 10.1038/nclimate3338.<br />

[25] Becker, P.: Wetterbedingte Risiken der Stromproduktion aus erneuerbaren Energien durch<br />

kombinierten Einsatz von Windkraft und Photovoltaik reduzieren. Deutscher Wetterdienst (DWD),<br />

6 March 2018, Berlin. www.dwd.de<br />

[26] Baïle, R.; Muzy, J.-F.: Spatial Intermittency of Surface LayerWind Fluctuations at Mesoscale Range.<br />

Physical Review Letters 105 (2010), pp. 254501-1 to 254501-4. DOI 10.1103/PhysRevLett.105.254501<br />

Authors<br />

Dipl.-Ing. Thomas Linnemann<br />

Dipl.-Phys. Guido S. Vallana<br />

VGB PowerTech e.V.<br />

Deilbachtal 173<br />

45257 Essen<br />

Serial | Major Trends in Energy Policy and Nuclear Power<br />

Wind Energy in Germany and Europe ı Thomas Linnemann and Guido S. Vallana


Lösungen<br />

für die Zukunft<br />

Als Unternehmen von Bouygues Construction sind wir ein vielseitiger Partner für<br />

Industrie und Energiewirtschaft. In ganz Europa entwickeln und bauen wir in der<br />

Kraftanlagen Gruppe modernste Anlagentechnik. Wir bieten individuelle, zukunftsfähige<br />

Lösungen an und bedienen die gesamte Wertschöpfungskette.<br />

Kraftanlagen Heidelberg bietet Dienstleistungen über den ganzen Lebenszyklus<br />

kerntechnischer Anlagen. Dazu zählen der Nachbetrieb und Rückbau kerntechnischer<br />

Anlagen sowie die Planung und Lieferung von Anlagen zur Konditionierung und Entsorgung<br />

von radioaktiven Abfällen. www.kraftanlagen.com/loesungen/nukleartechnik<br />

Gestalten Sie mit uns die Zukunft und bewerben Sie sich online unter<br />

www.karriereportal-ka.gruppe.de<br />

Wir suchen aktuell:<br />

Leiter Strahlenschutz (m/w/d)<br />

Leiter Qualität, Arbeitssicherheit & Umweltschutz (m/w/d)<br />

Performance Manager Kraftwerksstandorte (m/w/d)<br />

Contract Manager (m/w/d)


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Das neue Strahlenschutzrecht (I): Genehmigungen<br />

90<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Christian Raetzke<br />

Wir haben ein neues Strahlenschutzrecht! Das Strahlenschutzgesetz (StrlSchG) ist, nachdem einzelne Elemente –<br />

Definitionen, Verordnungsermächtigungen, die Regelungen zum Notfallschutz – schon zum 1. Oktober 2017 wirksam<br />

wurden, am 31. Dezember 2018 nunmehr vollständig in Kraft getreten. Zum selben Datum ist auch die “Verordnung zur<br />

weiteren Modernisierung des Strahlenschutzrechts” wirksam geworden, die die Änderungen auf der Verordnungsebene<br />

– neue Strahlenschutzverordnung (StrlSchV), weitere Verordnungen, Aufhebung der Röntgenverordnung (RöV)<br />

etc. – umsetzt. Bereits im Januarheft der <strong>atw</strong> konnten Sie, liebe Leserinnen und Leser, dazu die Einführung von Dr.<br />

Goli-Schabnam Akbarian vom Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU) lesen. Mit<br />

diesem Beitrag soll eine kleine Reihe beginnen, die in lockerer Folge erscheinen und Schlaglichter auf einzelne Aspekte<br />

des neuen Rechts werfen wird.<br />

Bei jeder grundlegenden Änderung von Gesetzen und<br />

Verordnungen richtet sich der Blick des Anwenders<br />

notwendig auf Übergangsvorschriften, die die Überleitung<br />

auf das neue Recht gewährleisten sollen. Es handelt sich<br />

hier um §§ 196 bis 218 StrlSchG und §§ 185 bis 200<br />

StrlSchV n.F. (neuer Fassung).<br />

Eine besonders wichtige Frage dabei: was geschieht<br />

mit bestehenden Genehmigungen? Die bekannten<br />

Genehmigungsvorschriften der alten StrlSchV und der<br />

RöV sind in das StrlSchG übernommen und dort teils<br />

zusammengeführt worden. Grundlegende inhaltliche<br />

Änderungen haben sich dabei aber nicht ergeben. So ist es<br />

nur konsequent, dass das Gesetz im Grundsatz die Fortgeltung<br />

der bestehenden Genehmigungen anordnet. Man<br />

muss als Genehmigungsinhaber also nicht etwa einen<br />

neuen Antrag stellen.<br />

Um ein Beispiel zu bringen: Genehmigungen für<br />

den Umgang mit sonstigen radioaktiven Stoffen (§ 7<br />

StrlSchV a.F.) gelten samt aller Nebenbestimmungen als<br />

Genehmigungen nach der hierfür nunmehr einschlägigen<br />

neuen Regelung in § 12 Abs. 1 Nr. 3 StrlSchG fort (siehe<br />

§ 197 Abs. 2 S. 1 StrlSchG); hat sich am 31.12.2018 eine<br />

Genehmigung nach §§ 6, 7 oder 9 AtG auf den Umgang mit<br />

radioaktiven Stoffen gem. § 7 StrlSchV a.F. erstreckt, so<br />

gilt diese Erstreckung als Erstreckung auf einen Umgang<br />

nach § 12 Abs. 1 Nr. 3 StrlSchG fort (§ 197 Abs. 3 StrlSchG).<br />

Eine Anpassung des Genehmigungsbescheides an die neue<br />

Rechtsgrundlage ist rechtlich nicht erforderlich, da das<br />

Gesetz dies bereits für uns macht. Dass im schriftlichen<br />

Bescheid noch die alten “Hausnummern” stehen, ist<br />

unschädlich. Sicherlich macht es aber Sinn, bei der<br />

nächsten Gelegenheit (z. B. Änderung/Verlängerung der<br />

Genehmigung) die neuen Bezüge aufzunehmen.<br />

Zu beachten sind allerdings gewisse Spezialfälle,<br />

in denen das StrlSchG dann doch einzelne neue<br />

oder anspruchsvollere Genehmigungsvoraussetzungen<br />

einführt; hier können sich die Inhaber bestehender<br />

Genehmigungen nicht zurücklehnen, sondern sind<br />

gefordert, innerhalb bestimmter Fristen die entsprechenden<br />

Nachweise zu erbringen. Dies betrifft z. B.<br />

den Umgang mit hochradioaktiven Strahlenquellen. Hier<br />

muss bis 31.12.2<strong>02</strong>0 nachgewiesen sein, dass die neue<br />

Genehmigungsvoraussetzung des § 13 Abs. 4 StrlSchG –<br />

Vorhandensein eines Verfahrens für den Notfall und<br />

geeigneter Kommunikationsverbindungen – erfüllt ist,<br />

siehe § 197 Abs. 2 S. 2 Nr. 1 StrlSchG. Ein anderer solcher<br />

Umgangsfall betrifft die Anwendung am Menschen für<br />

eine Behandlung mit radioaktiven Stoffen und ionisierender<br />

Strahlung. Hier gibt es in § 14 StrlSchG teils<br />

zusätzliche Erfordernisse; § 197 Abs. 2 S. 2 Nr. 2 und 3<br />

StrlSchG setzt den Inhabern bestehender Genehmigungen<br />

eine Frist (Ende 2<strong>02</strong>0 bzw. Ende 2<strong>02</strong>2), entsprechende<br />

Nachweise zu führen.<br />

Eine relevante Änderung betrifft auch Genehmigungen<br />

nach § 16 StrlSchV a.F. für die Beförderung sonstiger<br />

radioaktiver Stoffe. Sie gelten als Genehmigungen nach<br />

§ 27 StrlSchG mit allen Nebenbestimmungen fort, wie<br />

§ 204 StrlSchG anordnet; das kann allerdings für maximal<br />

drei Jahre relevant werden, da dies die höchstmögliche<br />

Genehmigungsdauer ist (vgl. § 16 Abs. 1 S. 3 StrlSchG<br />

a.F.). Die Genehmigung nach § 27 StrlSchG hat die<br />

wichtige Eigenschaft, dass sie – im Gegensatz zur alten<br />

Rechtslage – nunmehr ihren Inhaber zum Strahlenschutzverantwortlichen<br />

macht (§ 69 Abs. 1 Nr. 1 StrlSchG) und<br />

in der Regel die Bestellung von Strahlenschutzbeauftragten<br />

erfordert. Deshalb enthält § 204 Abs. 1 S. 2<br />

StrlSchG eine Übergangsvorschrift, wonach die entsprechende<br />

Fachkunde der Strahlenschutzbeauftragten<br />

bis zum 31.12.2<strong>02</strong>1 nachgewiesen werden muss.<br />

Von Bedeutung ist auch das Schicksal der bestehenden<br />

Freigaberegelungen, die teils in eigenen Freigabebescheiden,<br />

teils in Genehmigungsbescheiden nach § 7<br />

Abs. 3 AtG (Stilllegungs- und Abbaugenehmigungen)<br />

niedergelegt sind. Die Werte für die uneingeschränkte<br />

Freigabe in Anlage III Tabelle 1 StrlSchV a.F. sind in der<br />

Neuregelung in Anlage 4 Tabelle 1 StrlSchV n.F. zum Teil<br />

verändert wurden (sie sind nunmehr identisch mit den<br />

ebenfalls angepassten spezifischen Freigrenzen). Was<br />

geschieht also mit bestehenden Freigaberegelungen? Die<br />

einschlägige Übergangsvorschrift – § 187 StrlSchV n.F. –<br />

enthält dazu zwei Grundaussagen. Die erste: bestehende<br />

Freigabebescheide und Freigaberegelungen in Genehmigungsbescheiden<br />

gelten fort. Die zweite: sie gelten fort mit<br />

der “Maßgabe”, dass die neuen Werte ab dem 1. Januar<br />

2<strong>02</strong>1 einzuhalten sind. Damit sind die Beteiligten aufgefordert,<br />

bestehende Bescheide in den nächsten zwei<br />

Jahren entsprechend anzupassen. Unterbleibt dies aus<br />

irgend einem Grund, sind ab 2<strong>02</strong>1 trotzdem die neuen<br />

Werte zugrunde zu legen.<br />

Fazit: Der Gesetzgeber hat es so eingerichtet, dass<br />

bestehende Bescheide ins neue Recht übernommen<br />

werden. Nur in bestimmten Fällen muss man innerhalb<br />

einer Frist tätig werden, um Nachweise zu geänderten<br />

Genehmigungsvoraussetzungen zu erbringen. Man wird<br />

sehen, ob das in Einzelfällen in der Praxis zu Härten führt<br />

und ob die Übergangsvorschriften wirklich alle denkbaren<br />

Fälle erfassen. Im Allgemeinen aber müssten die Inhaber<br />

von Genehmigungen (und Freigabebescheiden) mit den<br />

neuen Regelungen leben können.<br />

Autor<br />

Rechtsanwalt Dr. Christian Raetzke<br />

CONLAR Consulting on Nuclear Law and Regulation<br />

Beethovenstr. 19<br />

04107 Leipzig, Deutschland<br />

Spotlight on Nuclear Law<br />

The New Radiation Protection Law (I): Official Approvals ı Christian Raetzke


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Piping Stress Analysis of Safety Injection<br />

System of Typical PWR Power Reactor<br />

Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi,<br />

Waseem Siddique and Rustam Khan<br />

This paper covers the piping stress analysis of safety injection system (SIS) of Chashma Nuclear Power Generating<br />

Station, Unit-1of electric power 325 MWe. The analysis of the safety injection system on Peps, an integrated package<br />

which contains PIPESTRESS (the program for analysis of piping) and EDITPIPE (for preprocessing and post processing),<br />

has been performed by dividing it into three lines. These lines have been modeled on Peps computer code using proper<br />

input commands. To fulfill the nuclear regulatory requirements, the analysis of safety class 1 and 2 piping has been<br />

performed using the software. Peps software has provision of stress analysis for various working conditions by defining<br />

different load cases and combination cases as described. Peps results include the determination of loads, moments and<br />

stress ratios at specific sections of the piping structure. This analysis confirms that piping system stresses are within<br />

those limits specified by the ASME code.<br />

1 Introduction<br />

Piping in nuclear industry is different<br />

than that of the conventional power<br />

plant. In a nuclear power plant,<br />

primary side involves the piping for<br />

which the design criteria must be very<br />

stringent and inflexible. It is because<br />

of the reason that primary side contains<br />

radiation source which should be<br />

contained within the prescribed<br />

barriers at any cost. The scope of the<br />

nuclear industry is increasing day by<br />

day. The power production from<br />

nuclear energy is very common these<br />

days. Pakistan is also producing electricity<br />

from nuclear energy as shown in<br />

Figure 1 [1]. In 2014 according to the<br />

report of Nuclear Energy Institute<br />

(NEI), 11 percent of the total electricity<br />

production was through nuclear<br />

energy. The current status according<br />

to International Atomic Energy Agency<br />

(IAEA) is that 454 nuclear reactors<br />

are operating in the world for power<br />

production. These are producing<br />

401.743 GWe and many new countries<br />

are also entering in this industry [1].<br />

Pipes are subjected to any type of<br />

loading which may include operating<br />

weights i.e. pressures, temperatures<br />

or any seismic loads i.e. earthquake.<br />

Moreover, these weights also vary<br />

during different stages of the plant.<br />

For example, startup and shutdown<br />

| | Fig. 1.<br />

Chashma nuclear power plant (Unit 1 and 2).<br />

stages of a plant are different than<br />

normal operations. Similarly, emergency<br />

conditions are very different<br />

from normal conditions. All these<br />

variations make a designer very careful<br />

about the criticality of the piping<br />

layout. Some portions of the power<br />

plant are safety class while others are<br />

non-safety related. These safety class<br />

systems are further categorized into<br />

safety class 1, 2 & 3 on the basis of<br />

their severity. The system involved in<br />

the conventional island are designed<br />

and analyzed differently as compared<br />

to those involved in the nuclear island.<br />

The material requirements and<br />

analysis criterion at interfaces (at<br />

which two classes of the piping meet)<br />

are also different [2].<br />

2 Background<br />

Rui Liu et.al. [3] did piping stress<br />

analysis of nuclear piping for safety<br />

class 2 and 3 on peps. It includes the<br />

introduction to Peps software and the<br />

limiting criterion for the piping stress.<br />

The piping is safe if the stress ratio is<br />

less than unity. Lijing Wen et. al. [4]<br />

studied the stress analysis of reactor<br />

coolant pump nozzle on ANSYS software.<br />

The results show that the design<br />

is within specified limits and satisfy<br />

the intensity requirements for the<br />

system. Pradeep Kumar Singh et. al.<br />

[5] studied the stress analysis of spur<br />

gear on ANSYS software. This paper<br />

shows the procedure of static analysis,<br />

boundary condition and higher<br />

module gears are preferred if large<br />

power is to be transferred. Q Mao<br />

et.al. [6] studied the layout of Qinshan<br />

reactor and evaluated the pipe layout<br />

for pressurizer discharge system.<br />

Z. M. Zhang et.al. [7] studied and<br />

discussed the mechanical behavior of<br />

nuclear piping. They performed the<br />

analysis of safety class 1 piping on<br />

Marc software. J. L. Dong et. al. [8]<br />

performed the stress analysis of tubes<br />

of a 10 MW reactor. The reactor they<br />

considered for their analysis was a gas<br />

cooled reactor. S. T. Dai et. al. [9]<br />

studied and optimized the nozzle<br />

loads for China Advanced Research<br />

Reactor. Both static and dynamic<br />

cases were considered and supports<br />

were also analyzed in accordance with<br />

code requirements. YK Tang et. al.<br />

[10] studied the analysis of a piping<br />

system of z-shape along with its<br />

support failure on ABAQUS-EPGEN<br />

code. The good response after application<br />

of support and the dynamic<br />

behavior of piping under different<br />

loading combinations confirmed the<br />

reliability of the support. J Bock et.al.<br />

[11] studied the outcomes of omission<br />

of piping supports and showed that<br />

impact loadings must be taken into<br />

consideration and a stringent criterion<br />

must be adopted for them. B<br />

Praneeth et. al. [12] studied the<br />

analysis of pressure vessels using<br />

finite element method and proved<br />

that at very high pressure and temperature,<br />

multi-layered pressure vessels<br />

are better than single layer pressure<br />

vessels. The formulas used were found<br />

out to be very easy and simple in<br />

comparison with other techniques.<br />

Piping is the most important and<br />

busiest component in any industry<br />

and hence the piping stress analysis<br />

becomes vital. The piping stress<br />

analysis of safety injection system<br />

includes both safety class 1 and class<br />

2. The piping stress analysis of safety<br />

injection system has not been performed<br />

on Peps software to the<br />

knowledge of the authors. So performing<br />

stress analysis of this system<br />

is a critical and novel problem.<br />

91<br />

ENVIRONMENT AND SAFETY<br />

Environment and Safety<br />

Piping Stress Analysis of Safety Injection System of Typical PWR Power Reactor ı Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 92<br />

3 Safety Injection System<br />

The relevant system to be analyzed is<br />

Safety Injection System (SIS) of a<br />

nuclear power plant of 300 MWe<br />

power. It is a safety-related system so<br />

it has no normal operation function.<br />

Safety injection system is designed to<br />

control the temperature of the core as<br />

well hence providing margin in shutdown.<br />

This can happen either in case<br />

of primary or secondary side breakage.<br />

Safety injection system should<br />

maintain the temperature of the clad<br />

| | Fig. 2.<br />

The schematic diagram of safety injection system.<br />

below 1200 °C and the maximum<br />

oxidation by the reaction of the fuel<br />

with the clad below than 16.5 % (of<br />

total thickness) in case of any of the<br />

accidents. The maximum hydrogen<br />

generated should also be maintained<br />

below one percent as described by the<br />

regulatory body. The deformation in<br />

geometry shape should also not<br />

exceed the prescribed limit [13].<br />

To fulfill regulatory requirements<br />

all the piping system must be analyzed<br />

according to the ASME code requirements<br />

in our case [13].These are as<br />

follows:<br />

pp<br />

NCA provides general requirements<br />

pp<br />

NB provides requirements for<br />

safety class 1 equipment<br />

pp<br />

NC provides requirements for<br />

safety class 2 equipment<br />

pp<br />

ND provides requirements for<br />

safety class 3 equipment<br />

pp<br />

NE provides requirements for<br />

concrete related components<br />

pp<br />

NF provides requirements for<br />

supports<br />

pp<br />

NG provides requirements for<br />

support related structures<br />

The codes are to be satisfied in agreement<br />

with the relevant system. These<br />

include NCA, NB, NC, ND and NF<br />

subsections. According to Regulatory<br />

Guide-1.29, even in the case, there is<br />

an earthquake; the system should<br />

perform its function as it is a safety<br />

system. Moreover, Regulatory Guide-<br />

1.47 puts a very severe condition to<br />

ensure any mitigation actions taken in<br />

case of bypass of any protection<br />

system. There should be a constant<br />

monitoring in control room. The pipelines<br />

of SIS selected for safety analysis<br />

are high energy pipelines as working<br />

pressure is greater than 12 MPa and<br />

temperature is above 127 °C. The safe<br />

shutdown earthquake (SSE), operating<br />

basis earthquake (OBE) and these<br />

high operating conditions make these<br />

lines critical from the safety viewpoint.<br />

Therefore, with the aim of satisfying<br />

the ASME codes requirements, load<br />

cases and their combinations have<br />

been developed including OBE and<br />

SSE conditions. The primary stress<br />

intensity must meet the requirement<br />

as given by the Equation 1 [13]:<br />

<br />

(1)<br />

Where,<br />

pp<br />

P is Pressure (design)<br />

pp<br />

B 1 & B 2 are Indices of primary<br />

stresses<br />

pp<br />

I is the Moment of inertia<br />

pp<br />

D o is Pipe outer diameter<br />

pp<br />

t is Wall thickness (nominal)<br />

pp<br />

M i is the moment (due to design<br />

loads)<br />

pp<br />

S m is Stress intensity (allowable)<br />

pp<br />

K is multiplication factor =1.5<br />

Similarly, the primary plus secondary<br />

stress limits must not exceed the<br />

Case<br />

Number<br />

Title<br />

of the Case<br />

100 Operating Weight<br />

101 Thermal Expansion<br />

300 Earthquake<br />

allowable limited as recommended in<br />

ASME code.<br />

4 Analysis on Peps<br />

Peps is an integrated package which<br />

contains PIPESTRESS and EDITPIPE.<br />

PIPESTRESS is the program running<br />

at background for analysis of piping.<br />

The EDITPIPE in Peps is responsible<br />

for preprocessing and post processing.<br />

EDITPIPE runs PIPESTRESS and<br />

related programs and follow progress<br />

of analysis. Piping structures can be<br />

modeled using its pre-processor and<br />

results can be generated using its post<br />

processor. Methodology to work on<br />

Peps includes:<br />

pp<br />

Cases Definition<br />

pp<br />

Preparation of Input File<br />

pp<br />

Modeling on Peps<br />

pp<br />

Running the Simulations<br />

pp<br />

Generating the Stresses Reports<br />

Case definition includes both load<br />

cases and combination cases. The<br />

preparation of an input file involves<br />

different cards. Some of the cards and<br />

their respective commands are:<br />

pp<br />

Identification Card (IDEN)<br />

pp<br />

Title Card (TITL)<br />

pp<br />

Frequency (FREQ)<br />

pp<br />

Load Case(LCAS)<br />

pp<br />

Combination Case (CCAS)<br />

pp<br />

Fatigue Analysis Card (FATG)<br />

pp<br />

Load Set Card (LSET)<br />

Modeling on Peps includes various<br />

commands. Some of them are:<br />

pp<br />

Bend Radius (BRAD)<br />

pp<br />

Tangent or straight pipe (TANG)<br />

pp<br />

Cross section (CROS)<br />

pp<br />

Anchor (ANCH)<br />

After running the simulations successfully,<br />

Peps generates the stress<br />

reports. The safety injection system<br />

involves all the safety class components.<br />

Safety class one components are<br />

those between the check valve and the<br />

header to the reactor coolant system.<br />

It involves the most stringent criteria<br />

in its analysis. While the components<br />

like centrifugal pumps, supports,<br />

piping, accumulator, and refueling<br />

water storage tank are categorized as<br />

safety class two com ponents. Safety<br />

class three involves the injection lines<br />

of the pumps. The analysis of the<br />

safety injection system on Peps has<br />

been performed by dividing it into<br />

three lines as shown in Figure 2.<br />

| | Fig. 3.<br />

A three dimensional model of line#01 prepared on Peps.<br />

400<br />

401<br />

Operating Weight +<br />

Earthquake<br />

Operating Weight +<br />

Thermal Expansion<br />

| | Tab. 1.<br />

Load and combination cases<br />

for line#01 &<strong>02</strong>.<br />

4.1 From RWST to Suction<br />

of SI Pump<br />

The first line is from Refuelling Water<br />

Storage Tank (RWST) to suction of<br />

Safety Injection Pump. Five cases i.e.<br />

Operating Weight, Thermal Expansion,<br />

Earthquake RG 1.60, Operating<br />

Weight + Earthquake and Operating<br />

Environment and Safety<br />

Piping Stress Analysis of Safety Injection System of Typical PWR Power Reactor ı Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

| | Fig. 4.<br />

A three dimensional model of line#01 prepared on Peps.<br />

| | Fig. 5.<br />

A three dimensional model of line#01 prepared on Peps.<br />

ENVIRONMENT AND SAFETY 93<br />

| | Fig. 6.<br />

Line #01 Maximum displacement for load case 100.<br />

| | Fig. 7.<br />

Line #01 Maximum resultant force for load case 100.<br />

Weight + Thermal Expansion have<br />

been defined in Table 1. The input<br />

file was prepared on Peps and a<br />

three dimensional model of piping<br />

structure done on Peps is shown in<br />

Figure 3.<br />

4.2 From Discharge of SI Pump<br />

to the Penetration<br />

The second line is from discharge of<br />

Safety Injection Pump to the penetration.<br />

Again five cases i.e. Operating<br />

Weight, Thermal Expansion, Earthquake,<br />

Operating Weight + Earthquake<br />

and Operating Weight + Thermal Expansion<br />

have been defined as shown<br />

previously in Table 1. The input file<br />

was prepared on Peps and a three<br />

dimensional model of piping structure<br />

done on Peps is shown in Figure 4.<br />

4.3 From Penetration<br />

to RCS Header<br />

The third line is from penetration to<br />

reactor coolant system header. It<br />

requires safety class one analysis for<br />

which different cards in Peps have<br />

been used e.g. load set written as<br />

LSET and fatigue preparation card<br />

written as FATG.<br />

Here we need to perform its fatigue<br />

analysis. Again five cases i.e. Operating<br />

Weight, Thermal Expansion,<br />

Earthquake RG 1.60, Operating<br />

Weight + Earthquake and Operating<br />

Weight + Thermal Expansion have<br />

been defined as shown previously in<br />

Table 1. The input file was prepared<br />

on Peps and a three dimensional<br />

model of piping structure done on<br />

Peps is shown in Figure 5.<br />

5 Results and Discussion<br />

This chapter includes both results of<br />

Peps software. The results obtained<br />

from Peps include displacements,<br />

resultant force, resultant moment and<br />

stresses at each section of the piping<br />

structure. The analysis of the safety<br />

injection system on Peps has been<br />

performed by dividing it into following<br />

three lines:<br />

5.1 From RWST to Suction<br />

of SI Pump<br />

All loading cases have been tabulated<br />

separately along with their highest<br />

stress ratios and the locations of<br />

those points. Here only first five points<br />

have been tabulated. Figure 6 and<br />

Figure 7 show the maximum force<br />

and maximum stresses on line#01<br />

Load<br />

Case<br />

Title<br />

Max. Stress<br />

Ratio<br />

Location<br />

Point<br />

Load<br />

Case<br />

Title<br />

Max. Stress<br />

Ratio<br />

Location<br />

Point<br />

100 Operating Weight 0.928 47<br />

101 Thermal Expansion 0.898 50a<br />

300 Earthquake RG 1.60 0.198 27<br />

400<br />

Operating +<br />

Earthquake<br />

| | Tab. 2.<br />

Summary of the Results for Line#01.<br />

0.331 47<br />

401 Operating + Thermal 0.936 50a<br />

100 Operating Weight 0.473 200<br />

101 Thermal Expansion 0.378 42<br />

300 Earthquake RG 1.60 0.824 42S<br />

400<br />

401<br />

Operating Weight +<br />

Earthquake<br />

Operating Weight +<br />

Thermal<br />

| | Tab. 3.<br />

Summary of the Results for Line#<strong>02</strong>.<br />

0.853 42S<br />

0.5<strong>02</strong> 42<br />

Environment and Safety<br />

Piping Stress Analysis of Safety Injection System of Typical PWR Power Reactor ı Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 94<br />

| | Fig. 8.<br />

Line #01 Maximum resultant moment for load case 100.<br />

| | Fig. 9.<br />

Line #01 Maximum stress for load case 100.<br />

Load Case Title Max. Stress Ratio Location Point<br />

100 Operating Weight 0.982 0<br />

101 Thermal Expansion 0.031 5<br />

300 Earthquake RG 1.60 0.094 0<br />

400 Operating Weight + Earthquake 0.363 0<br />

401 Operating Weight + Thermal 0.605 0<br />

| | Tab. 4.<br />

Summary of the Results for Line#03.<br />

piping respectively. Finally, a table<br />

is also included which summarizes<br />

the results for complete line. The<br />

highest stress points for load case-<br />

100 have been shown in Table 2.<br />

5.2 From Discharge of SI Pump<br />

to the Penetration<br />

Unlike line #01, here all loading cases<br />

have not been tabulated separately.<br />

Only a table is included which<br />

summarizes the results for the<br />

complete line. Table 3 includes the<br />

maximum stress ratio for each case<br />

and its point of location.<br />

5.3 From Penetration to RCS<br />

Header<br />

Like line#<strong>02</strong>, only a table is included<br />

which summarizes the results for the<br />

complete line. Table 4 includes the<br />

maximum stress ratio for each case<br />

and its point of location.<br />

6 Conclusions<br />

The analysis of the safety injection<br />

system on Peps, stress analysis tool,<br />

has been performed by dividing it into<br />

three lines. The first line is from<br />

refueling water storage tank (RWST)<br />

to the suction of safety injection (SI)<br />

pump. The second line is from discharge<br />

of SI pump to the penetration<br />

while the third line starts from the<br />

penetration and ends at reactor coolant<br />

system (RCS) header. The analysis<br />

of all these lines has been performed<br />

using the software. The series of steps<br />

followed while working on Peps<br />

included cases definition (both load<br />

cases and combination cases), preparation<br />

of input file, modeling on<br />

Peps, running the simulations and<br />

generating the stress reports. The<br />

preparation of an input file consists of<br />

different cards.<br />

The analysis of a line consisted of<br />

different load and combination cases.<br />

Each case was analyzed and a stress<br />

report was generated. The stress<br />

report included the determination of<br />

displacements, loads, moments and<br />

stress ratios. All the values of stress<br />

ratio were found out to be very less<br />

than unity. This analysis confirmed<br />

that piping system stresses were<br />

within the limits specified by the<br />

ASME code.<br />

Acknowledgement<br />

Authors are grateful to Mr. Rizwan<br />

Mahmood, Mr. Amjad Ali Amjad and<br />

administration of Advanced Computational<br />

Reactor Engineering Lab for<br />

their kind support.<br />

References<br />

[1] J. R. Lamarsh, Introduction to Nuclear Engineering, 3 rd ed., 1975.<br />

[2] F. P. Beer, R. Johnston, J. Dewolf, and D. Mazurek, Mechanics of<br />

Materials, McGraw-Hill, 2 nd ed.: Boston, 2006.<br />

[3] R. Liu, Z. Fu, and T. Li, “Application of Peps in Stress Analysis of<br />

Nuclear Piping,” Journal of Applied Mathe matics and Physics, vol. 1,<br />

p. 57, 2013.<br />

[4] L. Wen, C. Guo, T. Li, and C. Zhang, “Stress Analysis for Reactor<br />

Coolant Pump Nozzle of Nuclear Reactor Pressure Vessel,” Journal<br />

of Applied Mathematics and Physics, vol. 1, p. 62, 2013.<br />

[5] J. Venkatesh and M. P. Murthy, “Design and Structural Analysis<br />

of High Speed Helical Gear Using Ansys,” International Journal of<br />

Engineering Research and Applications, vol. 2, pp. 215-232, 2014.<br />

[6] Q. Mao, W. Wang, and Y. Zhang, “The Stress Analysis Evaluation<br />

and Pipe Support Layout for Pressurizer Discharge System,”<br />

Nuclear Power Engineering, vol. 21, pp. 117-120, 2000.<br />

[7] Z. Zhang, M. Wang, and S. He, “ Mechanical Analysis of the<br />

Nuclear Class 1 Piping in HTR-10,” Journal of Tsinghua University.<br />

Science and Technology, vol. 40, pp. 14-17, 2000.<br />

[8] J. Dong, X. Zhang, D. Yin, and J. Fu, “Stress Analysis of HTR-10<br />

Steam Generator Heat Exchanging Tubes,” Nuclear Power<br />

Engineering, vol. 22, pp. 433-437, 2001.<br />

[9] S. Dai, J. Wang, and Z. Han, “Nozzle Loads Optimization Analysis<br />

of Outflow Primary Loop Piping in China Advanced Research<br />

Reactor,” Atomic Energy Science and Tech nology, vol. 42, pp. 490-<br />

494, 2008.<br />

[10] Y. K. Tang, H. T. Tang, and M. Gonin, “Test Correlation and<br />

Analytical Investigation of Piping Dynamic Response Including<br />

Support Failure,” Nuclear Power Engineering, 1985.<br />

[11] J. Bock and F. Weber, “Comparison of Stresses and Strains<br />

Determined by Linear-Elastic and Elasto-Piastic Analysis for Piping<br />

Systems Subjected to Dynamic Loading,” Nuclear Power Engineering,<br />

1985.<br />

[12] B. Praneeth and T. Rao, “Finite Element Analysis of Pressure<br />

Vessel and Piping Design,” International Journal of Engineering<br />

Trends and Technology- Volume 3 Issue 5-2012, 2012.<br />

[13] A. Boiler and P. V. Code, “Section II Part D,” Properties, The<br />

American Society of Mechanical Engineers, New York, 2001.<br />

Authors<br />

Mazhar Iqbal<br />

Agha Nadeem<br />

Tariq Najam<br />

Kamran Rasheed Qureshi<br />

Waseem Siddique<br />

Rustam Khan<br />

Pakistan Institute of Engineering<br />

and Applied Sciences<br />

Nilore, Islamabad, Pakistan<br />

Environment and Safety<br />

Piping Stress Analysis of Safety Injection System of Typical PWR Power Reactor ı Mazhar Iqbal, Agha Nadeem, Tariq Najam, Kamran Rasheed Qureshi, Waseem Siddique and Rustam Khan


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Research for the Adequacy Analysis<br />

of Plant System Behaviors During<br />

Abnormal Conditions<br />

Yeong Jin Yu , Ho Cheul Shin and Jae Heung Lee<br />

Because there is no specific analytical tool for plant systems behavior in abnormal conditions, the behavior adequacy<br />

analysis of plant systems only relies on personal experiences and knowledges of the investigator. In order to clear these<br />

difficulties, a standardized behavior analysis method was established and specific analysis tool was developed by using<br />

sequence of event report and alarm list of plant. Two similar events that occurred in the plants with same reactor type<br />

were chosen to verify the established analysis method and the developed analysis tool.<br />

As a results of verification, it was confirmed<br />

that the behavior adequacy of<br />

plant systems as well as identify the<br />

systems with abnormal behaviors and<br />

gain insights for cause analysis. Also,<br />

the established analysis method and<br />

the developed analysis tool were useful<br />

for the behavior analysis of plant<br />

systems in abnormal conditions. In<br />

the future, standards for various plant<br />

abnormal events and additional verification<br />

of this method are needed to<br />

promptly and effectively utilize the<br />

proposed behavior analysis tool.<br />

1 Introduction<br />

A nuclear power plant is designed<br />

conservatively based on the safety<br />

analysis of design basis accidents<br />

(DBA), such as a loss of coolant accident<br />

(LOCA), main steam line break<br />

(MSLB), and steam generator tube<br />

rupture (SGTR), as well as multiple<br />

demonstration tests. Therefore, various<br />

abnormal events that are considered<br />

to be less serious or severe<br />

than DBAs are deemed to be within<br />

the design basis that is conservative in<br />

nature. Such a serious accident that is<br />

used as a basis for plant design is<br />

highly unlikely to take place during<br />

the plant operation; however, abnormal<br />

conditions, such as anticipated<br />

operational occurrences (AOO), are<br />

occasionally found during the plant<br />

operation. Nevertheless, when these<br />

events occur, there is no specific tools<br />

to analyze whether plant systems are<br />

behaving adequately as it should<br />

according to its design. As a result, it is<br />

not easy to determine whether the<br />

plant systems are behaving ade quately<br />

according to its intended design.<br />

Against the backdrop, this research<br />

aims to introduce a method to analyze<br />

the adequacy of system behaviors<br />

during abnormal situations.<br />

2 Development<br />

of methodology<br />

1) Need to classify the AOPlevel<br />

events and conduct<br />

system behavior analysis<br />

Table 1 shows conditions of nuclear<br />

power plant classified by international<br />

standard ANSI N 18.2 [1]. As for<br />

Korea, the nuclear safety laws and<br />

regulations specify the events and<br />

accidents that need to be reported to<br />

the relevant regulatory bodies, including<br />

the ones classified according<br />

to the aforementioned ANSI N 18.2.<br />

As such, the events and accidents that<br />

fall under the category are reported to<br />

the regulatory bodies, and the regulators<br />

are responsible for investigating<br />

the reported events and accidents.<br />

The initial stage of investigation is to<br />

find out whether the system behaviors<br />

were adequately performed or not<br />

according to its intended design.<br />

The behavior adequacy of systems<br />

determined by the safety analysis of<br />

DBAs assumes operator intervention<br />

and an automatic actuation of safety<br />

systems as designed to stabilize plant<br />

condition. During the actual plant<br />

abnormal situations, the systems do<br />

run automatically according to the<br />

design; however, they are also manually<br />

operated by operators according<br />

to the procedures written for the plant<br />

stabilization. Although adequacy<br />

analysis of system behaviors during<br />

abnormal conditions is more complex<br />

than DBA, the current analysis only<br />

relies on personal experiences and<br />

knowledges of the investigator as<br />

there is no specific analytical tools for<br />

such purpose. In order to address such<br />

difficulties, this research paper aims<br />

to introduce a standardized behavior<br />

analysis method for plant systems.<br />

2) Development of event<br />

analysis methodology<br />

A nuclear power plant has trip signals<br />

to protect its reactor and control signals<br />

to maintain the reactor stability.<br />

When various abnormal events, such<br />

as a reactor trip, occur, the systems are<br />

ENVIRONMENT AND SAFETY 95<br />

Condition I<br />

Normal Operation and<br />

Operational Transients<br />

Condition II<br />

Faults of Moderate Frequency<br />

Condition III<br />

Infrequent Faults<br />

Condition IV<br />

Limiting Faults<br />

• Steady-state and Shutdown Operations<br />

• Operation with Permissible Deviations<br />

• Operational Transients, etc.<br />

• Feedwater system malfunctions that result in a decrease in feedwater temperature<br />

• Excessive increase in secondary steam flow<br />

• Turbine trip, etc.<br />

• Complete loss of forced reactor coolant flow<br />

• Loss of coolant accidents resulting from a spectrum of postulated piping breaks<br />

within the reactor coolant pressure boundary<br />

• RCCA misalignment, etc.<br />

• Main steam line break<br />

• Main feedwater line break<br />

• Steam generator tube rupture<br />

• Loss of coolant accidents resulting from a spectrum of postulated piping breaks<br />

within the reactor coolant pressure boundary, etc.<br />

| | Tab. 1.<br />

Classification of NPP conditions according to ANSI N18.2.<br />

Environment and Safety<br />

Research for the Adequacy Analysis of Plant System Behaviors During Abnormal Conditions ı Yeong Jin Yu , Ho Cheul Shin and Jae Heung Lee


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 96<br />

started by the connected protection<br />

and control signals, and the operation<br />

history of these safety systems is<br />

recorded on the SOER/Alarm List.<br />

Thus, as a means to analyze system<br />

behaviors, this research focuses on the<br />

SOER/Alarm List as it contains information<br />

on actual abnormal events<br />

that took place in the plants.<br />

Basically, the introduced method<br />

determines the behavior adequacy of<br />

systems in the following manners: two<br />

comparable events are selected and<br />

the SOER/Alarm List of each event is<br />

collected. Then, one SOER/Alarm List<br />

is set as a standard point, and the<br />

other List is moved towards the<br />

standard point to check whether their<br />

alarm names are matching.<br />

The existing string-searching algorithms,<br />

including Sing-Pattern Algorithm,<br />

Native String Search, Knuth-<br />

Morris-Pratt Algorithm, calculates the<br />

percentage of matching words or<br />

sentences in the TEXT being analyzed<br />

as compared to a reference text.[2, 3]<br />

However, if SOER/Alarm lists are<br />

compared with each other using the<br />

existing string-searching algorithms,<br />

the result would simply be the mere<br />

comparison of words or sentences,<br />

rather than an insights into plant’s<br />

physical phenomena (for example,<br />

dead band of alarming actuation<br />

signal, differences caused by system<br />

scan times, etc.) and deeper understanding<br />

of the conditions (for<br />

example, dropping of rods in the<br />

sequence of number 1, 2 and 3, as<br />

compared to 2, 3, and 1). Drawing<br />

such a simple percentage does not<br />

help anyone to understand actual<br />

phenomena that took place in the<br />

plants. To address this situation, this<br />

research p aper intends to introduce<br />

an analysis method of comparing the<br />

SOER/Alarm lists to get the similarity<br />

analysis of system behaviors during<br />

the plant abnormal conditions.<br />

The stages of the SOER/Alarm list<br />

comparative analysis are as follows:<br />

pp<br />

Compare and analyze the number<br />

of matching alarm types between<br />

the lists;<br />

pp<br />

Analyze the weighted value to be<br />

applied on the similarity results;<br />

and<br />

pp<br />

Compensate considering the total<br />

number of alarms on the SOER/<br />

Alarm List.<br />

Considering the above conditions, a<br />

computing program has been developed<br />

in order to conduct the behavior<br />

similarity analysis on the abnormal<br />

plant conditions. When the SOER/<br />

Alarm Lists recorded during the<br />

abnormal conditions are registered into<br />

the program, it generates the<br />

following analysis based on Microsoft’s<br />

Excel as well as Visual-Basic;<br />

pp<br />

Removal of reset alarms on the<br />

SOER/Alarm List;<br />

pp<br />

Acquiring selective reset information<br />

on the SOER/Alarm List;<br />

pp<br />

Arranging alarm names by time on<br />

the SOER/Alarm List;<br />

pp<br />

Arranging systems by time on the<br />

SOER/Alarm List; and<br />

pp<br />

Data processing programming on<br />

the SOER/Alarm List.<br />

3) The result of case analysis<br />

to verify and utilize the<br />

computer program<br />

Two similar events were selected that<br />

occurred in the plants with same reactor<br />

type to apply the SOER/Alarm List<br />

methodology, which is featured in this<br />

research. One event involved a reactor<br />

trip caused by a single reactor coolant<br />

pump (RCP) shutting down, while the<br />

other involved a reactor trip by two<br />

RCPs stopping. Both the power plants<br />

had a 2-loop system and the RCPs<br />

stopped in a different loop in each<br />

case. The result generated by using<br />

the SOER/Alarm List methodology<br />

and tools to analyze system behaviors<br />

Order System Weighted Value Compensation Factor Result<br />

1 13.8kV Power System - - -<br />

2 Reactor Coolant System 0 % 0.5 0 %<br />

3 Reactor Trip Switch Gear System 100 % 1 100 %<br />

4 Control Element Drive Mechanism 100 % 1 100 %<br />

5 Main Turbine system 87.18 % 0.886 77.27 %<br />

6 Turbine Hydraulic Fluid 100 % 1 100 %<br />

7 Steam Bypass Control System 100 % 1 100 %<br />

8 Reactor Power Cutback system 100 % 1 100 %<br />

9 Main Power System 100 % 1 100 %<br />

10 Feed Water System 100 % 1 100 %<br />

11 Reactor Protection System 75 % 0.8 60 %<br />

12 Main Steam System 78.26 % 0.958 75 %<br />

| | Tab. 2.<br />

Analysis result on the system adequacy and similarity of two events.<br />

of two events is featured in following<br />

Table 2.<br />

The analysis on the behaviors and<br />

similarity of these two events concluded<br />

that their system behaviors<br />

during the transient status were<br />

approximately 82.93 % similar. Moreover,<br />

additional analysis on the<br />

systems with dissimilar behaviors<br />

revealed that there was one valve out<br />

of many in the main steam bypass<br />

system that was abnormal.<br />

Based on the result of behavior and<br />

similarity analysis of each system, the<br />

methodology and analysis tools were<br />

verified to be useful in analyzing<br />

behavior adequacy and similarity of<br />

plant systems. As the previously mentioned<br />

result indicates, the method of<br />

analyzing the system behaviors by<br />

comparing similar events not only<br />

helps in determining the behavior<br />

adequacy of systems according to its<br />

design, but also in identifying the<br />

system with abnormal behavior and<br />

conducting cause analysis so that it<br />

can be used for the plant maintenance<br />

activities.<br />

3 Conclusion<br />

The analysis result generated by using<br />

the suggested methodology in this<br />

research paper showed that these two<br />

events showed a high level of similarity<br />

in terms of their behaviors<br />

during abnormal conditions. Furthermore,<br />

the result found that system<br />

behaviors were adequate, while few<br />

systems did not behave as it is supposed<br />

to have according to its design.<br />

As such, by utilizing the method to<br />

analyze similarities of events that<br />

occurred during abnormal situations,<br />

the behavior adequacy of plant<br />

systems could be determined as well<br />

as identify the systems with abnormal<br />

behaviors and gain insights for cause<br />

analysis. The computer program<br />

developed as part of the research also<br />

proved to be useful for the behavior<br />

analysis of plant systems in abnormal<br />

conditions. Thus, the expectation of<br />

the safer operation of the plants would<br />

be possible when using the analysis<br />

methodology; it offers a prompt<br />

and standardized behavior adequacy<br />

analysis as well as a cause analysis<br />

of the systems identified to have<br />

abnormal behaviors.<br />

4 Further study<br />

In order to use the method suggested<br />

in this research as an analysis tool in a<br />

more effective and prompt way, it<br />

would be necessary to establish standards<br />

for various abnormal situations<br />

and further verify this method. After<br />

Environment and Safety<br />

Research for the Adequacy Analysis of Plant System Behaviors During Abnormal Conditions ı Yeong Jin Yu , Ho Cheul Shin and Jae Heung Lee


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

establishing the standards and conducting<br />

additional verification with<br />

other similar events, it would be<br />

necessary to create a foundation so<br />

that system behaviors during various<br />

plant abnormal events are promptly<br />

and effectively analyzed and determined,<br />

and the result can be used for<br />

the plant maintenance activities.<br />

References<br />

[1] American National Standard Revision and Addendum to<br />

Nuclear Safety Criteria for the Pressurized water Reactor Plants,<br />

ANSI N18.2, (1973).<br />

[2] Aoe, J-I.: Computer algorithms: string pattern matching<br />

strategies, IEEE Computer Society Press, (1994).<br />

[3] Knuth D.E., Morris(jr) J.J., Pratt V.R.: Fast pattern matching in<br />

strings, SLAM Journal on Computing 6(1) : 323-350, (1977).<br />

Authors<br />

Yeong Jin Yu<br />

Ho Cheul Shin<br />

Korea Institute of Nuclear Safety<br />

(KINS)<br />

62 Gwahak-ro, Yu-seong, Daejeon,<br />

Korea, 34142<br />

Jae Heung Lee, Ph.D<br />

Computer Engineering<br />

Hanbat National University<br />

Rep. of Korea<br />

Advertisement<br />

ENVIRONMENT AND SAFETY 97<br />

Ihre schriftliche Bewerbung<br />

richten Sie bitte bis zum<br />

20.03.<strong>2019</strong> an:<br />

Dekan der Fakultät für<br />

Georessourcen und<br />

Materialtechnik der<br />

RWTH Aachen, Univ.-Prof.<br />

Dr. Peter A. Kukla,<br />

52056 Aachen.<br />

Gerne können Sie Ihre Bewerbung<br />

auch per E-Mail an:<br />

dekanat@fb5.rwth-aachen.de<br />

senden. Bitte beachten Sie, dass<br />

Gefährdungen der Vertraulichkeit<br />

und der unbefugte Zugriff Dritter<br />

bei einer Kommunikation per unverschlüsselter<br />

E-Mail nicht ausgeschlossen<br />

werden können.<br />

Auf Wunsch kann eine Teilzeitbeschäftigung<br />

ermöglicht werden.<br />

Die RWTH Aachen University ist<br />

als familiengerechte Hochschule<br />

zertiiziert und verfügt über ein<br />

Dual Career Programm. Wir wollen<br />

an der RWTH Aachen University<br />

besonders die Karrieren von<br />

Frauen fördern und freuen uns<br />

daher über Bewerberinnen. Frauen<br />

werden bei gleicher Eignung, Befähigung<br />

und fachlicher Leistung<br />

bevorzugt berücksichtigt, sofern<br />

nicht in der Person eines Mitbewerbers<br />

liegende Gründe überwiegen.<br />

Bewerbungen geeigneter<br />

schwerbehinderter Menschen<br />

sind ausdrücklich erwünscht.<br />

W3 Universitätsprofessur<br />

Untertägige Raumplanung und<br />

Endlagerkonzepte<br />

Fakultät für Georessourcen und Materialtechnik<br />

Zum nächstmöglichen Zeitpunkt wird eine Persönlichkeit gesucht, die dieses Fach in<br />

Forschung und Lehre vertritt. Es sind Aufgaben in den genannten Themenbereichen<br />

zu erfüllen:<br />

- Endlagerkonzepte für verschiedene Wirtsgesteine<br />

- Langzeitsicherheitsanalysen, Langzeitsicherheitsnachweise inkl. Nachweiskonzepte<br />

- Freisetzungsverhalten, Stofftransport und Ausbreitung<br />

- Regulatorische Anforderungen für die Verbringung von Abfällen im geologischen<br />

Untergrund<br />

- Untertägige Raum- und Infrastrukturplanung sowie Modellierung der Nutzung<br />

untertägiger Räume<br />

- Monitoring von Endlagern und Geosystemen<br />

Voraussetzungen sind ein abgeschlossenes Universitätsstudium, Promotion und zusätzliche<br />

wissenschaftliche Leistungen, die durch eine Habilitation, im Rahmen einer<br />

Juniorprofessur, einer wissenschaftlichen Tätigkeit an einer Hochschule, Forschungs-<br />

einrichtung, in Wirtschaft, Verwaltung oder einem anderen gesellschaftlichen Bereich<br />

erbracht wurden. Des Weiteren werden didaktische Fähigkeiten erwartet. Den Bewerbungsunterlagen<br />

sollen Belege über Lehrerfolge beigefügt werden.<br />

Bitte füllen Sie zusätzlich den Bewerbungsfragebogen aus, die Datei nden Sie im<br />

Internet unter http://www.fb5.rwth-aachen.de/Berufung<br />

Die Fakultät sucht bevorzugt eine Pe<br />

Die Fakultät sucht bevorzugt eine Perönlichkeit mit einer Ausbildung in den Ingenieuroder<br />

Geowissenschaften in den Themenbereichen Bergbau, Rohstoffgewinnung<br />

oder Endlagerung mit nachgewiesenen, fundierten Kenntnissen und Erfahrungen im<br />

Themenfeld der Entsorgung radioaktiver Abfälle.<br />

Environment and Safety<br />

Research for the Adequacy Analysis of Plant System Behaviors During Abnormal Conditions ı Yeong Jin Yu , Ho Cheul Shin and Jae Heung Lee


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

98<br />

OPERATION AND NEW BUILD<br />

Design of Control System for On-line<br />

Ultrasonic Testing Device of Nuclear Power<br />

Hollow Flange Bolt Based on LabVIEW<br />

Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang<br />

Hollow flange bolt on-line ultrasonic testing device control system and measurement and control software are<br />

researched and designed. It detects the fatigue damage of the hollow flange bolt of the reactor pressure vessel of the<br />

nuclear power plant. The design, implementation and corresponding detection technology of the hardware and software<br />

of the ultrasonic testing device control system are introduced. The control system drives the mechanical part to<br />

detect by the five DC servo motors on the detection device. The detection process and data are displayed in real time<br />

through the RJ45 Ethernet interface on the LabVIEW detection software interface through the new detection technology.<br />

The research on the control system and the detection technology to realize the automation of the detection of the<br />

hollow flange bolt of the reactor pressure vessel of the nuclear power plant.<br />

1 Introduction<br />

The hollow flange bolt of the reactor<br />

pressure vessel of a nuclear power<br />

plant is a connection fastener between<br />

the reactor pump body and the pump<br />

shell (Figure 1) [1]. It is easy to form<br />

fatigue damage and is an important<br />

vulnerable component in the working<br />

environment of high temperature,<br />

high pressure, high radiation and<br />

alternating stress [2-3]. The ASME<br />

specification and the RCC-M specification<br />

require a full inspection of the<br />

reactor flanged hollow flange bolt to<br />

eliminate safety hazards and ensure<br />

safe and reliable operation of the<br />

nuclear power plant [4-5]. Ultrasonic<br />

non-destructive testing (NDT) is one<br />

of the most frequently used and fast<br />

developing detection technologies in<br />

this field [6], which has been widely<br />

used in almost all industrial detection<br />

| | Fig. 1.<br />

Hollow flange bolt diagram to be detected.<br />

| | Fig. 2.<br />

On-line ultrasonic testing device for nuclear flange bolt based on LabVIEW.<br />

fields, and has a very broad application<br />

prospect in nuclear power<br />

and other new technology industries<br />

[7-8]. At present, ultrasonic testing to<br />

detect the fatigue damage of bolt is a<br />

trend in the current era. M.R. Sun has<br />

independently developed a set of ultrasonic<br />

testing system for reactor<br />

main pressure bolt, which improves<br />

the detection accuracy and signal- tonoise<br />

ratio and solves the automatic<br />

supply of coupling agent, issues such<br />

as emissions and recycling [9].<br />

J. Wang improved the detection sensitivity<br />

of the screw thread tooth root<br />

and fatigue crack by using the small<br />

angle longitudinal wave oblique probe<br />

ultrasonic detection method, and<br />

effectively found the tiny fatigue crack<br />

in the screw thread tooth root and the<br />

internal fatigue crack [10].<br />

As the on-line ultrasonic testing of<br />

the hollow flange bolt in nuclear<br />

power is mostly used manually, the<br />

degree of automation is low, and the<br />

accuracy of the detection data is not<br />

high, the author based on the<br />

LabVIEW research and designs a set of<br />

control system for the on-line ultrasonic<br />

testing device for the nuclear<br />

hollow flange bolt of nuclear power.<br />

2 Overall scheme design of<br />

ultrasonic testing device<br />

The on-line ultrasonic testing device<br />

for nuclear power hollow flange bolt<br />

based on LabVIEW mainly includes<br />

control part, power supply part and<br />

mechanical detection part (Figure 2).<br />

The portable power box is connected<br />

by an aviation plug to provide power<br />

for the whole detection device, and<br />

the upper computer is connected to<br />

the water pump through the RS485<br />

serial port by the shielded twisted pair<br />

cable. The control part is the core of<br />

ultrasonic detection. The upper computer<br />

is connected through the RJ45<br />

Ethernet interface, and the ultrasonic<br />

detection is carried out by the aerial<br />

plug and five DC servo motors to drive<br />

the ultrasonic detection. The location<br />

data of the ultrasonic flaw detection<br />

and the defect data determined<br />

according to the echo signal are<br />

collected through the sensor. Realtime<br />

data will be transmitted to the<br />

host computer, the host computer<br />

data analysis to determine the<br />

damaged portion of the hollow flange<br />

bolt and the degree of damage.<br />

3 Mechanical structure of<br />

ultrasonic testing device<br />

The mechanical structure of the<br />

on-line ultrasonic testing device for<br />

hollow flange bolt mainly includes the<br />

ball screw, the servo motor assembly,<br />

the base and the supporting frame,<br />

the water receiving tray, the foursection<br />

track, the slides and the<br />

detecting platform (the outer frame<br />

assembly, the detecting trolley frame,<br />

the detecting rod rotating mechanism,<br />

the moving Platform.). The equipment<br />

can meet the requirements of<br />

ASME and RCC-M standards for ultrasonic<br />

testing of hollow flange bolt in<br />

nuclear power plants, and is suitable<br />

for ultrasonic testing of various hollow<br />

flange bolt in China. It has high safety<br />

control performance and automatic<br />

diagnosis of detection faults. And<br />

immediately alert to prompt, respond<br />

to the automatic detection requirements<br />

of the current time.<br />

The ball screw drives the rotating<br />

platform of the testing tube to realize<br />

the axial lifting motion, thus realizing<br />

the lifting motion of the ultrasonic<br />

testing tube and carrying out the<br />

ultrasonic testing. The servo motor<br />

component is composed of five DC<br />

servo motors, which are the detecting<br />

platform circumferential rotating<br />

motor, the detecting platform lifting<br />

Operation and New Build<br />

Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

| | Fig. 3.<br />

Mechanical structure diagram of on-line ultrasonic<br />

testing device for hollow flange bolt.<br />

motor, the detecting rod radial adjusting<br />

motor, the detecting rod lifting<br />

motor, and the detecting rod rotating<br />

motor. The servo motors drive the<br />

detection rod and the detection platform<br />

to move, providing the original<br />

power for the movement of the whole<br />

system. The base and frame components<br />

are composed of the base and<br />

supporting frame, which provide<br />

support for the whole mechanical<br />

device and the checked parts (hollow<br />

flange bolt); the four-section track is<br />

fast connected by the fast connection<br />

device and the positioning pin; it is<br />

“tightly held” on the stator water<br />

jacket by the flexible clamping mechanism;<br />

it can be quickly fixed by<br />

the sponge suction device and its<br />

accessory device. The detecting platform<br />

includes the outer frame components,<br />

the testing car frame, the<br />

rotating mechanism of the detecting<br />

rod and the moving platform, and the<br />

sliding seat includes the arc walking<br />

mechanism, the pressing wheel, the<br />

guide wheel and the eccentric wheel.<br />

The outside of the sliding seat is the<br />

guide wheel, the inner side is the<br />

eccentric wheel, and the middle is the<br />

pressure wheel. When the slider is<br />

installed, the position of the eccentric<br />

wheel makes the distance between the<br />

left and right sides the maximum, the<br />

sliding seat is loaded from the track<br />

side, and then the eccentric wheel is<br />

pressed on the orbit with the characteristics<br />

of the eccentric wheel. The<br />

mechanical structure of the ultrasonic<br />

testing device is shown in Figure 3.<br />

4 Control system of ultrasonic<br />

testing device<br />

The control system is the core of ultrasonic<br />

testing, including the upper<br />

computer and the lower computer<br />

(motion controller). The motion controller<br />

continuously receives the command<br />

sent by the host computer,<br />

drives the servo motor to perform<br />

mechanical detection in real time, and<br />

analyzes the ultrasonic flaw detection<br />

position data in real time according to<br />

the defect data determined by the<br />

echo signal and the detection process<br />

stage, and analyzes the data. Optimize<br />

the transfer to the remote management<br />

layer. When the detection<br />

process fails, the upper computer can<br />

timely diagnose and automatically<br />

give an alarm prompt to effectively<br />

ensure the safety of the ultrasonic<br />

detection device.<br />

4.1 Hardware design of<br />

control system for ultrasonic<br />

testing device<br />

4.1.1 Hardware selection of<br />

control system of ultrasonic<br />

testing device<br />

The control system of hollow flange<br />

bolt ultrasonic testing device mainly<br />

includes the control of testing platform,<br />

the motion control of testing rod<br />

and the control of ultrasonic testing<br />

water pallet. The driver receives the<br />

pulse signal from the motion controller<br />

to drive the servo motor. The<br />

servo motor converts the pulse signal<br />

into the angular displacement driving<br />

mechanism for testing. Select the<br />

appropriate motion controller and<br />

driver according to the servo motor<br />

type, parameters, power and other<br />

specifications. As the maxon DC motor<br />

is a high quality DC motor, the use of<br />

high-performance permanent magnets<br />

brings the advantages of compact<br />

structure, high performance and low<br />

inertia to the driver. And because of<br />

the small inertia, DC motor can<br />

achieve very high acceleration, within<br />

500 W of the high precision motor and<br />

drive system, maxon is in the leading<br />

position in the world. So select the<br />

maxon DC motor.<br />

The detecting platform circumferential<br />

rotating motor is divided into<br />

three stages: the start acceleration<br />

phase (duration 0.5 s), the constant<br />

speed phase (duration 3 s), and the<br />

braking phase (duration 0.5 s). The<br />

detecting platform moving speed (v)<br />

is 0.05 m/s, the detecting platform<br />

mass (m) is 30 kg, the gear indexing<br />

circle diameter (d) is 120 mm, the friction<br />

coefficient (f) is 0.05, and the<br />

gear ratio (R) is 12.<br />

The acceleration a:<br />

(1)<br />

External force of detecting platform<br />

F r :<br />

(2)<br />

Detection of gear meshing force F:<br />

(3)<br />

Load torque T L :<br />

(4)<br />

m 1 is the mass of the pinion, r is the<br />

radius of the pinion, because ½ m 1 r 2<br />

can be negligibly small, so the load<br />

torque can be expressed as:<br />

(5)<br />

Motor torque T M :<br />

(6)<br />

Load moment of inertia J L :<br />

(7)<br />

Conversion to the moment of inertia<br />

of the motor shaft J LM :<br />

(8)<br />

The required detecting rod rotating<br />

motor torque T M<br />

> 0.09N · m and<br />

J LM<br />

> 0.375 kg · cm 2 the moment of<br />

inertia .Considering the characteristics<br />

of the maxon motor, choose type<br />

of the detecting rod rotating motor is<br />

maxon RE50 200W 48V.<br />

The quality of the lifting detecting<br />

platform includes the detecting lever,<br />

two motor (the detecting platform<br />

lifting motor,the detecting rod lifting<br />

motor), belt wheel, lift floor, the total<br />

mass (M) is 10kg, the screw dia meter<br />

(D B ) is 25 mm, and the quality is<br />

4.242 kg. Screw lead (P B ) is 0.<strong>02</strong> m.<br />

The ratio of deceleration(R) is 4.3.<br />

The torque of detecting platform<br />

lifting motor can be detected:<br />

(9)<br />

Load moment of inertia J L :<br />

(10)<br />

Conversion to the moment of inertia<br />

of the motor shaft J LM :<br />

(11)<br />

The torque of the detecting platform<br />

lifting motor T M<br />

> 0.74N · m and<br />

J LM<br />

> 4.36 kg · cm 2 the moment of<br />

inertia.Considering the characteristics<br />

of the maxon motor, choose the<br />

detecting platform lifting motor is<br />

maxon RE50 200W 48V.<br />

OPERATION AND NEW BUILD 99<br />

Operation and New Build<br />

Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

OPERATION AND NEW BUILD 100<br />

Because of the small quality of the<br />

detecting rod, combined with the<br />

characteristics of maxon motor, the<br />

type of detecting rod lifting motor is<br />

maxon RE50 200W 48V.<br />

The load (M) of the detecting rod<br />

rotating motor is 0.3 kg, the diameter<br />

(d) of the pulley is 80 mm, the friction<br />

coefficient (μ) of the load and platform<br />

is 0.6, and the deceleration ratio<br />

(R) is 3.7.<br />

Torque motor torque T M :<br />

(12)<br />

Load moment of inertia J L :<br />

(13)<br />

Conversion to the moment of inertia<br />

of the motor shaft J LM :<br />

(14)<br />

The detecting rod rotating motor<br />

torque T M<br />

> 0.19N · m and<br />

J LM<br />

> 0.105 kg · cm 2 the moment of<br />

inertia . Considering the characteristics<br />

of maxon motor, choose the<br />

detecting rod rotating motor is maxon<br />

RE30 60W 48V.<br />

The detecting rod radial adjusting<br />

motor needs to radially displace the<br />

detecting rod with a small mass and<br />

some accessories by ±2 mm to ensure<br />

the alignment port is detected.<br />

Combined with the characteristics of<br />

the maxon motor, the type of the<br />

detecting rod radial adjusting motor is<br />

maxon RE30 60W 48V.<br />

According to the selected servo<br />

motor (maxon RE30 60W 48V, maxon<br />

RE50 200W 48V), the control system<br />

of the ultrasonic detecting device<br />

selects the GALIL DMC-2183 motion<br />

controller. AMP-20540 amplifier<br />

drives the detecting platform circumferential<br />

rotating motor, the detecting<br />

platform lifting motor, AMP-20440<br />

amplifier drives the detecting rod<br />

radial adjusting motor, the detecting<br />

rod lifting motor, the detecting rod<br />

rotating motor. The GALIL DMC-2183<br />

motion controller can be used to<br />

control 8 axes at most. It integrates<br />

motion control and servo amplification<br />

functions.<br />

4.1.2 The design of the hardware<br />

circuit of the control<br />

system of the ultrasonic<br />

testing device<br />

The hardware circuit design of the<br />

ultrasonic detection device control<br />

system (Figure 4) mainly includes the<br />

connection between the controller<br />

and the motor, and the connection between<br />

the controller and I/O. The<br />

GALIL DMC-2183 motion controller<br />

communicates with the host computer<br />

through the RJ45 Ethernet interface.<br />

The DC motor driver GALIL AMP-<br />

20540 and AMP-20440 receive the<br />

pulse signal from the GALIL DMC-<br />

2183 motion controller and drive the<br />

servo motor. The servo motor transforms<br />

the pulse signal into the angular<br />

displacement driving mechanism for<br />

ultrasonic detection, and the encoder<br />

feedback the pulse to the controller to<br />

form the closed loop control in time.<br />

The DC motor driver and the five DC<br />

servo motors are connected with a set<br />

of inductor modules to reduce the<br />

heat of the motor, and the plug is used<br />

as the medium of the cable in series.<br />

The GALIL DMC-2183 motion controller<br />

provides a universal I/O port to<br />

synchronize with external events, 16<br />

channels of digital input and 16<br />

channels of digital output. To prevent<br />

accidental damage caused by direct<br />

connection of the main power supply<br />

with the motion controller, the detection<br />

device adds a relay to the I/O port<br />

of the motion controller. The threeloop<br />

control is realized in the motion<br />

controller. At the same time, the<br />

anti-interference measures such as<br />

reliable grounding, shielding wire for<br />

motor wire and shielding metal shell<br />

for motor are ensured.<br />

4.2 Software design of control<br />

system for ultrasonic<br />

testing device<br />

According to the on-line ultrasonic<br />

testing device system of hollow flange<br />

bolt and the user’s convenience<br />

demand, the modular programming<br />

idea is adopted. In order to shorten<br />

the development time, LabVIEW software<br />

is used to write the program.<br />

LabVIEW is mainly used in different<br />

special toolkits and unified G language<br />

programming methods in data acquisition,<br />

instrument control and other<br />

different fields [11]. In the motion<br />

controller, the parameters such as<br />

positioning, setting speed, setting<br />

acceleration and so on are all pulses,<br />

but the actual motion parameters in<br />

the actual interface are the actual<br />

length, the angle, and so on, the unit<br />

is mm and degree. At the same time,<br />

the position information obtained by<br />

command query motion controller is<br />

pulse, and the position information<br />

such as mm and degree are displayed<br />

on the interface. Therefore, to design<br />

the conversion function, the actual<br />

length and angle in mm and degree<br />

will be converted into pulse, and the<br />

pulse will be converted into mm and<br />

degree. Taking the circumferential<br />

rotating motor of the platform as an<br />

example, the formula for converting<br />

the pulse number to the rotation angle<br />

is as follows:<br />

motor out displacement degree =<br />

motor in displacement pulse ·<br />

small pitch diameter · 360<br />

4 · reduction ratio · encoder<br />

resolution · large pitch diameter<br />

(15)<br />

Figure 5 is a program block diagram<br />

for turning the pulse number of the<br />

detecting platform circumferential<br />

rotating motor to the rotation angle.<br />

The reason that the conversion<br />

function is written in the software<br />

instead of the fixed pulse is that the<br />

| | Fig. 4.<br />

Block diagram of hardware circuit design for ultrasonic testing device<br />

control system.<br />

| | Fig. 5.<br />

Block diagram for turning the pulse number of the detecting platform circumferential rotating motor to<br />

the rotation angle.<br />

Operation and New Build<br />

Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

parameters in the conversion formula<br />

are related to the mechanical parameters,<br />

such as the reduction ratio, the<br />

lead of the screw, and so on. In order to<br />

adapt to the different kind of equipment,<br />

the software will open these<br />

parameters and can be set up according<br />

to different mechanical devices. The<br />

generality of such a device is that the<br />

conversion function calculates pulses<br />

based on the mechani cal parameter<br />

module. The user interface shows the<br />

detection data classification in the<br />

upper computer, set up the mechanical<br />

para meter module, the motion parameter<br />

module, automatically scan the<br />

presupposed parameter module, the<br />

manual scanning module, the servo<br />

motor position and torque display<br />

module, the servo motor switch<br />

module, the data acquisition and<br />

storage module. The LabVIEW controls<br />

the main interface as shown in<br />

Figure 6.<br />

The functions of the software<br />

modules are as follows:<br />

a. Mechanical parameter module. In<br />

order to adapt to the testing of<br />

similar equipment in different<br />

directions, the mechanical parameters<br />

such as the speed reduction<br />

ratio of the five servo motors, the<br />

number of encoder lines, the lead<br />

of the screw, and the diameter of<br />

the gear indexing circle can be<br />

customized respectively.<br />

b. Motion parameter module. The<br />

motion parameters such as acceleration,<br />

speed reduction, manual<br />

presupposition speed, automatic<br />

presupposition speed, back zero<br />

presupposition speed are customized<br />

to meet the detection device at<br />

the appropriate speed.<br />

c. Automatic scanning of presupposition<br />

parameters module. Automatic<br />

scanning is based on the<br />

motion parameters of the detecting<br />

rod lifting motor and the detecting<br />

rod rotating motor, and scanning<br />

section based on the input of the<br />

user. The detecting rod lifting<br />

motor will move between scan<br />

start and scan stop, and the speed<br />

is specified by speed. The motion<br />

range of the detecting rod rotating<br />

motor is between scan start and<br />

scan stop, and the rotation angle of<br />

each cycle is step, so the number of<br />

scavenging segments is (scan stopscan<br />

start)/step.<br />

d. Manual scanning module. Manual<br />

interface is mainly used for manual<br />

control of each axis, including<br />

continuous movement and point<br />

movement control. The continuous<br />

motion control is the input relative<br />

position and the speed of operation,<br />

then click the button, the<br />

motor will move to the relative<br />

position at the set speed, and then<br />

stop. The point control is to hold<br />

the corresponding key, the motor<br />

rotates according to its rotation<br />

direction, releases the key, and the<br />

motor stops.<br />

e. Servo motor position and torque<br />

display module. The operation<br />

phase of the detection is displayed<br />

in the main interface in the manner<br />

of the position and torque of the<br />

five servo motors.<br />

f. Servo motor switch module. When<br />

the signal light turns green, it indicates<br />

that the servo motor has<br />

started, is in the servo state, and<br />

starts to move under the control of<br />

the controller.<br />

g. Data acquisition and storage<br />

module. In accordance with the<br />

requirements of the detection, the<br />

progress of single bolt scanning<br />

and the overall detection progress<br />

are recorded in the upper computer<br />

with the state of the running<br />

bar. The root of the scavenging<br />

section is used to judge the<br />

damaged position of the bolt and<br />

record the analysis in time.<br />

5 Implementation of ultrasonic<br />

testing process<br />

The on-line ultrasonic testing method<br />

for hollow flange bolts introduced in<br />

this paper is a new type of testing<br />

method. The mechanical detecting<br />

device carries the ultrasonic probe to<br />

scan from the inner wall of the hollow<br />

flange bolt center hole by the thin<br />

water layer contact method, and<br />

realizes full-volume ultrasonic testing<br />

on the threaded area of the hollow<br />

flange bolt. After the control rod is<br />

aligned with the inner wall of the<br />

hollow flange bolt, the detection rod is<br />

driven by the detecting rod lifting<br />

motor to complete a rising scan, and<br />

the detecting rod is driven by the<br />

circumferential motor to rotate the<br />

detecting rod 5°, and the detecting rod<br />

lifting motor drives the detecting rod<br />

to complete the lowering. A downward<br />

scan, when reaching the bottom<br />

of the hollow flange bolt, the detection<br />

rod circumferential motor drive<br />

detection lever is rotated 5° again, and<br />

a scan cycle has been completed.<br />

Repeat several times until the end of<br />

the scan, a hollow flange bolt, and<br />

then return to the starting position to<br />

prepare to detect other hollow flange<br />

bolts. The automatic scanning program<br />

is written in the motion controller.<br />

The parameters are expressed<br />

| | Fig. 6.<br />

LabVIEW control the main interface diagram.<br />

| | Fig. 7.<br />

Flow chart of automatic scanning program.<br />

in variable form, and the upper<br />

computer passes the assignment. And<br />

call the program to achieve automatic<br />

scanning. The specific detection process<br />

is shown in Figure 7, and the<br />

variables and their meanings are<br />

shown in Table 1.<br />

OPERATION AND NEW BUILD 101<br />

Operation and New Build<br />

Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

OPERATION AND NEW BUILD 1<strong>02</strong><br />

Variable name<br />

m4step<br />

m4hfstep<br />

Meaning<br />

Motor4 step<br />

(An angle of rotation of a sweep cycle)<br />

m4step/2,<br />

Motor4 half scan cycle rotation angle<br />

m4start Start position of Motor4 =<br />

scan start + (Scavenging section-1) * step<br />

m3start<br />

m3end<br />

motor4<br />

motor3<br />

curseg<br />

totseg<br />

Start position of Motor3 (scan start)<br />

Stop position of Motor3 (scan stop)<br />

The detecting rotating motor<br />

The detector rod lifting motor<br />

Current scavenging section<br />

Total scavenging section number<br />

| | Tab. 1.<br />

The variable in the automatic scanning program.<br />

6 Conclusion<br />

Through testing, the control system of<br />

the nuclear hollow flange bolt on-line<br />

ultrasonic testing device based on<br />

LabVIEW can be automatically and<br />

reliably detected under the required<br />

requirements. The ultrasonic automatic<br />

testing device and technology of<br />

hollow flange bolt have solved the<br />

shortcomings of the pre service and<br />

automatic inspection of the hollow<br />

flange bolt of the nuclear power plant<br />

and the manual inspection, and the<br />

defects of the detection data are not<br />

high, the nuclear radiation, the leak<br />

detection and so on, and the automation<br />

of the ultrasonic inspection<br />

has been promoted, which conforms<br />

to the automation of the present day.<br />

Response. The research and development<br />

of this technology can be applied<br />

not only to nuclear power industry,<br />

but also to the detection of hollow<br />

flange bolt in other industries.<br />

Acknowledgment<br />

We are grateful to the laboratory<br />

equipment provided by the college of<br />

mechanical engineering, Shanghai<br />

University of Engineering Science.<br />

References<br />

1. Huang X.D., Huang H., Hong L., et al.: Development of long<br />

shank repair tool for defect of pressure vessel bolt hole in pressure<br />

vessel of nuclear power plant [J]. Nuclear Power Engineering,<br />

2013, 34(4):161-163.<br />

2. Kim Y.J., Madugula M.K.S.: Behavior of bolted circular flange<br />

connections subject to tensile loading [J]. International Journal of<br />

Steel Structures, 2010, 10(1):65-71.<br />

3. Lei Zhu: Analysis of Failure Cases of Bolted Flange Connections<br />

and Discussion on Relevant Progress[J].Pressure Vessel, 2012,<br />

29(2):42-47.<br />

4. Ong E.H., Fukuzawa K., Chang J.Y.: The 4th ASME-ISPS/JSME-IIP<br />

joint international conference on micromechatronics for information<br />

and precision equipment, Santa Clara, California, USA [J].<br />

Microsystem Technologies, 2013, 19(9-10):1267-1268.<br />

5. Faidy C.: Comparison and Harmonization of French RCCM and<br />

ASME CODE [C]. 18th international conference on nuclear<br />

engineering. 2010:425-431.<br />

6. Felice M V, Zheng F. Sizing of flaws using ultrasonic bulk wave<br />

testing: a review[J]. Ultrasonics, 2018, 88:26.<br />

7. Renke Jing, Jianzeng Li, Hai lin Zhou: Research Progress of<br />

Ultrasonic Nondestructive Testing Technology[J]. Foreign Electronic<br />

Measurement Technology, 2012, 31(7): 28-30.<br />

8. Dragunov Y.G., Strelkov B.P., Arefyev A.A., et al.: Nondestructive<br />

testing of equipment and pipelines in nuclear power<br />

plants with RBMK[J]. Atomic Energy, 2012, 113(1):57-63.<br />

9. Maorong Sun, Chengze Liu: Design and Implementation of<br />

Ultrasonic Inspection and Control System for Main Bolt of Reactor<br />

Pressure Vessel [J].Electronic Design Engineering, 2014 (12):<br />

89-91.<br />

10. Jun Wang, Jiakai Qian, Tianze Che: Ultrasonic inspection of<br />

internal cylinder bolt for high pressure cylinder of nuclear power<br />

station turbine [J]. NDT, 2013, 35 (5): 68-70.<br />

11. Guler H., Turkoglu I., Ata F.: Designing Intelligent Mechanical<br />

Ventilator and User Interface Using LabVIEW® [J]. Arabian Journal<br />

for Science & Engineering, 2014, 39(6):4805-4813.<br />

Authors<br />

Wenchao Lu<br />

Huibin Yang<br />

Juan Yan<br />

Chengbo Kang<br />

College of Mechanical and<br />

Automotive Engineering<br />

Shanghai University<br />

of Engineering Science<br />

Shanghai , China<br />

Imprint<br />

| | Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Guido Knott<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Ingo Neuhaus<br />

Dr. Joachim Ohnemus<br />

Prof. Dr. Winfried Petry<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Prof. Dr. Bruno Thomauske<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

Ernst Michael Züfle<br />

| | Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Martin Schneibel (Editor)<br />

INFORUM, Berlin, Germany<br />

Phone: +49 30 498555-43<br />

Fax: +49 30 498555-18<br />

E-Mail: martin.schneibel@nucmag.com<br />

| | Official Journal of<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| | General Manager<br />

Christian Wößner<br />

| | Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| | Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| | Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11, 53113 Bonn, Germany<br />

| | Price List for Advertisement<br />

Valid as of 1 January <strong>2019</strong><br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| | Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations, microfilming<br />

and the input and incorporation into electronic systems. The<br />

individual author is held responsible for the contents of the respective<br />

paper. Please address letters and manuscripts only to the Editorial Staff<br />

and not to individual persons of the association´s staff. We do not<br />

assume any responsibility for unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

Operation and New Build<br />

Design of Control System for On-line Ultrasonic Testing Device of Nuclear Power Hollow Flange Bolt Based on LabVIEW ı Wenchao Lu, Huibin Yang, Juan Yan and Chengbo Kang


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Simulation of KSMR Core Zero Power<br />

Conditions Using the Monte Carlo Code<br />

Serpent<br />

Yousef Alzaben, Victor H. Sanchez-Espinoza and Robert Stieglitz<br />

1 Introduction Karlsruhe Small Modular Reactor (KSMR) core has been developed at Karlsruhe Institute of<br />

Technology (KIT) based on the Korean System-Integrated Modular Advanced ReacTor (SMART) design [1]. A previous<br />

investigation [2] has been accomplished for a generic SMART core based on available public data. That study concluded<br />

the need for additional investigations. The KSMR core share many features of the SMART core, for example both have<br />

the same number of fuel assemblies (FAs) in the core; FAs are based on 17x17 fuel pin arrays PWR proven technology;<br />

the reactor core is loaded with low-enriched uranium fuel and cooled and moderated with light water. However, what<br />

differentiates them is that the KSMR core is operated without boron. To compensate for high excess reactivity at<br />

Beginning of Cycle (BOC), the KSMR core utilizes a number of burnable poison rods.<br />

In terms of safety, the KSMR core has a<br />

high negative Moderator Temperature<br />

Coefficient (MTC) which is a result of<br />

the absence of boron in the moderator.<br />

Hence, this feature is translated<br />

into an increased inherent core safety<br />

performance. Nevertheless, a high<br />

negative MTC could potentially make<br />

the core critical even with All-Rods-<br />

Inserted (ARI) in case of overcooling<br />

accidents such as main steam line<br />

break. Therefore, control rods should<br />

be designed properly to provide<br />

enough shutdown margin and eventually<br />

prevent recriticality in overcooling<br />

events.<br />

Currently, the KSMR is planned to<br />

have once-through fuel cycle as employed<br />

in mPower [3]. Conceptually,<br />

such a fuel cycle strategy has an<br />

advantage over multi- fuel cycle by<br />

reducing outages period due to refueling.<br />

On the other hand, single batch<br />

fuel loading does not effectively utilize<br />

fuel compared to multi-batches loading<br />

which can be noticed clearly by the<br />

linear reactivity model [4].<br />

The objective of this paper is to (a)<br />

generally address the challenges facing<br />

PWR- based SMRs core design;<br />

predict the: (b) reactivity change from<br />

hot to cold zero power; (c) cold shutdown<br />

margin; (d) fuel and moderator<br />

reactivity coefficient; and (e) 3D<br />

assembly- wise power distribution of<br />

the KSMR core by using the Monte<br />

Carlo tool Serpent.<br />

2 Used simulation tool<br />

Serpent [5] is a dedicated reactor<br />

physics code developed by VTT that<br />

performs stochastic modeling of particles<br />

using the Monte Carlo method. It<br />

uses continues energy rather than<br />

multi- group energy microscopic cross<br />

sections. In which the latter relay on<br />

an approximate self- shielding treatment<br />

in resonance regions. Unlike<br />

deterministic codes, Serpent has a<br />

flexible geometrical capability which<br />

allows high degree of accuracy to<br />

model complex geometries. For<br />

example, an explicit modeling of the<br />

structures surrounding the KSMR core<br />

(baffle, barrel, neutron pads, etc.) as<br />

well as axial structural details (spacer<br />

grids, end plugs, upper and lower<br />

nozzles, etc.) were modeled to account<br />

for their influence on core reactivity.<br />

Serpent has the capability to accurately<br />

represent S(α,β) thermal scattering<br />

data for 1H at any selected temperature<br />

through the use of linear interpolation<br />

between S(α,β) thermal scattering<br />

data [6]. Also, to treat cross section<br />

temperature-dependent data by<br />

using Doppler broadening preprocessor<br />

that is similar to the one used<br />

in NJOY [7]. Both features yielded<br />

a better estimation of feedback coefficients<br />

for the KSMR core. The Serpent<br />

version and nuclear data library used<br />

in the current work is 2.1.27 and<br />

ENDF/B-VII.0, respectively. In this<br />

work, Serpent source files have been<br />

modified to produce legacy Visualization<br />

Toolkit (VTK) [8] file for<br />

post-processing purposes.<br />

3 Core design and<br />

model description<br />

The design philosophy behind the<br />

KSMR core is to adopt many proven<br />

technology features from PWR technologies<br />

with an emphasis of not using<br />

soluble boron in the coolant. The<br />

advantage of having the boron-free<br />

operation is reflected in the elimination<br />

of the probability of boron dilution<br />

accidents. This issue is highly important<br />

for severe accidents especially if<br />

reflooding of the reactor core by seawater<br />

is considered. In such an event,<br />

core recriticality is mostly probable.<br />

The KSMR core differs from advanced<br />

PWRs (such as EPR, AP1000,<br />

etc.) in terms of core size and fraction<br />

of rodded FAs. The KSMR core has few<br />

FAs in the core (57 FAs) with approximately<br />

half of the active length (2 m)<br />

of PWRs. Due to that, an increased<br />

neutron leakage is expected. The<br />

fewer number of FAs in the core leads<br />

to fewer degrees of freedom compared<br />

to large reactors. These two aspects<br />

make the design of the KSMR a challenging<br />

process. The fraction of<br />

rodded FAs in the KSMR core is 72%<br />

whereas in PWRs is below 50% [9].<br />

The higher number of control rods in<br />

the core is due to the use of boron-free<br />

coolant. The Cold Zero Power (CZP)<br />

and Hot Zero Power (HZP) operating<br />

A<br />

| | Fig. 1.<br />

Serpent model of KSMR core.<br />

Control Rod<br />

Top Nozzle<br />

A<br />

Spacer Grids<br />

Core Barrel<br />

Bottom Nozzle<br />

Core Baffle<br />

Neutron Pad<br />

Burnable Poison<br />

Rod<br />

Guide Tube<br />

Spacer Grid<br />

Fuel Rod<br />

Reactor<br />

Pressure Vessel<br />

103<br />

RESEARCH AND INNOVATION<br />

Research and Innovation<br />

Simulation of KSMR Core Zero Power Conditions Using the Monte Carlo Code Serpent ı Yousef Alzaben, Victor H. Sanchez-Espinoza and Robert Stieglitz


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

RESEARCH AND INNOVATION 104<br />

conditions for the KSMR are defined<br />

as follows:<br />

pp<br />

Cold Zero Power (CZP): Refers to a<br />

pressure of 0.1 MPa with both fuel<br />

and coolant temperatures at 300 K.<br />

pp<br />

Hot Zero Power (HZP): Refers to a<br />

pressure of 15 MPa with both fuel<br />

and coolant at 569.15 K.<br />

The detailed Serpent model for the<br />

KSMR core is presented in Figure 1.<br />

4 Zero power results<br />

The simulations performed for the<br />

KSMR core include excess reactivity at<br />

CZP and HZP; cold shutdown margin;<br />

reactivity feedback coefficients; and<br />

3D assembly-wise power distribution.<br />

In addition, a sensitivity study was<br />

performed to measure the influence<br />

of core baffle, barrel, neutron pad,<br />

spacer grids, and RPV on core<br />

reactivity.<br />

Due to the inherent stochastic<br />

nature of Monte Carlo method, an<br />

adequate number of particles were<br />

used to establish reliable eigenvalue<br />

and 3D assembly-wise power distribution<br />

results. For each simulation,<br />

fission source convergence was monitored<br />

by Shannon entropy diagnosis<br />

of a mesh-based fission source data.<br />

This diagnosis led to a proper selection<br />

of the number of inactive cycles.<br />

For all cases mentioned above:<br />

200,000 particles/cycle; 2,000 cycles;<br />

and 300 inactive cycles were used.<br />

4.1 Excess reactivity<br />

The excess reactivity was simulated by<br />

extracting all control rods out of the<br />

core. Table 1 summarizes the excess<br />

reactivity at CZP and HZP conditions.<br />

At CZP 15,490 ±4<br />

At HZP 8,243 ±4<br />

Excess Reactivity (pcm)<br />

| | Tab. 1.<br />

KSMR core excess reactivity at CZP and HZP.<br />

4.2 Cold shutdown margin<br />

(CSDM)<br />

CSDM is defined as the amount of<br />

reactivity needed to make a reactor<br />

core in subcriticality condition at CZP.<br />

It is simulated by fully inserting all<br />

(shutdown and control) rods in the<br />

core. Taking a conservative approach,<br />

the CSDM was calculated instead of<br />

Hot SDM since the highest reactivity<br />

excess is at CZP. In normal practices,<br />

CSDM is evaluated with the highest<br />

worth control rod stuck outside the<br />

active core. In the KSMR core, the<br />

CSDM with single failure of highest<br />

control rod worth was found to be<br />

(-6,936 ±7) pcm.<br />

(a) Reactivity vs. Fuel Temperature<br />

(a) Reactivity vs. Fuel Temperature<br />

| | Fig. 2.<br />

KSMR reactivity trends vs. (a) fuel and (b) moderator temperature.<br />

Fuel Temperature Coefficient (pcm/K)* -2.06<br />

Moderator Temperature Coefficient (pcm/K)* -55.04<br />

| | Tab. 2.<br />

KSMR fuel and moderator temperature coefficients.<br />

* The statistical uncertainty at 1σ was found to be < 0.1 pcm/K<br />

4.3 Reactivity feedback<br />

coefficients<br />

Reactivity feedback coefficients are<br />

generally defined as a difference between<br />

two core reactivity states per a<br />

change in a given parameter. In this<br />

work, it was divided into two parts:<br />

Fuel Temperature Coefficient (FTC)<br />

and Moderator Temperature Coefficient<br />

(MTC). FTC is defined as the<br />

reactivity change due to an increase of<br />

fuel temperature per fuel temperature<br />

change, whereas the MTC is defined<br />

as the reactivity change due to an<br />

increase of moderator temperature<br />

and its corresponding density per<br />

moderator temperature change. The<br />

reactivity feedback coefficients were<br />

calculated at All-Rods-Out (ARO) as<br />

follows:<br />

pp<br />

Fuel Temperature Coefficient (FTC):<br />

The moderator temperature and<br />

density were both kept at HZP<br />

condition (569.15 K and 0.73371 g/<br />

cm 3 ) whereas fuel temperature was<br />

increased from 569.15 K to 769.15 K<br />

in 100 K step. Then, these results<br />

were fit linearly and the FTC was<br />

found from the slope of the fit line,<br />

as shown in Figure 2.<br />

pp<br />

Moderator Temperature Coefficient<br />

(MTC): The fuel temperature was<br />

Normalized Power Distribution<br />

| | Fig. 3.<br />

3D power distribution at HZP and ARO for the KSMR core.<br />

(b) Reactivity vs. Moderator Temperature<br />

(b) Reactivity vs. Moderator Temperature<br />

kept at HZP condition (569.15 K),<br />

then both moderator temperature<br />

and density were increased from<br />

569.15 K (0.73371 g/cm 3 ) to<br />

596.15 K (0.67056 g/cm 3 ) in 13.5 K<br />

step. After that, these results were<br />

fit quadratically and the MTC was<br />

found by evaluating the derivative<br />

of the fitted equation at 569.15 K,<br />

as shown in Figure 2.<br />

The reason behind fitting these data<br />

quadratically is the non-linearity relationship<br />

between moderator temperature<br />

and density. At high temperatures<br />

an increase in the moderator<br />

temperature causes a larger reduction<br />

in density compared to an identical<br />

increase at low moderator temperatures.<br />

The reactivity feedback coefficients<br />

for the KSMR core are presented<br />

in Table 2.<br />

4.4 3D assembly-wise power<br />

distribution<br />

In addition to the eigenvalue simulations<br />

at zero power, Serpent was also<br />

used to produce 3D assembly-wise<br />

normalized power distribution and its<br />

associated statistical uncertainty for<br />

the KSMR core at HZP and ARO. The<br />

axial discretization for scoring power<br />

Statistical Uncertainty<br />

Research and Innovation<br />

Simulation of KSMR Core Zero Power Conditions Using the Monte Carlo Code Serpent ı Yousef Alzaben, Victor H. Sanchez-Espinoza and Robert Stieglitz


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

data was set to be 20 axial regions.<br />

Figure 3 presents the 3D normalized<br />

power distribution and Figure 4<br />

zooms into the hot channel (highest<br />

power FA) axial power distribution.<br />

4.5 Sensitivity analysis<br />

A sensitivity study was performed on<br />

the KSMR to study the impact of<br />

including detailed radial and axial<br />

structures (core baffle, barrel, neutron<br />

pad, RPV, and spacer grids) on core<br />

reactivity. The simulation was performed<br />

by calculating the reactivity<br />

worth of each of the mentioned structures<br />

at HZP and ARO. The main<br />

objective of this study is investigating<br />

the worthiness of including these<br />

structures in cross section generations.<br />

Table 3 summarizes the outcomes<br />

of this study.<br />

Reactivity worth<br />

(pcm)<br />

Core baffle 404 ±4<br />

Core barrel<br />

Neutron pads<br />

RPV<br />

Negligible †<br />

Spacer grids 237 ±4<br />

| | Tab. 3.<br />

Reactivity worth for core baffle, barrel, neutron<br />

pad, RPV, and spacer grids.<br />

†<br />

The reactivity worth was found to be < 10 pcm<br />

5 Discussions and<br />

conclusions<br />

The KSMR core design has been investigated<br />

at (cold and hot) zero power<br />

and BOC conditions. The carried out<br />

investigation focused on evaluating<br />

the inherent safety features and the<br />

adequacy of the control system by<br />

using the Monte Carlo tool Serpent.<br />

The investigation process showed a<br />

remarkable performance of the KSMR<br />

at zero power.<br />

The excess reactivity, CSDM, reactivity<br />

coefficient, and power distribution<br />

have been analyzed. The excess<br />

reactivity of the KSMR was found to<br />

be (15,490 ± 4) pcm at CZP, which<br />

represents the highest possible excess<br />

reactivity in the core at BOC. In order<br />

to offset this large excess reactivity, a<br />

proper control system was designed.<br />

The control system must provide<br />

enough shutdown margin when all<br />

control rods in a reactor core are<br />

inserted in order to be an effective<br />

control system. In the KSMR core, the<br />

shutdown margin at the highest reactivity<br />

condition possible (CZP and<br />

failure of highest control rod worth)<br />

was found to be (-6,936 ±7) pcm.<br />

| | Fig. 4.<br />

Axial normalized power distribution at the highest power FA for the KSMR core.<br />

This result proves the effectiveness of<br />

the designed control system.<br />

Since the KSMR core was designed<br />

with boron-free moderator, the MTC<br />

was expected to be much higher<br />

compared to soluble boron operated<br />

reactors. The MTC was found to be<br />

(-55.04 ±0.10) pcm/K. This large<br />

negative feedback coefficient may<br />

affect the core reactivity in case of<br />

overcooling accidents. A further investigation<br />

is required to insure that the<br />

control system can always provide<br />

sufficient negative reactivity in any<br />

possible accident scenario. The FTC of<br />

the KSMR core revealed similar results<br />

compared to large PWR which was<br />

(-2.06 ±0.01) pcm/K.<br />

The normalized power distribution<br />

of the KSMR presented an interesting<br />

behavior in which high power amount<br />

was around the bottom and top of the<br />

core. It can be noticed from Figure 3<br />

and Figure 4 that higher power peak<br />

is found at the bottom of the core<br />

compared to the top of the core. This<br />

result is due to the fact that control<br />

rods are always presented in the top<br />

reflector when they are fully withdrawn.<br />

A further investigation is<br />

suggested to demonstrate the power<br />

peaking factor is within the acceptable<br />

limits when control rods at<br />

critical position and HFP condition.<br />

Last but not the least, a sensitivity<br />

study was performed for the KSMR<br />

core which showed the importance of<br />

including core baffle and spacer grids<br />

on the calculation of core reactivity.<br />

The outcome of this study will be used<br />

in generating cross sections of the<br />

KSMR. The next step of analyzing the<br />

KSMR core is transient and HFP simulation.<br />

The former investigation will<br />

be possible by generating cross<br />

sections at different fuel and coolant<br />

temperatures to be used later in core<br />

simulators such as PARCS or DYN3D.<br />

The latter investigation will be<br />

possible thanks to the KIT coupled<br />

code Serpent-Subchanflow [10].<br />

References<br />

1. K. B. Park, “SMART: An Early Deployable Integral Reactor for<br />

Multi-Purpose Applications”, INPRO Dialogue Forum on Nuclear<br />

Energy Innovations: CUC for Small & Medium-sized Nuclear Power<br />

Reactors, 10-14 October 2011, Vienna, Austria.<br />

2. Y. Alzaben, V. Sanchez, R.Stieglitz, “Neutronics Safety-Related<br />

Investigations of a Generic SMART Core with State-of-the-Art<br />

Tools”, NUTHOS-11, Gyeongju, Korea, October 9-13, 2016.<br />

3. M. J. Scarangella, “An Extended Conventional Fuel Cycle for the<br />

B&W mPower Small Modular Nuclear Reactor”, PHYSOR 2012,<br />

Knoxville, Tennessee, April 15-20, 2012.<br />

4. M. J. Driscoll, T. J. Downar and E. E. Pilat, “The Linear Reactivity<br />

Model for Nuclear Fuel Management”, La Grange Park, Ill., USA:<br />

American Nuclear Society, 1990.<br />

5. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, and T. Kaltiaisenaho.<br />

“The Serpent Monte Carlo code: Status, development<br />

and applications in 2013.” Ann. Nucl. Energy, 82 (2015) 142-150.<br />

6. T. Viitanen, and J. Leppänen, “New Interpolation Capabilities<br />

For Thermal Scattering Data In Serpent 2”, PHYSOR 2016, Sun<br />

Valley, ID, May 1–5, 2016.<br />

7. T. Viitanen, and J. Leppänen. “New Data processing features in<br />

the Serpent Monte Carlo code.” Journal of the Korean Physical<br />

Society, 59 (2011) 1365-1368.<br />

8. The VTK User’s Guide, Kitware, Inc., 11th Edition, 2010.<br />

9. J.-J. Ingremeau, and M. Cordiez, “Flexblue® core design:<br />

optimisation of fuel poisoning for a soluble boron free core with<br />

full or half core refuelling”, EPJ Nuclear Sci. Technol. 1, 11 (2015).<br />

10. M. Daeubler, A. Ivanov, B. L. Sjenitzer, V. Sanchez, R. Stieglitz,<br />

R. Macian-Juan, “High-fidelity Coupled Monte Carlo Neutron<br />

Transport and Thermal-hydraulic Simulations using Serpent 2/<br />

SUBCHANFLOW”, Annals of Nuclear Energy, Volume 83, September<br />

2015, Pages 352–375.<br />

Authors<br />

Yousef Alzaben<br />

Victor H. Sanchez-Espinoza<br />

Robert Stieglitz<br />

Karlsruhe Institute of Technology<br />

(KIT) – Campus Nord<br />

Neutron Physics and Reactor<br />

Technology Institute (INR)<br />

Reactor Physics and Dynamics<br />

Group (RPD)<br />

Hermann-von-Helmholtz-Platz 1<br />

76344 Eggenstein-Leopoldshafen<br />

Germany<br />

RESEARCH AND INNOVATION 105<br />

Research and Innovation<br />

Simulation of KSMR Core Zero Power Conditions Using the Monte Carlo Code Serpent ı Yousef Alzaben, Victor H. Sanchez-Espinoza and Robert Stieglitz


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Special Topic | A Journey Through 50 Years AMNT<br />

106<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

Am 7. und 8. Mai<br />

<strong>2019</strong> begehen wir<br />

das 50. Jubiläum<br />

unserer Jahrestagung<br />

Kerntechnik. Zu<br />

diesem Anlass öffnen<br />

wir unser <strong>atw</strong>-Archiv<br />

für Sie und präsentieren<br />

Ihnen in jeder<br />

Ausgabe einen<br />

historischen Artikel.<br />

DAtF-KTG-Reaktortagung 1971 in Bonn<br />

Die Reaktortagung 1971, die, wie die vorjährige Tagung in Berlin, vom Deutschen Atomforum gemeinsam mit der<br />

Kerntechnischen Gesellschaft im DAtF abgehalten wurde, erwies sich wieder als die umfassendste Veranstaltung auf<br />

nuklearem Gebiet in der BRD. Damit hat sich zweifellos diese Tagung, die, nach den früheren spezielleren Reaktortheorietagungen,<br />

zum dritten Mal in dieser Form für das gesamte Reaktorgebiet abgehalten wurde, endgültig durchgesetzt.<br />

Tagungsumfang und Teilnehmerzahl berechtigen zum Vergleich mit den alljährlichen ANS-AIF- Wintertagungen<br />

in den USA, auch wenn diese noch wesentlich monströser sind. Außerhalb der USA hat sich die deutsche Reaktortagung<br />

jedenfalls zur größten nationalen Veranstaltung dieser Art entwickelt.<br />

Die Teilnehmerzahl lag wiederum höher als erwartet. Mehr<br />

als 1500 Fachleute aus Kernforschung und -technik, aus<br />

Energiewirtschaft und aus den Genehmigungs behörden<br />

besuchten vom 30.3. bis 2.4.1971 in Bonn Übersichtsvorträge,<br />

Podiumsdiskussion und die Plenarveranstaltung in<br />

der Beethovenhalle sowie Kurzvorträge in der Universität.<br />

Die große Hörerzahl ist nicht nur ein Kompliment für die<br />

Organisatoren der Tagung, sondern auch ein Beweis für<br />

das Wachsen des Feldes. Sie bereitet den Organisatoren<br />

aber auch manchen Kummer: überraschenderweise hat<br />

sich herausgestellt, daß in der Bundesrepublik kaum Städte<br />

zu finden sind, in denen eine Plenarveranstaltung mit 1500<br />

Teilnehmern und eine größere Anzahl paralleler Sitzungen<br />

mit jeweils einigen hundert Hörern am gleichen Ort abgehalten<br />

werden können, wie dies z. B. bei der Reaktortagung<br />

1970 in der Berliner Kongreßhalle möglich war. In Bonn<br />

mußten die Teilnehmer zwischen Beethovenhalle (vormittags)<br />

und Universität (nachmittags) pendeln, wobei die<br />

Platzverhältnisse, gemessen z. B. an der Frankfurter<br />

Tagung, noch relativ günstig waren.<br />

Die wissenschaftliche Leitung der Tagung hatte wieder<br />

der Präsident der Kerntechnischen Gesellschaft, Prof. Dr.<br />

W. Häfele, der in seiner Eröffnungsansprache auf die Fortschritte<br />

der Kernenergieentwicklung im vergangenen Jahr<br />

und das jetzt beschleunigte Wachstum der Kernenergiekapazität<br />

in der ganzen Welt und vor allem auch in der<br />

BRD hinwies. In einem Jahr, in dem mit fünf Kernkraftwerksaufträgen<br />

mit zusammen ca. 5000 MW gerechnet<br />

wird, von denen vier bereits jetzt bestellt oder so gut<br />

wie bestellt sind, in dem außerdem mit dem ersten österreichischen<br />

Kernkraftwerk ein weiterer Exporterfolg<br />

errungen wurde und in dem sowohl von der Seite der<br />

Versorgungssicherheit als auch von der Wirtschaftlichkeit<br />

her die Kernenergie sich klarer denn je als Spitzenreiter<br />

ausweisen kann, haben die Reaktorfachleute natürlich<br />

allen Grund zum Optimismus. Kernkraftwerken kommt ja<br />

neben steigendem volkswirtschaftlichen Nutzen und<br />

abgesehen vom unumgänglichen Bedarf gerade auch im<br />

Sinne der schärfer formulierten Forderungen des Umweltschutzes<br />

große Bedeutung zu.<br />

Die vier Veranstaltungsvormittage waren mit zwölf<br />

Übersichtsvorträgen, einem Plenarvortrag und einer<br />

Podiumsdiskussion ausgefüllt. An den Nachmittagen<br />

wurden in fünf parallelen Sitzungsreihen über 200 Fachvorträge<br />

gehalten. Man mag über die große Anzahl der<br />

Kurzvorträge geteilter Meinung sein, ganz sicher rechtfertigt<br />

sie jedoch der Wunsch, möglichst vielen jüngeren<br />

Wissenschaftlern ein Podium für ihre eigenen Arbeiten zu<br />

bieten. Daß diese Möglichkeit erwünscht ist, beweisen 374<br />

eingereichte Kurzvorträge, aus denen 208 ausgewählt<br />

wurden. Das Auswahlproblem, das in dieser Zeitschrift bereits<br />

vor der Tagung diskutiert wurde (vgl. <strong>atw</strong> 4/71,<br />

S. 169), lieferte auch während der Tagung noch vielfältigen<br />

Gesprächsstoff. Die Kritik entzündete sich nicht<br />

zuletzt an dem Proporz, der einer sachlichen Auswahl<br />

offensichtlich in erster Linie im Wege steht.<br />

Eine besonders starke Resonanz fanden die sowohl von<br />

der Thematik her als auch in der Wahl der Referenten als<br />

überdurchschnittlich gut einzustufenden Übersichtsvorträge,<br />

die ihrem Zweck der interdisziplinären Information<br />

und Kommunikation voll gerecht wurden. Ausgehend von<br />

der zunehmenden Bedeutung der Elektrizität für unsere<br />

Gesellschaft und von Berichten über den Stand der beiden<br />

Reaktorbaulinien der nächsten Generation, wurde die<br />

wegen ihrer Aktualität mit besonderer Spannung erwartete<br />

Themengruppe über die Wechselwirkung von Kernenergie<br />

und Umwelt, die in drei Vorträgen von der physiologischen,<br />

technischen und Strahlenschutzseite her beleuchtet<br />

wurde, zu einem Höhepunkt der diesjährigen Tagung.<br />

Großes Interesse fand auch die Übersicht über die den<br />

Reaktorfachleuten meist nicht so geläufige Nutzung<br />

radioaktiver Stoffe. Die Vorträge des letzten Vormittags<br />

gaben ein recht umfassendes und geschlossenes Bild über<br />

den Stand der Brennstoffkreislaufindustrie bis hin zur<br />

Behandlung und Lagerung der radioaktiven Abfälle. Nicht<br />

unerwähnt sollen zwei außerhalb von geschlossenen<br />

Themenkreisen stehende Übersichtsvorträge bleiben, in<br />

denen zukunftsträchtige reaktortechnische Gebiete<br />

referiert wurden, nämlich der Prozeßrechnereinsatz in<br />

Kernkraftwerken, der bislang noch mehr oder weniger<br />

passiv erfolgt, und das Incore-Thermionik-Reaktorprojekt,<br />

an dem in Forschungszentren und von Entwicklungsgruppen<br />

in der Industrie für die Energieversorgung von<br />

Fernsehsatelliten mit großem Nachdruck gearbeitet wird.<br />

Ein weiterer Höhepunkt der Reaktortagung, der auch<br />

in engem thematischen Zusammenhang mit den Übersichtsvorträgen<br />

zu Umweltschutzfragen stand, war die<br />

Podiumsdiskussion über das Thema „Kernenergie und<br />

Gesellschaft”. Unter der Leitung des bekannten Fernsehmoderators<br />

R. Appel äußerten zunächst Repräsentanten<br />

der drei Bundestagsfraktionen Fragen und Meinungen<br />

zum Gesamtgebiet Kernenergie, die dann von Vertretern<br />

der kerntechnischen Industrie, der Elektrizitätsversorgungsunternehmen,<br />

des Bundesgesundheitsamtes, der<br />

Special Topic | A Journey Through 50 Years AMNT<br />

1971 DAtF-KTG-Meeting on Reactors in Bonn


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Reaktorsicherheitskommission und des Bundesministeriums<br />

für Bildung und Wissenschaft aufgegriffen und<br />

beantwortet wurden. Die Teilnehmer des Panels forderten<br />

eine noch wesentlich bessere und rückhaltlosere Unterrichtung<br />

der Öffentlichkeit über alle Fragen der Kernenergienutzung,<br />

insbesondere soweit sie Sicherheitsfragen<br />

berühren. In diesem Sinne versuchten am nächsten<br />

Tag der wissenschaftliche Tagungsleiter und zahlreiche<br />

Teilnehmer mit Demonstranten vor Beginn der Plenarveranstaltung<br />

über Sicherheitsprobleme in Zusammenhang<br />

mit der Kernenergienutzung zu diskutieren. Der fruchtlose<br />

Versuch einer Diskussion mit einer Gruppe, die überwiegend<br />

aus dem Thema fernstehenden Frauen und<br />

Kindern bestand, unterstreicht den guten Willen der Kerntechniker<br />

zur sachlichen Diskussion und sollte jedenfalls<br />

nicht zur Resignation seitens der Fachleute führen. Daß<br />

Demonstrationen dieser Art zustande kommen, ist letzten<br />

Endes doch wirklichem Informationsbedürfnis und<br />

mangelnder Informationsarbeit zuzuschreiben.<br />

Im Mittelpunkt der vom Präsidialmitglied des DAtF,<br />

Prof. Dr. H. Goeschel, eröffneten Plenarveranstaltung<br />

stand der Festvortrag von Dr. H. Frewer „Energieverbund<br />

zwischen nuklearen und konventionellen Kraftwerken”.<br />

Nachdem Prof. Goeschel darauf hingewiesen hatte, daß<br />

von den deutschen Reaktorbaufirmen als Vorleistung in<br />

den letzten 15 Jahren Verluste von weit über 500 Mio. DM<br />

verbucht werden mußten, unterstrich Dr. Frewer, daß die<br />

Sicherheitsauflagen für Bau und Betrieb der Kern reaktoren<br />

in der Bundesrepublik einen derart perfektionierten Stand<br />

erreicht haben, daß die internationale Konkurrenzfähigkeit<br />

der deutschen Reaktorindustrie vor allem in<br />

dritten Ländern bereits geschmälert sei. Zur verstärkten<br />

Nutzung der Kernenergie in der BRD führte er aus, daß der<br />

wirtschaftlich optimale Einsatz von Kernkraftwerken nur<br />

durch eine integrierte Verbundoptimierung aller Energieträger<br />

erreicht werden könne. Das Deutsche Atomforum<br />

führte gleichzeitig mit der Reaktortagung in der<br />

Beethoven halle eine nicht nur für die Teilnehmer, sondern<br />

noch mehr für eine breitere Öffentlichkeit bestimmte<br />

Ausstellung „Kernenergie – friedlich genutzt“ durch, die<br />

ein anschauliches Bild der verschiedenen zur Kernenergienutzung<br />

gehörenden Gebiete und Entwicklungen, vor<br />

allem auch in der Bundesrepublik, zeigte.<br />

Die nachfolgenden Kurzberichte über die einzelnen<br />

Sitzungen können und sollen wieder nur Tendenzen und<br />

nur in wenigen Fällen besonders interessierende Einzelentwicklungen<br />

hervorheben.<br />

1 Reaktoranalysis<br />

Den an der Auslegung des Reaktorkerns arbeitenden<br />

Wissenschaftlern bot sich mit 80 Vorträgen aus den<br />

Bereichen der Physik, Sicherheit und Thermohydraulik ein<br />

breites Spektrum an Informationen.<br />

An dieser Stelle seien einige allgemeine Bemerkungen<br />

und persönliche Eindrücke zur Sektion 1 festgehalten,<br />

bezüglich Details der Einzelbeiträge sei auf die in Kürze<br />

erscheinende Compact-Sammlung der Konferenz hingewiesen<br />

(am Rande sei bemerkt, daß die Herausgabe und<br />

die ansprechende Aufmachung der Compacts der Berliner<br />

Tagung wesentlich das Ansehen der Tagung gefördert<br />

haben dürften). Wenn man bedenkt, daß etwa 70 weitere<br />

Anmeldungen zurückgestellt wurden, so läßt dies darauf<br />

schließen, daß offenbar die Reaktoranalysis eine gewisse<br />

Sonderstellung im Vergleich zu den anderen Sektionen<br />

einnimmt. Dies ist zunächst sicher eine Folge des großen,<br />

umfassenden Gebietes, das die Reaktoranalysis umschließt.<br />

Es drängt sich die Frage auf, ob es sich hier nicht<br />

| | Die Podiumsdiskussion über „Kernenergie und Gesellschaft“<br />

auf der Reaktortagung 1971.<br />

eher um zwei Sektionen handelt – und man sucht nach<br />

einer möglichen Trennlinie. Würde man diese bei der<br />

Thermohydraulik ziehen, so wären allerdings nur 11 Vorträge<br />

der jetzigen Tagung daruntergefallen. Zweifellos<br />

wird das gerade genannte Teilgebiet im Laufe der nächsten<br />

Jahre ein zunehmendes Interesse finden, so daß das jetzt<br />

vorliegende stärkere Übergewicht der Physik zurückgehen<br />

dürfte.<br />

Wo liegen die sachlichen Schwerpunkte der Sektion 1?<br />

Wenden wir uns zunächst den Physikbeiträgen zu. In<br />

der Reaktortheorie kommt zweifellos der Erstellung<br />

mehr dimensionaler Reaktorprogramme eine zentrale<br />

Bedeutung zu. Dies wird natürlich durch die Ver größerung<br />

an Speicherkapazität und an Rechengeschwindigkeit<br />

moderner Computer mit bedingt, jedoch auch durch<br />

den Wunsch nach größerer Genauigkeit der Vorhersage<br />

nuklearer Parameter. Berechnungen von statischen und<br />

zeitabhängigen Neutronenverteilungen in zwei und<br />

drei Raum-Dimensionen wurden diskutiert, ebenso<br />

die Effektivität von Programmsystemen. Als besonders<br />

interessant ist dem Verfasser dabei die Bestimmung<br />

dreidimensionaler Flußverteilungen mit Hilfe von Stoßwahrscheinlichkeiten<br />

im Gedächtnis geblieben.<br />

Das Reaktorcore wird hierbei in Quader aufgeteilt,<br />

wobei die Kopplung zwischen diesen über die ein- und<br />

auslaufenden Ströme vermittelt wird.<br />

Die theoretische Analyse schneller Reaktoren scheint<br />

ebenfalls einen Schritt weitergekommen zu sein. Obwohl<br />

einige noch nicht verstandene Diskrepanzen zwischen<br />

Theorie und Experiment vorliegen und man in z. T.<br />

beeindruckenden experimentellen Versuchsreihen dabei<br />

ist, diese Unterschiede aufzuklären (z. B. die Bestimmung<br />

von ß eff ), wurde z. B. bei der Analyse einer Vielzahl von<br />

kritischen Anordnungen eine Genauigkeit in der Vorhersage<br />

der Kritikalität von besser als 1 % erreicht. Man<br />

hat damit also etwa die gleiche Unsicherheit wie bei der<br />

nuklearen Analyse thermischer Reaktoren erreicht. Dieses<br />

Ergebnis sollte jedoch nicht darüber hinwegtäuschen, daß<br />

zufällige Kompensationseffekte durchaus noch mit im<br />

Spiel sein können. Auf der experimentellen Seite können<br />

die Meßverfahren in kriti- tischen Anordnungen als weitgehend<br />

etabliert angesehen werden. Leider hörte man<br />

nichts über die Analyse des Reaktorrauschens bei Leistung,<br />

ein Gebiet, das einige Gruppen bearbeiten, das jedoch<br />

offenbar nur langsam Fortschritte macht. Die breit<br />

angelegte Versuchsreihe zur Physik von Plutonium- Uran-<br />

Brennstoff in Leichtwassergittern ist im Hinblick auf die<br />

Rezyklierung des Brennstoffs in thermischen Reaktoren<br />

besonders hervorzuheben.<br />

Der Bereich der Reaktordynamik und Sicherheit<br />

erscheint, verglichen mit seiner Bedeutung, etwas unterrepräsentiert.<br />

Dazu muß man beachten, daß über viele mit<br />

107<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

Special Topic | A Journey Through 50 Years AMNT<br />

1971 DAtF-KTG-Meeting on Reactors in Bonn


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

108<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

der Reaktorsicherheit verbundene Fragen auch in Sektion 2<br />

berichtet wurde. In der Reaktordynamik werden von einigen<br />

Gruppen mehrdimensionale ortsabhängige Neutronik-<br />

Programme entwickelt oder auch bereits eingesetzt, während<br />

meist auf eine entsprechend aufwendige Behandlung<br />

thermo- und hydrodynamischer Rückwirkungen noch verzichtet<br />

wird. Eine klar überschaubare und abgerundete<br />

Darstellung der sicherheitstechnischen Relevanz dieser<br />

Methoden wurde allerdings noch nicht gegeben.<br />

In der Thermohydraulik fanden die Beiträge zur Quervermischung<br />

des Kühlmittels und der Strömungsverteilung<br />

um Blockaden in Rohrbündeln großes Interesse.<br />

Hierzu ist zu sagen, daß man über eine parametrisierte<br />

Darstellung der Vorgänge noch nicht wesentlich hinausgekommen<br />

ist; es muß noch viel Arbeit in die theoretische<br />

Interpretation hineingesteckt werden. Dies ist nicht sehr<br />

verwunderlich, denn die vollständige Beschreibung der<br />

einfacheren Probleme ohne Quervermischung ist bereits<br />

sehr aufwendig. Schon eingangs wurde gesagt, daß dieser<br />

Bereich der Reaktoranalysis der Wichtigkeit entsprechend<br />

eine stärkere und dabei koordinierte Bearbeitung erfordert.<br />

In diesem Sinne wäre auch die Bildung einer Fachgruppe<br />

Thermohydraulik der KTG sehr zu begrüßen.<br />

2 Reaktorbauelemente und -komponenten<br />

In dieser Sektion, für die die Bezeichnung „Reaktorkomponenten<br />

und -kreisläufe” vielleicht besser wäre, wurden<br />

36 Vorträge gehalten. Davon bezogen sich etwa 14 auf<br />

Anwendungen in natriumgekühlten, 12 in wassergekühlten<br />

und 7 in gasgekühlten Reaktoren. Die restlichen<br />

Vorträge lassen sich nicht ohne weiteres in dieses etwas<br />

willkürliche Schema einordnen.<br />

Die eigentlichen Reaktorkomponenten waren etwas<br />

schwach vertreten. Die Gesamtzahl der Vorträge täuscht<br />

bei dieser Beurteilung, da in der Sektion eine Reihe von<br />

Vorträgen gehalten wurden, die ihrem Inhalt nach besser<br />

anderen Sektionen zuzuordnen sind. So gehören z. B. die<br />

acht Vorträge der Untersektion Kernwerkstoffe thematisch<br />

fast ausschließlich zur Sektion 4. Die reaktorbauende<br />

Industrie sollte ermuntert werden, aus ihrem reichen<br />

Erfahrungsschatz gerade für diese Sektion etwas mehr<br />

beizusteuern. Ansätze dazu waren auf dem Gebiet der<br />

Leichtwasserreaktoren vorhanden, aber es hätte auch hier<br />

mehr sein können.<br />

Bei den Vorträgen, die sich mit der Natriumtechnologie<br />

befaßten, war naturgemäß ein größerer Anteil theoretischer<br />

Natur, wie etwa die digitale Störfallsimulierung für<br />

das Dampferzeugersystem des SNR oder Berechnungen<br />

zum Druckaufbau in natriumbeheizten Dampferzeugern<br />

bei etwaigen Na-H 2 O-Reaktionen sowie Vergleiche<br />

zwischen austenitischen und ferritischen Na/Na-Wärmeaustauschern.<br />

Immerhin standen zumindest teilweise<br />

Versuchsergebnisse zur Abstützung der Rechnungen oder<br />

zum Vergleich zur Verfügung. Einen noch größeren Anteil<br />

hatten Analysen-, Meß- und Nachweisverfahren in<br />

Natrium kühlkreisläufen. Hier beginnen sich die Erfahrungen<br />

mit den in Betrieb befindlichen Versuchsanlagen<br />

auszuwirken bzw. jene Erfahrungen, die bei der<br />

Planung und dem Bau weit umfangreicherer, noch nicht in<br />

Betrieb befindlicher Anlagen einschließlich des KNK<br />

gewonnen wurden. Gerade diese kurz vor ihrer Inbetriebnahme<br />

stehenden Anlagen, die auch in einem Übersichtsvortrag<br />

vorgestellt wurden, werden einen weiteren<br />

wichtigen Beitrag zur Reife der Natriumtechnologie<br />

liefern. Zwei Vorträge über Handhabungseinrichtungen<br />

und Reinigung natriumbenetzter Teile machten deutlich,<br />

daß auf diesem Gebiet ein großer Erfahrungsschatz<br />

vorliegt, mit dem der vielfach als sehr problematisch angesehene<br />

Umgang mit Natrium beherrschbar sein sollte.<br />

Auch werden bald Großversuche mit dem Drehdeckelabdichtsystem<br />

des SNR und der Brennelementwechselmaschine<br />

im Natriumbetrieb beginnen.<br />

Die mehr theoretischen Vorträge auf dem Gebiet der<br />

wassergekühlten Reaktoren galten der Sprödbruchanalyse<br />

von Druckgefäßen für Druckwasserreaktoren bei Kaltwasser<br />

einspeisung zur Kernnotkühlung und den Kriterien<br />

zur Auslegung der Sicherheitsumschließung für Siedewasserreaktoren.<br />

Für erstere wurde mit Hilfe der Bruchmechanik<br />

gezeigt, daß der hypothetische Störfall auch nach<br />

einer langen Einsatzzeit des Druckbehälters nicht zu<br />

Sprödbruchschäden an diesem führt. Der zweite Vortrag<br />

ließ erkennen, daß bei der heute in Deutschland üblichen<br />

Bauweise des Sicherheitsbehälters mit Druckabbausystem<br />

zusammen mit der Anordnung des Turbinenkreislaufes im<br />

Reaktorgebäude bei richtiger Auslegung alle denkbaren<br />

Störfälle sicher beherrscht werden können. Die Her stellung<br />

großer Druckgefäße und ein Vergleich von Ergebnissen<br />

der Verfahrens- und Fertigungsprüfung bei Schweißplattierungen<br />

solcher Druckgefäße waren Themen weiterer<br />

Vorträge. Da nahtlos geschmiedete Flanschringe für große<br />

Reaktordruckbehälter nur in den USA und in Japan hergestellt<br />

werden können, schmiedet man in der BRD zwei<br />

Halbringe und vereinigt diese durch Elektroschlackeschweißung,<br />

über die ebenfalls berichtet wurde. Vor der<br />

mechanischen Bearbeitung erfolgt eine Vergütung des so<br />

geschweißten Ringes. Letzte Rundschweißnähte am<br />

Behälter werden zum Teil aus Transportgründen auf der<br />

Baustelle ausgeführt. Der Prüfaufwand ist beträchtlich,<br />

jedoch erforderlich, besonders da die Erfahrungen der<br />

Hersteller und Prüfer noch nicht allzu groß sind.<br />

Bei den Armaturen für Druckwasserreaktoren ist ein<br />

deutlicher Zug zur Typisierung erkennbar. Für die<br />

Bestellung und Lagerhaltung auch auf der Baustelle wird<br />

EDV eingesetzt. Da der Einzelprüfaufwand groß ist, wird<br />

bei Siemens ein umfangreicher Armaturenprüfstand<br />

erstellt, der es gestattet, alle Armaturen bei Betriebsbedingungen<br />

zu testen. Für die Dampfleitungen bei Siedewasser<br />

reaktoren werden neuerdings eigenmediumsbetätigte<br />

Schnellschlußarmaturen eingesetzt, die mit<br />

einer noch höheren Sicherheit schließen als die bisher verwendeten.<br />

Die Erfahrungen mit den Hauptkühlmittelpumpen<br />

von Druckwasserreaktoren (ähnliches gilt auch<br />

für Siedewasserreaktoren) haben gezeigt, daß mit der<br />

Bauart „Außenliegender angeflanschter Motor und<br />

berührungsfreie, hydrostatisch wirkende Wellendichtung”<br />

Laufzeiten von 20.000 h erreicht werden. Zur Messung des<br />

Neutronenflusses in Reaktoren wurde ein Verfahren mit<br />

Wechselstromkanal und Kreuzkorrelation entwickelt,<br />

welches gestattet, beim An- bzw. Abfahren den Fluß über<br />

7 1/2 Dekaden mit der gleichen Anordnung linear zu<br />

messen. Für die Erfassung der Neutronenflußverteilung in<br />

großen Cores wurde ein sehr interessantes Meßverfahren<br />

vorgestellt, welches beim KKS (Stade) in Kombination mit<br />

dem Prozeßrechner gestattet, innerhalb von 10 Minuten<br />

eine komplette Flußverteilung an 32 über den Querschnitt<br />

des Cores verteilten Positionen und über die gesamte<br />

Länge des Cores zu ermitteln. Das System soll nachträglich<br />

auch in Lingen eingebaut werden.<br />

Auf dem Gebiet der gasgekühlten Reaktoren wurde<br />

u. a. über eine in Ispra entwickelte Innenisolierung für<br />

Spannbetonbehälter berichtet. Es wird schwierig sein,<br />

dieses Konzept industriell einzuführen, da in Westeuropa<br />

und den USA bereits Erfahrungen mit etwas anderen<br />

Systemen vorliegen. Für den THTR in Schmehausen<br />

Special Topic | A Journey Through 50 Years AMNT<br />

1971 DAtF-KTG-Meeting on Reactors in Bonn


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

werden auf Grund einer Zuverlässigkeitsanalyse linear in<br />

den Kugelhaufen einfahrbare Abschaltstäbe einem spiralbohrerähnlichen<br />

Drehstabkonzept vorgezogen. Die<br />

Regelung des Gasmassenstromes wird beim THTR über<br />

Frequenzsteuerung der integrierten Asynchronmotoren<br />

vorgenommen, wobei die Frequenzgeneratoren von drehzahlsteuerbaren<br />

Dampfturbinen angetrieben werden.<br />

Andere Regelungsmöglichkeiten wurden diskutiert. Bei<br />

Langzeitversuchen an Dampferzeugermaterialien in einer<br />

für einen HTR repräsentativen Gasatmosphäre wurden<br />

keine Kohlenstoffablagerungen festgestellt, obwohl Ha-<br />

Diffusion auftrat. Anhand von wärme- und strömungstechnischen<br />

Untersuchungen in Luft und Helium unter<br />

höheren Drücken wurden Vorteile von schraubenförmig<br />

gewendelten Rohrpaketen mit gleichbleibender kleiner<br />

Längsteilung für Dampferzeuger herausgestellt. Die Einhaltung<br />

gewisser Wandabstände ist für eine gleichmäßige<br />

Gasabkühlung von großer Bedeutung. Bei Graphiteinbauten<br />

lassen sich durch Pyrokohlenstoffschichten an<br />

der Oberfläche und in den Poren die Korrosions- und<br />

mecha nischen Eigenschaften erheblich verbessern. Als<br />

Pyrolysegas ist Propan günstiger als Methan. Rechnungen<br />

zeigten, daß bei hohen Temperaturen (ab 950 °C) und Vorhandensein<br />

von Spannungen Ha in den Graphit ein dringen<br />

und mehrere mm unter der Oberfläche durch Korrosion<br />

von C eine Vermorschung hervorrufen kann, so daß evtl.<br />

später Stücke der Oberfläche ausbrechen können. Ein Verfahren<br />

zur Bestimmung der Kühlmitteigeschwindigkeit<br />

mit Hilfe von korrelierten Thermoelementsignalen ist für<br />

verschiedene Fluide anwendbar.<br />

In der Untersektion Kernwerkstoffe befaßten sich<br />

mehrere Vorträge mit technologischen Fragen wie Ausscheidungsverhalten,<br />

Verträglichkeitsbedingungen mit<br />

dem Brennstoff und dem Kühlmittel, Festigkeitseigenschaften,<br />

Einfluß der Neutronenbestrahlung (Hochtemperaturstrahlungsversprödung)<br />

bei Hüllrohrwerkstoffen für<br />

natrium- und dampfgekühlte Reaktoren. Hauptsächlich<br />

wurden hochwarmfeste austenitische Stähle und Superlegierungen<br />

aus den Inconel-, Incoloy- und Hastelloyreihen<br />

diskutiert. Weiterhin wurde gezeigt, daß längsnahtgeschweißte<br />

Zircaloy-Hüllrohre nahtlos gezogenen gleichwertig<br />

sein können, und eine Methode zur zerstörungsfreien<br />

Bestimmung von niedrigen HJ-Konzentrationen in<br />

Metallen, angewendet auf die Diffusion von Ha in Zircaloy-<br />

Yttriumkombinationen, vorgestellt. Mit dem Problem der<br />

Fertigung von Abstandshaltern für stabbündelförmigc<br />

Brennelemente befaßte sich ein weiterer Vortrag.<br />

3 Bau und Betrieb<br />

von kerntechnischen Anlagen<br />

In der Sektion 3 wurden die Themen „Reaktorbetriebserfahrungen”,<br />

„Sicherheit und Umwelt”, „EDV in der<br />

Kerntechnik” und „Wiederholungsprüfungen” behandelt.<br />

In rasch wachsendem Maße fallen auch in der BRD<br />

Betriebserfahrungen an. Dementsprechend nahmen die<br />

diesem Thema gewidmeten Kurzvorträge einen breiten<br />

Raum ein. Ein zentrales Thema bei den zusammenfassenden<br />

Darstellungen über die bisherigen Betriebserfahrungen<br />

mit Leichtwasserreaktoren stellte das Verhalten<br />

der Brennelemente dar. Sowohl Wirtschaftlichkeitsfragen<br />

im Zusammenhang mit der betriebsnahen Brennelement-<br />

Einsatzplanung als auch die bisherigen Erfahrungen mit<br />

Brennelemenlschäden wurden ausführlich diskutiert.<br />

Die Planung des BE-Einsatzes unterliegt Forderungen,<br />

die einerseits aus dem Energieversorgungssystem, in das<br />

das Kraftwerk integriert ist, andererseits aus dem Kraftwerk<br />

selbst gestellt werden. Welche Betriebsvariablcn zu<br />

berücksichtigen sind und wie die BE-Einsatzplanung den<br />

Erfordernissen kurzfristig angepaßt werden kann, wurde<br />

an typischen Beispielen für beide Leichtwasserreaktortypen<br />

beschrieben. Besonders hingewiesen wurde auf die<br />

Möglichkeiten einer Verlängerung der reaktivitätsbedingten<br />

Zyklusdauer bei Siedewasserreaktoren unter<br />

weitgehender Erhaltung der Lastwechselflexibilität.<br />

Eine Verkürzung der durch BE-Wechsel und parallel<br />

dazu laufende Inspektions-, Wartungs- und Reparaturarbeiten<br />

bedingten – in der jährlichen Verfügbarkeit nicht<br />

erfaßten – Stillstands-Zeiten erscheint durch langfristige<br />

Planung, betriebsmäßige Maßnahmen und Berücksichtigung<br />

bei der Aus legung von Systemen möglich. In den<br />

Vorträgen wurden Einzelheiten solcher Maßnahmen, z. B.<br />

auch in bezug auf die Verbesserung der Gerätetechnik und<br />

der Ausstattung der Kernkraftwerke, mitgeteilt.<br />

In einer überraschend großen Zahl von Vorträgen<br />

wurde das Thema Brennelementschäden aufgegriffen. Die<br />

rasche Aufklärung der bisher in deutschen Reaktoranlagen<br />

bekanntgewordenen BE- Schäden hat zwar auch sicherheitstechnisches<br />

Interesse; die intensiven Bemühungen<br />

der Industrie um diesen Problemkreis sind jedoch vor<br />

allem wirtschaftlich begründet: Der deutliche Trend zu<br />

großen Leistungseinheiten zwingt zur Erhöhung der<br />

Leistungsdichte in Reaktorkernen. Ein vertieftes Verständnis<br />

des komplexen Zusammenspiels der Schadensursachen<br />

ist deshalb notwendig. Hierzu wurden die in den<br />

vergangenen Jahren erzielten Fortschritte aufgezeigt.<br />

Weitere Vorträge befaßten sich mit Versuchen zur Verkürzung<br />

des Anfahrvorganges durch Synchronisation und<br />

Belastung der Turbine vor Erreichen des Reaktornenndruckes,<br />

mit den Mechanismen, die den Änderungen der<br />

Kühlmittelaktivität bei Variation der Reaktorbetriebsbedingungen<br />

zugrunde liegen, sowie mit den Ursachen für<br />

Reaktorschnellabschaltungen. Letztere liegen vornehmlich<br />

im konventionellen Teil. Die jährliche Verfügbarkeit<br />

der Kernkraftwerke nähert sich den Werten für konventionelle<br />

Kraftwerke.<br />

Bei den Betriebserfahrungen mit der SNEAK stand die<br />

Pu-Kontamination und ihre Beherrschung im Mittelpunkt<br />

der Darstellung. Ergebnisse von experimentellen und<br />

theoretischen Untersuchungen aus dem KFZ Karlsruhe<br />

ergänzten den Bericht. Die wohl umfangreichsten<br />

Betriebserfahrungen liegen bei den Anlagen AVR und<br />

MZFR vor. Vertreter der AVR berichteten über Experimente<br />

zum Langzeitverhalten des AVR bei simulierten<br />

Störfällen. Die Ergebnisse veranschaulichten erneut die<br />

bekannten sicherheitstechnischen Vorzüge dieses Reaktortyps.<br />

Weitere Vorträge waren der Handhabung der kugelförmigen<br />

Brennelemente des AVR gewidmet. Die Geräte<br />

zur Handhabung waren zum Teil aufgrund von Betriebserfahrungen<br />

entwickelt worden. Obwohl der MZFR in den<br />

vergangenen Jahren mit einigen Schwierigkeiten zu<br />

kämpfen hatte, haben die mit dem Betrieb des MZFR<br />

gewonnenen positiven Erfahrungen mit dazu geführt, daß<br />

in Argentinien das Projekt Atucha realisiert wird. Die<br />

für einen wirtschaftlichen Betrieb von D 2 0-Reaktoren<br />

wichtigen Fragen des BE-Wechsels und des H 2 O-Verlustes<br />

standen im Vordergrund der Vorträge über den MZFR.<br />

Beim Themenkreis Sicherheit und Umwelt berichteten<br />

Vertreter des KFZ Karlsruhe über die Umweltbelastung<br />

durch ein natriumgekühltes Schnellbrüter-Kraftwerk und<br />

Sicherheitsprobleme der technischen Radiochemie auf<br />

Grundlage der WAK. Der Problemkreis Sicherheit und<br />

Umwelt kam, gemessen an der Bedeutung, die diesem<br />

Thema international allgemein beigemessen wird,<br />

eindeutig zu kurz.<br />

109<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

Special Topic | A Journey Through 50 Years AMNT<br />

1971 DAtF-KTG-Meeting on Reactors in Bonn


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

110<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

| | Atomgegner demonstrierten vor der Beethoven-Halle<br />

(Bonn, Reaktortagung 1971).<br />

Die Darstellungen über die Verwendung der EDV in der<br />

Kerntechnik widmeten sich dem passiven Einsatz der Prozeßrechner<br />

im Kernkraftwerk KRB sowie Entwicklungsarbeiten<br />

im Rahmen des OECD-Programmes in Halden<br />

(Norwegen). Die Entwicklungsarbeiten zielen auch auf<br />

den aktiven Einsatz von Prozeßrechnern ab, z. B. bei der<br />

Regelung des Reaktors und bei der Erfassung von den<br />

Reaktor gefährdenden Situationen. Ein weiterer Vortrag<br />

behandelte den Prozeßrechnereinsatz für hoch mechanisierte<br />

Fertigungen am Beispiel der Brennstabfertigung.<br />

In den vergangenen Jahren sind erhebliche Anstrengungen<br />

unternommen worden, Methoden zur wirkungsvollen<br />

Wiederholungsprüfung von Komponenten in Kernenergieanlagen<br />

zu entwickeln. Die Themen behandelten<br />

die Vor-Ort-Prüfung von hochwirksamen Schwebstoffiltern<br />

und die Methoden sowie Ergebnisse der ersten<br />

wiederkehrenden Inspektion des Reaktordruckbehälters<br />

KWO. Erheblicher Aufwand wurde getrieben, um die<br />

von der Industrie entwickelten US-Meßtechniken sowie<br />

optische Prüfverfahren an die speziellen Gegebenheiten<br />

anzupassen. Für eine auch nur andeutungsweise erschöpfende<br />

Darstellung der bei den wiederkehrenden<br />

Inspektionen erhaltenen Ergebnisse und für die daraus zu<br />

ziehenden Schlußfolgerungen fehlte wohl die erforderliche<br />

Zeit.<br />

4 Brennstoffkreislauf<br />

Von insgesamt 48 Vorträgen befaßten sich 28 Vorträge mit<br />

den wissenschaftlichen Grundlagen, der Technologie und<br />

den Betriebserfahrungen von Brennelementen. Die<br />

übrigen Vorträge verteilten sich auf den Bereich des<br />

Brennstoffkreislaufes. Dazu sind sinngemäß noch praktisch<br />

alle acht Vorträge der Sitzung „Kernwerkstoffe” aus<br />

der Sektion 2 zu rechnen. Die meisten dieser Vorträge<br />

wären fachlich wohl zweckmäßiger mit bei der Sektion 4<br />

einzuordnen gewesen. Der Überblick über diese somit<br />

recht breit angelegte Sektion wurde allerdings durch die<br />

zeitweise bis zu 3 Parallel sitzungen erschwert, überdies<br />

entstand der Eindruck, daß eine Konzentrierung auf<br />

ausgewählte Teilgebiete dieses breiten Gesamt-Themenkreises<br />

innerhalb einer solchen Tagung für einige<br />

Sondergebiete (z. B. Wiederaufbereitung) noch besser den<br />

technisch-wissenschaftlichen Stand hätte hervortreten<br />

lassen. Diese Schwerpunktauswahl müßte dann natürlich<br />

von Jahr zu Jahr wechseln.<br />

An den Sitzungen über das Gebiet Brennelemente für<br />

Wasserreaktoren sollte hervorgehoben werden, daß nunmehr<br />

in zunehmendem Maße Bestrahlungsresultate aus<br />

den in Deutschland nach kommerziellen Maßstäben in<br />

Betrieb befindlichen Kernkraftwerken zur Diskussion<br />

gestellt werden. So fand ein Referat über Nach bestrahlungsuntersuchungen<br />

an Zircaloy-2 als Hüllmaterial<br />

aus den Siedewasserreaktoren VAK und KRB entsprechende<br />

Beachtung. Besonderes Interesse verdienen<br />

auch die referierten Resultate über Ergebnisse zum<br />

thermischen Kriechen von plutoniumhaltigen oxidischen<br />

Brennstoffen.<br />

Auf dem Gebiet der Brennelemente für schnelle<br />

Reaktoren interessieren vor allem die sich verdichtenden<br />

Hinweise auf die möglicherweise abbrandbegrenzende<br />

Bedeutung der chemischen Wechselwirkung zwischen<br />

höher abgebranntem Brennstoff und der Hülle. Die Referate<br />

zum Hüllwerkstoffverhalten (in Sektion 2) und zu<br />

einigen speziellen Brennstoffproblemen brachten weitere<br />

wissenschaftlich interessante Details, die im wesent lichen<br />

bereits bekannte Vorstellungen weiter festigten. Aus<br />

einigen wenigen Referaten über fortschrittliche Hochleistungsbrennstoffe<br />

sind interessante Ansätze für die<br />

weitere erforderliche Entwicklungsarbeit erkennbar.<br />

Der Stand der Entwicklung von Brennelementen für<br />

Hochtemperaturreaktoren ergab sich aus den sehr übersichtlich<br />

angelegten Referaten über die Fortschritte bei der<br />

Brennelementherstellung für den THTR sowie über den<br />

Stand der Bestrahlungserfahrung, insbesondere das Bestrahlungsverhalten<br />

der AVR-Brennelemente, die eine für<br />

den Reaktorbetrieb unerwartet günstige Entwicklung der<br />

Spaltgasfreisetzung aufwiesen. Mehrere Referate über<br />

mehr grundlagenorientierte Untersuchungen zum Spaltproduktverhalten<br />

von HTR-Brennstoffen demonstrieren<br />

allerdings auch den heute noch aufgewendeten Untersuchungsumfang<br />

auf diesem Gebiet.<br />

Unter den Referaten über Brennelemente für andere<br />

Reaktoren beeindruckte bei den modernen MTR-<br />

Elementen der erforderliche fertigungstechnische Aufwand,<br />

bei der Technologie der ITR-Brennelemente die<br />

Vielseitigkeit interessanter Detailprobleme. Unter dem<br />

Titel Brennstoffkreislaui und Anreicherung interessierte<br />

besonders eine ausführliche Analyse gegenwärtiger und<br />

zukünftiger Brennstoffkreislaufkosten von Leichtwasserreaktoren.<br />

Die beiden in Deutschland zur Zeit im Aufbau<br />

befindlichen Verfahren zur Anreicherung – einerseits nach<br />

dem Trenndüsenverfahren, andererseits mittels Zentrifugen<br />

– stehen beide im Stadium der Errichtung von<br />

Anlagen unter wirtschaftlichen Aspekten. Die der Öffentlichkeit<br />

leichter zugänglichen Arbeiten am Trenndüsen<br />

verfahren schilderten den abgeschlossenen Aufbau der<br />

Prototypen der größeren Trennstufen. Seitens des Zentrifugenverfahrens<br />

überwogen mehr theoretische Wirtschaftlichkeitsbetrachtungen.<br />

Auf dem Gebiet der Wiederaufarbeitung konzen trierten<br />

sich die Referate und Diskussionen auf die Probleme beim<br />

Brennstoff schneller Brutreaktoren und von Hochtemperaturreaktoren.<br />

Die halbtechnische Miniaturextraktionsanlage<br />

in Karlsruhe ist nahezu betriebsbereit, die entsprechende<br />

Anlage in Jülich hat noch nicht dieses Stadium<br />

erreicht.<br />

Von den vier Referaten zur Spaltstoffkontrolle dürfte<br />

insbesondere ein Referat von Vertretern der IAEO interessieren,<br />

das die heutige Auffassung dieser Organisation zu<br />

diesem auch mit politischen Problemen belasteten Fragen<br />

hier widerspiegelt. Aus Karlsruhe wurden Vorstellungen<br />

über ein rationelles Überwachungssystem der in Frage<br />

kommenden Anlagen beigesteuert.<br />

Aus der Sitzung Prozeßinstrumentierung und Behandlung<br />

radioaktiver Abfälle interessiert naturgemäß<br />

besonders das zweite Thema. Ein Referat brachte jedoch<br />

Special Topic | A Journey Through 50 Years AMNT<br />

1971 DAtF-KTG-Meeting on Reactors in Bonn


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

auch interessante Aspekte zur automatischen Überwachung<br />

von Aufbereitungsanlagen. Zur Behandlung radioaktiver<br />

Abfälle kann das erfreuliche Resümee gezogen<br />

werden, daß heute ein System von Maßnahmen und Einrichtungen<br />

existiert, das es erlaubt, den bereits in größeren<br />

Mengen anfallenden niedrig und mittel aktiven Abfall zu<br />

verarbeiten und auch bei sehr hohen Ansprüchen an die<br />

Sicherheit einer Endlagerung zuzuführen. Dieses Stadium<br />

ist für den hochaktiven Abfall noch nicht erreicht. Allerdings<br />

rechnet man mit einer erheblichen Steigerung des<br />

Anfalls erst ab etwa 1980.<br />

5 Reaktorkonzepte und<br />

Wirtschaftlichkeitsfragen<br />

In dieser Sektion wurden von 36 eingereichten Vorträgen<br />

19 in das Programm aufgenommen und 16 auf der Tagung<br />

vorgetragen.<br />

Vorherrschend bei den einzelnen Vorträgen war die<br />

Darstellung von Reaktorkonzepten; Fragen der Wirtschaftlichkeit<br />

wurden wenig oder gar nicht behandelt. Alle Ausführungen<br />

bezogen sich auf Reaktoren fortgeschrittener<br />

Bauart bis hin zu dem futuristischen Konzept des Fusionsreaktors.<br />

Einige Vorträge über die Wirtschaftlichkeit, vor<br />

allem der bestehenden Reaktorgeneration, waren anderen<br />

Sektionen zugeordnet, was die Übersicht etwas erschwerte.<br />

Wirtschaftlichkeitsfragen der Kernenergie allgemein<br />

wurden nur in einigen Übersichtsvorträgen angesprochen.<br />

Einen breiten Raum haben naturgemäß die Schnellen<br />

Brutreaktoren und die Hochtemperaturreaktoren eingenommen,<br />

die als fortgeschrittene Reaktorkonzepte in<br />

Deutschland gleichrangig entwickelt werden. Leider sind<br />

beide Vorträge über das Konzept natriumgekühlter Schneller<br />

Brutreaktoren der SNR-Linie ausgefallen, so daß der<br />

Übersichtsvortrag über den „Stand der Entwicklung des<br />

Schnellen natriumgekühlten Reaktors (SNR)” die einzige<br />

Informationsquelle über dieses Reaktorkonzept auf der Tagung<br />

darstellte. Das ist umso bedauerlicher, als die gerade<br />

in den letzten Wochen und Monaten in verstärktem Maße<br />

geführte Diskussion über den Natriumbrüter das große Interesse<br />

an diesem Reaktortyp gezeigt hat; so wurde eine<br />

ausgezeichnete Plattform für sachliche Information nicht<br />

ausreichend genutzt.<br />

Die beiden noch verbleibenden Vorträge über natriumgekühlte<br />

Reaktoren befaßten sich mit für Karbid-Brennstoff<br />

geeigneten Brennelementkonzepten und mit der<br />

Brennelementhandhabung bei dem geplanten Forschungsreaktor<br />

FR3.<br />

Eine große Zuhörerschaft fand K. Wirtz bei seinem<br />

Vortrag über Gasgekühlte Schnelle Brutreaktoren vor.<br />

Wirtz bezog sich auf das inzwischen fertiggestellte<br />

deutsche Memorandum zur Gaskühlung Schneller<br />

Reaktoren und hält danach die 1. Generation des Gasbrüters<br />

(mit Dampfturbine und Oxidbrennstoff in Stahlhülle)<br />

nicht für eine Folgegeneration oder eine sogenannte<br />

„back-up”-Lösung des Natriumbrüters, sondern für einen<br />

Wettbewerber, da dieser in hohem Umfange auf die<br />

bisherigen Entwicklungen beim Natriumbrüter (nukleare<br />

und neutronische Untersuchungen und Brennelemententwicklung)<br />

und beim HTR (Druckgefäß, Gebläse,<br />

Wärmetauscher) zurückgreifen kann.<br />

Zwei weitere Vorträge über gasgekühlte Brutreaktoren<br />

erläuterten das Brennelementkonzept, die Coreauslegung,<br />

das Anlagenkonzept, die Sicherheit und Wirtschaftlichkeit<br />

der im Rahmen des Memorandums untersuchten<br />

Varianten gasgekühlter Reaktoren.<br />

Der Vortrag und die Diskussion über den THTR 300<br />

zeichneten sich durch viele Details aus, von denen einige<br />

sonst im allgemeinen nicht öffentlich genannt werden. So<br />

wurde z. B. die Poenale je Monat Lieferverzug mit<br />

0,75 Mio. DM, die Poenale bei Nichterfüllung des Auftrags<br />

mit 20 Mio. DM beziffert. Die im Juli 1970 ausgesprochene<br />

Bauabsichtserklärung (Letter of Intent) ist seit Dez. 1970<br />

rechtsgültig; mit der Vertragsunterzeichnung wird für Mai<br />

1971 gerechnet. Nach einer zehnmonatigen Bauvorlaufzeit<br />

soll die vertragliche Lieferzeit am 1.10.1971 beginnen<br />

und am 1.11.1976 enden. Die Gesamtkosten einschließlich<br />

Kernbrennstoff, bauzuge höriger Forschungs- und Entwicklungsarbeiten,<br />

Eigen leistungen des Bauherrn sowie<br />

Bauzinsen werden 690 Mio. DM betragen. Neben der<br />

Stromerzeugung werden auch der Erzeugung von Prozeßwärme<br />

aus HTR gute Chancen eingeräumt. Dies gilt<br />

besonders dann, wenn sich der rasche Preisanstieg fossiler<br />

Energieträger fortsetzt. Im Hinblick auf dieses Marktpotential<br />

wurden von Jülicher Seite bereits recht detaillierte<br />

Vorstellungen zur Äthylenerzeugung mittels HTR<br />

vorgetragen.<br />

Erstmals auf einer Reaktortagung wurde über Konzepte<br />

von Incore-Thermionik-Reaktoren (ITR) und Fusionsreaktoren<br />

berichtet. Der ITR kann wegen seiner sehr hohen<br />

Anlagekosten nicht mit kommerziellen Kraftwerken<br />

konkurrieren, er eignet sich jedoch wegen seines geringen<br />

Gewichts und des Fehlens beweglicher Teile zur Energieversorgung<br />

von Satelliten. Die Ausgangsleistung kann von<br />

20 kW el ohne große Mehraufwendungen auf 150 kW el<br />

gesteigert werden. Im Leistungsbereich unter 20 kW el<br />

konkurriert der schnelle Wärmerohr-Thermionik-Reaktor<br />

mit dem ITR; über dieses Reaktorkonzept wurde ebenfalls<br />

berichtet.<br />

Die möglichen Reaktorkonzepte eines Fusionsreaktors<br />

wurden in einer sehr übersichtlichen Zusammenfassung<br />

dargestellt. Dabei wurden auch einige der Probleme<br />

deutlich gemacht, die zur Verwirklichung der kontrollierten<br />

Kernfusion noch gelöst werden müssen. Neben den<br />

Stabilitätsproblemen der Einschließung des Plasmas und<br />

der Leistungsregelung werden es vor allem Materialprobleme<br />

sein, die die Materialprobleme der Spaltreaktoren<br />

weit in den Schatten stellen. Als Beispiel wurde<br />

die Behälterwand des plasma-erfüllten Ringraumes<br />

genannt, die bei einer Temperatur von 1000 °C einer intensiven<br />

Bestrahlung durch Neutronen von 14 MeV bis zu<br />

einer Dosis von einigen 10 23 n/cm 2 ausgesetzt ist.<br />

Zur Lösung der Materialprobleme wurden Bestrahlungen<br />

in möglichst schnellem Neutronenfluß bis zu<br />

hohen Dosen als vordringlich bezeichnet. Eine hohe Dringlichkeit<br />

für die Entwicklung von Fusionsreaktoren ist<br />

jedoch nach Meinung des Berichterstatters nicht gegeben,<br />

da einerseits die Spaltreaktoren (einschl. Brutreaktoren)<br />

den Energiebedarf der Menschheit bis weit über das Jahr<br />

2000 hinaus werden decken können und andererseits ein<br />

wirtschaftlicher Vorteil der Fusionsreaktoren (trotz der<br />

niedrigen Brennstoffkosten) noch nicht in Sicht ist.<br />

In der Diskussion wurde vorgeschlagen, den Lithium-<br />

Brutmantel mit einem U-238-Brutmantel als Neutronenvervielfacher<br />

zu kombinieren. Dabei käme gleichzeitig die<br />

hohe Energieausbeute einer U-238-Spaltung (ca. 200 MeV<br />

gegenüber 17,5 MeV bei einer D-T- Fusionsreaktion) dem<br />

Prozeß zugute.<br />

Berichterstatter<br />

Sektion 1: H. Küsters, Karlsruhe<br />

Sektion 2: F. Scholz, Jülich<br />

Sektion 3: H. J. Lehmann und A. Tietze, Köln<br />

Sektion 4: H. Weidinger, Großwelzheim<br />

Sektion 5: D. Faude und G. Woite, Karlsruhe<br />

111<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

Special Topic | A Journey Through 50 Years AMNT<br />

1971 DAtF-KTG-Meeting on Reactors in Bonn


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

112<br />

Inside<br />

WiN Germany<br />

KTG INSIDE<br />

Highlights zum Jahreswechsel<br />

Die Mitgliederversammlung 2018 von WiN Germany<br />

(Women in Nuclear) fand am Standort der For schungs-<br />

Neutronenquelle Heinz-Maier-Leibnitz (FRM II), auf dem<br />

Gelände des Forschungszentrums in Garching statt.<br />

Prof. Dr. Peter Müller-Buschbaum, wissenschaftlicher<br />

Leiter des FRM II und Dr. Anton Kastenmüller, technischer<br />

Leiter, begrüßten die WiNers herzlich und gaben einen<br />

Überblick über die Geschichte der Forschungsreaktoren<br />

und die Aktivitäten am FRM II. Vier Mitarbeiterinnen in<br />

Führungsfunktionen stellten ihre Funktionen sowie auch<br />

ihre sehr unterschiedlichen Karrierewege vor.<br />

Im Rahmen der Mitgliederversammlung feiert WiN<br />

Germany zudem ihr 10-jähriges Vereinsjubiläum. Dr. Ralf<br />

Güldner, Präsident des DAtF, hielt die Festrede zum Gala-<br />

Abend. Er betonte, dass Frauen eine<br />

wichtige Rolle in der internationalen<br />

Nuklearindustrie sowie bei Forschung<br />

und Entwicklung einnehmen. „Qualifikationen,<br />

Mut und Engagement sind<br />

die Türöffner für die Karrieren von<br />

Frauen in unserer Branche“, betonte er.<br />

Neu gewählt wurde auch der Vorstand,<br />

den jetzt Martina Etzmuß<br />

( Finanzen und Spenden), Irmie<br />

Niemeyer (Bildung), Chantal Greul<br />

(Präsidentin), Karin Reiche (Kommunikation)<br />

und Jutta Jené (Sprecherin)<br />

bilden. Jutta Jené hat ihr Amt als<br />

Präsidentin nach 6 Jahren zur Ver fügung gestellt. „Ich<br />

freue mich sehr, den Vereinsvorsitz an Chantal weitergeben<br />

zu können. Sie wird frischen Wind bringen, was einem<br />

Verein immer gut tut“, hob sie bei ihrer letzten Rede als<br />

| | Dr. Ralf Güldner, Präsident des DAtF, während<br />

seiner Festrede im Rahmen des 10-jährigen<br />

WiN-Jubiläums.<br />

| | Der neu gewählte Vorstand von WiN Germany: Von links: Martina Etzmuß<br />

(Finanzen und Spenden), Irmie Niemeyer (Bildung), Chantal Greul<br />

(Präsidentin), Karin Reiche (Kommunikation), Jutta Jené (Sprecherin).<br />

| | Die schwedischen und deutschen Teilnehmerinnen des bilateralen Treffens<br />

in Ringhals, Schweden.<br />

Präsidentin hervor. Chantal Greul, Projektleitung für die<br />

stoffliche Produktkontrolle von Abfallgebinden bei der Fa.<br />

Safetec, wurde gewählt und freut sich auf ihr Amt. „Ich<br />

möchte den Verein WiN Germany in den kommenden<br />

Jahren noch stärker auf das Thema Kompetenzen ausrichten<br />

und versuchen, insbesondere jungen Frauen bei<br />

uns einen Platz anzubieten. Dazu ist die Weiterführung<br />

des WiN-Preises von besonderer Bedeutung“, betonte sie.<br />

Seit 2011 wird jährlich von WiN Germany e.V. der mit<br />

500 Euro dotierte WiN Germany-Preis für besondere<br />

Leistungen von jungen Frauen in einem Fachgebiet im<br />

nuklearen Bereich verliehen. 2018 ging der Preis, nach<br />

Tonya Vitova (2011) und Emilia von Fritsch (2015), zum<br />

dritten Mal an eine junge Wissenschaftlerin des KIT,<br />

Karlsruhe. Ausgezeichnet wurde Bianca Schacherl für ihre<br />

am INE angefertigte Masterarbeit zu Thema „Structural<br />

investigation of Np interacted with illite by HR-XANES and<br />

EXAFS“. Bianca Schacherl wird ihre Arbeit zudem auf dem<br />

„Young Scientists‘ Workshop“ des 50. AMNT, 7. und 8. Mai<br />

<strong>2019</strong> in Berlin, präsentieren.<br />

Zuvor im Jahr war WiN erneut international unterwegs.<br />

Am 18./19. Oktober 2018 fand das bilaterale Treffen<br />

mit WiN Schweden in Ringhals statt. Seit 2009 treffen sich<br />

regelmäßig schwedische und deutsche WiNerinnen. Am<br />

Kernkraftwerksstandort Ringhals sind vier Blöcke in Betrieb<br />

und es ist einer der wenigen Standorte weltweit mit<br />

sowohl Siede- und Druckwasserreaktoren. Nach der Begrüßungsrede<br />

von Björn Linde, CEO Ringhals, gab es die<br />

Möglichkeit, das Maschinenhaus von Block 4 zu besichtigen.<br />

Der Abend des ersten Tages klang beim gemeinsamen<br />

Networken aus. Fachvorträge über den Rückbau, dort<br />

eingesetzte Verfahren, sowie die Entwicklung der Kernenergie<br />

in Schweden und Deutschland rundeten das Programm<br />

am letzten Tag ab. Ein besonderes Schmankerl: Im<br />

Rahmen eines interaktiven Vortrags zweier schwedischer<br />

Unternehmensberater wurden kleine Gruppen gebildet, in<br />

denen die Bedeutung eines Netzwerkes, der Kerntechnik<br />

und das Wirken in beiden Ländern erörtert wurden. Mit<br />

vielen Ideen, neuen fachlichen Erkenntnissen und tollen<br />

Eindrücken ging es für die deutschen WiNerinnen dann<br />

wieder zurück nach Hause.<br />

KTG Inside


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Holen Sie sich jetzt das KTG-/AMNT-Schnupperpaket<br />

Ein Jahr freie Mitgliedschaft in der Jungen Generation der KTG<br />

und gebührenfreie Teilnahme am 50. Annual Meeting on Nuclear<br />

Technology (AMNT <strong>2019</strong>).<br />

Empfehlen Sie das Schnupperpaket gern an andere Interessenten!<br />

››<br />

Antrag: „Youngster's Package“ auf www.amnt<strong>2019</strong>.com.<br />

113<br />

NEWS<br />

7. – 8. Mai <strong>2019</strong><br />

Estrel Convention Center Berlin, Deutschland<br />

Herzlichen Glückwunsch!<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

März <strong>2019</strong><br />

88 Jahre | 1931<br />

17. Dipl.-Ing. Hans Waldmann, Schwabach<br />

86 Jahre | 1933<br />

30. Dipl.-Phys. Dieter Pleuger, Kiedrich<br />

84 Jahre | 1935<br />

<strong>02</strong>. Dipl.-Ing. Joachim Hospe, München<br />

83 Jahre | 1936<br />

19. Dr. Hermann Hinsch, Hannover<br />

81 Jahre | 1938<br />

14. Dr. Peter Paetz, Bergisch Gladbach<br />

80 Jahre | 1939<br />

01. Prof. Dr. Günter Höhlein, Unterhaching<br />

79 Jahre | 1940<br />

01. Dipl.-Ing. Wolfgang Stumpf, Moers<br />

03. Dipl.-Ing. Eberhard Schomer, Erlangen<br />

18. Dipl.-Ing. Friedhelm Hülsmann, Garbsen<br />

76 Jahre | 1943<br />

16. Dipl.-Ing. Jochen Heinecke, Kürten<br />

75 Jahre | 1944<br />

<strong>02</strong>. Dr. Peter Schnur, Hannover<br />

10. Prof. Dr. Reinhard Odoj, Hürtgenwald<br />

11. Hamid Mehrfar, Dormitz<br />

70 Jahre | 1949<br />

05. Hans Gawor, Bad Honnef<br />

65 Jahre | 1954<br />

13. Dr. Helmut Steiner, Dillingen<br />

60 Jahre | 1959<br />

14. Peter Knoll, Clausthal-Zellerfeld<br />

50 Jahre | 1969<br />

13. Dipl.-Ing. Uta Naumann, Waldshut-<br />

Tiengen<br />

27. Dipl.-Ing. Christoph Mertens, Essen<br />

40 Jahre | 1979<br />

06. Markus Kotzanek, Eggolsheim<br />

<br />

9. Mai 2018 ı Greaeme William Catto<br />

Buch am Erlbach<br />

2. Juni 2018 ı Edwin Rupp<br />

Trier<br />

Juni 2018 ı Dr. Norbert Rauffmann<br />

Babenhausen<br />

28. Juli 2018 ı Dr. Rolf Hüper<br />

Karlsruhe<br />

28. Juli 2018 ı<br />

Dipl.-Phys. Eberhard Ricken<br />

Overath<br />

29. August 2018 ı Dr. Manfred Simon<br />

Hirschberg<br />

9. September 2018 ı<br />

Dr. Gerhard Heusener<br />

Bruchsal<br />

15. Dezember 2018 ı<br />

Dr. H.-Jochen Rütten<br />

Jülich<br />

Die KTG verliert in ihnen langjährige<br />

aktive Mitglieder, denen sie ein<br />

ehrendes Andenken bewahren wird.<br />

Ihren Familien gilt unsere Anteilnahme.<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

Top<br />

The IAEA and climate change:<br />

Adaptation, monitoring and<br />

mitigation<br />

(iaea) Climate change is one of the<br />

biggest environmental challenges<br />

affecting humanity today, causing a<br />

dangerous rise in sea levels and disturbances<br />

to the water cycle and leading<br />

to more frequent extreme weather<br />

events. The IAEA helps Member States<br />

combat climate change on a variety of<br />

fronts: mitigating the production and<br />

release of greenhouse gases (GHGs)<br />

and monitoring and adapting to their<br />

negative effects.<br />

Atmospheric levels of GHGs have<br />

fluctuated for billions of years,<br />

primarily due to natural orbital, solar<br />

and volcanic activities. Since the<br />

middle of the eighteenth century,<br />

anthropogenic factors have steadily<br />

increased the concentration of CO 2 in<br />

the Earth’s atmosphere, from approximately<br />

278 parts per million to over<br />

400 parts per million as of 2016,<br />

according to the United Nations<br />

Framework Convention on Climate<br />

Change. This is in addition to substantial<br />

increases in the concentration<br />

of other potent GHGs, including<br />

methane and nitrous oxide.<br />

“Dealing with the effects of climate<br />

change is not just one country’s<br />

problem – it’s the problem of the<br />

entire planet,” said Martin Krause,<br />

Director at the IAEA’s Department of<br />

Technical Cooperation. “That is why<br />

the IAEA supports its Member States<br />

in enhancing understanding of how<br />

nuclear science and technology can<br />

offset some of the consequences of<br />

climate change.”<br />

Adaptation<br />

Some of the most acute effects of<br />

climatic changes are global increases<br />

in water scarcity and food shortages,<br />

News


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

114<br />

NEWS<br />

| | The IAEA helps countries use nuclear science<br />

and technology to combat climate change.<br />

(Infographic: R. Kenn/IAEA)<br />

the loss of biodiversity and more<br />

frequent climate-induced natural disasters.<br />

Unseasonably high temperatures<br />

in winter and spring, unpredictable<br />

weather and very short rainy<br />

seasons contribute to water scarcity in<br />

many regions. This, in turn, greatly affects<br />

agricultural systems, global food<br />

chains and, in particular, small-scale<br />

farmers and herders.<br />

To help communities and countries<br />

adapt, the IAEA supports activities in<br />

plant breeding, soil and crop management,<br />

livestock production and insect<br />

pest control. For example, Sudan is<br />

using nuclear science and IAEA assistance<br />

to help more than 35 million<br />

people cope with climate change.<br />

Activities include breeding new plant<br />

varieties that are drought and heat<br />

tolerant; setting up and optimizing<br />

irrigation systems that save water<br />

and fertilizer as well as improving<br />

crop yields; and combating diseasecarrying<br />

insects with a nuclear-based<br />

insect pest control method called the<br />

sterile insect technique (SIT).<br />

Monitoring<br />

As the international community works<br />

towards long term solutions to the consequences<br />

of climate change, reliable<br />

data on how GHGs cause the changes<br />

occurring on land, in the oceans and<br />

throughout the atmosphere are critical.<br />

The IAEA uses a variety of nuclear<br />

techniques, pri marily isotopic, to identify<br />

and monitor the risks and threats<br />

associated with GHG emissions, and<br />

then shares that data with Member<br />

States to help further research and<br />

the formulation of sustainable climate<br />

policies. Costa Rica, for example, has<br />

worked with the IAEA to quantify<br />

carbon capture and monitor GHG<br />

emissions from the dairy and agricultural<br />

sectors. Data that Costa Rican<br />

scientists gain from stable isotope<br />

analysers, which help quantify carbon<br />

emissions, facilitate efforts to move<br />

farming towards carbon neutrality.<br />

emissions. The IAEA provides support<br />

to Member States to assess the development<br />

of their energy systems and<br />

helps them study how nuclear energy<br />

could play a role in energy generation.<br />

A well-informed and knowledgeable<br />

group of professionals is essential to<br />

develop and maintain sustainable<br />

national energy policies.<br />

The IAEA is conducting a coordinated<br />

research project with Member<br />

States on how domestic energy<br />

policies can contribute towards<br />

countries’ obligations under the 2015<br />

Paris Agreement on climate change.<br />

Through adaptation to and monitoring<br />

of the adverse consequences of<br />

climate change and the mitigation of<br />

GHG emissions, the IAEA works with<br />

its Member States to preserve and<br />

restore the environment and protect<br />

energy systems from climate-related<br />

weather events and disasters.<br />

| | www.iaea.org<br />

World<br />

Bernard Fontana’s statement<br />

– EPR: the first Generation III+<br />

nuclear reactor enters<br />

commercial operation<br />

(framatome) The Taishan 1 EPR reactor<br />

in China has now entered the commercial<br />

operation phase. Following<br />

the first chain reaction which took<br />

place on June 6, 2018, then successful<br />

connection to the power grid on June<br />

29 and the achievement of 100%<br />

power on October 30, this new milestone<br />

marks the final step of this major<br />

project.<br />

As designer of the EPR, Framatome,<br />

now part of the EDF group, is delighted<br />

to witness the commercial start-up of<br />

the Taishan 1 project, a milestone that<br />

rewards the teams’ sustained efforts<br />

over recent years. I especially thank<br />

our employees around the world for<br />

their unwavering commitment through<br />

this great adventure. I also want to<br />

state how proud I am that we can count<br />

among the people of Framatome, professionals<br />

with such proven expertise<br />

in the design and manufacture of<br />

reactor components, I&C and nuclear<br />

fuel systems, as well as in reactor<br />

construction, commissioning, test and<br />

maintenance. For six decades now, we<br />

have been capitalizing on this experience<br />

for the safe and reliable operation<br />

of our customers’ nuclear reactors<br />

around the world.<br />

Today, Framatome is involved in the<br />

construction and commissioning of six<br />

EPR reactors worldwide: 2 units in<br />

China at Taishan, 1 unit in Finland at<br />

Olkiluoto, 1 unit in France at Flamanville,<br />

and 2 units in the United Kingdom<br />

at Hinkley Point. The company will be<br />

contributing all its expertise as NSSS<br />

specialist to serve future new build EPR<br />

reactor projects alongside EDF.<br />

The EPR reactor, flagship<br />

of the French nuclear industry<br />

The EPR is a “Generation III+” nuclear<br />

reactor, which means that it benefits<br />

from significant technological advances<br />

in terms of nuclear and occupational<br />

safety. Its design incorporates<br />

the operational experience (OPEX)<br />

from around one hundred nuclear<br />

reactor projects built by Framatome<br />

all around the world. The EPR reactor<br />

offers economic benefits for electrical<br />

utility customers, including reduced<br />

generating costs, enhanced fuel use,<br />

reduced waste volumes, increased<br />

operating flexibility, optimized outage<br />

times and improved operating ergonomics<br />

leading to health benefits for<br />

personnel.<br />

The EPR reactor generates a net<br />

electrical power output of 1,650 MW,<br />

making it the largest electrical generating<br />

unit ever built, designed for a<br />

service life of 60 years.<br />

| | www.framatome.com<br />

Towards more sustainable<br />

nuclear energy with<br />

non-electric applications:<br />

Opportunities and challenges<br />

(iaea) There is considerable potential<br />

for increasing the use of excess heat<br />

from electricity generation by nuclear<br />

power plants to desalinate seawater,<br />

produce hydrogen for the heavy industry,<br />

decarbonize the transport sector,<br />

and supply heat to residential and<br />

commercial uses: Nuclear cogeneration<br />

can offer sustainable and economic<br />

solutions for meeting the<br />

increasing demand in heat energy<br />

markets. However, as experts at an<br />

IAEA meeting agreed last week, for<br />

Mitigation<br />

Mitigating climate change is the long<br />

term goal, which requires approaches<br />

and technology that will reduce GHG<br />

| | EPR: Generation III+ nuclear reactor enters commercial operation<br />

News


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

these nuclear co-generation products<br />

to enter the commercial market on a<br />

large scale, several challenges and<br />

barriers have to be overcome.<br />

Representatives from both countries<br />

operating nuclear power plants,<br />

as well as nuclear newcomers, technology<br />

developers and potential customers,<br />

discussed the pros and cons of<br />

non-electric applications of nuclear<br />

energy during the 16 th Dialogue Forum<br />

of the IAEA’s International Project for<br />

Innovative Nuclear Reactors and Fuel<br />

Cycles (INPRO). Since 2010, these fora<br />

have focused on different aspects of<br />

developing sustainable nuclear energy<br />

systems and the related complex relationships<br />

among tech nology suppliers,<br />

customers and other stakeholders.<br />

Participants presented ongoing<br />

cogeneration projects and plans or<br />

considerations in countries embarking<br />

on nuclear power. If such new comer<br />

countries decide to include cogeneration<br />

in their nuclear energy planning,<br />

they should begin planning those<br />

applications right from the beginning,<br />

participants recommended.<br />

“Nuclear cogeneration is very important,<br />

particularly if nuclear power is<br />

to expand much more broadly in energy<br />

markets to meet the need for clean<br />

and sustainable energy, while helping<br />

to mitigate climate change through<br />

avoidance of carbon emissions,” said<br />

Mikhail Chudakov, IAEA Deputy<br />

Director General and Head of the<br />

Department of Nuclear Energy.<br />

Traditionally, the primary focus of<br />

nuclear power has been on electricity<br />

generation. But as early as 1956, the<br />

Calder Hall nuclear power plant in the<br />

UK provided both electricity and process<br />

heat to site facilities. There are<br />

examples in several other countries of<br />

district heating, industrial process heat<br />

and seawater desalination. Despite<br />

these examples, nuclear cogeneration<br />

systems never really took off, for various<br />

economic and regulatory reasons<br />

as well as for lack of public support.<br />

With changes in technology and the<br />

regulatory environment in many countries,<br />

the conditions for cogenerations<br />

have improved substantially.<br />

| | www.iaea.org<br />

European Committee<br />

supports € 2.4 billion budget<br />

for Euratom R&D<br />

(nucnet) The €2.4bn budget proposed<br />

for the 2<strong>02</strong>1-2<strong>02</strong>5 Euratom research<br />

and training programme is proportionate<br />

to its objectives and should<br />

be maintained regardless of Brexit,<br />

the European Economic and Social<br />

Committee said.<br />

In an opinion adopted at its<br />

December plenary session, the committee<br />

said it backed the European<br />

Commission’s proposal on the<br />

Euratom research and training programme<br />

for 2<strong>02</strong>1-2<strong>02</strong>5. The programme<br />

is part of the 2<strong>02</strong>1-2<strong>02</strong>7<br />

Horizon Europe framework programme<br />

for research and innovation<br />

and will run for five years, with a<br />

possible two-year extension.<br />

The committee said the UK’s withdrawal<br />

from the EU should be handled<br />

with the utmost care. “We need to be<br />

very careful if the time comes for the<br />

UK not to be part of the Euratom programme<br />

any longer,” a statement said.<br />

“We have to pay attention in particular<br />

to research already in progress,<br />

shared infrastructure and the social<br />

impact on staff. Working conditions<br />

are a priority, both on British soil and<br />

elsewhere.”.<br />

| | europa.eu<br />

Reactors<br />

Turkey grants ‘Limited Permit’<br />

for Unit 2 at Akkuyu<br />

nuclear station<br />

(nucnet) The Turkish Atomic Energy<br />

Authority has granted Akkuyu Nuclear,<br />

the company building Turkey’s first<br />

commercial nuclear power station, a<br />

limited works permit for the construction<br />

of the station’s second unit,<br />

Rosatom has announced.<br />

Russia’s state nuclear corporation,<br />

which is the major consortium partner<br />

for the project, said the TAEK issued<br />

the permit after a review of documents<br />

submitted by Akkuyu Nuclear.<br />

Rosatom said the documents included<br />

a preliminary safety analysis<br />

report, a probabilistic safety assessment<br />

and “other documents confirming<br />

safety of the power unit”.<br />

Akkuyu Nuclear must now obtain a<br />

construction licence to start pouring<br />

concrete for the foundation slab for<br />

Akkuyu-2, which will mark the formal<br />

start of construction.<br />

In April 2018, Turkey confirmed to<br />

the International Atomic Energy<br />

Agency that construction of Akkuyu-1<br />

had begun.<br />

The IAEA said four units with a<br />

total capacity of 4,800 MW using<br />

Russian VVER technology are planned<br />

for construction.<br />

The four units at the site on the<br />

Mediterranean coast, 500 kilometres<br />

south of Ankara, are scheduled to be<br />

in commercial operation by 2<strong>02</strong>6.<br />

| | www.akkunpp.com<br />

First concrete poured<br />

for Hinkley Point<br />

reactor base<br />

(nucnet) First concrete has been<br />

poured for the first part of the reactor<br />

base at the Hinkley Point C nuclear<br />

power station under construction in<br />

Somerset, England, EDF Energy said<br />

yesterday.<br />

The company said on social media<br />

that workers poured concrete for<br />

the Unit 1 reactor base, which will<br />

provide a solid platform for the reactor<br />

building.<br />

The first 2,000-cubic-metre portion<br />

was poured over 30 hours to a<br />

thickness of 3.2 metres. Four more<br />

pours will follow before the raft will<br />

be complete, scheduled in <strong>2019</strong>, EDF<br />

Energy said.<br />

EDF Energy is building two<br />

Generation III EPR units at Hinkley<br />

Point C. The station is expected to<br />

provide 7% of Britain’s electricity<br />

needs when fully operational.<br />

| | www.edf.com<br />

Company News<br />

Westinghouse announces<br />

initial organizational<br />

changes<br />

(westinghouse) Westinghouse Electric<br />

Company, a global leader in nuclear<br />

technology, fuels and services, today<br />

announced the company will be<br />

implementing the first phase of organizational<br />

changes to enhance focus<br />

on its customer base and to strengthen<br />

its global services and supply chain<br />

management capabilities.<br />

These organizational changes<br />

will strengthen Westinghouse’s sales<br />

and delivery model by aligning<br />

accountability for product and service<br />

delivery with the regions and ensuring<br />

optimized global sourcing. The<br />

company expects to have all phases<br />

of the implementation completed<br />

by the beginning of the third quarter<br />

<strong>2019</strong>.<br />

“Westinghouse has been on a<br />

journey to transform the way in<br />

which we deliver our products and<br />

services to our customers in the<br />

most effective manner that will build<br />

value for the business,” said President<br />

and Chief Executive Officer José<br />

Emeterio Gutiérrez. “The changes<br />

will be a catalyst as we continue to<br />

focus on strengthening the company’s<br />

core business and our global supply<br />

chain, and continuously work toward<br />

a standard of excellence in quality,<br />

safety, client service and innovation.”<br />

115<br />

NEWS<br />

News


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

Operating Results October 2018<br />

116<br />

NEWS<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 722 654 124 5 655 213 260 309 399 96.87 85.89 95.51 84.78 96.49 85.18<br />

OL2 Olkiluoto BWR FI 910 880 745 684 577 6 263 365 250 562 546 100.00 94.51 99.98 93.74 99.88 93.31<br />

KCB Borssele PWR NL 512 484 745 375 201 2 768 365 160 975 284 99.61 75.27 99.61 74.89 98.35 74.21<br />

KKB 1 Beznau 7) PWR CH 380 365 745 283 604 2 <strong>02</strong>4 621 126 770 708 100.00 74.47 100.00 73.89 100.19 72.93<br />

KKB 2 Beznau 7) PWR CH 380 365 745 282 343 2 625 167 133 790 040 100.00 95.68 100.00 95.53 99.74 94.60<br />

KKG Gösgen 7) PWR CH 1060 1010 745 788 210 7 118 799 312 313 386 100.00 92.92 99.99 95.95 99.81 49.83<br />

KKM Mühleberg BWR CH 390 373 745 286 000 2 505 860 126 844 005 100.00 91.41 99.95 90.59 98.43 88.07<br />

CNT-I Trillo PWR ES 1066 1003 745 791 074 6 713 847 245 738 271 100.00 87.40 100.00 87.11 98.97 85.77<br />

Dukovany B1 PWR CZ 500 473 745 369 483 2 948 721 111 579 203 100.00 82.15 100.00 81.67 99.19 80.83<br />

Dukovany B2 PWR CZ 500 473 745 366 765 2 883 752 107 506 290 100.00 80.80 100.00 80.26 98.46 79.05<br />

Dukovany B3 PWR CZ 500 473 745 369 068 3 458 813 106 081 240 100.00 96.85 99.46 96.52 99.08 94.81<br />

Dukovany B4 PWR CZ 500 473 0 0 2 649 692 105 921 433 0 73.83 0 73.49 0 72.63<br />

Temelin B1 PWR CZ 1080 1030 745 798 219 6 287 344 112 768 638 100.00 80.29 99.94 80.00 99.<strong>02</strong> 79.69<br />

Temelin B2 1) PWR CZ 1080 1030 708 764 694 6 177 801 107 667 747 95.03 78.74 94.65 78.55 94.86 78.37<br />

Doel 1 2) PWR BE 454 433 0 0 1 229 715 135 444 462 0 37.01 0 36.99 0 37.11<br />

Doel 2 2) PWR BE 454 433 0 0 1 549 672 133 801 939 0 46.61 0 46.46 0 46.70<br />

Doel 3 PWR BE 1056 1006 745 798 954 2 380 278 253 549 500 100.00 31.35 99.98 30.59 101.17 30.74<br />

Doel 4 2) PWR BE 1084 1033 0 0 5 638 809 260 184 650 0 71.09 0 70.95 0 70.55<br />

Tihange 1 2) PWR BE 1009 962 291 265 903 6 799 173 297 638 048 39.04 93.54 38.70 93.29 35.32 92.53<br />

Tihange 2 2) PWR BE 1055 1008 0 0 5 7<strong>02</strong> 393 254 651 930 0 74.84 0 74.04 0 74.49<br />

Tihange 3 2) PWR BE 1089 1038 0 0 2 332 443 271 227 273 0 29.30 0 29.26 0 29.33<br />

Operating Results October 2018<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 745 928 633 8 467 560 348 659 619 100.00 88.72 92.74 83.39 83.69 78.03<br />

KKE Emsland 4) DWR 1406 1335 745 1 045 658 9 470 174 344 793 457 100.00 93.74 99.99 93.60 99.88 92.31<br />

KWG Grohnde DWR 1430 1360 745 992 864 8 949 793 375 577 372 100.00 91.37 99.97 89.93 92.50 85.19<br />

KRB C Gundremmingen SWR 1344 1288 745 998 164 8 404 075 328 983 968 100.00 88.48 100.00 88.01 99.21 85.23<br />

KKI-2 Isar DWR 1485 1410 745 1 085 989 9 972 082 351 570 405 100.00 94.55 99.97 94.29 97.87 91.72<br />

KKP-2 Philippsburg DWR 1468 14<strong>02</strong> 745 1 <strong>02</strong>3 019 8 935 688 364 103 204 100.00 88.75 99.89 88.57 91.98 82.<strong>02</strong><br />

GKN-II Neckarwestheim 1,2) DWR 1400 1310 0 0 7 914 800 328 037 934 0 79.86 0 79.58 0 77.62<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data for the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

Key enhancements include:<br />

Creation of customer-focused business<br />

units serving the existing nuclear<br />

operating fleet with single points of accountability<br />

for both sales and delivery<br />

for existing nuclear operating plants.<br />

Development of a new business<br />

unit with accountability for key<br />

growth areas related to the specific<br />

stages of plant lifecycle solutions<br />

including new plant delivery; plant<br />

deconstruction, decommissioning<br />

and remediation services; and government<br />

services.<br />

Establishment of an operations<br />

delivery support function to build<br />

Global Supply Chain into a best-inclass<br />

organization that will support the<br />

business units through a robust procurement<br />

organization. This function<br />

will also provide global engineering,<br />

manufacturing and other technical capabilities<br />

in order to ensure our<br />

customers receive the full breadth of<br />

Westinghouse’s global products, innovations<br />

and technical capabilities.<br />

This strengthened business unit<br />

model is a further evolution of Westinghouse’s<br />

operating model. Under<br />

this model, the Chief Operating<br />

Officer role has been restructured as<br />

part of a broader reorganization of the<br />

com pany. As a result, Chief Operating<br />

Officer Mark Marano has elected to<br />

retire.<br />

Commenting on the transition,<br />

Gutiérrez stated, “Mark has done an<br />

outstanding job supporting the company<br />

during his tenure at Westinghouse<br />

and during our Chapter 11<br />

process and beyond, as the Chief<br />

Operating Officer. We thank Mark for<br />

his leadership during this critical time<br />

in Westinghouse’s transformation and<br />

for his service to the industry.”<br />

David Howell will be president of<br />

Americas Operating Plant Services<br />

with continued responsibilities for<br />

commercial execution, with the added<br />

responsibility of delivery. The change<br />

leverages David’s strong operations<br />

background as well as the close relationships<br />

he has built with customers.<br />

Bill Poirier will be president of the<br />

EMEA Operating Plant Services<br />

business unit on an interim basis while<br />

the company conducts an external<br />

search. A well-respected global industry<br />

leader with more than 44 years<br />

with Westinghouse, he has extensive<br />

experience in all aspects of civil<br />

commercial nuclear power. Bill has<br />

supported operating plants in Europe,<br />

News


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

as well the startup of several new<br />

plants in Asia. He has been an instrumental<br />

leader for Westinghouse in<br />

China throughout the company’s<br />

construction and startup of the<br />

world’s first AP1000® nuclear power<br />

plants.<br />

David Durham will be president of<br />

the newly established Plant Solutions<br />

business unit, with accountability for<br />

the development of key growth areas<br />

related to the specific stages of the<br />

commercial nuclear plant lifecycle.<br />

These areas include his existing<br />

responsibilities of new plant delivery<br />

in which Westinghouse continues its<br />

business model by providing technology,<br />

engineering and procurement<br />

services in a deliberative manner,<br />

as well as government services.<br />

David will expand his responsibilities<br />

to include plant deconstruction,<br />

decommissioning and remediation<br />

services.<br />

Pavan Pattada is a new addition<br />

to the Westinghouse leadership team<br />

as executive vice president, Global<br />

Operations Services. Most recently a<br />

senior executive with Eaton Corporation,<br />

he will lead the Global Operations<br />

Services organization with scope<br />

including Global Supply Chain,<br />

Nuclear Fuel, Global Components<br />

Manufacturing, Global Instrumentation<br />

and Control and Global Engineering<br />

Services. Under Pavan’s leadership,<br />

these areas will become global<br />

operations and excellence hubs built<br />

to support the business units in their<br />

delivery of Westinghouse’s products<br />

and services around the world while<br />

reducing costs.<br />

| | www.westinghousenuclear.com<br />

Market data<br />

(All information is supplied without<br />

guarantee.)<br />

Nuclear Fuel Supply<br />

Market Data<br />

Information in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data for the formerly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

2014<br />

pp<br />

Uranium: 28.10–42.00<br />

pp<br />

Conversion: 7.25–11.00<br />

pp<br />

Separative work: 86.00–98.00<br />

Uranium<br />

Prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Yearly average prices in real USD, base: US prices (1982 to1984) *<br />

Year<br />

* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />

Separative work: Spot market price range [USD*/kg UTA]<br />

180.00<br />

160.00<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Jan. 2012<br />

* Actual nominal USD prices, not real prices referring to a base year.<br />

Jan. 2013<br />

Year<br />

Jan. 2014<br />

Jan. 2015<br />

2015<br />

pp<br />

Uranium: 35.00–39.75<br />

pp<br />

Conversion: 6.25–9.50<br />

pp<br />

Separative work: 58.00–92.00<br />

2016<br />

pp<br />

Uranium: 18.75–35.25<br />

pp<br />

Conversion: 5.50–6.75<br />

pp<br />

Separative work: 47.00–62.00<br />

2017<br />

pp<br />

Uranium: 19.25–26.50<br />

pp<br />

Conversion: 4.50–6.75<br />

pp<br />

Separative work: 39.00–50.00<br />

2018<br />

January to June 2018<br />

pp<br />

Uranium: 21.75–24.00<br />

pp<br />

Conversion: 6.00–9.50<br />

pp<br />

Separative work: 35.00–42.00<br />

February 2018<br />

pp<br />

Uranium: 21.25–22.50<br />

pp<br />

Conversion: 6.25–7.25<br />

pp<br />

Separative work: 37.00–40.00<br />

March 2018<br />

pp<br />

Uranium: 20.50–22.25<br />

pp<br />

Conversion: 6.50–7.50<br />

pp<br />

Separative work: 36.00–39.00<br />

April 2018<br />

pp<br />

Uranium: 20.00–21.75<br />

pp<br />

Conversion: 7.50–8.50<br />

pp<br />

Separative work: 36.00–39.00<br />

May 2018<br />

pp<br />

Uranium: 21.75–22.80<br />

pp<br />

Conversion: 8.00–8.75<br />

pp<br />

Separative work: 36.00–39.00<br />

June 2018<br />

pp<br />

Uranium: 22.50–23.75<br />

pp<br />

Conversion: 8.50–9.50<br />

pp<br />

Separative work: 35.00–38.00<br />

Jan. 2016<br />

) 1<br />

Jan. 2017<br />

Jan. 2018<br />

2015<br />

Jan. <strong>2019</strong><br />

Source: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />

2018<br />

Uranium prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

) 1<br />

| | Uranium spot market prices from 1980 to 2018 and from 2008 to 2018. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />

July 2018<br />

pp<br />

Uranium: 23.00–25.90<br />

pp<br />

Conversion: 9.00–10.50<br />

pp<br />

Separative work: 34.00–38.00<br />

August 2018<br />

pp<br />

Uranium: 25.50–26.50<br />

pp<br />

Conversion: 11.00–14.00<br />

pp<br />

Separative work: 34.00–38.00<br />

September 2018<br />

pp<br />

Uranium: 26.50–27.50<br />

pp<br />

Conversion: 12.00–13.00<br />

pp<br />

Separative work: 38.00–40.00<br />

October 2018<br />

pp<br />

Uranium: 27.30–29.00<br />

pp<br />

Conversion: 12.00–15.00<br />

pp<br />

Separative work: 37.00–40.00<br />

| | Source: Energy Intelligence<br />

www.energyintel.com<br />

Cross-border Price<br />

for Hard Coal<br />

Cross-border price for hard coal in<br />

[€/t TCE] and orders in [t TCE] for<br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

2012: 93.<strong>02</strong>; 27,453,635<br />

2013: 79.12, 31,637,166<br />

2014: 72.94, 30,591,663<br />

2015: 67.90; 28,919,230<br />

2016: 67.07; 29,787,178<br />

2017: 91.28, 25,739,010<br />

2018<br />

I. quarter: 89.88; 5,838,003<br />

II. quarter: 88.8258; 4,341,359<br />

| | Source: BAFA, some data provisional<br />

www.bafa.de<br />

Jan. 2012<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

Jan. 2013<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Source: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> <strong>2019</strong><br />

| | Separative work and conversion market price ranges from 2008 to 2018. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.<br />

) 1<br />

Jan. 2012<br />

Jan. 2013<br />

Jan. 2014<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2018<br />

Jan. <strong>2019</strong><br />

Jan. <strong>2019</strong><br />

117<br />

NEWS<br />

News


<strong>atw</strong> Vol. 64 (<strong>2019</strong>) | Issue 2 ı February<br />

118<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

journalist who has<br />

covered the nuclear<br />

industry for the past<br />

20 years and is<br />

currently editor-in-chief<br />

of UK-based Energy<br />

Storage Publishing.<br />

Links to reference<br />

sources:<br />

World Energy Outlook<br />

2018 – https://<br />

bit.ly/2PW2Ub6<br />

The Nuclear Power<br />

Dilemma: Declining<br />

Profits, Plant Closures,<br />

and the Threat of<br />

Rising Carbon<br />

Emissions – https://<br />

bit.ly/2AN1zup<br />

World Nuclear News<br />

report – https://<br />

bit.ly/2D9ZmLn<br />

Nuclear Has Every Reason to Plan<br />

for a New Energy Horizon<br />

John Shepherd<br />

The global electricity sector is experiencing its most dramatic transformation since its creation more than a century<br />

ago. That was part of the conclusion reached by the International Energy Agency (IEA) in a fascinating report recently<br />

released by the Paris-based agency.<br />

On the face of it, supporters of expanding the role of<br />

nuclear energy would not have found much to cheer about<br />

in the World Energy Outlook 2018 report – although I<br />

should stress at the outset the report was fair and balanced.<br />

One might conclude, however, the report offered a<br />

gloomy outlook for nuclear. For example, the IEA forecast<br />

that the share of generation from nuclear plants – the<br />

second-largest source of low-carbon electricity today after<br />

hydropower – would remain at around 10 % by 2040.<br />

The report said global electricity generation would increase<br />

by some 60 % (15,000 TWh) between 2017 and 2040<br />

under the IEA’s ‘new policies scenario’. “Fossil fuels remain<br />

the major source for electricity generation, but their share<br />

falls from around two-thirds today to under 50 % by 2040.”<br />

Coal and renewables will “switch their position in the<br />

power mix”, according to the report. “The share of coal<br />

declines from around 40 % today to a quarter in 2040 while<br />

that of renewables grows from a quarter to just over 40 %<br />

over the same period. The share of natural gas remains<br />

steady at over 20 %.”<br />

Hydropower remains the largest low-carbon source of<br />

electricity in the new policies scenario, contributing 15 %<br />

of total generation in 2040. Renewables altogether account<br />

for more than 70 % of the increase in electricity generation.<br />

Solar PV costs are projected to fall by more than 40 %<br />

to 2040, “underpinning a nine-fold growth in solar PV<br />

generation, mainly in China, India and the US”.<br />

Meanwhile, some two-thirds of today’s nuclear fleet in<br />

advanced economies is more than 30 years old. And as the<br />

IEA report points out, decisions to extend, or shut down,<br />

this capacity “will have significant implications for energy<br />

security, investment and emissions”.<br />

The IEA sees China becoming the country with the<br />

largest generation of nuclear-based electricity as the<br />

nuclear fleet in advanced economies ages.<br />

However, as the IEA itself acknowledged, “the world is<br />

gradually building a different kind of energy system, but<br />

cracks are visible in the key pillars”. Those pillars include<br />

affordability (think falling PV and wind costs but climbing<br />

oil prices). On reliability, risks to oil and gas supply remain<br />

(as recent events in Venezuela show). There is also the<br />

question of sustainability. According to the IEA, after three<br />

flat years, global energy-related carbon dioxide (CO 2 )<br />

emissions rose by 1.6 % in 2017 “and the early data suggest<br />

continued growth in 2018”.<br />

I would argue it is these ‘key pillars’ that still offer<br />

the best chance for a new generation of nuclear power<br />

generating facilities through to 2040 and beyond.<br />

Some of those nations that have not had the ‘luxury’ of<br />

abundant supplies of clean electricity to drive economic<br />

growth surely agree. Take for example India. As World<br />

Nuclear News has reported, India currently expects to bring<br />

21 new nuclear power reactors with a combined generating<br />

capacity of 15,700 MWe into operation by 2031.<br />

In addition, the nuclear industry has every reason to<br />

look beyond the horizon of the next 20 years and think<br />

about how technological developments can play in role in<br />

advancing a new generation of nuclear.<br />

New initiatives that hold promise include a proposed<br />

US pilot programme to produce high-assay low-enriched<br />

uranium (HALEU) in hopes of accelerating the next<br />

generation of nuclear reactors.<br />

The US Department of Energy (DOE) issued a notice of<br />

intent in January <strong>2019</strong> to invest in the pilot project.<br />

According to the president and CEO of the Nuclear Energy<br />

Institute, Maria Korsnick, the move “demonstrates<br />

continued confidence in the success of the next generation<br />

of advanced nuclear reactors and for new fuel options for<br />

the existing fleet”.<br />

In terms of sustainability, nuclear still has everything<br />

going for it. The world’s supply of uranium is more than<br />

adequate to meet projected requirements for the foreseeable<br />

future, regardless of the role that nuclear energy<br />

ultimately plays in meeting future electricity demand and<br />

global climate objectives, according to the main findings of<br />

the latest edition of Uranium 2018: Resources, Production<br />

and Demand, also known as the ‘Red Book’.<br />

However, the Red Book, which is jointly prepared every<br />

two years by the Nuclear Energy Agency and the International<br />

Atomic Energy Agency, said significant investment<br />

and technical expertise would be required to ensure these<br />

uranium resources can be brought into production in a<br />

timely manner, including from mines currently under care<br />

and maintenance.<br />

The world’s identified uranium resources are reported<br />

to be 6,142,200 tonnes of uranium metal (tU), which can<br />

be recovered at a cost of $ 130 per kilogramme or less.<br />

“These are recoverable, reasonably assured and inferred<br />

resources and this represents an increase of 7.4 % on the<br />

total reported in 2016,” the Red Book said. However, the<br />

publication cautioned that while some of these increases<br />

are due to new discoveries, the majority results from<br />

re-evaluations of previously identified uranium resources<br />

– and “strong market conditions will be fundamental to<br />

attracting the required investment to the industry”.<br />

And beyond the facts that support the case for nuclear,<br />

even the hardest hearts previously set against the technology<br />

are melting. Towards the end of 2018, the Union of<br />

Concerned Scientists (UCS) overturned its longstanding<br />

opposition by issuing a report that urged federal and state<br />

policies in the US to help preserve safely operating nuclear<br />

plants that were at risk of premature closure.<br />

The UCS has seen the light – and said its call was<br />

necessary to ensure nuclear’s low-carbon energy was not<br />

replaced by fossil fuels.<br />

The shift in position of the UCS is every bit as important<br />

as when environmentalist James Lovelock upset the Green<br />

movement by coming out in favour of nuclear energy.<br />

Nuclear can clearly still win over hearts and minds on its<br />

merits and record. It deserves investment to fulfil its<br />

essential role as part of a clean energy solution for the<br />

future.<br />

Author<br />

John Shepherd<br />

Nuclear Today<br />

Nuclear Has Every Reason to Plan for a New Energy Horizon ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Atomrecht 360° kompakt<br />

Seminar:<br />

Atomrecht – Was Sie wissen müssen<br />

Seminarinhalte<br />

ı<br />

ı<br />

ı<br />

ı<br />

Einführung: Was muss ich wissen, wenn es um Atomrecht geht?<br />

Atomrecht 360° im Schnelldurchlauf<br />

ı Atomverwaltung<br />

ı Neuorganisation der Entsorgung<br />

ı Genehmigungsverfahren<br />

Vertrags- und Haftungsrecht im Nuklearbereich<br />

Nuklearhaftung<br />

Seminarziel<br />

In dem Seminar werden die wichtigsten Bereiche des deutschen Atomrechts<br />

(mit ausgewählten Verbindungen ins EU- und internationale Atomrecht) im Überblick<br />

behandelt sowie das Vertrags- und Haftungsrecht im Bereich Atomrecht beleuchtet.<br />

Termin<br />

4. Juni <strong>2019</strong><br />

09:00 bis 17:00 Uhr<br />

Veranstaltungsort<br />

Geschäftsstelle der INFORUM<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Teilnahmegebühr<br />

898,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Zielgruppe<br />

ı<br />

Fach- und Führungskräfte, Projektleiter und -mitarbeiter, Techniker, Energiewirtschaftler,<br />

Öffentlichkeitsarbeiter sowie Juristen anderer Fachbereiche<br />

Maximale Teilnehmerzahl: 12 Personen<br />

Referenten<br />

Dr. Christian Raetzke | Rechtsanwalt Leipzig<br />

Akos Frank LL. M. (SULS Boston) | Experte für Handelsrecht, Group Senior Legal Counsel, NKT A/S;<br />

Referent der OECD NEA International School of Nuclear Law<br />

Wir freuen uns auf Ihre Teilnahme!<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

seminare@kernenergie.de<br />

Bei Fragen zur Anmeldung<br />

rufen Sie uns bitte an oder<br />

senden uns eine E-Mail.


Bewerben Sie sich jetzt<br />

für das<br />

KTG-Scholarship<br />

www.amnt<strong>2019</strong>.com<br />

7. – 8. Mai <strong>2019</strong><br />

Estrel Convention Center Berlin, Deutschland<br />

www.unserejahrestagung.de<br />

#50AMNT<br />

In Deutschland führend<br />

– international einzigartig<br />

Profitieren Sie von der Expertise und<br />

dem Austausch mit der Community und unterstützen<br />

Sie Ihre 50. Jahrestagung Kerntechnik als:<br />

› Fachbesucher<br />

› Aussteller<br />

› Sponsor<br />

Registrieren Sie sich jetzt<br />

› www.amnt<strong>2019</strong>.com<br />

Key Topics<br />

Outstanding Know-How & Sustainable Innovations<br />

Enhanced Safety & Operation Excellence<br />

Decommissioning Experience & Waste Management Solutions<br />

Medien Partner<br />

Unsere Jahrestagung – das Original seit 50 Jahren.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!