15.07.2019 Views

atw - International Journal for Nuclear Power | 06/07.2019

The atw reports on developments and trends in all major areas of nuclear power technology and the nuclear power industry. The international topicality and competence of its coverage make the atw monthly a valuable source of information and, in this way, also an important aid in decision making. Its rich background of reporting, and the contributions by competent authors make atw a valueable source of information.

The atw reports on developments and trends in all major areas of nuclear power technology and the nuclear power industry. The international topicality and competence of its coverage make the atw monthly a valuable source of information and, in this way, also an important aid in decision making. Its rich background of reporting, and the contributions by competent authors make atw a valueable source of information.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

nucmag.com<br />

2019<br />

6/7<br />

The Economic<br />

Potential of SMRs<br />

SMRs – Overview on<br />

<strong>International</strong> Developments<br />

and Safety Features<br />

iMAGINE – A Disruptive<br />

Change to <strong>Nuclear</strong><br />

ISSN · 1431-5254<br />

24.– €


Media Partner<br />

Save the Date<br />

www.amnt2020.com<br />

#51AMNT<br />

5 – 6 May 2020<br />

Berlin, Germany


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Crux of the Matter – Innovation<br />

Dear reader, The current debate on the topic of energy in many European countries is a lot of things: colourful,<br />

shrill, on Fridays, but certainly not one thing: fact-based. Not that every decision in our lives has to follow a quasi<br />

technocratic decision-making process. But it is enough if such an important topic <strong>for</strong> our society, indeed <strong>for</strong> the world as<br />

a whole, how the future energy supply is to be decided is to appear with colourful hair on web-television or to<br />

demonstratively go out onto the streets on Fridays? Where is the debate on the content of the question of what the future<br />

of our energy supply could look like? Where are the theses and antitheses to the individual energy sources? Where is the<br />

“discourse” that has been repeatedly demanded <strong>for</strong> decades by today's demonstrations – at least the discourse on<br />

“­conventional” energy supply, which has been pushed into an ongoing justification loop by clever public influence, in<br />

which facts can hardly be placed?<br />

315<br />

EDITORIAL<br />

In short, there is no discernible will today, neither in the<br />

discussion nor in the public debate, to shape the future of<br />

energy supply with laws largely given by nature. It<br />

may sound almost absurd, but the trans<strong>for</strong>mation of<br />

energy systems, which has been praised as ecologically<br />

unobtainable in Germany, is currently failing because of<br />

nature itself. Politicians may think about changing<br />

Kirchhoff's laws of electrical engineering by decree or even<br />

repealing them in order to solve electricity transport<br />

problems, but it is becoming ever clearer that nature's<br />

originally restrictive requirements <strong>for</strong> industrial development,<br />

laid down in the well-known work “The Limits to<br />

Growth”, will limit the technologies of energy system<br />

trans<strong>for</strong>mation. Donella and Dennis Meadows and their<br />

colleagues at the Jay Wright Forresters Institute of<br />

Systems Dynamics had presented the results of their<br />

studies in 1972. The basis was a system analysis and<br />

computer simulations of various scenarios of a “world<br />

model”. The five sub-areas examined were industrialisation,<br />

population growth, malnutrition, exploitation<br />

of raw material reserves and destruction of habitats.<br />

­Essentially, the exponential <strong>for</strong>m of the progressions <strong>for</strong><br />

these central factors of our present time were and are the<br />

basis of predicted collapse scenarios that cast doubt on the<br />

industrial societies and even on the survival of mankind.<br />

However, although it was computer models that certainly<br />

calculated correctly, their functional relationships and<br />

boundary conditions were ultimately determined by<br />

­humans. It is almost paradoxical that <strong>for</strong> decades the<br />

environmental movement based its argumentation on the<br />

results of what was actually high-tech electronics, which it<br />

vehemently rejected elsewhere or even questioned in<br />

principle. Looking back, it is of course always easy to refer<br />

to errors in studies with predictions. These appear in<br />

science. Even in today's world of high-per<strong>for</strong>mance<br />

computers, science is not free of errors and science must<br />

not end with irreversible statements even today, especially<br />

when doubts are justified and central questions of our lives<br />

are concerned. Nor can science be done by voting. Galileo<br />

Galilei certainly had more than 97% of the science of that<br />

time statistically against himself during his lifetime, but he<br />

was right; the sun is in the centre and the earth moves<br />

around it.<br />

The main mistake <strong>for</strong> the “world models” of the limits of<br />

growth was that the authors had <strong>for</strong>gotten one thing: man<br />

and his ability to adapt and, above all, to be innovative,<br />

especially when faced with important challenges.<br />

And if the protagonists here see nuclear energy at the<br />

end of its development, it must be said that nuclear energy<br />

is actually only at the beginning of its development.<br />

<strong>Nuclear</strong> energy today, with its 450 nuclear power plants<br />

and a share of around 11 % of electricity generation worldwide,<br />

is dominated by light water reactor technology.<br />

These techniques are mature, both in terms of reliable<br />

operation and economic viability. The latter may seem<br />

doubtful in view of the some considerable delays in<br />

the construction of several current new plants, but will<br />

cerntainly not apply to future projects. In this respect, one<br />

can consider the “old” countries that used nuclear energy,<br />

<strong>for</strong> ­example the last nuclear power plants of the “convoy<br />

line” to go into operation in Germany. This proven<br />

technology will certainly continue to dominate in the<br />

coming decades with its so-called Generation III+ systems.<br />

In view of current studies on the technical service life and<br />

safety assessment of plants of the II. and III. generation<br />

in operation over 60 years, these plants will certainly<br />

contribute to providing energy well into this century.<br />

The future potential of nuclear energy then lies in its<br />

ability to innovate. This is due to their energy density.<br />

In view of the essential factor of the world's borders, the<br />

consumption of resources as a whole, nuclear energy is<br />

the first choice, especially in view of the concept of<br />

sustainability, which is overused in some places. And<br />

nuclear energy can do much more than just contribute<br />

to the supply of electricity. If sector coupling is to succeed<br />

in the context of an “energy turnaround”, the plant<br />

­engineering expenditure <strong>for</strong> primary energies must not<br />

grow immeasurably. <strong>Power</strong>-2-X, hydrogen or methanol<br />

supply, low-emission steel or basic material production<br />

require a reliable basic supply – e.g. by nuclear energy in<br />

plants with high capacities such as today predominantly or<br />

perhaps rather plants of smaller capacity at many locations.<br />

Whoever wants to advance our future energy supply<br />

will fail with bold and simple demands – the world is<br />

simply too big and too different, innovations will prevail,<br />

not irreversible bans.<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

Editorial<br />

Crux of the Matter – Innovation


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

EDITORIAL 316<br />

Des Pudels Kern – Innovation<br />

Liebe Leserin, lieber Leser, die aktuell in vielen europäischen Staaten zu beobachtende Auseinandersetzung<br />

mit dem Thema Energie ist vieles: bunt, schrill, freitags, aber eines sicherlich nicht: Faktenbasiert. Nicht, dass jede<br />

Entscheidung in unserem Leben einer quasi technokratischen Entscheidungskette folgen muss. Aber reicht es, wenn<br />

über ein so wichtiges Thema für unsere Gesellschaft, ja für die Welt insgesamt, wie über die zukünftige Energieversorgung<br />

entschieden werden soll, mit bunten Haaren im Ersatzfernsehen aufzutreten oder freitags demonstrierend<br />

auf die Straße zu gehen? Wo ist noch die inhaltliche Auseinandersetzung mit der Frage, wie die Zukunft unserer<br />

Energieversorgung aussehen kann? Wo sind die Thesen und Antithesen zu den einzelnen Energieträgern? Wo ist der<br />

über Jahrzehnte auf Demonstrationen immer wieder ge<strong>for</strong>derte „Diskurs“ – zumindest der zur „konventionellen“<br />

Energieversorgung, die durch geschickte Lenkung in der Öffentlichkeit in eine andauernde Rechtfertigungsschleife<br />

gedrängt ist, in der sich Fakten kaum platzieren lassen?<br />

Kurzum, es gibt heute weder die Diskussion noch in der<br />

öffentlichen Auseinandersetzung einen erkennbaren<br />

Willen, mit weitgehend von der Natur her gegebenen<br />

Gesetzmäßigkeiten die Zukunft der Energieversorgung zu<br />

gestalten. Es mag fast absurd klingen, aber die als ökologisch<br />

nicht zur Disposition stehende und in Deutschland<br />

gepriesene Energiewende scheitert derzeit an eben dieser<br />

Natur selbst. Politiker mögen darüber nachdenken, zur<br />

Lösung von Stromtransportproblemen die Kirchhoffschen<br />

Gesetze der Elektrotechnik per Dekret zu ändern oder gar<br />

außer Kraft zu setzen, aber immer deut licher wird, dass die<br />

ursprünglich die industrielle Ent wicklung beschrän kenden<br />

Vorgaben der Natur, nieder gelegt im bekannten Werk „Die<br />

Grenzen des Wachstums“, auch die Technologien der<br />

Energiewende begrenzen werden. Donella und Dennis<br />

Meadows sowie deren Mitarbeiter am Jay Wright Forresters<br />

Institut für Systemdynamik hatten die Ergeb nisse ihrer<br />

Studien im Jahr 1972 vorgestellt. Grundlage waren eine<br />

Systemanalyse und Computersimulationen verschiedener<br />

Szenarien eines „Weltmodells“. Untersucht wurden die fünf<br />

Teilbereiche Industrialisierung, Bevöl kerungswachstum,<br />

Unterernährung, Ausbeutung von Rohstoffreserven und<br />

Zerstörung von Lebensraum. ­Wesentlich die exponentielle<br />

Form der Verläufe für diese zentralen Faktoren unserer<br />

Gegenwart waren und sind Grundlage von prognostizierten<br />

Zusammenbruch-Szenarien, die die Industriegesellschaften<br />

und sogar ein Überleben der Menschheit in Zweifel stellten.<br />

Doch es waren nur Computermodelle – sicherlich korrekt<br />

berechnet, aber letztendlich wurden ihre funk tionalen<br />

Zusammenhänge sowie Randbedingungen durch Menschen<br />

bestimmt. Fast ist es schon paradox, dass die Umweltbewegung<br />

über Jahrzehnte ihre Argumentation auf Ergebnisse<br />

einer hochtechnisierten Elek tronik gestützt hat, die sie<br />

andernorts vehement ablehnte oder auch grundsätzlich in<br />

Zweifel zog. Natürlich ist es rück blickend immer einfach,<br />

auf Fehler von Studien mit Vorhersagen zu ver weisen. Diese<br />

treten in der Wissenschaft naturgemäß auf. Wissenschaft ist<br />

auch in der heutigen Zeit der Hoch leistungscomputer nicht<br />

frei von Fehlern und Wissenschaft darf auch heute nicht mit<br />

unumkehrbaren Aussagen enden, insbesondere dann, wenn<br />

Zweifel angebracht sind und zentrale Fragen unseres Lebens<br />

betroffen sind. Auch kann Wissenschaft nicht durch<br />

Abstimmungen erfolgen. Galileo Galilei hatte zeit seines<br />

Lebens sicherlich mehr als 97 % der damaligen Wissenschaft<br />

gegen sich und doch recht; die Sonne steht im<br />

Mittelpunkt und die Erde bewegt sich um diese herum.<br />

Der wesentliche Fehler für die „Weltmodelle“ der<br />

Grenzen des Wachstums war, dass die Autoren eines<br />

vergessen hatten: den Menschen und seine Fähigkeit,<br />

sich anzupassen und vor allem innovativ zu sein, vor<br />

allem dann, wenn er sich drängenden Heraus<strong>for</strong>derungen<br />

stellen muss.<br />

Und wenn hier einige Protagonisten die Kernenergie<br />

am Ende ihrer Entwicklung sehen, so ist dem entgegenzuhalten,<br />

dass sich die Kernenergie tatsächlich erst am Anfang<br />

ihrer Entwicklung befindet.<br />

Die Kernenergie heute mit ihren 450 Kernkraftwerken<br />

und einem Anteil an der Stromerzeugung weltweit von<br />

rund 11 % wird dominiert von der Leichtwasserreaktortechnik.<br />

Diese Technik ist ausgereift, sowohl was ihren zuverlässigen<br />

Betrieb betrifft, als auch was ihre Wirtschaftlichkeit<br />

angeht. Letzteres mag angesichts teils erheblicher<br />

Verzögerungen beim Bau einzelner Neuanlagen zweifelhaft<br />

erscheinen, ist aber nicht die Regel. Es war auch nicht<br />

die Regel in den „alten“ Kernenergie nutzenden Ländern,<br />

schaut man beispielsweise auf die letzten in Deutschland in<br />

Betrieb gegangenen Kernkraftwerke der „Konvoi-Linie“.<br />

Diese bewährte Technologie wird sicherlich in den<br />

kommenden Jahrzehnten mit ihren sogenannten Generation-III+-Anlagen<br />

weiterhin dominierend sein. Angesichts<br />

aktueller Studien zur technischen Lebensdauer und<br />

sicherheitstechnischen Bewertung von in Betrieb befindlichen<br />

Anlagen der II. und III. Generation über 60 Jahre hinaus,<br />

werden diese Anlagen sicherlich dazu beitragen,<br />

Energie bis weit in dieses Jahrhundert hinein zur Verfügung<br />

zu stellen.<br />

Das Zukunftspotenzial der Kernenergie liegt darüber<br />

hinaus noch in ihrer Innovationsfähigkeit, begründet in<br />

ihrer hohen Energiedichte. Mit Blick auf den wesentlichen<br />

Faktor der Grenzen des Wachstums, dem Ressourcenverbrauch<br />

insgesamt, ist die Kernenergie eine gute Wahl.<br />

Und die Kernenergie kann noch viel mehr als nur zur<br />

Stromversorgung beizutragen. Wenn Sektorkoppelung im<br />

Rahmen einer „Energiewende“ gelingen soll, darf der<br />

anlagen technische Aufwand für die Primärenergien nicht<br />

ins Unermessliche wachsen. <strong>Power</strong>-2-X, Wasserstoff- oder<br />

Methanolbereitstellung, emissionsarme Stahl- oder Grundstoffproduktion<br />

benötigen eine verlässliche energetische<br />

Grundver sorgung – z.B. durch die Kernenergie aus<br />

leistungs starken zentralen Anlagen wie heute vorwiegend<br />

oder vielleicht künftig aus Anlagen kleinerer Leistung an<br />

vielen Standorten.<br />

Wer unsere zukünftige Energieversorgung voranbringen<br />

will, der wird mit plakativen und einfachen<br />

Forderungen scheitern – dafür ist die Welt einfach zu groß<br />

und zu verschieden. Innovationen werden sich durchsetzen,<br />

nicht unumkehrbare Verbote.<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

Crux of the Matter – Innovation


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 17.09.2019<br />

10.03.2020<br />

Berlin<br />

Atomrecht – Ihr Weg durch Genehmigungs- und<br />

Aufsichtsverfahren<br />

Atomrecht – Was Sie wissen müssen<br />

RA Dr. Christian Raetzke 22.10.2019<br />

18.02.2020<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

Berlin<br />

07.11.2019 Berlin<br />

3 Kommunikation und Politik<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs –<br />

Themen und Formate<br />

Dr. Nikolai A. Behr 05.11. - <strong>06</strong>.11.2019 Berlin<br />

13.11. - 14.11.2019 Salzgitter<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

3 <strong>Nuclear</strong> English<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

Dr. Stefan Kirsch<br />

RA Dr. Christian Raetzke<br />

10.09. - 11.09.2019<br />

15.10. - 16.10.2019<br />

13.11. - 14.11.2019<br />

Berlin<br />

24.09. - 25.09.2019 Berlin<br />

Advancing Your <strong>Nuclear</strong> English (Aufbaukurs) Angela Lloyd 18.09. - 19.09.2019 Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Veränderungsprozesse gestalten – Heraus <strong>for</strong>derungen<br />

meistern, Beteiligte gewinnen<br />

Erfolgreicher Wissenstransfer in der Kerntechnik –<br />

Methoden und praktische Anwendung<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

26.11. - 27.11.2019 Berlin<br />

24.03. - 25.03.2020 Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

318<br />

Issue 6/7 | 2019<br />

June/July<br />

CONTENTS<br />

Contents<br />

Crux of the Matter – Innovation E/G 315<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Study Shows ‘Widespread Economic Benefits’<br />

of Europe’s <strong>Nuclear</strong> Energy Industry 320<br />

Did you know...? . . . . . . . . . . . . . . . . . . . . . . . . . . . 321<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322<br />

AMNT 2019<br />

Opening Address 323<br />

Key Note Speech 324<br />

Best Paper: Simulation of Multi-compartment<br />

Hydrogen Deflagration Test HD-36 with COCOSYS 327<br />

Impressions 330<br />

Spotlight on <strong>Nuclear</strong> Law<br />

The New Radiation Protection Law (III) –<br />

Supervisor and Commissioner G 332<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Economic Potential of SMRs 333<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments<br />

and Safety Features 336<br />

Targeting Innovation at Cost Drivers – How the UK Can Deliver<br />

Low Cost, Low Carbon, Commercially Investable <strong>Power</strong> 348<br />

Akademik Lomonosov: Pending Countdown 351<br />

Research and Innovation<br />

iMAGINE – A Disruptive Change to <strong>Nuclear</strong> or How Can We Make<br />

More Out of the Existing Spent <strong>Nuclear</strong> Fuel and What Has to be<br />

Done to Make it Possible in the UK? . . . . . . . . . . . . . . . . . . . 353<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’:<br />

The <strong>Nuclear</strong> Waste Management Strategy: Japan and China<br />

Part 3 360<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Make Policy With Prudence and Consideration of Assets G 365<br />

KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367<br />

Cover:<br />

Artist´s view of the Rolls-Royce 440-MWe SMR<br />

concept. Courtesy: Rolls-Royce <strong>Power</strong> Systems<br />

Contents:<br />

Courtesy of Idaho National Laboratory,<br />

<strong>Nuclear</strong> Reactor Systems, USA.<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371<br />

<strong>Nuclear</strong> Today<br />

EV Revolution Could be Running on Empty Without <strong>Nuclear</strong> 378<br />

Imprint 374<br />

G<br />

E/G<br />

= German<br />

= English/German<br />

Insert: AMNT 2020 Call <strong>for</strong> Paper<br />

Contents


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

319<br />

Feature<br />

333 The Economic Potential of SMRs<br />

CONTENTS<br />

Helmut Engelbrecht<br />

AMNT 2019 | Best Paper<br />

327 Simulation of Multi-compartment Hydrogen Deflagration Test HD-36<br />

with COCOSYS<br />

Tobias Jankowski and Marco K. Koch<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

336 SMRs – Overview on <strong>International</strong> Developments and Safety Features<br />

Andreas Schaffrath and Sebastian Buchholz<br />

348 Targeting Innovation at Cost Drivers – How the UK Can Deliver<br />

Low Cost, Low Carbon, Commercially Investable <strong>Power</strong><br />

Benjamin Todd<br />

Research and Innovation<br />

353 iMAGINE – A Disruptive Change to <strong>Nuclear</strong> or How Can We Make<br />

More Out of the Existing Spent <strong>Nuclear</strong> Fuel and What Has to be Done<br />

to Make it Possible in the UK?<br />

Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead<br />

Decommissioning and Waste Management<br />

360 A World’s Dilemma ‘Upon Which the Sun Never Sets’:<br />

The <strong>Nuclear</strong> Waste Management Strategy: Japan and China | Part 3<br />

Mark Callis Sanders and Charlotta E. Sanders<br />

Contents


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

320<br />

INSIDE NUCLEAR WITH NUCNET<br />

Study Shows ‘Widespread Economic<br />

Benefits’ of Europe’s <strong>Nuclear</strong> Energy<br />

Industry<br />

A high nuclear power capacity of 150 GW by 2050 – up from about 118 GW today – would result in<br />

­widespread economic benefits throughout the EU, sustaining more than one million jobs and hundreds of<br />

billions of euros in additional GDP growth, tax revenues and household income, a study has concluded.<br />

The aim of the study, carried out by Deloitte <strong>for</strong><br />

the Brussels-based nuclear industry Foratom, was to assess<br />

the contribution of the nuclear sector to the overall<br />

economy of the EU28 both today and until 2050.<br />

It said the European nuclear industry sustains in 2019<br />

more than 1.1 million full-time jobs in the EU and generates<br />

more than half a trillion euros in GDP.<br />

The report also concluded that in 2019 the nuclear<br />

industry:<br />

pp<br />

Generates € 124.2 bn in state revenues;<br />

pp<br />

Generates € 383.1 bn in household income;<br />

pp<br />

Generates € 507.4 bn in EU GDP;<br />

pp<br />

Generates € 1,092.3 bn volume of investment and an<br />

€ 18.1 bn trade surplus in the EU economy.<br />

Each GW of installed nuclear capacity in the EU triggers<br />

€ 9.3 bn in annual investments both in the nuclear and<br />

connected economic sectors. Each GW provides permanent<br />

and local employment to just under 10,000 people<br />

and generates € 4.3 bn in GDP <strong>for</strong> the bloc.<br />

Looking ahead to 2050, the study said that if nuclear<br />

were to continue to account <strong>for</strong> one quarter of the<br />

­electricity mix in 2050 – or about 150 GW of installed<br />

capacity – the industry would on average support more<br />

than 1.3 million jobs a year, generate € 576 bn a year in<br />

GDP, boost tax revenues by € 110.2 bn a year and provide<br />

households with € 490.9 bn in disposable income.<br />

To meet this high scenario almost 130,000 MW of new<br />

capacity would have to be built by 2050, the study said.<br />

More than 20,000 MW would need to be added in the <strong>for</strong>m<br />

of operating extensions. Adding 130,000 MW of capacity<br />

would mean building about 81 new 1,600 MW EPR plants<br />

like those under construction at Flamanville in France and<br />

Olkiluoto in Finland.<br />

However, the study warned that if installed capacity<br />

falls to 36 GW by 2050 – about 5 % of the electricity mix –<br />

the impact on GDP would fall from € 507.4 bn to about<br />

€ 281 bn. The number of jobs in the industry would fall<br />

from 1.1 million to about 650,400.<br />

In this low scenario most of the bloc’s existing ­nuclear<br />

plants will close without further operating ­extensions and<br />

new plant projects will fail to materialise.<br />

Foratom director-general Yves Desbazeille said if<br />

Europe is serious about decarbonising its economy by<br />

2050, then one quarter of the electricity produced in the<br />

EU will need to continue to come from nuclear.<br />

“Not only will this enable the EU to achieve its<br />

carbon-free targets, whilst at the same time ensuring it has<br />

access to the energy it needs when it needs it, it will also<br />

provide a significant contribution in terms of ­economic<br />

growth and job creation,” he said.<br />

The EU is working on a strategy which will allow<br />

the bloc to be “climate-neutral” by 2050 in line with the<br />

2015 Paris Agreement. In November 2018, the European<br />

Commission presented a policy document, ‘A Clean Planet<br />

<strong>for</strong> All’, in which it recognised the role nuclear energy can<br />

play and described it as “the backbone of a carbon-free Europe”<br />

together with renewables.<br />

Mr Desbazeille said the Commission’s strategy also<br />

addresses the importance of each technology’s economic<br />

impact during the decarbonisation process. But he said<br />

nuclear’s impact on employment and the economy is not<br />

well understood by policy makers and is not part of the<br />

main policy debate at EU level.<br />

“The nuclear sector is one of the largest in terms of<br />

­contribution to EU GDP. With a share of 3.3%, it is ­second<br />

only to the construction sector,” Mr Desbazeille said.<br />

There would be other economic benefits to ­maintaining<br />

a strong, European nuclear supply chain, the study says.<br />

Those employed in the coal industry could be retrained to<br />

fill the skills gap in the nuclear ­industry and nuclear could<br />

help maintain a European industrial base by providing a<br />

steady supply of low- carbon power at an af<strong>for</strong>dable cost.<br />

According to the Deloitte-Foratom study there are 126<br />

commercial nuclear reactors in operation in 14 EU<br />

countries. The European commission says these plants<br />

generate almost 30% of the electricity produced in the EU<br />

although today’s report puts that figure at 25 % <strong>for</strong> 2019.<br />

The study says new reactors are being built in France,<br />

Finland, Slovakia and the UK, while 13 EU member states<br />

with nuclear capacity are either analysing the potential<br />

long-term operation of existing units or ­planning to build<br />

new plants. Germany, however, is phasing out nuclear<br />

with 10 out of 17 reactors already shut down. The are 11<br />

reactors in the process of decommissioning in the EU.<br />

However, Mr Desbazeille said this is not enough. “We<br />

need new-build and we need to start today to be able to<br />

maintain today’s share of nuclear and its economic impact<br />

in the long run up to 2050,” he said.<br />

The report noted that in 2016 the EU reaffirmed its<br />

commitment to decarbonising the bloc’s energy mix with a<br />

45 % reduction in emissions from 2005 levels by 2030 and<br />

zero emissions by 2050. The role of electricity in the bloc’s<br />

energy mix is expected to grow, with its share in final<br />

­energy consumption increasing from 20 % in 2015 to more<br />

than 40 % by 2050. The EU wants ­electricity to contribute<br />

to the decarbonisation of transport, heating and cooling at<br />

the expense of fossil fuel energy products However, the<br />

additional electrical power needed to achieve these goals<br />

will have to be generated from low-carbon sources.<br />

The nuclear industry argues that nuclear is a lowcarbon<br />

energy technology that offers increased security<br />

of supply and has positive impact on affiliated ­industries<br />

and the economy as a whole. But it says a stable regulatory<br />

environment and market design are crucial <strong>for</strong> triggering<br />

investment decisions and successful ­execution of new<br />

nuclear projects.<br />

Earlier this month Foratom said adequate financing<br />

and investment is needed in all low-carbon technologies if<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Study Shows ‘Widespread Economic Benefits’ of Europe’s <strong>Nuclear</strong> Energy Industry


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Europe is to achieve full-decarbonisation of its economy.<br />

Foratom called <strong>for</strong> “coherence across EU legislation and<br />

<strong>for</strong> policies to be in line with the objective of achieving a<br />

carbon-free Europe by 2050.<br />

EU legislation must support all low-carbon technologies,<br />

rather than cherry-picking one technology over another,<br />

the group said. “Basing decisions on political acceptance<br />

rather than objective criteria will make it much harder <strong>for</strong><br />

Europe to achieve goals.”<br />

The study is online: http://bit.ly/2vmIigo<br />

Author<br />

NucNet<br />

The Independent Global <strong>Nuclear</strong> News Agency<br />

Editor responsible <strong>for</strong> this story: David Dalton<br />

Editor in Chief, NucNet<br />

Avenue des Arts 56<br />

1000 Brussels, Belgium<br />

www.nucnet.org<br />

DID YOU EDITORIAL KNOW...?<br />

321<br />

Did you know...?<br />

Press Release of Kerntechnik Deutschland<br />

Berlin, 7 May 2019<br />

KernD – New Association <strong>for</strong><br />

<strong>Nuclear</strong> Technology in Germany<br />

DAtF (German Atomic Forum) and WKK (Trade Association <strong>for</strong> the<br />

<strong>Nuclear</strong> Fuel Cycle and <strong>Nuclear</strong> Technology) become Kerntechnik<br />

Deutschland e. V. (KernD = <strong>Nuclear</strong> Technology Germany). The<br />

merged association of the nuclear industry in Germany offers<br />

members, politicians, public authorities and social stakeholders a<br />

plat<strong>for</strong>m <strong>for</strong> expertise and dialogue.<br />

In connection with this, Dr. Ralf Güldner, long-time President of<br />

the German Atomic Forum (DAtF), will hand over the baton to the<br />

newly elected Chairman of the Board, Dr. Joachim Ohnemus.<br />

Dr. Güldner will remain on the board as Deputy Chairman.<br />

“In the tangible sense, we are concerned with maintaining added<br />

value and in the intangible sense with maintaining expertise,<br />

innovation and the ability of a modern industrial nation to participate,<br />

including in nuclear technology,” Mr. Ohnemus continued.<br />

The merger and the election to the new board took place in<br />

connection with the AMNT (Annual Meeting on <strong>Nuclear</strong> Technology)<br />

which is being held this year <strong>for</strong> the fiftieth time. The AMNT is the<br />

most prestigious meeting of the nuclear industry in Germany. It also<br />

welcomes a large number of international experts and decisionmakers<br />

to exchange ideas and opinions.<br />

Mr. Güldner, “I am pleased to be handing over a well-established<br />

association to Mr. Ohnemus and I am confident that he will lead<br />

the association into a successful future.” Dr. Ohnemus thanked<br />

Dr. Güldner <strong>for</strong> his excellent and dedicated work.<br />

Mr. Ohnemus said, “The primary objective is to preserve and promote<br />

the skills and expertise involved in the peaceful use of nuclear<br />

technology and in related disciplines in Germany.”<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

KernD<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

KernD.de<br />

www.KernD.eu<br />

Did you know...?


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

322<br />

Calendar<br />

2019<br />

CALENDAR<br />

21.07.-24.<strong>07.2019</strong><br />

14 th <strong>International</strong> Conference on CANDU Fuel.<br />

Mississauga, Ontario, Canada, Canadian <strong>Nuclear</strong><br />

Society (CNS), www.cns-snc.ca<br />

28.07.-01.08.2019<br />

Radiation Protection Forum. Memphis TN, USA,<br />

<strong>Nuclear</strong> Energy Institute (NEI), www.nei.org<br />

07.10.-11.10.2019<br />

<strong>International</strong> Conference on Climate Change<br />

and the Role of <strong>Nuclear</strong> <strong>Power</strong>. Vienna, Austria,<br />

IAEA, www.iaea.org<br />

07.10.-18.10.2019<br />

ICTP-IAEA <strong>Nuclear</strong> Energy Management<br />

School. Trieste, Italy, IAEA, www.iaea.org<br />

25.11.-29.11.2019<br />

<strong>International</strong> Conference on Research<br />

Reactors: Addressing Challenges and<br />

Opportunities to Ensure Effectiveness<br />

and Sustainability. Buenos Aires, Argentina,<br />

<strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org/events/conference-on-researchreactors-2019<br />

29.07.-02.08.2019<br />

27 th <strong>International</strong> <strong>Nuclear</strong> Physics Conference<br />

(INPC). Glasgow, Scotland, inpc2019.iopconfs.org<br />

04.08.-09.08.2019<br />

PATRAM 2019 – Packaging and Transportation<br />

of Radioactive Materials Symposium.<br />

New Orleans, LA, USA. www.patram.org<br />

21.08.-30.08.2019<br />

Frédéric Joliot/Otto Hahn (FJOH) Summer<br />

School FJOH-2019 – Innovative Reactors:<br />

Matching the Design to Future Deployment<br />

and Energy Needs. Karlsruhe, Germany, <strong>Nuclear</strong><br />

Energy Division of Commissariat à l’énergie<br />

atomique et aux énergies alternatives (CEA)<br />

and Karlsruher Institut für Technologie (KIT),<br />

www.fjohss.eu<br />

04.09.-<strong>06</strong>.09.2019<br />

World <strong>Nuclear</strong> Association Symposium 2019.<br />

London, UK, World <strong>Nuclear</strong> Association (WNA),<br />

www.wna-symposium.org<br />

04.09.-05.09.2019<br />

VGB Congress 2019 – Innovation in <strong>Power</strong><br />

Generation. Salzburg, Austria, VGB <strong>Power</strong>Tech e.V.,<br />

www.vgb.org<br />

08.09.-11.09.2019<br />

4 th <strong>Nuclear</strong> Waste Management, Decommissioning<br />

and Environmental Restoration<br />

(NWMDER). Ottawa, Canada, Canadian <strong>Nuclear</strong><br />

Society (CNS), www.cns-snc.ca<br />

09.09.-12.09.2019<br />

24 th World Energy Congress. Abu Dhabi, UAE,<br />

www.wec24.org<br />

09.09.-12.09.2019<br />

Jahrestagung 2019 – Fachverband<br />

für Strahlenschutz | Strahlenschutz und<br />

Medizin. Würzburg, Germany,<br />

www.fs-ev.org/jahrestagung-2019<br />

15.09.-21.09.2019<br />

13 th <strong>International</strong> Conference on WWER Fuel<br />

Per<strong>for</strong>mance, Modelling and Experimental<br />

Support. Nessebar, Bulgaria, INRNE-BAS<br />

in cooperation with IAEA,<br />

www.inrne.bas.bg/wwerfuel2019<br />

16.09.-20.09.2019<br />

63 rd Annual Conference of the IAEA. Vienna,<br />

Austria, <strong>International</strong> Atomic Energy Agency<br />

(IAEA), www.iaea.org/about/governance/<br />

general-conference<br />

22.09.-27.09.2019<br />

ISFNT-14 – <strong>International</strong> Symposium on Fusion<br />

<strong>Nuclear</strong> Technology. Budapest, Hungary, Wigner<br />

Research Centre <strong>for</strong> Physics, www.isfnt-14.org<br />

15.10.-18.10.2019<br />

Technical Meeting on Siting <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong><br />

Plants. Vienna, Austria, IAEA, www.iaea.org<br />

22.10.-25.10.2019<br />

SWINTH-2019 Specialists Workshop on<br />

Advanced Instrumentation and Measurement<br />

Techniques <strong>for</strong> Experiments Related to<br />

<strong>Nuclear</strong> Reactor Thermal Hydraulics and<br />

Severe Accidents. Livorno, Italy,<br />

www.nineeng.org/swinth2019/<br />

23.10.-24.10.2019<br />

Chemistry in <strong>Power</strong> Plants. Würzburg, Germany,<br />

VGB <strong>Power</strong>Tech e.V., www.vgb.org/en/<br />

chemie_im_kraftwerk_2019.html<br />

27.10.-30.10.2019<br />

FSEP CNS <strong>International</strong> Meeting on Fire Safety<br />

and Emergency Preparedness <strong>for</strong> the <strong>Nuclear</strong><br />

Industry. Ottawa, Canada, Canadian <strong>Nuclear</strong><br />

Society (CNS), www.cns-snc.ca<br />

04.11.-<strong>06</strong>.11.2019<br />

11. Freigabesymposium: Entlassung von<br />

radio aktiven Stoffen aus dem Geltungsbereich<br />

des StrlSchG. Hamburg, Germany, TÜV Nord<br />

Akademie, www.tuev-nord.de<br />

04.11.-07.11.2019<br />

<strong>International</strong> Conference on Effective Regulatory<br />

Systems 2019. The Hague, Netherlands,<br />

<strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org/events/conference-on-effectiveregulatory-systems-2019<br />

12.11.-14.11.2019<br />

<strong>International</strong> Conference on <strong>Nuclear</strong><br />

Decommissioning – ICOND 2019. Eurogress<br />

Aachen, Aachen Institute <strong>for</strong> <strong>Nuclear</strong> Training<br />

GmbH, www.icond.de<br />

2020<br />

10.02.-14.02.2020<br />

37 th Short Courses on Multiphase Flow. Zurich,<br />

Switzerland, Swiss Federal Institute of Technology<br />

ETH, www.lke.mavt.ethz.ch<br />

10.02.-14.02.2020<br />

ICONS2020: <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Security. Vienna, Austria,<br />

The <strong>International</strong> Atomic Energy Agency (IAEA),<br />

www.iaea.org<br />

08.03.-12.03.2020<br />

WM Symposia – WM2019. Phoenix, AZ, USA,<br />

www.wmsym.org<br />

08.03.-13.03.2020<br />

IYNC2020 – The <strong>International</strong> Youth <strong>Nuclear</strong><br />

Congress. Sydney, Australia, IYNC,<br />

www.iync2020.org<br />

18.03.-20.03.2020<br />

12. Expertentreffen Strahlenschutz. Bayreuth,<br />

Germany, TÜV SÜD, www.tuev-sued.de<br />

05.05.-<strong>06</strong>.05.2020<br />

51 st Annual Meeting on <strong>Nuclear</strong> Technology<br />

AMNT 2020 | 51. Jahrestagung Kerntechnik.<br />

Berlin, Germany, KernD and KTG,<br />

www.amnt2020.com<br />

09.2020<br />

Jahrestagung 2020 – Fachverband für<br />

Strahlenschutz I Strahlenschutz und Medizin.<br />

Aachen, Germany,<br />

www.fs-ev.org/jahrestagung-2020<br />

27.09.-02.10.2020<br />

NPC 2020 – <strong>International</strong> Conference on Water<br />

Chemistry in <strong>Nuclear</strong> Reactor Systems. Antibes,<br />

France, Société Francaise d’Energie Nucléaire<br />

(SFEN), www.sfen-npc2020.org<br />

This is not a full list and may be subject to change.<br />

Calendar


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

50 th Annual Meeting on <strong>Nuclear</strong> Technology (AMNT 2019)<br />

7 to 8 May 2019, Berlin<br />

Opening Address<br />

Ralf Güldner<br />

Ladies and Gentlemen, On behalf of the German Atomic Forum and the German <strong>Nuclear</strong> Society, please allow<br />

me to welcome you to our 50 th AMNT. Our first meeting, called the Reaktortagung took place in Frankfurt in 1969,<br />

the same year, by the way, in which the German <strong>Nuclear</strong> Society was founded. So, happy birthday KTG. Ever since,<br />

this meeting has been the most important meeting of its kind in Germany, addressing the widest range of topics and<br />

attracting international speakers and visitors.<br />

323<br />

AMNT 2019<br />

The fiftieth meeting after 50 years also provides us with<br />

the opportunity to look back at the varied and eventful<br />

history of nuclear technology in Germany. So, in our<br />

­traditional companies’ exhibition, we have prepared a<br />

­historic display <strong>for</strong> you with photos and exhibits from five<br />

decades of nuclear technology. At this point, I would<br />

sincerely like to thank all partners who have supported<br />

us with their exhibits and thus made this exhibition<br />

possible.<br />

Our meeting this year is not only the fiftieth, it is also<br />

<strong>for</strong>ward-looking. After 60 years of the German Atomic<br />

­Forum and 43 years of the Trade Association <strong>for</strong> the<br />

<strong>Nuclear</strong> Fuel Cycle, the two associations have decided to<br />

merge and to go <strong>for</strong>ward into the future as Kern technik<br />

Deutschland or KernD <strong>for</strong> short. The process was not<br />

always particularly easy and has taken time. However, it<br />

was successful and so now, after the approval of both<br />

general meetings yesterday, we have a joint representation<br />

<strong>for</strong> the entire industry as contacts <strong>for</strong> the public, politics<br />

and public authorities as well as the media.<br />

The “new association” also goes hand in hand with a<br />

change in leadership and so, after nine intensive years<br />

at the head of the German Atomic Forum, I am handing<br />

the baton to the new chairman of the board of KernD,<br />

Dr. ­Joachim Ohnemus, who was unanimously elected by<br />

the general meeting of KernD.<br />

Mr. Carsten Haferkamp will continue as treasurer with<br />

the new managing board. Dr. Hannes Wimmer and I will<br />

join the new managing board as deputy chairmen.<br />

Ladies and Gentlemen, please allow me to look back<br />

briefly on these nine years during which a great deal has<br />

been imposed on our industry. It all began in 2010 on a<br />

positive note when lifetime extensions, ­corresponding<br />

­retrofits, the climate protector media campaign were the<br />

topics that occupied us. I was convinced that, following the<br />

adoption of the energy concept in autumn 2010, we would<br />

be able to shape the future of nuclear energy in Germany<br />

together with the utility companies, manufacturers and<br />

suppliers as well as research and teaching.<br />

Everything changed on March 11, 2011. Initially the<br />

shock on seeing the images from Fukushima and then<br />

the political reaction in Germany which pulled the rug<br />

from under out feet, so to speak. A reaction, ladies and<br />

gentlemen, which even today I consider was overhasty and<br />

exclusively politically motivated. Particularly now when<br />

the discussion about climate change and the phase-out of<br />

coal-fired power generation is intensifying, we could well<br />

use the additional operating years of CO 2 -free nuclear<br />

power plants. I experienced the ­reaction of our <strong>for</strong>eign<br />

colleagues at WNA and Foratom at close quarters and<br />

there was not much understanding there <strong>for</strong> the German<br />

way.<br />

For me personally, Fukushima ushered in a phase of<br />

my professional career that I would have gladly <strong>for</strong>egone.<br />

For several months I was suddenly a sought-after guest in<br />

various television studios. Whether every per<strong>for</strong>mance<br />

was successful is <strong>for</strong> others to judge but I believe that it was<br />

important to show our colors.<br />

This was followed by a phase during which we had<br />

to deal with the consequences of the exit decision.<br />

Decommissioning and dismantling were suddenly the<br />

topics, garnished with the labor of various commissions<br />

that were working on a reorganization of the search <strong>for</strong> a<br />

final repository and on the financing of interim and final<br />

disposal. The German Atomic Forum was allowed to<br />

support this in the media too and it ultimately led the<br />

nuclear community in Germany to the situation in which it<br />

finds itself today. The description of this situation also<br />

includes the fact that our member companies suffered<br />

massive economic losses and there<strong>for</strong>e demanded<br />

­significant reductions in membership fees or even ­resigned.<br />

This too is a serious reason <strong>for</strong> merging the German Atomic<br />

Forum and the Trade Association <strong>for</strong> the <strong>Nuclear</strong> Fuel<br />

Cycle into KernD.<br />

Despite these difficult phases, I have always enjoyed<br />

working <strong>for</strong> the German Atomic Forum. I would like to<br />

thank all the employees in the office <strong>for</strong> the dedicated and<br />

professional work they have put in and I would like to<br />

thank all of you too and your companies <strong>for</strong> your<br />

con structive collaboration and support in turbulent times.<br />

I wish Dr. Ohnemus every success in his new, extended<br />

task and I promise that I will be happy to support him if he<br />

so wishes.<br />

Be<strong>for</strong>e handing over the microphone to Dr. Ohnemus,<br />

I would just like to announce our anniversary film “KernD<br />

– For Expertise and Dialogue”. It gives us the chance to<br />

­experience a time-lapse history of nuclear technology in<br />

Germany together. I hope you enjoy it!<br />

Dr. Ralf Güldner<br />

Deputy Chairman of the Board of Kerntechnik Deutschland e. V. (KernD)<br />

AMNT 2019<br />

Opening Address ı Ralf Güldner


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

324<br />

AMNT 2019<br />

50 th Annual Meeting on <strong>Nuclear</strong> Technology (AMNT 2019)<br />

7 to 8 May 2019, Berlin<br />

Key Note Speech<br />

Joachim Ohnemus<br />

Ladies and Gentlemen, On behalf of KernD and the German <strong>Nuclear</strong> Society I would also like to welcome you<br />

to our 50 th Annual Meeting on <strong>Nuclear</strong> Technology in Berlin.<br />

First and <strong>for</strong>emost, I would like to thank my predecessor<br />

and, at the same time, last president of our association<br />

under the founding name of the German Atomic<br />

Forum, Dr. Ralf Güldner, <strong>for</strong> his many years of dedication<br />

to our industry. In the last nine years, Dr. Güldner<br />

was president of the German Atomic Forum and during<br />

this time he first supported and then successfully<br />

shaped the discussion about a longer lifetime <strong>for</strong> the<br />

­German nuclear power plants only to experience, like all of<br />

us a few months later, the Fukushima accident with all its<br />

political consequences in Germany. I would particularly<br />

like to thank him <strong>for</strong> his commitment during this<br />

period when he represented our industry with steady<br />

determination. In the years that followed, he actively<br />

participated in the many profound structural changes<br />

that took place in the field of nuclear energy: <strong>for</strong> example,<br />

the relaunch of the search <strong>for</strong> a final repository <strong>for</strong> highly<br />

active waste, the restructuring of all the institutions in<br />

the field of waste management and the reorganization<br />

of waste management financing.<br />

Prior to this, Dr. Güldner was also the Chairman of the<br />

German <strong>Nuclear</strong> Society, the World <strong>Nuclear</strong> Association<br />

and President of the European nuclear industry association<br />

FORATOM. This experience, gained over many years of<br />

dedication to our industry, is extremely important and<br />

there<strong>for</strong>e I am particularly pleased that we will continue to<br />

have him as deputy chairman of KernD.<br />

Dr. Güldner, thank you very much indeed <strong>for</strong> your<br />

dedication, your commitment and, in advance, <strong>for</strong> your<br />

cooperation in the KernD association, a project that we<br />

have promoted together and guided to success.<br />

Why the merger?<br />

Ladies and Gentlemen, Respected Colleagues,<br />

At the 50 th AMNT we are looking back together at the<br />

past, at what has been achieved in nuclear technology<br />

in Germany and at the history of our meeting and<br />

our associations, the German Atomic Forum (DAtF), the<br />

Trade Association <strong>for</strong> the <strong>Nuclear</strong> Fuel Cycle (WKK)<br />

and the German <strong>Nuclear</strong> Society (KTG). But even more<br />

importantly we are looking <strong>for</strong>ward and preparing <strong>for</strong><br />

the future.<br />

This is the goal of the merger: to amalgamate both<br />

associations, the DAtF and the WKK, into the KernD<br />

Association. Following a long process with many<br />

discussions, initially between the two chairmen, then the<br />

managing boards and then the members of the associations,<br />

it was clear that the merger was the best solution to<br />

representing nuclear technology in Germany powerfully,<br />

purposefully and efficiently. An association <strong>for</strong> the whole<br />

industry, a voice to the outside world and a constitution<br />

that also allows government bodies to cooperate, this was<br />

the goal and it was finally resolved yesterday at the two<br />

general meetings of DAtF and WKK.<br />

What is the self-image of KernD,<br />

what are its tasks?<br />

KernD sees itself above all as a skills and expertise<br />

­plat<strong>for</strong>m <strong>for</strong> public and regulatory dialogue as defined by<br />

our association’s purpose: to preserve and promote the<br />

skills and expertise involved in the peaceful use of nuclear<br />

technology and in related disciplines. Under the heading,<br />

“For expertise and dialogue”, our aim is to bring our<br />

­expertise to bear in regulatory processes and legislative<br />

procedures on nuclear technology as well as in social<br />

dialogue.<br />

We want to continue to attract and support schoolchildren,<br />

apprentices and students, who are the next<br />

generation that we urgently need, in addition to research<br />

and teaching. This is a task that we can fulfill more successfully<br />

if “a fascination <strong>for</strong> nuclear technology” is the<br />

approach as we are using it.<br />

KernD’s other content-related goals are to develop<br />

the expertise and economic contribution of nuclear<br />

­technology in industry, research and in the area of experts<br />

and appraisers. In short, in the tangible sense, we are<br />

concerned with maintaining added value, and in the<br />

­intangible sense with maintaining expertise, innovation<br />

and the ability of a modern industrial nation to participate,<br />

including in nuclear technology.<br />

In a manner of speaking, our association and also its<br />

members live in two worlds: in the shrinking world of<br />

nuclear energy in Germany, where dismantling and<br />

disposal are the dominating topics. On the other hand,<br />

from a global point of view, we live in a world where<br />

nuclear energy continues to play an important role as a<br />

future option, where the construction of new plants,<br />

increased per<strong>for</strong>mance and the development of new<br />

concepts and technologies are relevant topics. One<br />

important task <strong>for</strong> the association is to support the<br />

constructive participation of Germany, i.e. of German<br />

nuclear industry sites, in global development in the future<br />

and to further strengthen the understanding <strong>for</strong> this<br />

among the population.<br />

A word about Germany’s role<br />

in nuclear energy and climate policy<br />

When we look at the world of power generation, we find<br />

that the renewable energies, wind power, photovoltaics,<br />

biomass, geothermal energy, tidal power and solar thermal<br />

energy only produce about 20 percent of the low-carbon<br />

electricity. 80 percent of the low-carbon electricity is<br />

­obtained from hydropower and nuclear power, 31 percent<br />

from nuclear energy and almost half from hydropower.<br />

In recent weeks, during discussions about phasing<br />

out coal <strong>for</strong> electricity generation, surveys have shown<br />

that the population is already aware or is now becoming<br />

increasingly aware that nuclear energy has a thoroughly<br />

positive role in preventing CO 2 . On this basis, we can<br />

AMNT 2019<br />

Key Note Speech ı Joachim Ohnemus


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

­expect that there will be long-term understanding <strong>for</strong> the<br />

fact that Germany is phasing out the use of nuclear power<br />

in its own country but that it can remain a supplier <strong>for</strong><br />

those who want to continue to use nuclear power and it<br />

can also continue to develop the technology. This is also<br />

the position of the Federal Government in the coalition<br />

agreement.<br />

There<strong>for</strong>e, it can’t be about completely phasing out<br />

nuclear energy as a whole, it can’t be about closing the<br />

facilities in Gronau and Lingen and it can’t be about<br />

­refusing export credit guarantees <strong>for</strong> supplying German<br />

safety control technology to <strong>for</strong>eign nuclear power plants.<br />

325<br />

AMNT 2019<br />

Innovation Made in Germany<br />

<strong>Nuclear</strong> technology in and from Germany is still<br />

at the <strong>for</strong>efront and is very powerful in research and<br />

development. Take the topic of accident tolerant fuel, <strong>for</strong><br />

example. This is being developed worldwide and will offer<br />

greater reserves of robustness in the event of major<br />

accidents. Here, Germany is involved in the PROtect<br />

program which is the most advanced of all comparable<br />

programs. The irradiation tests with Swiss partners<br />

started in 2016; the first test assemblies were loaded into<br />

the Vogtle 2 nuclear power plant in the USA in April. This<br />

is also an example of the international collaboration ­<br />

within our industry.<br />

In the USA, Urenco is preparing to enrich uranium to<br />

19.75 percent <strong>for</strong> new applications. There, the Department<br />

of Energy itself is in charge of a pilot project aimed at<br />

new types of reactors. The Euratom Supply Agency is<br />

supporting a facility such as this <strong>for</strong> the EU with a view to<br />

the security of supply <strong>for</strong> research reactors. It is not even<br />

possible to discuss such a thing in Germany.<br />

We also need extensive safety research in the future<br />

so that companies can continue to innovate and so that<br />

the State has access to the necessary skills and expertise<br />

<strong>for</strong> the safety assessment of nuclear installations and<br />

<strong>for</strong> the further development of safety standards. This<br />

research must include both new reactor concepts and<br />

innovative fuel assembly and fuel concepts. The companies<br />

of the nuclear industry are indispensable because, without<br />

practical application, it is impossible to maintain or further<br />

develop expertise. In view of the phase-out in Germany,<br />

the international market is vital if we are to apply our<br />

­expertise in practice. Visible political support <strong>for</strong> our<br />

companies in international business would be highly<br />

desirable. This would help not only the German divisions<br />

of international nuclear technology companies but in<br />

particular the many medium-sized suppliers in German<br />

nuclear technology. Perhaps Mr. Bareiß, the Parliamentary<br />

State Secretary, will comment on this later.<br />

Dismantling is well on the way<br />

Our companies dismantling the nuclear power plants are<br />

working through the program according to schedule and<br />

are making good progress. Applications have already been<br />

made <strong>for</strong> decommissioning and dismantling licenses <strong>for</strong><br />

most of the plants still in operation. Our working<br />

relationship with the authorities is good and professional.<br />

It must also stay this way.<br />

One topic that will occupy us <strong>for</strong> a long time to come is<br />

the acceptance of waste from nuclear power plants, which<br />

is subject to landfill regulations and has been released <strong>for</strong><br />

disposal, at the responsible landfill sites. Support at ­federal<br />

state level is not always able to stop awkward situations<br />

from arising with landfill operators or local government.<br />

Continuous education is required to reassure them that<br />

these residual materials do not pose a radiological hazard,<br />

even if they come from the controlled area of nuclear<br />

power plants.<br />

In spite of all the decommissioning and dismantling,<br />

we should not <strong>for</strong>get that there are still seven nuclear<br />

power plants producing electricity in Germany and their<br />

flexibility largely supports the stability of our electricity<br />

generation. With the 10,000 MW of currently installed<br />

nuclear power plant output, 76 billion kilowatt hours of<br />

electricity were produced in 2018, 11.8 percent of gross<br />

electricity generation. Reliable plant operation made<br />

Germany the second largest nuclear energy country in the<br />

EU in 2018 and resulted in the Isar 2 nuclear power plant<br />

taking second place in the generation rankings of all<br />

nuclear power plants worldwide.<br />

The transition of operator responsibility at the sitebased<br />

interim storage facilities <strong>for</strong> high active waste from<br />

the power plant operators to the BGZ [Gesellschaft für<br />

Zwischenlagerung = Company <strong>for</strong> Interim Storage]<br />

on January 1, 2019 went smoothly and inconspicuously.<br />

On January 1, 2020, the BGZ will also take over<br />

responsibility <strong>for</strong> site-based low and medium active waste<br />

storage facilities. This will conclude the new allocation<br />

of responsibilities <strong>for</strong> waste management. As is already the<br />

case with the central interim storage facilities, the<br />

­government will take over a field that our industry has left<br />

in great shape.<br />

What about the final repositories?<br />

Commissioning of the Konrad final repository remains a<br />

common concern of the power plant operators, the BGZ<br />

and all those with obligations to deliver, including the<br />

public sector and in the private sector. In the meantime,<br />

we have another completion date, though not until 2027,<br />

and with the ongoing review of state of the art compliance<br />

with the safety requirements, it appears that we will be<br />

worrying about the project over and over again.<br />

When it comes to the site selection process <strong>for</strong> high<br />

active waste, all we can do is wait and see what happens.<br />

For the coming year, we are expecting the first report of<br />

the BGE [Bundesgesellschaft für Endlagerung = Federal<br />

Company <strong>for</strong> Radioactive Waste Disposal] about subareas<br />

which are supposed to remain in the selection process.<br />

At present, <strong>for</strong> now we are discussing the publication<br />

of geological data in connection with the disclosure of the<br />

subareas. I am sure that Mr. Steffen Kanitz, member of<br />

the board of the BGE, will bring us up to speed on this later.<br />

Challenge Europe<br />

Despite all the enthusiasm <strong>for</strong> the opportunities in<br />

emerging countries such as China and India, we should<br />

AMNT 2019<br />

Key Note Speech ı Joachim Ohnemus


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

326<br />

AMNT 2019<br />

not <strong>for</strong>get that the home markets in Europe and North<br />

America still play the key role <strong>for</strong> western nuclear<br />

companies. Europe is also the scene of the attempt to<br />

­export the German nuclear power phase-out. This is a<br />

dangerous path which could bring new controversy into<br />

the European Union. It is with good reason that the decision<br />

regarding the energy mix is reserved <strong>for</strong> the ­Member<br />

States.<br />

There is nothing wrong with constructively and<br />

competently bringing a German position, on safety issues<br />

<strong>for</strong> example, into the discussion. The key, however,<br />

is to convince others with objective arguments and,<br />

as mentioned be<strong>for</strong>e, <strong>for</strong> this we will need sound, practical<br />

expertise in nuclear technology in the future as well.<br />

In contrast, ritualized demands <strong>for</strong> the shutdown of<br />

installations close to the borders do not open doors but<br />

close them.<br />

In the Commission’s considerations regarding the<br />

re<strong>for</strong>m of Euratom, it is also necessary to pay attention to<br />

the Doctrine of the Mean. Those who want to make the<br />

safety-focused Euratom Treaty into a phase-out treaty, as<br />

two opposition parties have been demanding <strong>for</strong> years<br />

now, will only drive a new wedge into the EU and generate<br />

strong opposition from those who want to continue using<br />

nuclear energy in the energy mix.<br />

Environmental Progress, Energy <strong>for</strong> Humanity and the<br />

Bill and Melinda Gates Foundation which, along<br />

with many others and together with the nuclear societies,<br />

stand up <strong>for</strong> and promote nuclear energy.<br />

We must adopt this optimism with our new KernD<br />

association. Above all, we must plant the idea into the<br />

minds of the younger generation that it is worth being<br />

involved in this technology, that it offers huge potential<br />

and a wide range of development opportunities. In<br />

­Germany we still have the network, the expertise and<br />

the industrial as well as scientific substance to cooperate<br />

in development and to advance nuclear technology.<br />

In the challenging situation in Germany, we must<br />

work together as an industry and act in concert. Our<br />

joint association is an important step towards this goal and<br />

it deserves our full support.<br />

Ladies and Gentlemen,<br />

Your commitment is essential to our meeting, making it<br />

into the <strong>for</strong>um <strong>for</strong> sharing ideas and maintaining contacts<br />

that we both know and love. I would like to thank you very<br />

much <strong>for</strong> all your contributions to the program planning,<br />

<strong>for</strong> the preparation and acquisition of specialist lectures<br />

and <strong>for</strong> your lively participation in all the discussions.<br />

I would also like to thank our many partners in the<br />

­industry exhibition and all those who have contributed to<br />

our joint review of the past on the occasion of the 50 th<br />

anniversary of our meeting. Of course, I am particularly<br />

pleased to welcome our British and Czech partners with<br />

their national pavilions and also our other international<br />

exhibitors.<br />

The KernD reception, to which you are all cordially<br />

­invited, will be held in the exhibition space immediately<br />

after the plenary session. Following this, we can look<br />

<strong>for</strong>ward to the traditional social evening which our<br />

­exhibitors and sponsors warmly invite you to attend.<br />

I wish everybody a successful meeting, fruitful<br />

­discussions and exceptional insights into our common<br />

passion, nuclear technology. Thank you.<br />

Dr. Joachim Ohnemus<br />

Chairman of the Board of Kerntechnik Deutschland e.V. (KernD)<br />

Is there a global upheaval<br />

in nuclear technology?<br />

Globally, it is possible to speak of an upheaval in nuclear<br />

technology. This is particularly evident in an increasingly<br />

dynamic landscape of innovation. The interest in SMRs<br />

is having a positive impact on the development of new<br />

­reactor types. The financial risks are smaller than<br />

embarking directly on large-scale projects. And as a<br />

result, SMR projects are being driven <strong>for</strong>ward in the<br />

United States, Canada, Russia, China, India, Argentina<br />

and the United Kingdom. Partly with proven light water<br />

reactor technology, partly with alternative designs such<br />

as molten salt or gas-cooled reactors, partly with new<br />

designs such as closed heat pipe microreactors or the<br />

uranium battery <strong>for</strong> remote areas or mobile use. The<br />

developments offer new opportunities <strong>for</strong> companies in<br />

the fuel cycle, including the North American subsidiaries<br />

of European companies.<br />

The increasing social commitment to nuclear energy<br />

is somewhat new and unaccustomed <strong>for</strong> Germany.<br />

Discussions on climate policy and the possibilities<br />

<strong>for</strong> effectively reducing CO 2 emissions play the main<br />

role here. We should mention organizations such as<br />

AMNT 2019<br />

Key Note Speech ı Joachim Ohnemus


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Simulation of Multi-compartment<br />

Hydrogen Deflagration Test HD-36<br />

with COCOSYS<br />

Tobias Jankowski and Marco K. Koch<br />

1 Introduction In case of postulated severe<br />

accident scenario in a nuclear power plant with reactor<br />

core dry-out, a huge amount of hydrogen might be<br />

­generated by oxidation of the cladding tubes. For example,<br />

in a 1,300 MW KONVOI type power plant up to 1,350 kg<br />

hydrogen can be generated [1]. The generated hydrogen<br />

might be released to the containment atmosphere in the<br />

frame of the postulated severe accident scenario and<br />

might reach ignitable concentrations. Those can also<br />

be achieved by use of other safety systems <strong>for</strong> example<br />

due to spray systems, which on the one hand lead to a<br />

depressurization due to steam condensation and might<br />

enhance the mixing and homogenization of the containment<br />

atmosphere, but on the other hand increase the<br />

volumetric hydrogen fraction by reducing the steam<br />

| | AMNT 2019: Best Paper Award, awarded by Dr. Joachim Ohnemus (left)<br />

and Frank Apel (right) to Tobias Jankowski (middle).<br />

content in the vessels’ atmosphere [2]. Hydrogen combustion in a test vessel has been investigated among others in the<br />

frame of the OECD/NEA-THAI and OECD/NEA-THAI-2 program [3]. The national THAI-V program investigates beside<br />

other topics hydrogen deflagration in a multi- compartment geometry, the THAI+ test facility.<br />

Best Paper<br />

Award<br />

The paper “Simulation<br />

of multi-compartment<br />

hydrogen deflagration<br />

test HD-36 with<br />

COCOSYS” by Tobias<br />

Jankowski and Marco<br />

K. Koch has been<br />

awarded as Best<br />

Paper of the<br />

50 th Annual Meeting<br />

on <strong>Nuclear</strong> Technology<br />

(AMNT 2019), Berlin,<br />

7 and 8 May 2019.<br />

327<br />

AMNT 2019<br />

2 Experiment<br />

The THAI+ test facility consists mainly of two test vessels<br />

and two DN 500 connection pipes. Those components have<br />

an inner volume of approximately 79.2 m 3 [4]. The THAI+<br />

test facility is shown in Figure 1.<br />

The bigger vessel called THAI test vessel (TTV) has a<br />

height of 9.2 m and in its largest part an inner diameter of<br />

3.156 m. The thinner vessel on the right, called parallel<br />

­attachable drum (PAD) has a height of approximately<br />

9.73 m due to deeper vessel bottom compared to the TTV.<br />

The inner diameter of the PAD is 1.556 m [4]. The vessel is<br />

mainly made of stainless steel and is enveloped with a rock<br />

wool layer <strong>for</strong> insulation. The vessel walls can be heated by<br />

thermal oil mantels and some lower and upper parts,<br />

which are not covered by those oil mantles can be heated<br />

| | Fig. 1.<br />

THAI+ test facility [4].<br />

by electrical heaters. The inner cylinder of the TTV and the<br />

horizontal plates between the inner cylinder and the vessel<br />

walls, which are shown in Figure 1, are removed <strong>for</strong> the<br />

hydrogen deflagration (HD) test 36.<br />

The test HD-36 investigates the hydrogen deflagration<br />

in a pre-mixed homogenous hydrogen-steam-air vessel<br />

atmosphere. The initial absolute vessel pressure is 1.5 bar<br />

[3]. The homogenous vessel atmosphere consists of<br />

10 vol.-% hydrogen and 25 vol.-% steam and has a<br />

­temperature of 90 °C [3]. The mixture is ignited in the TTV<br />

sump compartment at a height of 0.5 m at a problem time<br />

of 0 s. Measurements are per<strong>for</strong>med to investigate the<br />

flame front propagation, the time depended pressure<br />

transient, the temperature evaluation and the hydrogen<br />

concentration in the test vessel [3].<br />

3 Modeling<br />

The test HD-36 is simulated with AC 2 module COCOSYS<br />

V2.4v4. The test vessel is modelled by use of 57 zones, 79<br />

Junctions and 39 structures, as shown in Figure 2.<br />

The TTV as well as the PAD is horizontally divided in an<br />

inner cylinder and an outer circular ring. A finer horizontal<br />

nodalisation has also been investigated but did not show<br />

any major differences in the propagation behavior of<br />

the flame front as the used hydrogen deflagration model<br />

considers only isotropic flame front turbulence.<br />

The propagation mechanism of the flame front is<br />

­simulated by use of the flame front propagation model<br />

FRONT [5]. The initial ignition in the TTV sump<br />

compartment is given by the user. Based on a ternary<br />

­diagram it is checked if the mixture in an adjacent zone is<br />

ignitable. If it is, the FRONT model calculates by use of a<br />

correlation system the flame front velocity in the junction<br />

between those zones. From the calculated flame front<br />

velocity, the time of ignition of the adjacent zone is<br />

determined.<br />

AMNT 2019<br />

Simulation of Multi-compartment Hydrogen Deflagration Test HD-36 with COCOSYS ı Tobias Jankowski and Marco K. Koch


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

328<br />

AMNT 2019<br />

| | Fig. 2.<br />

Nodalisation HD-36.<br />

The user has to choose between an exponential or a<br />

­linear combustion profile in the zones, what means an exponential<br />

or a linear decrease of the reactant [6]. According<br />

to Pelzer [6] an exponential burning profile is ­typical<br />

<strong>for</strong> lab-scale experiments whereas a linear profile might<br />

accord to a large scale hydrogen deflagration. The THAI+<br />

facility is known as a large scale test facility, where<strong>for</strong>e a<br />

linear combustion profile might be the right choice. Nevertheless,<br />

<strong>for</strong>mer investigations [6] indicate that an exponential<br />

combustion profile might lead to a better reproduction<br />

of the experimental data. There<strong>for</strong>e, the test HD-36 is<br />

simulated with both options and the results are compared<br />

to each other.<br />

Beside the decision on the type of combustion profile,<br />

the user has the possibility to modify several empirical constants<br />

of the correlation system used in the FRONT model.<br />

However, those parameters were not modified in the present<br />

work, because the FRONT model respectively the CO-<br />

COSYS model basis should be validated as it is.<br />

4 Results<br />

The pressure transient of the test HD-36 and from the<br />

­COCOSYS V2.4v4 simulations by use of an exponential as<br />

well as a linear combustion profile as input value of the<br />

FRONT model is shown in Figure 3.<br />

The experimental pressure transient shows a fast<br />

pressure increase in the test vessel in the time between one<br />

and three seconds after the initial ignition in the TTV sump<br />

compartment. The pressure increase is underestimated<br />

in both COCOSYS simulations. The simulation with<br />

­exponential com­bustion profile reaches the pressure peak<br />

approximately half a second later as the experiment.<br />

By use of a linear combustion profile the pressure peak<br />

is reached more than one second later than in the<br />

­experiment. In both cases the pressure peak is slightly<br />

over estimated. The pressure decrease after reaching the<br />

pressure peak is in both simulations qualitatively in a good<br />

agreement with the ­experiment as the heat removal<br />

behaviour of the test facility is well given by the developed<br />

COCOSYS input deck. In the beginning of the experiment,<br />

the pressure peak is very exactly reproduced by the simulation<br />

with ­linear combustion profile. In the simulation<br />

with exponential combustion profile the initial pressure<br />

increase is slightly overestimated.<br />

In Figure 4 the flame front propagation in the test<br />

­HD-36 and the zone ignition in the COCOSYS simulation<br />

by use of an exponential combustion profile are shown.<br />

In the experiment, the flame front propagates from the<br />

TTV-sump-compartment through the lower connection<br />

pipe into the PAD. The flame front is accelerated to<br />

­approximately 8.1 m/s. Thereafter, the flame front<br />

propagates mainly close to the vessel wall opposite to the<br />

flange of the lower connection pipe and in the vessel<br />

centreline upwards in the PAD. In the TTV the flame front<br />

propagates mainly in the vessel centreline upwards, goes<br />

through the upper connection pipe, where the flame front<br />

is accelerated to approximately 47 m/s and enters the<br />

upper part of the PAD, whereby a jet ignition is observed,<br />

which leads to a very fast downward directed propagation<br />

in the upper part of the PAD. The flame fronts going<br />

through the upper and through the lower connection pipes<br />

meet in the PAD at a height of about 5.6 m.<br />

The zone ignition in the COCOSYS simulation differs<br />

from the experimental flame front propagation. In the<br />

­simulation, the flame front is also accelerated in the lower<br />

connection pipe due to the smaller cross section. By use of<br />

an exponential combustion profile the flame speed through<br />

the lower connection pipe is 6.3 m/s and in the simulation<br />

with linear combustion profile 6.5 m/s. In the simulation<br />

with an exponential combustion profile, the flame front<br />

arrives nearly at the same time at the TTVs’ and PADs’ top.<br />

The flame front propagates from both sides into the upper<br />

connection pipe. In the simulation with linear combustion<br />

profile, the top zone of the PAD is ignited at<br />

3.12 s and the TTVs’ top zone at 3.51 s. There<strong>for</strong>e, the<br />

flame front goes through the upper connection pipe from<br />

the top of the PAD and meets the flame front coming from<br />

the TTV at the right top of the upper connection pipe.<br />

In both simulations the first ignition of an elevation<br />

level in both vessels takes place in the vessel centreline.<br />

None of the simulations reproduces the high flame front<br />

acceleration in the upper connection pipe of 47 m/s.<br />

­Nevertheless, the highest flame front velocity is in both<br />

simulations given at the inlet of the upper connection pipe.<br />

In the simulation with exponential combustion profile the<br />

flame front velocity at the upper pipes’ inlet is 12.5 m/s<br />

and in the simulation with linear combustion profile<br />

| | Fig. 3.<br />

HD-36 Pressure Transient.<br />

AMNT 2019<br />

Simulation of Multi-compartment Hydrogen Deflagration Test HD-36 with COCOSYS ı Tobias Jankowski and Marco K. Koch


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

AMNT 2019<br />

329<br />

| | Fig. 4.<br />

HD-36 Flame front propagation [3] and zone ignition (exponential combustion profile).<br />

16.67 m/s. In the experiment the flame front had a velocity<br />

of 20 m/s at the inlet of the upper connection pipe.<br />

5 Conclusions<br />

The hydrogen deflagration test HD-36 in a multi-compartment<br />

geometry has been simulated with COCOSYS<br />

V2.4v4 by use of the FRONT model by considering an<br />

­exponential combustion profile as well as a linear one.<br />

The flame front behavior in the experiment is highly<br />

momentum driven due to the flame front acceleration in<br />

the lower and upper connection pipes between the two<br />

vessels. The acceleration in the lower connection pipe<br />

leads to a flame front that mainly moves upwards in some<br />

parts close to the vessel wall and in the centerline of the<br />

PAD. In the TTV the flame front moves straight upwards<br />

and is highly accelerated to 47 m/s in the upper connection<br />

pipe, where<strong>for</strong>e a downward directed jet-ignition takes<br />

place in the upper part of the PAD so that the flame fronts<br />

going through the lower and upper connection pipes meet<br />

at a height of 5.6 m in the PAD. The very high flame front<br />

velocity in the upper connection pipe might result from a<br />

displacement of unburnt gas that is moved from the TTV to<br />

the connection pipe according to Freitag et al. [3].<br />

The overall flame front behavior is reproduced in both<br />

simulations: The flame front is accelerated in the lower<br />

connection pipe and moves upwards in both vessels. Other<br />

than in the experiment, first zone ignition of an elevation<br />

level always occurs in the vessel centerline, also in the<br />

PAD. The faster upwards traveling flame front in the TTV<br />

and the following acceleration in the upper connection<br />

pipe, leading to flame fronts meeting in the middle of the<br />

PAD, is not reproduced by the simulations. In the simulation<br />

with an exponential combustion profile the upper<br />

vessel zone of the TTV and PAD are ignited at nearly the<br />

same instant. In the simulation with linear combustion<br />

profile a completely different situation is observed.<br />

­Opposite to the experiment, the zone ignition in the PAD is<br />

faster than in the TTV, where<strong>for</strong>e the top of the PAD is<br />

ignited 0.4 s early than the TTVs’ top. Furthermore, the<br />

vertical propagation out of the sump compartment of the<br />

TTV in both simulations takes significantly longer than in<br />

the experiment, what might has a huge influence on the<br />

whole simulation and the order of the zone ignition in the<br />

whole test facility. Nevertheless, the pressure transient is<br />

well predicted in the simulation with an exponential<br />

­combustion profile leading to a slightly higher pressure<br />

peak than in the experiment and a reaching of the pressure<br />

peak about half a second later.<br />

Acknowledgement<br />

This work is sponsored by the German Federal Ministry <strong>for</strong><br />

Economic Affairs and Energy (BMWi) under the contract<br />

numbers 150 1512 and 150 1568.<br />

Simulations are per<strong>for</strong>med with AC 2 module COCOSYS<br />

developed by GRS.<br />

References<br />

[1] T. Hollands: Modellierung der Stickstoffreaktion in Störfallanalysecodes zur Simulation des<br />

Lufteinbruchs in kerntechnischen Anlagen. ISBN: 978-3-934951-27-3, Dissertation,<br />

Ruhr-Universität Bochum, 2010.<br />

[2] S. Gupta, G. Langer, M. Colombet: Hydrogen Combustion During Spray Operation: Tests HD-30,<br />

HD-31 and HD-32. Report No. 1501420-TR-HD-30-32, Technical Report, Becker Technologies<br />

GmbH, Eschborn, 2014.<br />

[3] M. Freitag, B. von Laufenberg, E. Schmidt: Hydrogen Deflagration Tests in a Two-Vessel Test Facility:<br />

Test series HD-36 – HD-39. Report No. 1501455 – TR – HD36-39, Technical Report, Becker<br />

Technologies GmbH, Eschborn, 2017.<br />

[4] M. Freitag, A. Kühnel, G. Langer: Extension of the THAI test facility by a second vessel: THAI+. Report<br />

No. 1501455 – FB/TR – THAIPLUS, Technical Report, Becker Technologies GmbH, Eschborn, 2016.<br />

[5] W. Klein-Heßling et al.: COCOSYS V2.4v5 Users’ Manual. GRS – P – 3/1, Revision 29, Gesellschaft für<br />

Anlagen- und Reaktorsicherheit (GRS) gGmbH, Köln, 2018.<br />

[6] M. Pelzer: Validation of ASTEC CPA: FRONT Module Parameter Study on Hydrogen Deflagration<br />

Experiments. ASTEC/DOC/12-04, Rev 0, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)<br />

gGmbH, 2012.<br />

Authors<br />

Tobias Jankowski and Marco K. Koch<br />

ORCID: 0000-0001-55<strong>06</strong>-0498 and 0000-0001-7260-5250<br />

Ruhr-Universität Bochum, Fakultät Maschinenbau,<br />

Plant Simulation and Safety (PSS)<br />

Email: Tobias.Jankowski@pss.rub.de<br />

AMNT 2019<br />

Simulation of Multi-compartment Hydrogen Deflagration Test HD-36 with COCOSYS ı Tobias Jankowski and Marco K. Koch


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

330<br />

Impressions<br />

AMNT 2019<br />

AMNT 2019<br />

50 th Annual Meeting on <strong>Nuclear</strong> Technology (AMNT 2019) ı Impressions


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

AMNT 2019<br />

331<br />

AMNT 2019<br />

50 th Annual Meeting on <strong>Nuclear</strong> Technology (AMNT 2019) ı Impressions


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

332<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Das neue Strahlenschutzrecht (III) –<br />

SSV und SSB<br />

Die bewährten Funktionen des Strahlenschutzverantwortlichen (SSV) und des Strahlenschutzbeauftragten (SSB)<br />

sind vom neuen Strahlenschutzrecht übernommen worden. Regelungen dazu finden sich sowohl im Strahlenschutzgesetz<br />

(StrlSchG), dort in den §§ 69-72, als auch in der Strahlenschutzverordnung (StrlSchV) vom 29.11.2018, dort in<br />

den §§ 43 und 44 und an weiteren Stellen.<br />

SSV ist bekanntlich u.a. derjenige, der einer der atom- oder<br />

strahlenschutzrechtlichen Genehmigungen bedarf, wie sie<br />

in der relevanten Norm (früher § 31 Abs. 1 StrlSchV a.F.,<br />

jetzt § 69 Abs. 1 StrlSchG) aufgezählt werden. Zu diesen<br />

Genehmigungen zählen jetzt auch solche zur Beförderung<br />

radioaktiver Stoffe. Das hat zur Folge, dass man hier jetzt<br />

auch einen SSB mit entsprechender Fachkunde braucht;<br />

§ 204 StrlSchG bringt eine Übergangsregelung hierzu mit<br />

einer Frist bis Ende 2021. Von der Ausweitung des Kreises<br />

der Strahlenschutzverantwortlichen sind ferner diejenigen<br />

Aktivitäten betroffen, die nach dem alten Recht “Arbeiten”<br />

darstellten, jetzt aber im erweiterten Begriff der<br />

“ Tätigkeiten” aufgehen. Das betrifft etwa Airlines sowie<br />

Unternehmen mit Arbeitsplätzen, an denen relevante<br />

­Exposition durch natürliche Strahlenquellen stattfindet.<br />

§ 33 Abs. 1 der alten StrlSchV enthielt einen Katalog der<br />

Vorschriften, für deren Einhaltung der SSV verantwortlich<br />

ist. Die lange Liste von Paragraphen war zwar sperrig, aber<br />

immerhin vollständig. In dieser Form gibt es sie jetzt nicht<br />

mehr. Das liegt an der Aufspaltung der Materie in Gesetz<br />

und Verordnung. Das StrlSchG bringt in § 72 Abs. 1 einen in<br />

der Anlage ähnlichen Katalog, der aber nur die relevanten<br />

Vorschriften des StrlSchG selbst aufzählt – die Verordnung<br />

gab es ja noch gar nicht. Die StrlSchV vom 29.11.2018<br />

wiederum enthält ihrerseits keinen zusammenfassenden<br />

Katalog. Stattdessen werden alle Einzelvorschriften, für<br />

deren Einhaltung der SSV verantwortlich sein soll, jeweils<br />

mit den Worten einge leitet: “Der Strahlenschutzverantwortliche<br />

hat dafür zu sorgen, dass…” (In der alten<br />

StrlSchV gab es an dieser Stelle immer eine unpersönliche<br />

Partizipialkonstruktion, etwa: “Strahlenschutzbereiche …<br />

sind einzurichten”). Um sich einen Überblick über die<br />

Pflichten des SSV zu verschaffen, muss man also die<br />

StrlSchV durchlesen und sich alle Vorschriften, auch<br />

einzelne Absätze oder Sätze, notieren, die so anfangen.<br />

Angabegemäß sind es über 100.<br />

Zu Diskussionen gab § 43 Abs. 2 StrlSchV Anlass. Die<br />

Norm lautet: “Die Pflichten der folgenden Vorschriften<br />

dürfen dem Strahlenschutzbeauftragten nicht übertragen<br />

werden: …”. Die in Bezug genommenen Vorschriften enthalten<br />

Grundlegendes wie z. B. die Einhaltung der Grenzwerte<br />

für Ableitungen und für Störfallplanung, aber auch<br />

eher Bürokratisches wie die Aufbewahrung von ärztlichen<br />

Bescheinigungen. Muss der Geschäftsführer also künftig<br />

solche Bescheinigungen auf seinem Schreibtisch stapeln,<br />

neben der Cognac-Karaffe und dem Zigarrenkästchen? Bei<br />

Lichte besehen, war die Regelung aber schon in der alten<br />

StrlSchV angelegt: in § 33 Abs. 2 der alten StrlSchV stand,<br />

dass dem SSB ein bestimmter Teil des Pflichtenkatalogs des<br />

SSV aus Abs. 1 der Norm übertragen werden konnte, aber<br />

eben nicht alles. Was bedeutet das nun? Der SSV konnte<br />

natürlich schon immer, und kann auch jetzt, die operative<br />

Wahrnehmung dieser Pflichten delegieren. Er muss nicht<br />

eigenhändig rechnen oder aufbewahren. Das Übertragungsverbot<br />

des § 43 Abs. 2 StrlSchV kann nur den Sinn haben,<br />

ihm eine gesteigerte Verantwortung zuzuweisen, dass das<br />

auch funktioniert. Da der SSV aber ohnehin immer verantwortlich<br />

bleibt, auch nach ­Delegation von Pflichten an den<br />

SSB (siehe § 70 Abs. 1 S. 2 StrlSchG), bleibt der Unterschied<br />

zwischen “übertrag baren” und “nicht übertragbaren”<br />

Pflichten insgesamt schwer fasslich.<br />

Die in der Praxis entwickelte Funktion des<br />

“Strahlenschutz bevollmächtigten”, auf den der SSV seine<br />

eigenen Aufgaben delegiert, hat es wieder einmal nicht in<br />

den Text des Gesetzes oder der Verordnung geschafft. Sie<br />

wird aber in der amtlichen Begründung des Gesetzes<br />

ausdrücklich erwähnt und gutgeheißen, sodass sie <strong>for</strong>tgeführt<br />

werden kann.<br />

Interessant sind auch einige Neuregelungen im Gesetz<br />

zum Verhältnis von SSV und SSB. Das Verbot der alten<br />

StrlSchV (§ 32 Abs. 5), den SSB zu behindern oder zu<br />

benachteiligen, ist (selbstverständlich) in das Gesetz übernommen<br />

worden. § 70 Abs. 6 S. 2 StrlSchG gibt dem SSB<br />

nunmehr zusätzlich einen Kündigungsschutz – sofern der<br />

Arbeitgeber, also letztlich der SSV, nicht zur fristlosen<br />

Kündigung aus wichtigem Grund berechtigt ist. Goldene<br />

Löffel darf der SSB also weiterhin nicht klauen.<br />

Wenn der SSV einen Vorschlag ablehnt, den der SSB<br />

“zur Behebung von aufgetretenen Mängeln” macht, dann<br />

hat der SSB weiterhin einen Anspruch darauf, dass der<br />

SSV ihm die Ablehnung schriftlich mit Begründung mitteilt,<br />

mit Kopie an den Betriebsrat und an die zuständige<br />

Behörde. Die Neuregelung des § 71 Abs. 2 S. 3 StrlSchG<br />

gibt dem SSB jetzt das Recht, sich unmittelbar an die<br />

Behörde zu wenden, wenn die Mitteilung des SSV insgesamt,<br />

oder wenigstens die Übermittlung einer Kopie an<br />

die Behörde, unterbleibt. Das erinnert zunächst an die<br />

spannende Thematik des sog. Whistleblowers, also eines<br />

Arbeitnehmers, der Missstände in seinem Unternehmen<br />

oder seiner Institution der Öffentlichkeit oder den Behörden<br />

bekannt macht; gegenwärtig wird ja ganz allgemein<br />

diskutiert, ob eine solche Person eines besonderen gesetzlichen<br />

Schutzes bedarf. Die neue Regelung im StrlSchG<br />

ist aber, wenn man genau hinschaut, doch sehr begrenzt.<br />

Sie greift nur, wenn der Arbeitgeber/SSV seine ohnehin<br />

­ausdrücklich bestehende Pflicht zur Unterrichtung der<br />

Behörde verletzt. Außerdem muss der SSB abwägend vorgehen:<br />

Da das StrlSchG für die Mitteilung des SSV wie<br />

bisher keine Frist setzt, muss der SSB sicherlich eine angemessene<br />

Zeit abwarten und er<strong>for</strong>derlichenfalls noch<br />

einmal nachhaken, bevor er als ultima ratio selbst die<br />

Behörde in<strong>for</strong>miert.<br />

Insgesamt kann man feststellen: Der SSV wird durch<br />

das neue Recht an seine Pflichten erinnert; die Rolle des<br />

SSB wird gestärkt. Nach dem (sicherlich subjektiven)<br />

Eindruck des Verfassers wäre das in der Kernenergie mit<br />

ihrer hoch entwickelten Sicherheitskultur nicht unbedingt<br />

nötig gewesen. In anderen Bereichen dagegen, etwa in<br />

Kliniken oder in Unternehmen, in denen der Umgang mit<br />

Radioaktivität nur einen Randaspekt darstellt, könnte das<br />

neue Recht durchaus dazu führen, dem SSB in praxisrelevanter<br />

Weise den Rücken zu stärken.<br />

Author<br />

Rechtsanwalt Dr. Christian Raetzke<br />

Beethovenstr. 19, 04107 Leipzig, Deutschland<br />

Spotlight on <strong>Nuclear</strong> Law<br />

The New Radiation Protection Law (III) – Supervisor and Commissioner ı Dr. Christian Raetzke


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Economic Potential of SMRs<br />

Helmut Engelbrecht<br />

Electricity is essential <strong>for</strong> human well being; its reliable availability is a key success factor <strong>for</strong> any human<br />

development. Accordingly, the supply of electricity was organised everywhere as “infrastructure”, characterised by an<br />

obligation to supply <strong>for</strong> the utility, but no competition or price risks. Security of supply was the key success criteria.<br />

In this economic environment nuclear industry has<br />

developed successfully. In times of high demand growth<br />

<strong>for</strong> electricity, (10 to 15 % annual increase in electricity<br />

consumption was not unusual), it was essential to achieve<br />

a rapid growth of the electricity generation capacity. So<br />

building big nuclear units at a fast pace helped to service<br />

the needs.<br />

But independent of the increase in demand the<br />

economic boundary conditions of a regulated market<br />

allowed <strong>for</strong> all the investments needed to build and support<br />

the nuclear infrastructure. Many industrial countries<br />

created independent national nuclear industries. They<br />

also created independent national nuclear regulators to<br />

supervise their national reactor build programs. As they<br />

were competing to supply their technologies to interested<br />

third parties there was hardly any international cooperation<br />

amongst the global nuclear industries.<br />

This changed in the 1980s. The well-developed<br />

industrial nations saw a decline in electricity demand<br />

growth. High energy prices triggered technology advances<br />

that reduced the electricity demand in industrial applications.<br />

Only the private consumption kept increasing but<br />

on a reduced level. Electricity supply security <strong>for</strong> everybody<br />

was a given.<br />

In this market condition many countries decided to<br />

“ liberalise” their electricity markets. They introduced<br />

competition to the electricity supply system. This was<br />

meant to increase the efficiency of the operation and to<br />

allow smaller entities to participate in the market.<br />

It worked out. The different stages of the electricity<br />

supply were organised independently of each other.<br />

Electricity trading saw small sales companies entering the<br />

market, introducing price pressure that ultimately <strong>for</strong>ced<br />

market participants to work as efficient as possible.<br />

Un<strong>for</strong>tunately this was valid only to parts of the<br />

electricity supply services, mainly generation. Electricity<br />

transport and distribution, even so organised independently<br />

of each other, remained regulated as nobody saw a<br />

reason to duplicate the grids.<br />

Price competition in electricity generation increased<br />

the effectiveness of operation, but un<strong>for</strong>tunately also<br />

reduced the willingness to invest. Without price certainty<br />

any expenditure <strong>for</strong> power generation becomes a major<br />

investment risk. If you invest at all, you want to minimise<br />

your exposure, so you decide <strong>for</strong> the generation with the<br />

lowest upfront investment and the highest variable costs,<br />

namely gas based electricity generation. <strong>Nuclear</strong> power,<br />

where the investment cost determines up to almost 80 %<br />

of the ultimate electricity price is not well positioned to<br />

be considered favourable in such market conditions.<br />

Negative public sentiment, complex licensing and other<br />

big project related issues add to the financial risks, which<br />

ultimately make investments in big power generation units<br />

impossible <strong>for</strong> private entities. This is not only true<br />

<strong>for</strong> nuclear but also effects coal and gas-based power<br />

generation investments. Whereas in a non competitive<br />

market with long term price certainty <strong>for</strong> your product you<br />

will try to build as big as possible to achieve the economy<br />

of size, in a competitive market it is quite the opposite, you<br />

build as small as reasonable to minimise your investment<br />

risk and the economic effects of a potential failure.<br />

So small is interesting. Accordingly competitive power<br />

markets saw a lot of interest in small generation devices<br />

like solar panels, wind generators and bio gas plants.<br />

Subsidies to support their market introduction helped<br />

tremendously to boost customer’s interest.<br />

Ultimately this changed the electricity generation<br />

market from being a regulated national infrastructure<br />

market to a commodity mass market, driven by consumer’s<br />

needs and perceptions, similar to IT, telecommunication<br />

and mobility.<br />

So how do you react as a supplier to this market? To be<br />

successful you need to convince your customers. But who<br />

is your customer? The big utility that used to dominate in<br />

the regulated market has been replaced by a lot of smaller<br />

players from different industries, local municipalities and<br />

even down to individuals, who take an interest in power<br />

generation. They are all driven by different needs and<br />

ambitions. Security and quality of electricity supply,<br />

­ecological considerations or tax optimisation might be<br />

their mayor interest to name just a few.<br />

You should also learn from your competition. So has the<br />

nuclear industry really investigated and understood why<br />

solar panels, why wind generation has become so popular?<br />

What does nuclear industry need to do to adjust to the<br />

changed market conditions?<br />

What does the individual electricity consumer want?<br />

What are his or her concerns related to power generation?<br />

I believe you should ask the consumers what they want.<br />

I am not aware of any big scale investigation into this<br />

question. But when putting this question to a small group<br />

of young nuclear professionals at the WNU Summer<br />

Institute 2018 the result was eye-opening.<br />

They differentiated the overall view into three market<br />

segments: mature electricity markets, industrial electricity<br />

needs and developing electricity markets. Based on their<br />

anticipation of consumers needs, they saw the demand<br />

<strong>for</strong> small, flexible units. Favourite solution was gas or<br />

wind-based power generation. <strong>Nuclear</strong> was nowhere the<br />

preferred choice but managed to achieve a close second<br />

rank <strong>for</strong> industrial needs and in developing electricity<br />

markets. Interesting to notice was the fact that the smaller<br />

(capacity wise) the nuclear unit used was; the more<br />

favourable was its anticipated ranking. So, assuming the<br />

nuclear unit was easy to transport and operate, inherently<br />

safe, flexible to generate heat and power and did not<br />

require frequent refuelling; these nuclear units did have<br />

one advantage on the alternatives. Compared to gas<br />

generation it does not require a supply infrastructure and<br />

in comparison to wind generation its advantage is to be<br />

reliably available on demand. Both facts certainly have<br />

economic implication in favour of nuclear.<br />

Does a nuclear unit like this exist? No, but all the<br />

required technical features to build such a reactor are<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 333<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Economic Potential of SMRs ı Helmut Engelbrecht


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 334<br />

High temp gas reactor<br />

known and have been used successfully in the past. Several<br />

international developments are aiming to bring these so<br />

called “micro reactors” to market within the next decade.<br />

There is <strong>for</strong> example the Uranium Battery promoted by a<br />

consortium under the leadership of Urenco, a 4 MWe gas<br />

cooled, graphite moderated high temperature reactor. Or<br />

another one is the eVinci reactor, designed and developed<br />

by Westinghouse to produce up to 5 MWe. I mention just 2<br />

of several solutions promoted right now, but a Canadian<br />

programme to support this development found more<br />

than 15 international applications from interested parties.<br />

In my mind, all these reactor developments have the<br />

potential to serve the customers’ needs, and at least serve<br />

them better than the nuclear technologies being offered by<br />

our industry today.<br />

| | Westinghouse‘s vision of its eVinci micro reactor.<br />

Source: http://www.world-nuclear-news.org/NN-More-SMR-vendordesign-reviews-<strong>for</strong>-CNSC-2002187.html<br />

Now if you reflect on the consequences of such a<br />

customer interest driven approach towards nuclear<br />

generation, the required changes <strong>for</strong> the industry are vast.<br />

The big reactors build today will only be needed in<br />

regulated markets. The big demand will be <strong>for</strong> this<br />

­inherently safe, simple, flexible, easy to operate, small<br />

device.<br />

Key success factor <strong>for</strong> such a new micro reactor will be<br />

its manufacturing as a mass product, similar to a wind<br />

generator. To be af<strong>for</strong>dable it will have to be build and sold<br />

in big numbers.<br />

Such a micro reactor is a technical device that is<br />

comparable to a car or an airplane. We consider nuclear<br />

always as something special, but I believe it is technically<br />

less complex than an airplane or a car. The only unique<br />

feature in a nuclear reactors operation is the decay heat,<br />

which can be as much as 30 % of the power generation<br />

be<strong>for</strong>e shut down. This has to be removed, which needs to<br />

happen systematically, without any need <strong>for</strong> external<br />

human involvement. In my opinion an inherently safe<br />

system achieves that. Hence you can really compare this<br />

kind of reactor to a car, an airplane or a wind generator.<br />

So it should be possible to achieve this reactor development<br />

in a similar manner as development happen in those<br />

industries.<br />

Car or airplanes are developed with sales of big<br />

numbers in mind. As this is not the prevailing idea in<br />

­nuclear industry so far, financing such a development<br />

might be harder to achieve <strong>for</strong> this micro reactors.<br />

Ultimately some kind of state support might be required to<br />

launch the process. This could also be in the <strong>for</strong>m of state<br />

backed purchases of these micro reactors. For example<br />

Westinghouse’s development of the eVinci micro reactor<br />

is believed to happen with US military needs in mind,<br />

who is considering buying these in big numbers (200 is<br />

contemplated on the internet) <strong>for</strong> their needs. This would,<br />

should it become true, assure the market introduction of<br />

this micro reactor.<br />

Similar to car or airplane developments new reactors<br />

will have to be designed to meet consumers needs.<br />

Also similar to those developments the design and the<br />

operation of such a micro reactor will have to be based on<br />

internationally accepted, common licensing requirements.<br />

Here certainly further advances in the international<br />

regulatory framework <strong>for</strong> nuclear are required. But this is<br />

not something totally new, as <strong>for</strong> example transport casks<br />

<strong>for</strong> nuclear material are licensed in one country, and then<br />

these regulations are agreed to and accepted to permit the<br />

use of these casks in other countries.<br />

Customers of micro reactors will want cradle to grave<br />

services: delivery on short notice, easy operation fulfilling<br />

their energy needs, repair and maintenance when required,<br />

and take back services when the energy is spend.<br />

Similar to what you do today with a battery.<br />

This sounds like an obstacle, but again there are<br />

precedents. All micro reactors will want to use enriched<br />

4 MW power,<br />

10 MW heat<br />

Simple design,<br />

proven technology<br />

Inherently safe<br />

TRISO fuel<br />

Embedded<br />

at point of use<br />

Modular<br />

manufactured<br />

Primary markets –<br />

off-grid<br />

Micro – distinct<br />

from SMR<br />

| | U-Battery – Micro Modular Technology.<br />

Source: https://www.u-battery.com/<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Economic Potential of SMRs ı Helmut Engelbrecht


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

| | NASA mini-nuclear reactor.<br />

Source: https://www.nasa.gov/sites/default/files/atoms/files/kilopower_media_event_charts_16x9_final.pdf<br />

uranium at a level higher than in today’s Light Water<br />

Reactors. In order to minimise the refuelling requirement<br />

most the micro reactor developments consider 19.5 %<br />

enrichment. High enriched material would be even more<br />

efficient, but thanks to expected political concern most<br />

­developers seem to go <strong>for</strong> fuel with less than 20 % enrichment.<br />

But reactors, that did use high enriched material in<br />

the past (research reactors), have had offers from the<br />

countries, which delivered the fuel, to take the used<br />

enriched material back. Why should this be impossible <strong>for</strong><br />

SMRs, in particular as it would certainly be seen to enhance<br />

nuclear security?<br />

Last not least let’s reflect on the economics of these<br />

micro reactors. Ultimately the electricity generation costs<br />

of these devices while mainly depend on the numbers<br />

build. The first of a kind as usually will be extremely<br />

­expensive, but when you build the 1000 th of a kind your<br />

costs will fall towards the cost of material required. Even at<br />

that level it might be hard to match the generation costs of<br />

big nuclear reactors.<br />

But the end customers’ real concern is the overall<br />

energy cost as delivered. And here small machines have a<br />

real advantage as you can easily adjust the capacity to your<br />

requirements.<br />

Today in countries like Germany the electricity generation<br />

costs only are app. one third of the overall charge <strong>for</strong><br />

the kilowatt-hour consumed. The rest is <strong>for</strong> electricity<br />

transport, ­distribution, taxes and Germany specific<br />

subsidies <strong>for</strong> renewable sources. Even in well established<br />

electricity markets long term established grids still make<br />

up app. 20 % of the consumers electricity bill. Imagine<br />

what this would be in developing countries, where this<br />

infrastructure needs to be built in parallel to investing in<br />

big electricity generation. So similar to the developments<br />

seen in telecommunication or in<strong>for</strong>mation technology, one<br />

could imagine this small electricity generation devices<br />

could change the markets <strong>for</strong> electricity to become much<br />

more distributed, requiring less grid infrastructure. For<br />

remote areas local operation in island mode seems feasible.<br />

The overall price <strong>for</strong> this is potentially quite competitive.<br />

But with this it will be an individuals’ choice how to organise<br />

one’s electricity and energy supply. So the customer is<br />

free to do establish what he or she considers best.<br />

I sketched here the potential development that could<br />

happen if SMR (small micro reactors) are successfully<br />

developed and established in the electricity business. I am<br />

sure it can be done, but it requires massive changes to<br />

nuclear industry and the way it is used to operate.<br />

On the other hand the industrial and economic<br />

potential is vast. Small distributed generation on this basis<br />

will change the electricity markets.<br />

Small decentralised electricity generation could reduce<br />

the cost <strong>for</strong> the end user, as transport- and distribution<br />

costs should be reduced. It also will improve supply<br />

security as local disturbances no longer impact national/<br />

international grids.<br />

The economic potential <strong>for</strong> SMR’s (small, micro<br />

reactors) looks promising. Who will dare to tackle this<br />

market first?<br />

Author<br />

Dr. Helmut Engelbrecht I <strong>Nuclear</strong> Professional<br />

(CEO Urenco 2005-2015, Chairman World <strong>Nuclear</strong><br />

Association 2016-2018)<br />

helmutengelbrecht@web.de<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 335<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Economic Potential of SMRs ı Helmut Engelbrecht


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 336<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong><br />

Developments and Safety Features<br />

Andreas Schaffrath and Sebastian Buchholz<br />

1 Introduction<br />

In the last years, several well-developed Small Modular<br />

Reactor (SMR) designs from different international<br />

vendors were announced. SMRs are mainly designated<br />

<strong>for</strong> deployment not only in sparsely populated remote<br />

areas but also near heavily populated cities and may<br />

provide electricity, district heating and potable water. The<br />

construction and deployment of SMRs is also being<br />

promoted in various European countries (e.g. the UK or<br />

Russia) [BUS-16, WNA-19].<br />

SMRs can satisfy the need <strong>for</strong> low carbon generation<br />

energy sources and especially the need <strong>for</strong> new capacities,<br />

since significant (conventional and nuclear) power plant<br />

capacities have to be retired and replaced in the coming<br />

decades. Additionally, many countries see nuclear energy<br />

alongside renewables as a possibility <strong>for</strong> sustainable<br />

development and a reliable energy system [OZA-19].<br />

Especially <strong>for</strong> strongly growing developing countries,<br />

SMRs can provide the possibility to establish a nuclear<br />

industry with a fraction of the costs of currently operating<br />

nuclear power plants. These savings result mainly due to<br />

complete prefabrication of modules fully equipped in<br />

factories. This results in high qualities, shorter production<br />

times, lower capital costs, standardization and there<strong>for</strong>e<br />

lower costs due to mass production, simplification of safety<br />

systems by primarily use of passive systems, lower number<br />

of employees <strong>for</strong> deploying and removal, the opportunity<br />

to deploy one module after another and higher plant availability<br />

due to modular character. SMRs may also replace<br />

older fossil plants and lead consequently to savings of gas,<br />

oil and other fossil resources [BUS-15, WNA-19].<br />

In chapter 2 of this contribution an overview on current<br />

SMR developments is given. Due to the large number of<br />

designs currently in operation, in construction or under<br />

development, the focus is on identifying general construction<br />

und safety trends. These are discussed in chapter<br />

3. The description of individual details is given below <strong>for</strong><br />

illustrative purposes only. For the sake of completeness,<br />

issues such as competitiveness, licensing, position of<br />

selected European decision makers are addressed<br />

additionally. Finally, in chapter 4 an overview of necessary<br />

improvements and validation of the nuclear simulation<br />

chain applied in nuclear licensing procedures is provided.<br />

The improved simulation chain will be used <strong>for</strong> safety<br />

assessments of SMRs according to the current state of the<br />

art in science and technology.<br />

2 Definitions, history and<br />

current developments<br />

After a compilation of different SMR definitions in section<br />

2.1, a short overview on the history (section 2.2) and<br />

­current projects (section 2.3) is provided. This publication<br />

deals exclusively with SMRs <strong>for</strong> energy and/or power<br />

generation. Engines <strong>for</strong> nuclear icebreakers, merchant<br />

vessels and submarines, studies of mobile SMRs, propulsion<br />

systems <strong>for</strong> outer space, as well as military applications<br />

are not considered here, as this would go far<br />

beyond the scope.<br />

2.1 Definitions<br />

There are two different definitions <strong>for</strong> SMR in literature.<br />

The first one is widely used in North America (e.g. the USA<br />

and Canada). Here, the abbreviation SMR stands <strong>for</strong> Small<br />

Modular Reactor. The emphasis of this definition is on the<br />

term modular, which characterises, that a (larger) production<br />

unit can consist of different modules, which may<br />

be added one by one. Also, it is possible to refuel one<br />

module, while the others continue operation. The term<br />

small in the definition SMR characterises an electrical<br />

power output of less than 300 MW e . In this scale the<br />

primary coolant system, selected parts of the secondary<br />

and, where necessary, intermediate circuit and auxiliary<br />

systems can be arranged in an integral reactor pressure<br />

vessel (RPV). An SMR module may be transported to the<br />

construction site in one piece or in few parts [WNA-19].<br />

On the contrary, the IAEA defines SMR as Small<br />

and Medium Sized Reactors. These reactors can have<br />

capacities up to 700 MWe. The modular character is not<br />

met by this definition but is also not excluded [BUS-15].<br />

According to this definition, all reactors ever built in this<br />

power range – even the VVER440s – are SMRs [SCA-19].<br />

There<strong>for</strong>e, in the following the focus is on modular SMRs<br />

2.2 History<br />

The idea of small (modular) reactors is not a new one.<br />

Since the mid of the last century the <strong>for</strong>mer USSR and the<br />

USA have used SMRs <strong>for</strong><br />

pp<br />

energy and heat production of remote areas (e.g. Arctic,<br />

the Antarctica or Greenland) and<br />

pp<br />

engines <strong>for</strong> their submarines, merchant vessels and ice<br />

breakers [BUS-15].<br />

One well-known example is e.g. the Army <strong>Nuclear</strong> <strong>Power</strong><br />

Program (ANPP) [SUL-90]. Numerous in<strong>for</strong>mation and<br />

pictures about the ANPP are published on the website<br />

Army Engineer History of the U.S. Army Corps of Engineers<br />

[ARH-171]. The ANPP was supervised by the U.S. Army<br />

Engineer Reactors Group and had it headquarters in Fort<br />

Belvoir (Virginia). Eight nuclear power plants (NPPs) were<br />

built and operated in remote areas. The program ran<br />

from 1954 to 1977, when the last nuclear reactor was<br />

decommissioned. The main tasks were<br />

pp<br />

to carry out research and development in the field of<br />

nuclear power plants together with the Atomic Energy<br />

Commission,<br />

pp<br />

to operate the nuclear power plants of the Corps of<br />

Engineers,<br />

pp<br />

to carry out training measures <strong>for</strong> the operation of<br />

these nuclear power plants,<br />

pp<br />

to provide technical assistance to other authorities as<br />

needed and<br />

pp<br />

to develop programs <strong>for</strong> the application of nuclear reactors<br />

<strong>for</strong> military use.<br />

One peculiarity was the naming of the SMRs. The name<br />

consists of two letters followed by a number and in some<br />

cases a third letter. The first letter indicates whether the<br />

installation is stationary (S), mobile (M) or portable (P),<br />

the second letter whether the power is high (H), medium<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

(M) or low (L). Then the sequence number of the reactor<br />

follows. Last the character A is added in case of site installation.<br />

The sites and names of the SMRs of the ANPP are:<br />

Fort Belvoir (SM-1), National Reactor Testing Station in<br />

Idaho (SL-1 and ML-1), Camp Century, Greenland (PM-<br />

2A), Sundance United Air Station, Wyoming (PM-1),<br />

McMurdo Station, Antarctica (PM-3A), Fort Greely, Alaska<br />

(SM-1A), Liberty Ship Sturgis anchored in Gatún Lake<br />

(MH-1A) [ARH-172]. Selected SMRs of the ANPP are<br />

shown in Figure 1.<br />

The ANPP has achieved numerous pioneering<br />

successes:<br />

pp<br />

detailed designs <strong>for</strong> pressurized water, boiling water,<br />

gas-cooled and liquid metal reactors (all ANPP NPPs),<br />

pp<br />

first nuclear power plant with a containment (SM-1),<br />

pp<br />

first use of stainless steel <strong>for</strong> fuel element assemblies<br />

(SM-1),<br />

pp<br />

first nuclear power plant in the United States to supply<br />

electricity to a commercial grid (SM-1),<br />

SM-1, Fort Belvoir (Virginia)<br />

pp<br />

first nuclear district heating source in the United States<br />

(SM-1A),<br />

pp<br />

first replacement of a steam generator in the United<br />

States (SM-1A),<br />

pp<br />

first containment with pressure suppression (SM-1A),<br />

pp<br />

first operational nuclear power plant with boiling water<br />

reactor (SL-1),<br />

pp<br />

first portable, prefabricated, modular nuclear power<br />

plant to be built, operated and dismantled (PM-2A),<br />

pp<br />

first use of nuclear energy <strong>for</strong> seawater desalination<br />

(PM-3A),<br />

pp<br />

first mobile, land transportable nuclear power plant<br />

(ML-1),<br />

pp<br />

first nuclear-powered gas turbine with closed Brayton<br />

circuit (ML-1) and<br />

pp<br />

first (on a ship) floating nuclear power plant<br />

(MH-1A).<br />

<strong>Nuclear</strong> ship propulsion is mainly used by the military (e.g.<br />

nuclear submarines). For this purpose, pressurized water<br />

PM-1, Sundance (Wyoming)<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 337<br />

SL-1, Nat. Reactor Test. Station (Idaho)<br />

PM-3A, McMurdo Station (Antarctica)<br />

PM-2A, Camp Century (Greenland)<br />

SM-1A, Fort Greely (Alaska)<br />

| | Fig. 1.<br />

Selected reactors and sites of the Army <strong>Nuclear</strong> <strong>Power</strong> Program (all pictures were published by the U.S. Army on [ARH-172]).<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 338<br />

| | Fig. 2.<br />

<strong>Nuclear</strong> cargo vessels (left: NS Savannah, first commercial nuclear cargo vessel (picture: U.S. Government), right: NS Otto Hahn, third civil nuclear cargo vessel<br />

(picture: Jens Bludau)).<br />

reactors (PWRs) with an output of around 100 mega-watts<br />

are usually used. <strong>Nuclear</strong> propulsion has also been tested<br />

<strong>for</strong> the civilian sector. Examples are or were the Soviet<br />

icebreakers Lenin, Arktika and Sibir [ARV-17] and the<br />

cargo ships Savannah (USA), Otto Hahn (Germany), Mutsu<br />

(Japan) and Sevmorput (USSR). The NS Savannah and NS<br />

Otto Hahn are shown in Figure 2. The Russian icebreakers<br />

Rossiya, Tajmyr, Sovetskiy Soyuz, Waigatsch, Yamal and 50<br />

Let Pobedy are still in operation today [ARV-17].<br />

2.3 Current SMR developments<br />

Currently, there are numerous as well as comprehensive<br />

activities in the operation, construction and development<br />

of SMRs. Apart from nuclear ship engines in icebreakers<br />

and submarines, which are not subject of this article,<br />

currently four SMR designs are operating, two in<br />

China and one in India and Russia each (see Table 1 and<br />

Figure 3).<br />

The CEFR (China Experimental Fast Reactor) is China’s<br />

first fast neutron reactor (see upper left photography of<br />

Figure 3). It is located in the vicinity of Beijing and aims<br />

to provide China with fast-reactor design, construction<br />

and operational experience. The CEFR is a 65 MW th<br />

respectively 20 MW e sodium-cooled, pool-type reactor<br />

with a 30-year design lifetime and a target burn-up of<br />

100 ­MWd/kg and will be a key facility <strong>for</strong> testing and<br />

researching components and materials to be used in subsequent<br />

fast reactors. The CEFR is the basis <strong>for</strong> the development<br />

of the CDFR (China Demonstration Fast Reactor),<br />

which shall have a capacity of 1000-1200 MW e at present<br />

[POW-11].<br />

The CNP-300 is the first own development of a nuclear<br />

power plant in China and was built between 1985 and<br />

1991 at the Quinshan site [IAEA-12]. This design was<br />

­exported to Pakistan, where two reactors were constructed<br />

at Chasman site in 1999 and 2012. The CNP-300 is a<br />

CEFR, Tuoli [POW-11]<br />

4 EGP-6 units, Bilibino NPP [INSP-99]<br />

CNP-300, Quinchan [MPS-14]<br />

4 PHWR-200, Kaiga NPP [NS-19]<br />

| | Fig. 3.<br />

SMRs currently in operation.<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Name Type Manufacturer Country P [MW e ] Status Site<br />

| | Tab. 1.<br />

SMRs in operation.<br />

| | Tab. 2.<br />

SMRs in construction.<br />

pressurized water reactor and has a capacity of 999 MW th<br />

respectively 325 MW e .<br />

The EGP-6, a scaled down version of the RBMK reactor<br />

design, is currently the world’s smallest and northernmost<br />

nuclear reactor in operation [INSP-99]. The only four units<br />

of this type are operating at Bilibino NPP. Plans <strong>for</strong><br />

shutdown have been announced. The Bilibino NPP shall be<br />

­replaced by the floating nuclear power station Akademic<br />

Lomonosov (see below).<br />

The PHWR-220 is an indigenously in India built<br />

­pressurized heavy-water reactor. Sixteen units of this<br />

series were constructed at 5 different sites. The PHWR-220<br />

have an output of roughly 800 MW th and 220 MW e .<br />

6 SMR designs (see Table 2 and Figure 4) are currently<br />

under construction. These are the ACPR50S in China<br />

(PWR), the CAREM in Argentina (PWR), 2 CNP-300 in<br />

Pakistan (LWR), 2 KLT-40S in Russia (PWR), 2 HTR-PM<br />

in China (GCR) and a PFBR-500 in India (LMR). In<br />

the ­following these SMRs are briefly described with<br />

­exception of the CNP-300, which has already been<br />

introduced above.<br />

In 2015, China has decided to build an indigenously<br />

modular floating nuclear power plant. This SMR is called<br />

ACPR50S and has an electrical power output of 60 MW.<br />

The reactor is designed to supply energy to islands or<br />

remote coastal areas or offshore oil and gas production<br />

facilities [NFS-162]. The ACPR50S can also be applied <strong>for</strong><br />

seawater desalination. For instance, approx. 20 planned<br />

floating nuclear power plants could ensure the supply of<br />

fresh water to islands in the South China Sea [EGN-19]. In<br />

January 2016, China General <strong>Nuclear</strong> <strong>Power</strong> Corporation<br />

(CGN) and China Shipbuilding Industry Corporation<br />

(CSIC), China’s largest shipbuilding company, signed a<br />

strategic cooperation agreement <strong>for</strong> the development of<br />

offshore reactors [NFS-161]. On November 4, 2016, CGN<br />

also announced the start of construction on the first<br />

demonstration unit of a floating nuclear power plant<br />

Currently operating<br />

CEFR LMR CNEIC CN 20 Operating, Prototype <strong>for</strong> CDFR-1000 Tuoli (CN)<br />

CNP-300 PWR CNNC CN 325 Operating, additional planned Qinshan 1 (CN), Chashma (PK)<br />

EGP-6 RBMK OMZ Group Ru 12 4 operating Bilinino <strong>Nuclear</strong> <strong>Power</strong> Plant (RU)<br />

PHWR-220 HWR BARC IN 236 16 operating, additional planned Rajasthan, Madras, Narora, Kakrapar, Kaiga<br />

(all IN)<br />

Name Type Manufacturer Country P [MW e ] Status Site<br />

Currently under construction<br />

ACPR50S PWR CGNPC CN 60 Start of construction November 2016 Demonstration offshore <strong>Nuclear</strong> Reactor (CN)<br />

CAREM PWR CNEA AR 27 Start of construction: February 2014 Atucha (AR)<br />

CNP-300 PWR CNNC CN 325 2 blocks under construction Chashm (PK)<br />

HTR-PM GCR INET CN 105 Demonstration plant under<br />

construction since 2012 Bau (2 modules)<br />

KLT-40S PWR OKBM<br />

Afrikantov<br />

RU 35 2 reactors in Akademik Lomonosov,<br />

deployment: 2016<br />

PFBR-500 LMR IGCAR IN 500 Under construction, first criticality<br />

planned in September 2014<br />

Shidaowan (CN)<br />

Barge Akademik Lomonosov (RU)<br />

Madras (IN)<br />

with the signing of the purchase contract <strong>for</strong> the first<br />

ACPR50S reactor.<br />

In Argentina a CAREM-25 [MAC-14] is currently built by<br />

CNEA at the Atucha site northwest of Buenos Aires. A<br />

special feature is the integral design of the primary circuit,<br />

where pressurizer, steam generator and control rod drives<br />

are integrated within the reactor pressure vessel. Since the<br />

core is cooled with natural convection even in operation,<br />

no pumps are necessary [WNN-141]. First tests of the<br />

CAREM started in 2016.<br />

The construction of the HTR-PM started in December<br />

2012 in Shidao Bay <strong>Nuclear</strong> <strong>Power</strong> Plant. It consists of two<br />

high-temperature gas-cooled pebble-bed reactors with an<br />

electrical output of 105 MW each. Both reactors are<br />

connected to a single steam turbine. The HTR-PM is partly<br />

based on the HTR-10 prototype reactor and expected to be<br />

the first Gen IV reactor to enter operation [ZUZ-16].<br />

In Russia the floating NPP Akademic Lomonosov has<br />

been built in a shipyard in St. Petersburg since 2007. It<br />

contains two KLT-40S reactors with a thermal power of<br />

150 MW each. These reactors are derivatives of the KLT-40<br />

[IAEA-00], which were used in icebreakers of the<br />

Sevmorput class and the KLT-40M used in icebreakers of<br />

the Taymyr class [OKB-13]. The Akademic Lomonosov shall<br />

be deployed to Pevek at the East Siberian Sea in order to<br />

provide electricity district heating and potable water to the<br />

region.<br />

The PFBR-500 [CHE-<strong>06</strong>] is a fast breeder developed<br />

by the Indira Gandhi Centre <strong>for</strong> Atomic Research and is<br />

under construction at the Madras Atomic <strong>Power</strong> Station in<br />

Kalpakkam (India). First criticality is planned to achieve in<br />

2020 [WNN-19]. The PFBR-500 has an electrical output of<br />

500 MW and will burn MOX fuel with expected burn-up<br />

of up to 100 GWd/t. It is is a pool type reactor with 1750<br />

tonnes of sodium.<br />

There are plans <strong>for</strong> the construction of 11 more SMR<br />

concepts (see Table 3). In addition, roughly 50 SMR<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 339<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 340<br />

­concepts are at a design state without explicit deployment<br />

plans.<br />

3 GRS study on safety and international<br />

development of small modular reactors<br />

In the last years, several well-developed SMR designs from<br />

different international vendors were announced. For<br />

creating an overview about current SMR designs to identify<br />

essential issues <strong>for</strong> reactor safety research, GRS per<strong>for</strong>med<br />

a study of safety and international development of SMR.<br />

This is the basis to specify needs of adaptation of system<br />

codes used at GRS <strong>for</strong> reactor safety research. The large<br />

number of SMR designs in operation, under construction<br />

CAREM, Atucha NPP [EN-17]<br />

Barge Akademik Lomonosov [POW-18]<br />

| | Fig. 4.<br />

Selected SMRs currently under construction.<br />

and under development at an advanced state of planning<br />

requires a generic approach and the identification of<br />

general trends.<br />

In section 3.1 the changed political framework in<br />

­Germany and in section 3.2 the motivation of GRS to<br />

­investigate SMRs are described. Afterwards in section 3.3<br />

selected results of the SMR study such as technical trends on<br />

factory fabrication and transport, compactness and modularity,<br />

core design, improved core cooling and ­exclusion of<br />

accidents and features <strong>for</strong> preventing and limiting the impact<br />

of severe accidents are presented. ­Afterwards first estimations<br />

concerning economic viability and competitiveness<br />

(section 3.4) and licensing (section 3.5) are summarized.<br />

HTR-PM, Sidaowan NPP [WNN-16]<br />

PFBR-500, Madras [COI-18]<br />

Name Type Manufacturer Country P [MW e ] Status Site<br />

Concepts with planned deployment<br />

ACP-100 LWR CNNC CN 100 Planned construction<br />

(Start <strong>06</strong>/2014)<br />

Zhangzhou, later: Jiangxi,<br />

Hunan, Jilin (CN)<br />

ARC-100 SFR ARC USA 100 Well advanced development (CA)<br />

BREST LMR RDIPE RU 300 Planned construction Beloyarsk (RU)<br />

Integral MSR MSR Terrestrial Energy CA 192 Well advanced development (CA)<br />

NuScale PWR NuScale <strong>Power</strong><br />

and Flour<br />

USA 60 Well advanced development (US)<br />

PRISM SFR GE Hitachi USA 311 Well advanced development –<br />

SMART PWR KAERI KR 100 Well advanced development (SA)<br />

SMR-160 PWR Holtec<br />

SNC-Lavalin<br />

USA 160 Well advanced development (US, CA)<br />

SVBR-100 LMR RDIPE RU 250 Planned construction RIAR in Dimitrovgrad (RU)<br />

VBER-300 PWR OKBM RU 300 Well advanced development (KZ, RU)<br />

| | Tab. 3.<br />

SMRs at an advanced state of planning.<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Finally, in section 3.6 a sound overview on the position of<br />

selected European countries is given.<br />

3.1 Changed political framework in Germany<br />

After the Fukushima nuclear disaster [GRS-16], the<br />

German Federal government decided to terminate the<br />

use of nuclear energy latest in 2022. The thirteenth<br />

amendment of the Atomic Energy Act [ATG-11] came into<br />

<strong>for</strong>ce on August 6, 2011. It regulates that the licenses of the<br />

seven oldest and the Krümmel NPP expired and that the<br />

remaining nine NPPs are to be shut down by 2022.<br />

Consequently, the pressurized water reactor (PWR)<br />

Grafenrheinfeld was shut down in 2015 and the boiling<br />

water reactor (BWR) Gundremmingen Unit B in 2017<br />

[BFE-18].<br />

Worldwide, national government policies differ on the<br />

further use of nuclear energy <strong>for</strong> electricity generation.<br />

Many countries (e.g. China, Finland, France, Hungary,<br />

Turkey, UK, USA, Russia) are planning to build new NPPs<br />

or at least maintain and/or extend their operating time. In<br />

Europe, currently 27 % of all electricity consumed in the<br />

European Union (EU) is generated by NPPs. The projection<br />

in the latest European <strong>Nuclear</strong> Illustrative Programme<br />

(PINC) <strong>for</strong>ecasts a stable nuclear capacity in Europe<br />

between 95 and 105 GW e from 2030 onwards. At this time,<br />

roughly 80 to 90 % of the installed capacity would be<br />

new builds [EC-16].<br />

Currently SMRs are discussed worldwide as one<br />

interesting option <strong>for</strong> new builds in almost all countries,<br />

which continue to use nuclear energy <strong>for</strong> commercial<br />

power generation. For asserting of legitimate nuclear<br />

safety and/or security interests, German authorities<br />

­require in this context, own and independent expertise <strong>for</strong><br />

the safety assessments of NPPs and other nuclear facilities<br />

in our neighborhood on an international level of the state<br />

of the art in science and technology. This position, <strong>for</strong><br />

which a cross-party consensus exists, is e.g. stipulated in<br />

the coalition agreement of the current Federal Government<br />

[BR-18]. For this reason, the German Federal<br />

Government continues to fund reactor safety research<br />

which is in line with national and international framework<br />

conditions and obligations.<br />

The technical expertise in Germany <strong>for</strong> promoting<br />

comprehensive safety reviews and ambitious binding<br />

targets, is essentially built-up and provided by the<br />

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)<br />

gGmbH [GRS-19]. GRS is an independent non-profit<br />

organization and entirely funded by projects. The main<br />

shareholders are the Federal Republic of Germany and the<br />

Technical Inspection Agencies, each with a share of<br />

46.15 %. GRS is the<br />

pp<br />

main technical support organization (TSO) in nuclear<br />

safety <strong>for</strong> the German Federal Government (especially<br />

the Federal Ministry <strong>for</strong> the Environment, Nature<br />

Conservation and <strong>Nuclear</strong> Safety (BMU) and the<br />

­Federal Foreign Office (AA)),<br />

pp<br />

a major research organization in nuclear safety (e.g. <strong>for</strong><br />

the Federal Ministry <strong>for</strong> Economic Affairs and Energy<br />

(BMWi), BMU and the Federal Ministry <strong>for</strong> Education<br />

and Research (BMBF)) and<br />

pp<br />

traditionally involved in numerous international<br />

activities (e.g. of the European Commission (EC), the<br />

<strong>International</strong> Atomic Energy Agency (IAEA) and the<br />

<strong>Nuclear</strong> Energy Agency of Organization <strong>for</strong> Economic<br />

Co-operation and Development (OECD-NEA)).<br />

As a first step, in this direction GRS per<strong>for</strong>med a study on<br />

Safety and <strong>International</strong> development of Small Modular<br />

Reactors (SMR) [GRS-15], from which selected results are<br />

presented in the following sections.<br />

3.2 GRS study on safety and international<br />

development of small modular reactors<br />

The aims of the GRS study on Safety and <strong>International</strong><br />

Development of Small Modular Reactors [GRS-15],<br />

published in 2015, were<br />

pp<br />

to set-up a sound overview on current SMR,<br />

pp<br />

to identify essential issues of SMR reactor safety<br />

research and future R&D projects and<br />

pp<br />

to identify needs <strong>for</strong> adaption of system codes of GRS<br />

used in this field of activity.<br />

In the following, selected results (e.g. general trends and<br />

safety features) are specifically described <strong>for</strong> the first<br />

working point. For this it was advantageous to assign the<br />

SMRs compiled in the Tables 1, 2 and 3 into groups.<br />

Criteria <strong>for</strong> this were:<br />

pp<br />

the coolant (light-water, heavy-water, liquid metals,<br />

gases and molten salts),<br />

pp<br />

the place of construction (onshore, offshore, subseabased)<br />

and<br />

pp<br />

the state of deployment (in operation, construction,<br />

­development with / without specific construction<br />

intention).<br />

3.3 Selected technical trends<br />

In the following the selected trends of the SMRs are<br />

summarized. Some of these trends apply <strong>for</strong> all SMRs<br />

(­section 3.3.1 up to section 3.3.2), while others (section<br />

3.3.3 up to section 3.3.5) are only valid <strong>for</strong> light-water<br />

cooled SMRs. These SMRs have best chances of realization<br />

in large numbers because they are based on a long-term<br />

­operational proven technology and an already existing fuel<br />

cycle. Furthermore, all nuclear stakeholder (especially of<br />

the regulators) have collected the greatest experiences<br />

with this technology by far.<br />

3.3.1 Factory fabrication and transport<br />

The definition SMR contains the two terms small and<br />

modular. The term small characterises that SMR are small<br />

(electrical output of less than 300 MW) in comparison to<br />

currently operated NPP, which currently have an electrical<br />

output of roughly 1000 to 1750 MW. Modular means<br />

that these SMR have a modular construction and major<br />

com ponents of a SMR are small enough to be built on a<br />

production line in a factory and assembled on-site<br />

[GAD-19]. Factory production allows to produce several<br />

units simultaneously and not as present assembling one<br />

item at a time [BAJ-18]. Standardisation increases quality<br />

and reduces training [HUK-13].<br />

The components of all current power reactors (<strong>for</strong><br />

­example in a PWR the reactor pressure vessel, the steam<br />

generators, the main coolant pumps, the pressurizer and<br />

the blow-off tank) are so large and heavy, so that these must<br />

be manufactured, transported individually to the construction<br />

site and connected here to each other by piping.<br />

However, site construction has a higher risk of sub- standards<br />

and/or rejects. The crafts are e.g. exposed to strongly<br />

varying weather conditions, dirt and grime. Further more,<br />

assembly and mounting devices are only available to a<br />

­limited extend compared to a factory pro­duction [HUK-13].<br />

On-site technical inspection is more ­difficult and is also<br />

more expensive. The same is valid <strong>for</strong> the costs of on-site<br />

production due to higher ancillary costs [SCA-19].<br />

The advantage of SMR design with ship, truck or even<br />

railway delivering in mind is that the size of modules<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 341<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 342<br />

allows their transports from the factory to the construction<br />

site as one unit. Unlike conventional large power plants,<br />

which have huge components that are difficult to ­transport,<br />

SMRs do not require huge custom transporters, highway<br />

closures, or rein<strong>for</strong>cement of bridges along the transportation<br />

route. With SMRs, getting all the equipment to the<br />

construction site is a lot easier [NGR-11, WNN-18]. This<br />

context is e.g. addressed in [POW-17] and by several SMR<br />

designer. In [POW-17] a picture is shown in which current<br />

construction (e.g. of Olkiluoto 3) is compared to a factory<br />

build module, transported by a truck (see Figure 5).<br />

| | Fig. 5.<br />

Comparison of site construction (here Olkiluoto 3) and a factory-built module delivered by truck<br />

(taken over from [POW-17]).<br />

SMRs are much less demanding in terms of siting. Large<br />

reactors need low population zones, and a relatively large<br />

sites with access to large volumes of cooling water. There<strong>for</strong>e,<br />

the number of suitable construction sites <strong>for</strong> SMRs is<br />

far larger than the number of construction sites <strong>for</strong> large<br />

reactors. At the same time several of these locations<br />

( especially the site far away from large rivers) are more<br />

difficult to reach [WNN-18]. This is now possible e.g. with<br />

the trucks.<br />

3.3.2 Compactness and modularity<br />

The SMR designs are mainly characterized by high<br />

compactness, which supports the modularity. Modularity<br />

in turn leads to large savings of space. Consequently, the<br />

modules can be factory produced and deployed to the site<br />

by truck, barge or train (see section 3.3.1).<br />

Many of the SMRs are proposed as an integral design<br />

[GRS-15]. Integral means, that the components of the<br />

primary coolant circuit (e.g. core, pressurizer, steam<br />

generators, main coolant pumps (if the respective SMR has<br />

a <strong>for</strong>ced convection cooling)) are arranged within the<br />

­reactor pressure vessel. This construction excludes large<br />

break loss of coolant accidents (LBLOCA) by design, since<br />

no large connection lines are needed (see section 3.3.4). In<br />

some cases, also the control rod drives are integrated into<br />

the reactor pressure vessel [SUH-16].<br />

Beside the integral design, also loop designs with very<br />

short coaxial connection nozzles can be found (e.g.<br />

KLT-40S). Here the hot legs are located in the inner pipe<br />

while the cold legs are in the outer part of the coaxial pipe<br />

in order to minimize temperature losses [IAEA-00].<br />

However, the compact SMR designs require new types<br />

of extremely powerful steam generators able to transfer<br />

large heat quantities at a low overall height at the same<br />

time [SCA-19]. For this purpose, bayonet, helical coil or<br />

plate heat exchangers were adapted from conventional<br />

energy technology. In addition, new arrangements of the<br />

heat exchangers have also been developed (e.g. the steam<br />

generator of the SCOR is placed on the top of the RPV (see<br />

Figure 6 taken from publication [SCA-18]).<br />

The arrangement of the helical coil steam generators<br />

could be either several steam generators in the downcomer<br />

(e.g. in CAREM) or one steam generator around the riser<br />

(e.g. NuScale). Common in all designs is that the efficiency<br />

is increased by thin walls and highly turbulent flow fields,<br />

which makes the steam generators susceptible to flow-­<br />

induced vibrations. Experiments <strong>for</strong> verification of the<br />

­per<strong>for</strong>mance e.g. <strong>for</strong> the helical coil heat exchangers were<br />

per<strong>for</strong>med <strong>for</strong> example <strong>for</strong> the NuScale and the IRIS<br />

concepts at the full-length Helical Coil Steam Generator<br />

(HCSG) tests at SIET in Piacenza (Italy) [WNN-142]. CFD<br />

calculations mentioned in [DEA-14] show a strong<br />

­secondary flow inside the helical tubes, which depends<br />

strongly on the torsion rate (fraction of pitch to diameter of<br />

the helix) and may have an impact on heat transfer.<br />

3.3.3 Core design<br />

The reactor cores of light-water cooled SMRs consist of 40<br />

up to 80 shortened standard fuel assemblies arranged according<br />

to optimized loading patterns. The cores have an<br />

active length between 2 and 2.5 m. The fuel (UO 2 as<br />

well MOX) is higher enriched and shall be burned-up<br />

­significantly higher. The SMR cores are designed <strong>for</strong> fuel<br />

cycles between two and ten years [SCA-19]. All light-water<br />

cooled SMRs have a negative temperature coefficient <strong>for</strong><br />

both primary coolant and fuel. Some concepts spare a<br />

boron acid system in order to safe space and lower the<br />

­temperature coefficient. Instead of a boron system,<br />

burnable absorbers like Gd 2 O 3 , IFBA, Er or B 4 C are used.<br />

Compensation of the excess reactivity is also achieved by<br />

the use of the control rods which are also be used <strong>for</strong> short<br />

time control of the core. Used materials here are Ag In-Cd,<br />

B 4 C and Dy 2 Ti 2 O 7 [BUS-15, GRS-15].<br />

In NPPs with several modules one module can be<br />

refueled, while the others continue operation. The output<br />

of the multi-module production NPP is reduced only in this<br />

time span; but the plant is not entirely powered down. The<br />

outage can be planned and carried out at times of low<br />

energy demand. At the end of their lives the modules are<br />

returned to the factories <strong>for</strong> disassembling [SCA-19].<br />

3.3.4 Improved core cooling and exclusion<br />

of accidents<br />

The core cooling of the SMR was improved compared to<br />

the currently operated LWR. For this similar design<br />

principles as <strong>for</strong> the advanced Gen III / III+ reactors are<br />

applied [WNN-18]. Concerning [SCA-19] these are e.g.:<br />

pp<br />

the reduction of the power density of the core (up to<br />

-50% compared to currently operated Gen II LWR),<br />

pp<br />

a low positioning of the core inside the RPV,<br />

pp<br />

a high-water coverage of the core so that even <strong>for</strong> a<br />

break of the largest line connected at RPV no core<br />

­exposure occurs during blowdown,<br />

pp<br />

large water inventors in – respectively outside the RPV<br />

to ensure excellent slow-acting accident control<br />

capabilities,<br />

pp<br />

large heat storage inside the containment as a result of<br />

large water inventories<br />

pp<br />

passive equipment <strong>for</strong> heat removal from the RPV and<br />

the containment,<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

pp<br />

passive cooling of the RPV exterior in the event of core<br />

melt scenarios to ensure retention of the core melt<br />

inside the RPV.<br />

There is a scientific consensus, that up to an electrical<br />

power output of roughly 200 MW decay heat can be safely<br />

removed from the RPV and core melt can be excluded. The<br />

improved heat removal features result on the one hand<br />

from the larger surface to volume ration of the RPV. This<br />

again results from the diameter to length ratio of the vessel.<br />

Compared to Gen II LWR, the reactor core has a smaller<br />

distance to the RPV wall, which leads to a better heat conduction.<br />

Additionally, the heat transfer resistance of an<br />

SMR RPV wall is lower than the RPV wall of a Gen II LWR,<br />

because the wall thickness decreases with the curvature of<br />

the vessel [SCA-19].<br />

Several SMRs exclude accidents by design. Many of the<br />

light-water cooled SMR are operating under natural<br />

circulation without the use of main coolant pumps (e.g.<br />

CAREM, NuScale, etc.). Consequently, in these concepts,<br />

no pump trips have to be considered. But especially during<br />

the start-up phase this may lead to flow instabilities like<br />

geysering or density wave oscillations, the designers have<br />

to deal with. Descriptions of such phenomena <strong>for</strong> the<br />

integrated modular reactor (IMR) design can be found in<br />

[DIX-13]. Boron dilution accidents can be excluded <strong>for</strong><br />

SMR with boron free cores. When using integral control<br />

rod drives (e.g. CAREM) the threat of an unprotected<br />

control rod ejection is essentially eliminated, since the<br />

pressure difference between top and lower edge of the<br />

control rod is not <strong>for</strong>med out of ambient and primary<br />

pressure anymore but level difference in the reactor<br />

pressure vessel only [MAC-14]. Finally, the integral<br />

design can exclude large break loss-of-coolant accidents<br />

(LBLOCA) [HUK-13].<br />

SMR concepts consider three main design principles <strong>for</strong><br />

a save control of postulated LOCA: First, the number of<br />

lines connected to the RPV is minimised. Second, the<br />

connections of the pipe are far above the core and third,<br />

lines with radioactive coolant outside shall be avoided.<br />

Since the maximum break sizes of a Gen II LWR (a double<br />

ended break leads to a break area of roughly 1 m²) and a<br />

SMR vary by up to 3 orders of magnitude, LOCA in SMR<br />

can be easier controlled and leads to lower loads on RPV<br />

internal and on the containment [SCA-19].<br />

As mentioned above, in many SMRs decay heat removal<br />

relies on passive safety systems. The operation mode<br />

of these systems is based on laws of nature (e.g. free<br />

convection, condensation, evaporation). The decay heat is<br />

removed by natural circulation to large water inventories<br />

arranged in large heights in- or outside the containment.<br />

However, at present there are neither uni<strong>for</strong>m definitions<br />

of passive safety systems nor requirements <strong>for</strong> experimental<br />

and/or analytical evidences [SCA-19]. While the<br />

definitions of IAEA [IAEA-91] and EPRI [EPRI-99] allow an<br />

active initiation of the operation of a passive safety system,<br />

German Safety Requirements <strong>for</strong> NPP [BMU-15] do not<br />

allow this. Systems with an active initiation of operation<br />

would, according to [BMU-15], be an active system, <strong>for</strong><br />

which a n+2 degree of redundancy is required. Due to a<br />

current existing lack of operation experience there<br />

are, however concerns regarding the per<strong>for</strong>mance and<br />

reliability of passive safety systems [SCA-19].<br />

The light-water cooled SMRs’ containment have a<br />

passive cooling of at least 72 h. Some SMR even have an<br />

infinite passive containment cooling to an ultimate heat<br />

sink which could be either air or water. Four different<br />

­design approaches exist <strong>for</strong> this issue: These are<br />

| | Fig. 6.<br />

New types of extremely powerful steam generators <strong>for</strong> SMRs (left: steam generator is placed on the top<br />

of the RPV (SCOR [THC-15]), middle: 12 helical coil type heat exchangers arranged in the downcomer<br />

(CAREM [MAC-14]), right: one helical coil type SG is arranged around the rizer (NuScale [IND-14]).<br />

– Figure 6 was taken from [SCA-18].<br />

horizontally or vertically containments arranged in large<br />

water pools, subsea-based containments, floating containments<br />

and containment cooled by heat pipes [SCA-18].<br />

3.3.5 Features <strong>for</strong> preventing and limiting<br />

the impact of severe accidents<br />

In general, the smaller amount of nuclear fuel in the SMR<br />

cores, the improved core cooling features and the ­exclusion<br />

of accidents (both described in section 3.3.4) lead to a<br />

reduction of the probability and consequences of core<br />

melting. As a result, the off-site emergency planning<br />

requirements can be scaled down to be proportionate to<br />

those reduced risks. This includes inter alia emergency<br />

planning zones (EPZ), which do not have to be extended<br />

beyond the plant side boundary [WNN-18].<br />

SMRs contain new ideas to increase the resilience<br />

against external events (e.g. earthquakes, explosion<br />

pressure waves, air plane crashes). This includes among<br />

others the arrangement of SMR modules in (water filled)<br />

caverns partially or completely below the ground level or<br />

at the ground of on ocean in a water depth of up to roughly<br />

100 meters. Figure 7 shows the reactor building of the<br />

French SMR I-150, which shall be buried under an earth<br />

wall [CHJ-17].<br />

| | Fig. 7.<br />

The reactor building of the I-150 with 4 modules shall be buried under an earth wall [CHJ-17].<br />

3.4 Economic viability and competitiveness<br />

In principle, questions of economic viability and competitiveness<br />

are not included in the working fields of GRS,<br />

which are exclusively safety aspects. Since both issues are<br />

the ultimately basis <strong>for</strong> a positive construction decision,<br />

GRS has roughly dealt with these aspects <strong>for</strong> estimating<br />

whether SMR can be an option <strong>for</strong> new builds in the direct<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 343<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 344<br />

neighborhood of Germany. These are the prerequisite <strong>for</strong><br />

the development of additional competences as well as the<br />

necessary extension and validation of the evidence tools<br />

developed by GRS and which have been successfully<br />

applied <strong>for</strong> these issues in the last decades. Un<strong>for</strong>tunately,<br />

many countries planning to build SMRs have not yet<br />

­committed themselves to specific designs. There<strong>for</strong>e, only<br />

fundamental estimations can be per<strong>for</strong>med, of which<br />

selected aspects are discussed in the following.<br />

The evaluation of various studies (e.g. [LOG-14]), and<br />

publications (e.g. [ENH-19]) as well as qualitative considerations<br />

e.g. by [HUK-13] in this regard indicates that<br />

SMRs can be (under certain assumptions) competitive<br />

compared to Gen II, III and III+ LWR as well as in the<br />

­medium term to gas powered plants. However, the extend<br />

of costs considered vary from study to study.<br />

For SMRs it is the key to offset the economies of<br />

scale, which seemed to be in favor of large reactors, with<br />

economies of numbers, provided by the concept of modules<br />

or entire plants built in factories and shipped to the site<br />

[ENH-19].<br />

Since, at this stage no valid data are publicly available,<br />

only some qualitative considerations are made in the<br />

following: SMRs have a large application spectrum and<br />

can be used <strong>for</strong> many purposes such as electricity, heat<br />

production and desalination. They require lower capital<br />

costs <strong>for</strong> construction. A production unit can be extended<br />

module by module, already after connecting the first<br />

module, electricity and / or heat can be generated and<br />

sold. The risks of delays can be eliminated by factory<br />

production of the nuclear island. After transportation to<br />

the site the modules can be immediately connected to grid.<br />

The SMRs have been designed <strong>for</strong> longer operating cycles<br />

and require less maintenance. Finally, SMRs can be<br />

disposed easier, since the complete modules can be transported<br />

back to the factory and could be dismantled there.<br />

But however, it must be mentioned that the different<br />

studies indicating the economic feasibility as well as a<br />

­significant market potential base on the assumptions, that<br />

pp<br />

all entry barriers have been overcome,<br />

pp<br />

SMRs are produced in series in factories, which have to<br />

be built first,<br />

pp<br />

efficient transnational licensing procedures have been<br />

established (see section 3.5).<br />

With regard to the second bullet, it should be pointed out,<br />

that it is not clear which company respectively economy is<br />

willing and able to realize the necessary investments.<br />

Furthermore, approvals should be recognized internationally.<br />

For example, the construction surveillance<br />

could be carried out by a TSO in the country, in which the<br />

SMR factory is located. All aspects discussed above require<br />

a harmonization of definitions (e.g. <strong>for</strong> passive safety<br />

­systems – see section 3.3.4), rules and regulations (e.g. <strong>for</strong><br />

experimental and analytical evidence).<br />

As already mentioned in the introduction of section 3.3<br />

SMRs based on LWR technology offer currently advantages,<br />

due to the experiences of the nuclear regulators collected<br />

with light-water reactor technology in the last decades.<br />

Since a licensing process lasts several years, SMRs in<br />

operation or even under construction are in advance.<br />

Licenses have been granted <strong>for</strong> light-water cooled SMRs<br />

e.g. <strong>for</strong> CAREM in 2010 and SMART in 2012.<br />

3.6 Position of Selected European Countries<br />

In the following, the position on SMRs of selected European<br />

countries (Germany, United Kingdom, Russia) and the<br />

European Commission is summarized.<br />

According to the 13 th amendment of the Atomic Energy<br />

Act [ATG-11] in Germany neither an SMR will be built or<br />

operated. The European Commission on the other hand<br />

proposes a licensed SMR by 2025 and operation of a SMR<br />

by 2030 as an important strategic target/priority.<br />

In the United Kingdom (UK) the National <strong>Nuclear</strong><br />

Laboratories have published a report on SMR concepts,<br />

feasibility and potential in 2014 [NNL-14]. Subsequently<br />

the UK Department of Energy and Climate Change (DECC)<br />

called <strong>for</strong> expression of interests in a SMR competition to<br />

identify the best value <strong>for</strong> the UK (2016).<br />

Russia, where 70 % of Russia’s territory and 20 % of<br />

population cannot use the services of centralized energy<br />

providing, has a high potential and interest <strong>for</strong> SMR<br />

application. The base <strong>for</strong> civil SMR development are e.g.<br />

SMRs of the Russian Navy (with an operational experience<br />

of approx. 6000 reactor years) and the civil icebreakers<br />

and cargo ships (with an additional operational ­experience<br />

of approx. 370 reactor years) [ARV-17].<br />

One example <strong>for</strong> the respective extensive Russian<br />

activities are the replacement of the the Bilibino NPP by the<br />

floating nuclear power station Akademik Lomonosov (see<br />

section 2.3 and Figure 4). But Russia is also increasingly<br />

developing SMR <strong>for</strong> export. The target markets are Asia,<br />

Africa and Latin America, where countries are facing<br />

challenges related to the supply of fossil fuels and grid<br />

development [PEJ-18].<br />

3.5 Licensing<br />

The following section describes necessary global harmonization<br />

of rules and regulations and changes in current licensing<br />

procedures, which are prerequisites <strong>for</strong> SMRs being successful<br />

in the market. The decisions necessary <strong>for</strong> the implementation<br />

are taken by respective national governments and<br />

regulators. In this sense, the following remarks are only brief<br />

summaries of the current discussion in the nuclear community,<br />

which may differ from the GRS view.<br />

The studies concerning the economic viability and<br />

­competitiveness indicate that a cost efficiency of SMR<br />

requires the construction of minimum 80 up to 100<br />

identical units worldwide. The phrase identical means,<br />

that the same design has to be deployed in all target<br />

markets. Currently the SMR vendors desire to reduce the<br />

number, the time and financial ef<strong>for</strong>t <strong>for</strong> the nuclear<br />

­licensing procedure. This includes, <strong>for</strong> example, that if<br />

identical modules are added to a production unit, no new<br />

licensing procedure is required <strong>for</strong> the nuclear island.<br />

4 GRS simulation chain, identification of<br />

modelling gaps and priorities <strong>for</strong> closure<br />

The focus of this publication is to provide an overview on<br />

international developments and safety features on SMRs,<br />

which are in several countries of our neighborhood an<br />

interesting option <strong>for</strong> nuclear new builds. The Gesellschaft<br />

für Anlagen und Reaktorsicherheit (GRS) gGmbH, is the<br />

main German technical support organization in nuclear<br />

safety. It supports the German Federal government e.g.<br />

in asserting legitimate nuclear safety and/or security<br />

interests (e.g. by promoting comprehensive safety reviews<br />

and ambitious binding targets). This require the necessarily<br />

know-how as well as qualified numerical simulation tools.<br />

However, these tools must be suitable extended and<br />

­validated at first. Necessary items are summarized below<br />

briefly and concisely. However, the following list does not<br />

claim to be complete.<br />

Today, a comprehensive, historically grown scientific<br />

code system is available at GRS. An overview of this<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

| | Fig. 8.<br />

The <strong>Nuclear</strong> Simulation Chain of GRS taken over from [SCA-15, SCA-17] and Negligible Modified.<br />

simulation chain was e.g. presented at the 1 st Sino-German<br />

Symposium on Fundamentals of Advanced <strong>Nuclear</strong> Safety<br />

Technology in March 2015 [SCA-15] and published in<br />

[SCA-17] in 2017. In general, GRS develops, as far as<br />

possible, its own codes, because this approach leads<br />

to an improved understanding of the relevant physical<br />

phenomena. This approach allows GRS to be independent<br />

of the interests of commercial software developers and<br />

there<strong>for</strong>e to improve selected codes to respond faster and<br />

more flexible to current events. The identification of work<br />

required <strong>for</strong> this was one main result of the GRS SMR<br />

study. The following remarks shall give a brief overview of<br />

what is still to be done.<br />

The structure of this nuclear simulation chain is<br />

depicted in Figure 8 [SCA-15, SCA-17]. It consists of GRS’<br />

own developments (deep blue boxes) and third-party<br />

codes (white boxes). Many codes can be coupled simply <strong>for</strong><br />

data transfer (indicated by the dotted lines) or in a more<br />

complex way through interfaces (indicated by red lines) in<br />

Figure 8. The latter option requires the development of<br />

appropriate interfaces. The advantages of coupling will be<br />

discussed more detailed later in this section.<br />

The codes are assigned to the following main thematic<br />

areas: reactor physics, thermal-hydraulics/severe core<br />

damage and structural mechanics (columns in Figure 8).<br />

The systems/components: reactor core, reactor coolant<br />

system (RCS), containment which can be simulated with<br />

the codes are arranged in rows and correspond to the<br />

respective fundamental safety functions control of reactivity,<br />

core cooling and enclosure of radioactivity. In addition,<br />

there is a fourth row, which contains other codes (e.g. <strong>for</strong><br />

visualization, sensitivity, uncertainty and probabilistic<br />

dynamic analysis).<br />

From GRS’ point of view at least short and medium-term<br />

proofs <strong>for</strong> SMRs introduced by vendors and operators in<br />

nuclear procedures will be assessed by independent<br />

recalculations of regulators and/or TSOs with the simulation<br />

tools already developed, validated and successfully<br />

applied <strong>for</strong> Gen II LWR. These are e.g. the GRS developments<br />

QUABOX/CUBBOX (a 3-D neutron kinetics core<br />

model) and the code system AC 2 consisting of the codes<br />

ATHLET (a lumped parameter code <strong>for</strong> analysis of leaks<br />

and transients in the reactor coolant circuit), ATHLET-CD<br />

(the extension of ATHLET <strong>for</strong> severe accident analyses in<br />

the RCS including core meltdown and fission product<br />

release) and COCOSYS (a lumped parameter code <strong>for</strong><br />

analysis of conditions within the containment and<br />

buildings of NPP in case of accidents and severe accidents).<br />

The neutron kinetics core QUABOX/CUBBOX requires<br />

further model improvements and validation e.g. <strong>for</strong>:<br />

pp<br />

long fuel cycle length (> 24 month),<br />

pp<br />

cores with higher burn-up (> 50 MWd/kg) and/or<br />

higher fuel enrichment,<br />

pp<br />

advanced loading pattern,<br />

pp<br />

boron free cores under consideration of the behavior of<br />

burnable absorber at the beginning of new cycles,<br />

pp<br />

moveable reflectors <strong>for</strong> long-term compensation of<br />

­excess reactivity.<br />

The code system AC 2 requires e.g. further model improvements<br />

and validation <strong>for</strong>:<br />

pp<br />

innovative, high per<strong>for</strong>mance heat exchangers<br />

(­bayonet, helical coiled and plate heat exchanger),<br />

pp<br />

the assessment of occurrence of flow induced ­vibrations<br />

and their effects,<br />

pp<br />

the operation mode and operation boundaries of heat<br />

pipes (viscous, sonic, entrainment, capillary and boiling<br />

limits), enhancement of the parameter range of<br />

correlations towards low pressures, improvement and<br />

validation of the semi-empirical closure correlations<br />

<strong>for</strong> interphase friction, heat and mass transfer and<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 345<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 346<br />

if necessary implementation of properties <strong>for</strong> new heat<br />

pipe working fluids,<br />

pp<br />

single/two phase flow natural convection, flow<br />

instabilities and transition range between single and<br />

two natural convection,<br />

pp<br />

passive safety systems (special components, start-up<br />

behavior, mutual interaction of different passive safety<br />

systems or trains of one passive safety system, ­extension<br />

of the scope of correlations <strong>for</strong> containment heat<br />

transfer)<br />

pp<br />

check-valves, in which the opening cross section and<br />

the associated <strong>for</strong>m loss is calculated dependent on the<br />

pressure difference up- and downstream the valve,<br />

pp<br />

3D models <strong>for</strong> water pools/environment (ultimate<br />

containment heat sink), temperature and velocity<br />

fields, stratification,<br />

pp<br />

heat transfer at bundle surfaces at free convection,<br />

subcooled or saturated boiling conditions,<br />

pp<br />

steam condensation at containment walls, structures<br />

and internals especially <strong>for</strong> the case of small break<br />

LOCA, inertised containments or containments<br />

operated at near vacuum conditions,<br />

pp<br />

new coupling (strategy) between ATHLET and COCOSYS,<br />

pp<br />

infinite passive containment cooling to an ultimate heat<br />

sink in ocean environment (influence of seawater,<br />

mussel growth, etc.),<br />

pp<br />

heat transfers of horizontally arranged containment<br />

in large water pools or the ocean at RA-numbers of<br />

approx. 1015.<br />

The above mentioned, open issues shall be processed and<br />

closed with national and international research alliances.<br />

One example is the EU project ELSMOR (Towards European<br />

Licensing of Small Modular Reactors), which has received<br />

approval <strong>for</strong> grant agreement preparations under the<br />

European Union’s Horizon 2020 research and innovation Literature<br />

programme. Scheduled to be launched in the summer of<br />

2019, a total of 15 organisations from 8 countries will<br />

participate in ELSMOR, to which the EU has granted EUR<br />

3.5 million. GRS leads in ELSMOR two important work<br />

packages. The consortium consists of support organisations<br />

of European TSOs, universities, power companies,<br />

and some of the developers of a French SMR design I-150<br />

[CHJ-17]. ELSMOR is developing systematic methods <strong>for</strong><br />

the safety assessments of new and innovative reactors<br />

(here especially SMRs). The project shall contribute that<br />

European experimental infrastructures and modelling/­<br />

evidence tools will be ready <strong>for</strong> use in nuclear licensing<br />

procedures [VTT-19].<br />

5 Summary<br />

Small modular reactors are one interesting option <strong>for</strong> new<br />

builds in almost all countries worldwide continuing to use<br />

nuclear energy <strong>for</strong> commercial electricity production.<br />

­Currently four SMRs are in operation, further six SMRs are<br />

under construction and eleven at an advanced stage of<br />

planning. Different European countries (e.g. the United<br />

Kingdem, Russia, Poland) are planning to build and<br />

operate SMRs. Even after nuclear phase-out the German<br />

Federal government would like to assert legitimate nuclear<br />

safety and/or security interests, e.g. by promoting comprehensive<br />

safety reviews and ambitious binding targets<br />

<strong>for</strong> the new builds (including SMRs) in our neighborhood.<br />

The Gesellschaft für Anlagen- und Reaktorsicherheit<br />

(GRS) gGmbH as the main German technical support<br />

organization in nuclear safety <strong>for</strong> the German government,<br />

has per<strong>for</strong>med a Study on Safety an <strong>International</strong><br />

Development on SMR published in 2015 (GRS-376). In this,<br />

numerous trends of current SMR development were<br />

­identified. They are presented in this publication. The<br />

modelling gaps of the GRS simulation chain were compiled<br />

and a strategy <strong>for</strong> their closure was developed. The main<br />

findings are: The safety level was increased e.g. by an<br />

advanced, conservative design, implementation of new<br />

safety features (e.g. passive safety systems) and the<br />

­exclusion of accidents (e.g. LBLOCA, control rod ejection).<br />

There<strong>for</strong>e, SMR could be – if proven by safety analyses –<br />

among the safest nuclear equipment ever made. Factory<br />

fabrication minimizes the (financial) risk of delay in<br />

construction. Competitiveness e.g. with gas power plants<br />

requires the construction of a large number of identical<br />

SMR units worldwide. Prerequisites <strong>for</strong> this are that all<br />

entry barriers have been overcome like series production<br />

in factories, which are currently not existing, and a<br />

worldwide harmonization of rules and regulations and<br />

recognition of licenses of <strong>for</strong>eign nuclear regulators.<br />

­However, currently published figures are fraught with<br />

large uncertainties and not yet reliable. Independently of<br />

the previously mentioned open points, which are irrelevant<br />

from TSO’s point of view, GRS will further develop and<br />

validate its nuclear simulation chain. This allows to<br />

successfully apply the GRS simulation chain in nuclear<br />

licenses procedures and independent safety analyses also<br />

<strong>for</strong> SMRs.<br />

Acknowledgement<br />

This article contains results of the research project Study<br />

of Safety and <strong>International</strong> Development of SMR (grant<br />

number RS1521), which was funded by the German<br />

Federal Ministry <strong>for</strong> Economic Affairs and Energy (BMWi).<br />

ıı<br />

ARH-171 Army Engineer History. Army nuclear <strong>Power</strong> Program Virtual Exhibit, April 2017. https://<br />

armyengineerhistory.dodlive.mil/anpp/, last visit: 23.05.2019<br />

ıı<br />

ARH-172 Army Engineer History. Experimental Reactors, April 2017.<br />

https://armyengineerhistory.dodlive.mil/anpp/experimental-reactors/, last visit: 23.05.2019<br />

ıı<br />

ARV-17 V. Artisiuk. SMR Technology Development in Russia and Capacity Building Supports<br />

<strong>for</strong> Embarking Countries, IAEA Technical Meeting on Technology Assessment of Small Modular<br />

Reactors <strong>for</strong> Near Term Deployment, October 02-05, 2017, Tunis (Tunisia).<br />

ıı<br />

ATG-11 Atomgesetz. Dreizehntes Gesetz zur Änderung des Atomgesetzes (13. AtGÄndG)<br />

vom 11. Juli 2011, Bundesgesetzblatt Teil 1, Nr. 43 vom 05.08.2011.<br />

ıı<br />

BAJ-18 J. Bailey. NuScale – Blazing the Trail <strong>for</strong> Modular SMRs, Energy Huntsville, January 16,<br />

2018.<br />

ıı<br />

BFE-18 Bundesamt für kerntechnische Entsorgung. Bekanntmachung gemäß §7 Absatz 1 c<br />

Atomgesetz (AtG), Jahresmeldung 2018, 01.04.2019. https://www.bfe.bund.de/<br />

SharedDocs/Downloads/BfE/DE/berichte/kt/elektrizitaetsmenge-2018.html;<br />

jsessionid=2A7282737BADE20FBAB532ED BA614995.1_cid382, last visit: 23.05.2019<br />

ıı<br />

BR-18 Bundesregierung. Ein neuer Aufbruch für Europa, eine neue Dynamik für Deutschland,<br />

ein neuer Zusammenhalt für unser Land, Koalitionsvertrag zwischen CDU, CSU und SPD,<br />

19. Legislaturperiode, 12.03.2018, Berlin (Germany).<br />

ıı<br />

BMU-15 Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Sicherheitsan<strong>for</strong>derungen<br />

für Kernkraftwerke, in der Fassung vom 03.03.2015, Bundesanzeiger AT 30.03.2015 B2.<br />

ıı<br />

BUS-15 S. Buchholz, A. Krüssenberg, A. Schaffrath. Safety and <strong>International</strong> Development of Small<br />

Modular Reactors (SMR) – A Study of GRS, <strong>atw</strong> <strong>International</strong> <strong>Journal</strong> <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong>, Vol. 60<br />

(2015), Issue 11, pp. 645 – 653.<br />

ıı<br />

BUS-16 S. Buchholz, A. Schaffrath, A. Krüssenberg. Study of Safety and <strong>International</strong> Development<br />

of SMR. EUROSAFE 2016, November 07-08, Munich (Germany).<br />

ıı<br />

CHE-<strong>06</strong> S.C. Chetal, et al. The Design of the Prototype Fast Breeder Reactor, <strong>Nuclear</strong> Engineering<br />

and Design Vol. 236 (20<strong>06</strong>), pp. 852 – 860.<br />

ıı<br />

CHJ-17 J. Chenais. SMR Technology The French Approach, IAEA Technical Meeting on Technology<br />

Assessment of Small Modular Reactors <strong>for</strong> Near Term Deployment, October 2-5, 2017, Tunis (Tunisia).<br />

ıı<br />

COI-18 Competitive India. India’s first Indigenously Developed Prototype Fast Breeder Reactor to<br />

achieve Criticality in 2019, 22.09.2018. http://competitiveindia.com/currentaffairs/2018/09/22/<br />

indias-first-indige-nously-developed-prototype-fast-breeder-reactor-to-achieve-criticality-in-2019/,<br />

last visit: 23.05.2019<br />

ıı<br />

DEA-14 J. De Amicis, et. al. Experimental and Numerical Study of the Laminar Flow in Helically Coiled<br />

Pipes, Progress in <strong>Nuclear</strong> Engineering, Vol. 76, 2014, pp. 2<strong>06</strong> – 215<br />

ıı<br />

DIX-13 A. Dixit et al. Start-up Transient Test Simulation with and without Void-Reactivity Feedback<br />

<strong>for</strong> a Two-Phase Natural Circulation Reactor, <strong>Nuclear</strong> Engineering and Design, Vol. 265 (2013),<br />

pp. 1131 – 1147.<br />

ı ı EC-16 European Commission. <strong>Nuclear</strong> Illustrative Programme (PINC) presented under Article 40 of<br />

the European Treaty <strong>for</strong> the opinion of the European Economic and social Committee, COM(2016) 177<br />

final, 04/04/16. http://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/<br />

1-2016-177-EN-F1-1.PDF, last visit: 23.05.2019<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

ıı<br />

EGN-19 Engineeringpro. China plans to Build 20 Floating <strong>Nuclear</strong> <strong>Power</strong> Plants, 26.03.2019.<br />

https://www.fircroft.com/blogs/china-plans-to-build-20-floating-nuclear-power-plants-<br />

98526946496, last visit: 23.05.2019<br />

ıı<br />

EN-17 ENERNEWS. El Uranio de la Polemica, 07.07.2017. http://www.enernews.com/<br />

nota/308896/uranio-argentino-cnea-y-pole-mica-el-carem-25, last visit: 23.05.2019<br />

ıı<br />

ENH-19 H. Engelbrecht. SMR – it’s all about economics, Focus Session <strong>International</strong> Innovation:<br />

Small Modular Reactors: a major Element of the Future of <strong>Nuclear</strong>?, Annual Meeting on <strong>Nuclear</strong><br />

Technology, Mai 07-08, 2019, Berlin.<br />

ıı<br />

EPRI-99 Electric <strong>Power</strong> Institute (EPRI). Advanced Light Water Reactor Requirements, Volume 3,<br />

Revision 8, ALWR Passive Plant, March 1999.<br />

ıı<br />

GAD-19 D.W. Gandy. Factory Fabrication of Small Modular Reactor Vessel Assemblies, NUC RIC:<br />

Use of Advanced Manufacturing Technology <strong>for</strong> <strong>Power</strong> Reactors, Electrical <strong>Power</strong> Institute (EPRI),<br />

March 2019.<br />

ıı<br />

GRS-15 Gesellschaft für Anlagen und Reaktorsicherheit (GRS) gGmbH. Studie zur Sicherheit und zu<br />

internationalen Entwicklungen von Small Modular Reactors, Bericht GRS-376, Mai 2015.<br />

ıı<br />

GRS-16 Gesellschaft für Anlagen und Reaktorsicherheit (GRS) gGmbH. Fukushima Daiichi 11. März<br />

2011 – Unfallablauf, Radiologische Folgen, Technischer Bericht GRS-S-56, 5. Auflage, März 2016.<br />

ıı<br />

GRS-19 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH. Unternehmen, Arbeitsfelder,<br />

Forschung und Entwicklung, etc., 2019. https://www.grs.de/, last visit: 23.05.2019<br />

ıı<br />

HUK-13 K.-D. Humpich. SMR Teil 1 – nur eine Mode. 11.12.2013. http://www.nukeklaus.net/<br />

2013/12/11/smr-teil-1-nur-eine-neue-mode/ad-minklaus/, last visit: 23.05.2019<br />

ıı<br />

IAEA-91 <strong>International</strong> Atomic Energy Agency (IAEA). Safety related Terms <strong>for</strong> Advanced <strong>Nuclear</strong><br />

Plants, IAEA-TECDOC-626, September 1991.<br />

ıı<br />

IAEA-00 <strong>International</strong> Atomic Energy Agency (IAEA). Advisory group meeting on small power and<br />

heat generation systems on the basis of propulsion and innovative reactor technologies, Obninsk ( Russian<br />

Federation), July 20-24, 1998, published in IAEA-TECDOC-1172, September 2000, Vienna (Austria).<br />

contribution: V. Beliaev, V. Polinichev. Basic Safety Principles of KLT-40C Reactor Plants, OKB Mechanical<br />

Engineering, pp. 29 – 39.<br />

ıı<br />

IAEA-12 <strong>International</strong> Atomic Energy Agency (IAEA). Status of Small and Medium sized Reactor<br />

design, Report, September 2012.<br />

ıı<br />

IND-14 D. T. Ingersoll, Z.J. Houghton, R. Bromm, C. Desportes. NuScale Small Modular Reactor <strong>for</strong><br />

Co-Generation of Electricity and Water, Desalination, Vol. 340 (2014), pp. 84 – 93.<br />

ıı<br />

INSP-99 <strong>International</strong> <strong>Nuclear</strong> Security. Bilibino <strong>Nuclear</strong> <strong>Power</strong> Plant, 22.02.1999.<br />

https://insp.pnnl.gov/-profiles-bilibino-bi.htm<br />

ıı<br />

LOG-14 G. Locatelli, C. Bingham, N. Mancini. Small Modular reactors: A Comprehensive Overview of<br />

their Economics and Strategic Aspects, Progress in <strong>Nuclear</strong> Energy, Vol. 73 (2014), pp. 75 – 85.<br />

ıı<br />

MAC-14 C. Marcel, D. Delmastro, M. Celeste Magni, O. Calzetta. CAREM: Argentina’s innovative<br />

SMR, <strong>Nuclear</strong> Engineering <strong>International</strong>, May 14, 2014. https://www.neimagazine.com/features/<br />

featurecarem-argentinas-innova-tive-smr-4266787/, last visit: 23.05.2019<br />

ıı<br />

MPS-14 Modern <strong>Power</strong> Systems. Design Evolution: Chinese Reactors, 20.08.2014.<br />

http://www.growthmarkets-power.com/features/featuredesign-evolution-chinese-reactors-<br />

4348218/, last visit: 23.05.2019<br />

ıı<br />

NFS-161 Nuklear<strong>for</strong>um Schweiz. CGN arbeitet mit Schiffbauer zusammen, 01.02.2016.<br />

https://www.nuklear<strong>for</strong>um.ch/de/aktuell/e-bulletin/cgn-arbeitet-mit-schiffbauer-zusammen,<br />

last visit: 23.05.2019<br />

ıı<br />

NFS-162 Nuklear<strong>for</strong>um Schweiz. China: Baubeginn für schwimmendes Kernkraftwerk, 10.11.2016.<br />

https://www.nuklear<strong>for</strong>um.ch/de/aktuell/e-bulletin/china-baubeginn-fuer-schwimmendeskernkraftwerk,<br />

last visit: 23.05.2019<br />

ıı<br />

NGR-11 C. Barton. Transporting Small Factory Built Reactors and Modular Components, 29.09.2011.<br />

https://nucleargreen.blogspot.com/2011/09/transporting-small-factory-built.html,<br />

last visit: 23.05.2019<br />

ıı<br />

NNL-14 National <strong>Nuclear</strong> Laboratory. Small Modular Reactors (SMR) Feasibility Study, December 2014.<br />

http://www.nnl.co.uk/media/1627/smr-feasibility-study-december-2014.pdf, last visit: 23.05.2019<br />

ıı<br />

NS-19 <strong>Nuclear</strong> Street. Kaiga Unit 1 Sets NPP Continuous Run Record, 04.01.2019.<br />

https://nuclearstreet.com/nuclear_power_industry_news/b/nuclear_power_news/archive/2019/<br />

01/04/kaiga-unit-1-sets-npp-continuous-run-record-010401#.XOGYdOSP4kc, last visit: 23.05.2019<br />

ıı<br />

OKB-13 OKBM Afrikantov. RITM-200 Reactor Plant <strong>for</strong> the new Generation Universal Icebreakers,<br />

Brochure, 2013.<br />

ıı<br />

OZA-19 A. Ozeretzko. Current SMR Developments and Key Enablers <strong>for</strong> Deployment, Focus Session<br />

<strong>International</strong> Innovation: Small Modular Reactors: a major Element of the Future of <strong>Nuclear</strong>?, Annual<br />

Meeting on <strong>Nuclear</strong> Technology, May 07-08, 2019, Berlin (Germany).<br />

ıı<br />

PEJ-18 J. Perera. Russia: Keeping the SMR Dream Afloat, <strong>Nuclear</strong> Enginering <strong>International</strong>,<br />

03.10.2018. https://www.neimagazine.com/features/featurerussia-keeping-the-smr-dreamafloat-<br />

6782084/, last visit: 23.05.2019<br />

ıı<br />

POW-11 <strong>Power</strong>. China begins Operation of Experimental Fast Reactor, 09.01.2011. https://www.<br />

powermag.com/china-begins-operation-of-experimental-fast-reactor/, last visit: 23.05.2019<br />

ıı<br />

POW-17 <strong>Power</strong>-Technology. Small Modular Reactors: a Nu Design, 01.05.2017. https://www.<br />

power-technology.com/features/featuresmall-modular-reactors-a-nu-design-5809591/<br />

ıı<br />

POW-18 <strong>Power</strong>. Rosatom’s Floating NPP: On a Wave <strong>for</strong> future Energy, 21.11.2018.<br />

https://www.utilities-me.com/power/12137-knowledge-partner-rosatoms-floating-nppon-a-wave-<strong>for</strong>-future-energy,<br />

last visit: 23.05.2019<br />

ıı<br />

SCA-15 A. Schaffrath, A. The <strong>Nuclear</strong> Simulation of GRS, 1 st Chinese/German Symposium on<br />

Fundamentals of Advanced <strong>Nuclear</strong> Safety Technology, Shanghai, March 2015<br />

ıı<br />

SCA-17 A. Schaffrath, M. Sonnenkalb, W. Luther, K. Velkov. The <strong>Nuclear</strong> Simulation Chain of GRS,<br />

Independent <strong>Journal</strong> <strong>for</strong> <strong>Nuclear</strong> Engineering Kerntechnik Vol. 81 (2016), Issue 2, pp. 105 – 116.<br />

ıı<br />

SCA-18 A. Schaffrath, A.-K. Krüssenberg, S. Buchholz, A. Wielenberg. Necessary improvements of<br />

the GRS simulation chain <strong>for</strong> the simulation of light-water-cooled SMRs, Independent <strong>Journal</strong> <strong>for</strong><br />

<strong>Nuclear</strong> Engineering Kerntechnik Vol. 83 (2018), Issue 3, pp. 169 – 176.<br />

ıı<br />

SCA-19 A. Schaffrath. SMRs – Overview on international Developments and Safety Features, Focus<br />

Session <strong>International</strong> Innovation: Small Modular Reactors: a major Element of the Future of <strong>Nuclear</strong>?,<br />

Annual Meeting on <strong>Nuclear</strong> Technology, May 07-08, 2019, Berlin (Germany).<br />

ıı<br />

SUH-16 H. Subki. Advances in Development and Deployment of Small Modular Reactor Design and<br />

Technology, ANNuR – IAEA – U.S. NRC Workshop on Small Modular Reactor Safety and Licensing,<br />

January 12-15, 2016, Vienna (Austria).<br />

ıı<br />

SUL-90 L.H. Suid. The Army’s <strong>Nuclear</strong> <strong>Power</strong> Program: The Evolution of a Support Agency,<br />

Greenwood Press 1990.<br />

ıı<br />

THC-15 C. Thevenot, G.-M. Gautier, P. Marsault, J.-F. Pignatel. Workshop on Innovations in Water-<br />

Cooled Reactor Technologies, OECD/NEA, Session II-2, February 11-12, 2015, Issy-les-Moulineaux<br />

(France).<br />

ıı<br />

VTT-19 VTT Technical research Centre of Finland Ldt. VTT coordinates an EU project that paves the<br />

way <strong>for</strong> small modular reactors in Europe, 28.03.2019. https://www.vttresearch.com/media/news/<br />

the-small-modular-reactors-in-europe, last visit: 23.05.2019<br />

ıı<br />

WNA-19 World <strong>Nuclear</strong> Association. Small Modular <strong>Power</strong> Reactors, 19.05.2019.<br />

http://world-nuclear.org/in<strong>for</strong>mation-library/nuclear-fuel-cycle/nuclear-power-reactors/<br />

small-nuclear-power-reactors.aspx2, last visit: 23.05.2019<br />

ıı<br />

WNN-141 World <strong>Nuclear</strong> News. Construction of CAREM underway, 18.03.2014. http://www.worldnuclear-news.org/NN-Construction-of-CAREM-underway-1002144.html,<br />

last visit: 23.05.2019<br />

ıı<br />

WNN-142 World <strong>Nuclear</strong> News. Helical steam generator passes test, 25.<strong>06</strong>.2014. http://www.worldnuclear-news.org/NN-Helical-steam-generator-passes-test-2702147.html,<br />

last visit: 23.05.2019<br />

ıı<br />

WNN-16 World <strong>Nuclear</strong> News. First vessel installed in China’s HTR-PM Unit, 21.02.2016.<br />

http://www.world-nuclear-news.org/NN-First-vessel-installed-in-Chinas-HTR-PM-unit-<br />

2103164.html, last visit: 23.05.2019<br />

ıı<br />

WNN-18 World <strong>Nuclear</strong> News. Viewpoint: The advantages of Small Modular Reactors, 29.10.2018.<br />

http://www.world-nuclear-news.org/Articles/Viewpoint-The-advantages-of-Small-Modular-<br />

Reactors, last visit: 23.05.2019<br />

ıı<br />

WNN-19 World <strong>Nuclear</strong> News. Indian Government takes steps to get back on track, 11.02.2019.<br />

http://www.world-nuclear-news.org/Articles/Indian-government-takes-steps-to-get-nuclear-back,<br />

last visit: 23.05.2019<br />

ıı<br />

ZUZ-16 Z. Zhang, Y. Dong, et al. The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled<br />

Reactor Pebble-Bed Module (HTR-PM) Demonstration <strong>Power</strong> Plant, An Engineering and Technological<br />

Innovation, Engineering, Volume 2 (2016), pp. 112 – 118.<br />

Authors<br />

Andreas Schaffrath<br />

Sebastian Buchholz<br />

Gesellschaft für Anlagen- und Reaktorsicherheit<br />

(GRS) gGmbH<br />

Boltzmannstrasse 14<br />

85748 Garching bei München, Germany<br />

E-mail: Andreas.Schaffrath@grs.de<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 347<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

SMRs – Overview on <strong>International</strong> Developments and Safety Features ı Andreas Schaffrath and Sebastian Buchholz


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 348<br />

Targeting Innovation at Cost Drivers –<br />

How the UK Can Deliver Low Cost, Low<br />

Carbon, Commercially Investable <strong>Power</strong><br />

Benjamin Todd<br />

When it comes to creating af<strong>for</strong>dable, reliable, low carbon energy, the UK consortium led by Rolls-Royce, is bringing<br />

a modern, holistic approach to small nuclear power station design.<br />

The design concept is driven by<br />

improving the economics and market<br />

requirements of nuclear power; targeting<br />

cost drivers such as schedule<br />

uncertainty; and focusing innovation<br />

ef<strong>for</strong>ts to reduce or remove those cost<br />

drivers entirely.<br />

The result is a compelling, commercially<br />

investible design <strong>for</strong> a<br />

whole power station, not just a small<br />

modular reactor, that can help the<br />

world meet its low carbon energy<br />

challenges.<br />

Why now?<br />

Satisfying the growing global demand<br />

<strong>for</strong> electricity generation is about<br />

achieving more with less. With more<br />

people leading more electricitydependent<br />

lives, the global energy<br />

sector is under pressure to produce<br />

more power in more places with more<br />

certainty over availability, cost,<br />

­capacity and flexibility.<br />

At the same time, there also has<br />

to be less – less capital investment,<br />

less environmental impact, less time<br />

spent in build, less pressure on<br />

infrastructure and less challenging<br />

delivery and commissioning phases.<br />

The solution to bridging that<br />

­energy gap lies in a ­re-examination<br />

of existing means of generation; innovative<br />

thinking with the power to<br />

repackage the best of what is already<br />

proven in a new innovative way, so<br />

that more really can be delivered with<br />

less.<br />

The UK consortium’s powers<br />

station offers a convincing alternative<br />

to reduce the complexity of financing<br />

and constructing large scale reactors<br />

around the world.<br />

How is cost measured?<br />

The metric of levelised cost of electricity<br />

(LCoE) in £/MWehr is a key<br />

driver <strong>for</strong> the power station design<br />

( Figure 1). It’s also the metric by<br />

which all current electricity costs are<br />

measured and offers a single point<br />

of competitiveness <strong>for</strong> new concepts,<br />

such as the small modular reactor<br />

power station design.<br />

In the case of this power station<br />

design, the consortium has assessed<br />

Regulatory/Safety Proliferation Resistant Market Timing Code Compliance<br />

Reduce capital: Manage Investment: Reduce O&M:<br />

• commoditised • reduce overnight financing • minimise maintenance / outages<br />

• standardised • maximise return on investment • standardised parts<br />

• factory built<br />

• transportable<br />

• ease of assembly / reassembly<br />

• minimise manning<br />

each factor driving the cost of LCoE<br />

and targeted its innovation at those<br />

areas, avoiding innovation <strong>for</strong> innovation’s<br />

sake.<br />

Creating certainty<br />

to reduce cost<br />

Creating certainty in order to encourage<br />

cheaper financing is the<br />

dominant consideration of the case<br />

<strong>for</strong> this power station design, looking<br />

across the entire nuclear and nonnuclear<br />

elements of the power station<br />

(Figure 2).<br />

Financing cost comprises capital<br />

cost, perceived risk profile and construction<br />

time, so the design targets its<br />

innovation at each of those areas.<br />

The factors considered in the<br />

economics of the utility case are<br />

dominated by the degree of certainty<br />

that can be achieved, because that can<br />

bring cheaper financing. Each of these<br />

costs drivers has a different level<br />

of sensitivity to overall LCoE. For<br />

­example, the highest impact on LCoE<br />

on nuclear power station projects is<br />

the weighted average cost of capital<br />

Capital<br />

Cost<br />

*<br />

Cost of Electricity<br />

(£/MWhr)<br />

(capital + total O&M + decom + fuel costs + financing cost)<br />

<strong>Power</strong> generating potential x Capacity factor<br />

Cost of<br />

Borrowing<br />

Perceived<br />

Risk Profile<br />

Construcon<br />

Time<br />

Maximise power: Maximise power/ Reduce Fuel cost:<br />

• max power density reliability: • maximise fuel life<br />

• max output • high reliability • minimise refuel time<br />

• maximise generating life<br />

• enable rapid • simplify fuel/waste handling,<br />

maintenance / refuel.<br />

• use existing infrastructure<br />

and capability<br />

-20 % -10 % 0 % +10 % +20 %<br />

WACC (+/-2%) -18 % 20 %<br />

Construcon delay (+ 2 years)<br />

10 %<br />

Compatibility with<br />

Support Infrastructure<br />

and Sites<br />

Public<br />

Perception<br />

Utility Familiarisation<br />

/ Selection of<br />

Technology<br />

Global<br />

Market<br />

Delivery<br />

Partnership<br />

Potential<br />

Capital (+/- 10%)<br />

-7 % 6 %<br />

Impact on LCOE<br />

| | Fig. 1.<br />

Factors driving levelised cost of electricity (LCoE).<br />

| | Fig. 2.<br />

reating certainty to reduce cost.<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Targeting Innovation at Cost Drivers – How the UK Can Deliver Low Cost, Low Carbon, Commercially Investable <strong>Power</strong> ı Benjamin Todd


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

LCOE sensivity assessment<br />

WACC (+/-2 %)<br />

Construcon<br />

delay (+ 2<br />

years)<br />

Capital (+/-<br />

10 %)<br />

<strong>Power</strong> Output<br />

(+10 %)<br />

Ulisaon (+/-<br />

5 %)<br />

Op cost (+/-<br />

10 %)<br />

Development<br />

Budget (-20 % /<br />

+20 %)<br />

-20% 0% 20% 40%<br />

-18 % 20 %<br />

-7 % 6 %<br />

-9 %<br />

-5 % 5 %<br />

-4 % 3 %<br />

-2 % 2 %<br />

| | Fig. 3.<br />

LCoE sensitivity assessment.<br />

10 %<br />

(WACC), so something that has<br />

nothing to do with physical elements<br />

of building a nuclear power station<br />

(Figure 3).<br />

Capital costs <strong>for</strong> the power station<br />

elements are ­approximately 20 % on<br />

the nuclear elements, referred to as<br />

the nuclear island; 40 % on civil<br />

structures such as foundations, piling<br />

and building fabric; and 40 % on<br />

the non-nuclear systems and turbine<br />

island.<br />

While the physical size and power<br />

output of this small modular reactorbased<br />

power station is much smaller<br />

than a large-scale plant (440 MWe v<br />

1200 to 1600 MWe), there are opportunities<br />

<strong>for</strong> economies of volume, as<br />

opposed to scale. When considered<br />

as a fleet of power stations, with the<br />

application of advanced manufacturing<br />

technologies, factory modular<br />

construction of the whole power plant<br />

reduces construction costs, risk and<br />

schedule overruns.<br />

For example, optimising, simplifying<br />

and standardising production<br />

­processes and logistics; maximising<br />

off-site build and assembly, the use of<br />

digital design processes and the<br />

optimisation of logistics through the<br />

supply chain all the way to site.<br />

The use of digital technologies<br />

in manufacturing, construction and<br />

operation are also an important part<br />

of the power station concept, such<br />

as creating a digital twin at the<br />

design stage to support prototyping,<br />

to reducing manufacturing time,<br />

improving construction sequencing,<br />

all the way through to digitally<br />

connected facilities so operations are<br />

optimised and maintenance periods<br />

reduced. The application of digital<br />

technologies touch every part of the<br />

concept and operation and each can<br />

contribute to greater certainty.<br />

Other <strong>for</strong>ms of uncertainty could<br />

include regulatory approvals, which<br />

could have an impact on investor<br />

­confidence, schedule certainty and<br />

development costs, so from the outset<br />

this has been built into the design,<br />

with an expectation that it matures in<br />

line with the regulatory process<br />

initially in the UK, but also to international<br />

standards also.<br />

Modularisation’s impact<br />

on certainty<br />

The term modularisation is often used<br />

as a solution but the view of the<br />

consortium is that it’s a solution to a<br />

specific set of cost driver challenges,<br />

not a design in itself. (Figure 4)<br />

Just like digital technologies,<br />

­modularisation as a ­principle flows<br />

through the whole concept of<br />

this power station design including<br />

factory manufactured road-transportable<br />

modules ready <strong>for</strong> assembly<br />

on site. It ­then extends to site construction<br />

elements from the<br />

installation of steel structures, concrete<br />

components and the use of<br />

standardised interfaces, advanced<br />

joining techniques and overall a<br />

reduction in the level of activity<br />

required on site.<br />

In addition, the overall footprint of<br />

the plant is small, with a reduced<br />

weight and shallower ground preparation<br />

required. And the use of<br />

| | Fig. 4.<br />

Some artist´s views of the power station<br />

design.<br />

Fact box – the UK SMR in a nutshell<br />

pp<br />

400 to 450 MWe three-loop pressurised water<br />

reactor<br />

pp<br />

Standard uranium fuel<br />

pp<br />

Modular settle containment<br />

pp<br />

Prefabricated structures<br />

pp<br />

Compatible with existing infrastructure<br />

pp<br />

Designed <strong>for</strong> road transport<br />

pp<br />

Passive safety systems<br />

pp<br />

Simplified maintenance and operations access<br />

­excavated material on site is planned<br />

into the design of the power station.<br />

Even controlling the weather<br />

Another cornerstone of creating certainty<br />

and reducing cost is controlling<br />

the conditions in which those civil and<br />

assembly activities take place, which<br />

is where the site assembly facility<br />

helps greatly. Analysis of previous<br />

nuclear projects puts construction<br />

delays, often due to inclement<br />

weather, as the second largest contributor<br />

to cost overruns.<br />

So, the site assembly facility, a<br />

large covered arena over the entire<br />

site, creates perfect weather 24 hours<br />

a day in which to per<strong>for</strong>m all assembly<br />

activity. This gives certainty on a<br />

baseline plan that feeds in to lower<br />

premiums on the cost of borrowing<br />

and ultimately lower LCoE. It also<br />

creates a far safer and more productive<br />

working environment <strong>for</strong><br />

workers.<br />

The reduction in capital and risk<br />

resulting in substantially reduced<br />

­financing costs, opens up a broader<br />

customer base including potentially<br />

non-state backed utility companies<br />

and beyond, <strong>for</strong> example companies<br />

operating large-scale industrial sites.<br />

A fleet approach<br />

SMRs should not be considered as<br />

single power plants, rather they are<br />

designed and intended to operate as<br />

part of a broader fleet. This fleet<br />

deployment order book provides confidence<br />

to the supply chain, allowing<br />

companies in the sector to make<br />

longer term strategic investment in<br />

capability and capacity. A key role <strong>for</strong><br />

Government is to ­enable this fleet<br />

approach through enhanced energy<br />

policy.<br />

Fleet deployment enables the level<br />

of investment required in the civil<br />

engineering and construction sectors<br />

to af<strong>for</strong>dably realise modular design<br />

benefits (Figure 5). Further, the infrastructure<br />

required by SMRs in the civil<br />

and construction industry are likely<br />

to have significant ­additional benefits<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 349<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Targeting Innovation at Cost Drivers – How the UK Can Deliver Low Cost, Low Carbon, Commercially Investable <strong>Power</strong> ı Benjamin Todd


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 350<br />

| | Fig. 5.<br />

Artist´s view of civil engineering and construction sectors to af<strong>for</strong>dably<br />

realise modular design benefits.<br />

to other major infrastructure programmes<br />

in the UK over the coming<br />

years.<br />

Companies in these sectors will be<br />

able to amortise infrastructure and<br />

capability investment over multiple<br />

­projects. The result will be significant<br />

cost and delivery improvements to a<br />

raft of broader UK infrastructure<br />

programmes such as High-Speed Rail,<br />

increased airport capacity, house<br />

building and urban regeneration.<br />

<strong>Nuclear</strong> plants contain many high<br />

value components that are fabricated<br />

using a range of complex technical<br />

processes. According to research<br />

carried out by the <strong>Nuclear</strong> Industry<br />

Association (NIA), in theory the UK<br />

supply chain has the capability to<br />

manufacture nearly all of the components<br />

<strong>for</strong> the large new build<br />

nuclear programme, with the main<br />

constraint being the capability to<br />

manufacture the largest components<br />

(NIA, 2012)15.<br />

In practice however, capacity is a<br />

pressing issue given that the 30-year<br />

hiatus between the construction of<br />

Sizewell B in the late 1980s and the<br />

present day new build programme has<br />

eroded much of the UK’s nuclear<br />

­industry experience.<br />

Fleet deployment of a UK SMR<br />

­design would provide significant<br />

­confidence to the UK nuclear supply<br />

chain, allowing <strong>for</strong> the rapid development<br />

of capacity to meet the needs of<br />

an SMR programme. In turn, this new<br />

manu facturing capacity could be<br />

enhanced by the latest in manufacturing<br />

technology already being<br />

developed by world-leading researchers<br />

in the UK – notable examples being<br />

the High-Value Manufacturing (HVM)<br />

Catapult centres like the <strong>Nuclear</strong><br />

Advanced Manufacturing Research<br />

Centre (<strong>Nuclear</strong> AMRC) and the<br />

Advanced Forming Research Centre<br />

(AFRC) and the Manufacturing Technology<br />

Centre (MTC).<br />

Possible timings<br />

For a first power station the consortium<br />

envisages a seven-year period<br />

<strong>for</strong> proving the manufacturing and<br />

construction sequence of civil works<br />

and then assembly. Lessons learned<br />

would then be applied to standardised<br />

processes from then on with vision<br />

of reducing time and costs overall,<br />

following a lean manufacturing<br />

approach.<br />

The UK designed an SMR during<br />

the late 1980s and early 1990s so<br />

the concept <strong>for</strong> a small output<br />

reactor is not new. However,<br />

large reactors have remained<br />

central to baseload in many<br />

markets, including the UK.<br />

Climate change imperatives have<br />

come into play since then too,<br />

particularly driving wind and<br />

solar, while reducing fossil fuels.<br />

Fact: Who is in the consortium<br />

led by Rolls-Royce<br />

The consortium brings together the<br />

most respected and innovative<br />

engineering organisations in the<br />

world and blend them with Rolls-<br />

Royce nuclear knowledge.<br />

Rolls-Royce has a global pedigree<br />

of more than 50 years in the nuclear<br />

industry as technical authority and<br />

nuclear reactor plant designer. It’s<br />

also the supplier of safety-critical<br />

nuclear products, systems and<br />

through-life services to almost half<br />

the world’s nuclear reactors.<br />

Rolls-Royce, ARUP, Laing O’Rourke,<br />

Nuvia Wood, SNC Lavalin; BAM;<br />

Assystem; Na tional <strong>Nuclear</strong> Laboratory,<br />

<strong>Nuclear</strong> Advanced Manufacturing<br />

Research Centre, Siemens;<br />

all have a successful track record of<br />

­delivering large-scale, complex<br />

engineering and infrastructure programmes.<br />

Rolls-Royce already has 32 patents<br />

and patent applications on SMR<br />

technology, and has decades of<br />

design, manufacture, delivery and<br />

­operations ­experience. Using this<br />

already-proven technology and<br />

nuclear capability, we are developing<br />

a modular concept <strong>for</strong> nuclear technology<br />

that can be installed and<br />

commissioned quickly on site because<br />

it will be factory built and tested.<br />

Adoption of our modular approach<br />

will reduce cost and project risk by<br />

being faster to build. It will be a new<br />

way to generate electricity that will be<br />

available to the world.<br />

A design <strong>for</strong> life<br />

Overall the power station design<br />

­offers a series of cost ­benefits in terms<br />

of the achievable LCoE: reduced<br />

­financing, off-site modular construction<br />

using standard components<br />

and advanced manufacturing and<br />

imple mentation of digital through-life<br />

management.<br />

It is not just a reactor technology<br />

programme, the consortium has<br />

applied its broad nuclear and nonnuclear<br />

skills to drive modularisation<br />

and standardisation across the whole<br />

power plant.<br />

The entire design philosophy <strong>for</strong><br />

this power station is driven to deliver<br />

electricity at the lowest cost, with<br />

modularisation and standardisation<br />

being applied to every aspect of the<br />

design, from how it can be licensed,<br />

manu factured, constructed, operated,<br />

maintained and decommissioned. It’s<br />

a design <strong>for</strong> life.<br />

Author<br />

Benjamin Todd<br />

Rolls-Royce Civil <strong>Nuclear</strong><br />

Jubilee House,<br />

4 St Christopher´s Way,<br />

Derby, DE24 8JY<br />

United Kingdom<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Targeting Innovation at Cost Drivers – How the UK Can Deliver Low Cost, Low Carbon, Commercially Investable <strong>Power</strong> ı Benjamin Todd


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Akademik Lomonosov:<br />

Pending Countdown<br />

Roman Martinek<br />

The world’s only floating nuclear power plant (FNPP) is ready <strong>for</strong> operation. In April, this in<strong>for</strong>mation was confirmed<br />

by Rosatom, which is responsible <strong>for</strong> the Akademik Lomonosov project. Thus, the final stage of preparations is ­underway<br />

now – which means that very soon the world will witness operating nuclear reactors on a floating plat<strong>for</strong>m – something<br />

not seen <strong>for</strong> over 40 years that followed the shutdown of the US FNPP Sturgis.<br />

| | The “Akademik Lomonosov” leaves St. Petersburg under tow.<br />

Just over a year ago, the Russian Arctic<br />

port of Murmansk welcomed the<br />

Akademik Lomonosov, the floating<br />

nuclear power unit (FPU). The ship<br />

that has no propulsion system of its<br />

own was towed from the Baltic Shipyard<br />

in St. Petersburg, where it had<br />

been built, over 4,000 km through the<br />

waters of four seas – the Baltic Sea,<br />

the North Sea, the Norwegian Sea<br />

and the Barents Sea. Since then, the<br />

project has passed a number of key<br />

milestones, now inching the commercial<br />

start-up.<br />

In late April, Rosenergoatom (Electric<br />

<strong>Power</strong> Division of Rosatom State<br />

Corporation) announced the successful<br />

completion of integrated tests of<br />

the nuclear power facility. The tests’<br />

main goal was to verify that the facility<br />

achieved the technological parameters<br />

stipulated in the floating power<br />

unit’s design and make sure that it is<br />

fully ready <strong>for</strong> operation.<br />

Shortly be<strong>for</strong>e, on March 31, both<br />

FPU’s reactors were brought up to<br />

100 % capacity confirming the<br />

operational stability of the main and<br />

auxiliary equipment of the FPU, as<br />

well as the automatic process control<br />

systems.<br />

“Completing the trials successfully<br />

is a huge accomplishment <strong>for</strong> the big<br />

team of specialists at Rosatom”, commented<br />

on the occasion Rosenergoatom’s<br />

CEO Andrey Petrov. He also<br />

explained that the results of all trials<br />

will be reported in the floating power<br />

unit acceptance certificate of the<br />

governmental commission stating<br />

that the unit is ready <strong>for</strong> operation, a<br />

license is scheduled <strong>for</strong> July.<br />

The FPU is planned to be towed to<br />

the port of Pevek in North-East Russia<br />

(on the Chukchi Peninsula) during<br />

the 2019 summer shipping, where it<br />

will operate as part of a floating<br />

nuclear power plant, replacing the<br />

outgoing capacities of the Bilibino<br />

NPP and the Chaunskaya CHPP. It is<br />

expected to be connected to the power<br />

grid in December 2019.<br />

By that time, onshore and hydraulic<br />

structures <strong>for</strong> the FNPP, as well as<br />

infrastructure ensuring the transmission<br />

of electricity to the local grid<br />

and heating <strong>for</strong> the city’s network, are<br />

scheduled to be completed in Pevek.<br />

Current engineering works are running<br />

to plan, according to Rosatom.<br />

The Akademik Lomonosov is the<br />

pioneer project in the series of mobile<br />

transportable small-capacity power<br />

units (20870). This floating unit<br />

represents the new class of power<br />

sources based on Russian nuclear<br />

shipbuilding technology. It is designed<br />

<strong>for</strong> operation in the areas of the<br />

­Extreme North and the Russian Far<br />

East, its main task being to provide<br />

remote industrial plants, port cities, as<br />

well as offshore gas and oil plat<strong>for</strong>ms<br />

with electric energy.<br />

Rosatom actively supports the idea<br />

of deploying floating power units in<br />

other Arctic subregions as well to<br />

replace diesel generation and facilitate<br />

resources development on the<br />

shelf. The Akademik Lomonosov is<br />

one of the key projects on this track –<br />

the company is also developing the<br />

second generation of FNPPs – an optimized<br />

floating power unit (OFPU)<br />

that will be smaller in size and at<br />

the same time more powerful than its<br />

predecessor – it is supposed to have<br />

two RITM-200M reactors with a<br />

capacity of 50 MW each. At present,<br />

Rosatom is negotiating with polar<br />

regions to probe local demand.<br />

In its turn, the Akademik Lomonosov<br />

is equipped with two KLT-40S<br />

reactor units that are capable of<br />

generating up to 70 MW of electric<br />

energy and 50 Gcal/h of heat energy in<br />

the normal operation mode – which is<br />

enough to maintain the activity of a<br />

town with a population of 100,000<br />

people. Furthermore, the unit can also<br />

be converted into a desalination plant.<br />

The innovative Russian concept has<br />

already aroused interest among quite a<br />

number of <strong>for</strong>eign partners including,<br />

<strong>for</strong> instance, island states in South-<br />

East Asia and in the Middle East.<br />

| | Docking of the Floating <strong>Power</strong> Unit Akademik Lomonosov in Murmansk.<br />

Prof. Thomas Walter Tromm, who<br />

heads the <strong>Nuclear</strong> Waste Management,<br />

Safety and Radiation Research<br />

Program (NUSAFE) at the Karlsruhe<br />

Institute of Technology (KIT) Energy<br />

Centre, notes the high export potential<br />

of small modular reactors. While<br />

the prospects <strong>for</strong> the emergence of a<br />

global market <strong>for</strong> such power plants<br />

are uncertain as yet, a growing<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 351<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Akademik Lomonosov: Pending Countdown ı Roman Martinek


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 352<br />

| | View of the upper reactor pressure vessel head.<br />

| | Starting to the final place of operation.<br />

demand <strong>for</strong> floating NPPs may be conceivable<br />

in the <strong>for</strong>eseeable future,<br />

with the market responding to the pinpoint<br />

demand of isolated regions.<br />

This is particularly the case with<br />

developing countries that have yet<br />

no nuclear infrastructure, the expert<br />

thinks. “The most convincing argument<br />

in favor of SMR technologies is<br />

the lack of centralized energy distribution<br />

system in most developing states,<br />

which virtually excludes the possibility<br />

of building large-sized multi-gigawatt<br />

power plants”, believes Prof. Tromm.<br />

Meanwhile, just as in the case with<br />

typical large NPPs, safety infrastructure<br />

is of primary importance here,<br />

too. “Of course, you can manufacture<br />

SMRs on a much larger scale at the<br />

factory, thus reducing the amount of<br />

construction works immediately on<br />

the ground, but there still has to be an<br />

adequate structure of competent control<br />

bodies and technical supervision<br />

authorities”, the expert argues.<br />

As regards such plants’ own safety,<br />

Prof. Tromm assumes that passive<br />

safety systems are easier to implement<br />

than in large reactor plants thanks to<br />

smaller reactor capacity and better<br />

­external cooling: “Provided this safety<br />

barrier remains intact, the probability<br />

of a major radioactivity leak into the<br />

environment is practically excluded.<br />

In parallel, this ensures a higher safety<br />

margin”.<br />

After being moored, a floating NPP<br />

is connected to the onshore energy<br />

infrastructure, making it possible to<br />

provide small regions with power in<br />

the long term. Fuel elements can be<br />

replaced immediately at the operating<br />

site or reactors can be transported<br />

to a special facility to be loaded with<br />

fresh fuel there. After fuel reloading,<br />

the facility can be returned to its<br />

destination point and continue to<br />

generate electricity and heat <strong>for</strong> many<br />

years.<br />

Rosatom assures that the Akademik<br />

Lomonosov is designed with a great<br />

safety margin that exceeds all possible<br />

threats and makes nuclear reactors<br />

invincible <strong>for</strong> tsunamis and other<br />

natural disasters. For instance, the<br />

FPU vessel should be able to withstand<br />

a collision with an iceberg, a 7-meter<br />

tsunami wave and hurricane wind up<br />

to 200 km/h.<br />

The FPU rooms are isolated from<br />

the external environment with a<br />

double vessel hull, while reactor<br />

facilities are equipped with special<br />

biological barriers that do not let<br />

radioactivity spread beyond the compartments<br />

where the reactors are<br />

installed – even in case of a hypothetical<br />

accident.<br />

The FPU design also takes into<br />

account the climatic conditions where<br />

it is to be operated. The main vessel<br />

and load-carrying structures are made<br />

of steel resistant to brittle fracture<br />

under low temperatures. Further, the<br />

FPU is provided with ice strengthening<br />

– additional constructive elements<br />

that ensure the vessel’s strength when<br />

moving through ice – as well as with<br />

all means necessary <strong>for</strong> towing by a<br />

nuclear icebreaker. In addition, Rosatom<br />

emphasizes that all nuclear processes<br />

on board the FPU comply with<br />

all the highest requirements of the<br />

<strong>International</strong> Atomic Energy Agency<br />

(IAEA), posing no threat to the environment.<br />

It is of interest to note that despite<br />

the guarantees expressed by the<br />

Russian side, the project has been a<br />

regular subject of concern <strong>for</strong> international<br />

environment NGOs. One of<br />

such organizations, the Oslo-based<br />

Bellona Foundation, was invited<br />

by Rosatom to visit the Akademik<br />

Lomonosov in late September 2018.<br />

The special technical tour took place<br />

within the XI Regional Public Dialogue<br />

Forum “Cooperation <strong>for</strong> Sustainable<br />

Development of the Arctic”.<br />

The outcomes were hailed by Bellona:<br />

according to its CEO Nils Bøhmer,<br />

Rosatom demonstrates transparency<br />

in implementing the FNPP project.<br />

At the same time, he stressed that<br />

Bellona would closely follow further<br />

implementation of the project: “This is<br />

our first visit on board the floating<br />

power unit. We are still concerned<br />

over all issues relative to the operation<br />

of this floating nuclear power plant. In<br />

the first place, we are currently concerned<br />

about the fueling process and<br />

subsequent tests after the reactors are<br />

started”.<br />

The first reactor unit was launched<br />

on October 31, around a month<br />

after the environmentalists’ visit.<br />

­Specialists of Atomflot, subsidiary of<br />

Rosatom, conducted all necessary<br />

preparatory operations, and the starboard<br />

reactor was brought to a<br />

minimum controlled power level with<br />

taking all measurements needed. In a<br />

short time, it was followed by the<br />

second reactor unit.<br />

Back then, the physical launch<br />

marked the start of a new extensive<br />

stage of works involving comprehensive<br />

tests of the floating power unit<br />

(which, as mentioned above, were<br />

concluded this fall). Commenting on<br />

this significant event, Vitaly Trutnev,<br />

Head of Directorate <strong>for</strong> the Construction<br />

and Operation of Floating<br />

<strong>Nuclear</strong> Thermal <strong>Power</strong> Plants, put<br />

it figuratively: “Physical start-up is<br />

an essential stage <strong>for</strong> any reactor.<br />

With the launch of the first nuclear<br />

chain reaction, it trans<strong>for</strong>ms from a<br />

piece of metal into a full-fledged<br />

nuclear facility”.<br />

Now it only remains to wait until<br />

the Akademik Lomonosov arrives at<br />

its destination point where it will then<br />

significantly contribute to the energy<br />

supply and industrial development of<br />

the strategically important Russian<br />

Arctic. It might well be expected that<br />

in a few years, when a number of new<br />

concepts of floating reactors have<br />

been presented, the reactors in Pevek<br />

have proved reliable suppliers of<br />

electricity and heat, and, possibly, the<br />

first international supply contracts <strong>for</strong><br />

such facilities have been concluded –<br />

it will be possible to draw a clearer<br />

­picture of what place floating reactors<br />

will occupy in the global nuclear<br />

power industry and in the energy<br />

balance of the future.<br />

Authors<br />

Roman Martinek<br />

Expert <strong>for</strong> Communication<br />

Czech Republic<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Akademik Lomonosov: Pending Countdown ı Roman Martinek


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

iMAGINE – A Disruptive Change to <strong>Nuclear</strong><br />

or How Can We Make More Out of the<br />

Existing Spent <strong>Nuclear</strong> Fuel and What Has<br />

to be Done to Make it Possible in the UK?<br />

Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead<br />

Background The energy trilemma (e. g. by the world energy council [1], an UN-accredited global energy body or<br />

the scientific community [2]) and the United Nations sustainable development goals (UN Sustainable Development<br />

Goal 7: “Ensure access to af<strong>for</strong>dable, reliable, sustainable and modern energy <strong>for</strong> all as one piece of sustainable<br />

development of the future world”[3]) <strong>for</strong>m the key drivers <strong>for</strong> the future of all kinds of energy research. These goals<br />

lead to a strong, urgent demand <strong>for</strong> reliable as well as controllable low carbon electricity production technologies to<br />

address the low carbon strategies following the commitments of the COP 21 agreement in Paris [4]. For the United<br />

Kingdom, <strong>Nuclear</strong> technologies are recognized to have the potential to become the key technology to meet the CO 2<br />

reduction targets, but only if the development targets <strong>for</strong> nuclear will be met. However, the Emissions Gap Report 2017<br />

of United Nations Environment Programme (UNEP) [5] identified that the Contributions set in Paris 2015 will even not<br />

be sufficient to hold global warming to well below 2 °C. In 2007, the UK <strong>for</strong>mally re-introduced nuclear power into its<br />

overall energy policy followed by a long-term <strong>Nuclear</strong> Energy Strategy in 2013 [6], leading to subsequent plans to build<br />

new reactors. These plans are now starting to materialize at the Hinckley Point C site [7] with the construction of two<br />

pressurized water reactors and the Wylfa project [8], which is <strong>for</strong>eseen to lead to two advanced boiling water reactors,<br />

even if ­currently on indefinite hold. However, these projects rely on commercially existing technologies, delivered by<br />

worldwide acting companies, and are essentially based on technology developments of the 50ies and 60ies. In addition,<br />

the decision <strong>for</strong> the new build programme, along with the closing down of reprocessing in 2018 [11], creates a demand<br />

<strong>for</strong> developing novel, innovative technologies to deal with spent nuclear fuel (SNF) of existing and upcoming reactors.<br />

The case <strong>for</strong> recycling (reprocessing) is driven by factors such as closing the fuel cycle and the costs of disposal/burning<br />

of transuranic, with various scenarios proposed [16, 17].<br />

353<br />

RESEARCH AND INNOVATION<br />

In general, two different approaches<br />

<strong>for</strong> research and development (R&D)<br />

of new technologies can be distinguished:<br />

the demand or user driven<br />

innovation vs the technology driven.<br />

Historically, nuclear industry has been<br />

mostly applying the technology driven<br />

approach to create novel solutions<br />

and technologies in an evolutionary<br />

manner. A typical example is the<br />

development of the closed nuclear<br />

fuel cycle based on applying reprocessing<br />

technologies (PUREX process)<br />

which have been developed to<br />

separate Plutonium from irradiated<br />

fuel. The cycle can be closed using<br />

fast reactor technology which has<br />

­existed since 1951, when the first<br />

power-generating nuclear reactor,<br />

the liquid metal-cooled fast reactor<br />

EBR1, was put into operation [9].<br />

­Another example is the nuclear<br />

waste management using the technology<br />

of partitioning and transmutation<br />

(P&T), separating longlived<br />

TRUs and burning them in reactors<br />

[10]. The partitioning is based<br />

on the existing PUREX process with<br />

additional downstream processes <strong>for</strong><br />

minor actinide separation and the<br />

transmutation uses liquid metal<br />

cooled fast reactors.<br />

We propose a much more strategic<br />

approach applying demand driven<br />

innovation and strategic development<br />

procedures to direct nuclear technologies<br />

into a brighter future [18,<br />

19]. In our view, the technology<br />

driven approach has not been successful<br />

in re- creating the strongly required<br />

belief in nuclear technologies, which<br />

has been lost in the 1980ies. However,<br />

belief in a technology is the key<br />

to get the urgently needed public,<br />

private and political support. The key<br />

points <strong>for</strong> the strategic development<br />

process are combined in the questions:<br />

pp<br />

What technologies are currently<br />

existing and where does these<br />

come from?<br />

pp<br />

What is the demand we are<br />

currently facing and what is<br />

­expected <strong>for</strong> the future?<br />

This in<strong>for</strong>mation will be used to<br />

develop a vision <strong>for</strong> the future to<br />

provide a direction <strong>for</strong> the researchers<br />

and a mission to come as close as<br />

possible to this vision or dream.<br />

Demand Driven Strategic<br />

Development<br />

Based on the demand of sustainable<br />

power production, see “energy trilemma”<br />

and UN SDG7, the next,<br />

disruptive development step should<br />

be driven by an ultimate, holistic<br />

vision <strong>for</strong> any kind of energy production.<br />

This vision needs to be by<br />

definition much more advanced than<br />

the development goals of the first<br />

nuclear reactors, and broader than the<br />

goals of the Generation IV international<br />

Forum – a co-operative international<br />

endeavour, set up to carry out<br />

the R&D ­needed to establish the next<br />

generation nuclear energy systems<br />

[12]. This vision (call it a dream or the<br />

end of the rainbow) can be given with<br />

one simple, old phrase – “perpetuum<br />

mobile” or by the old promise of<br />

nuclear, “too cheap to meter” (nowadays<br />

economically as well as environmentally),<br />

whilst recognising that<br />

this represents as a conclusion an<br />

unattainable goal. Fredmund Malik<br />

characterizes the function of vision<br />

and mission as follows: “A mission is<br />

definitely necessary… It often follows<br />

from a very broad and far-reaching<br />

idea which could be called a vision or<br />

a dream. That dream, however, has to<br />

be trans<strong>for</strong>med into a viable mission:<br />

this is the only way to distinguish<br />

useful from useless visions” [13], see<br />

Figure 1.<br />

When translating the vision into<br />

the mission some realistic limitations<br />

have to come into play to create a<br />

solvable challenge. It is fairly obvious<br />

why the vision is unattainable, the<br />

first and second laws of thermodynamics<br />

prevent the “perpetuum<br />

mobile” from operation outside of the<br />

hypothetical. Harsh economic lessons<br />

Research and Innovation<br />

iMAGINE – A Disruptive Change to <strong>Nuclear</strong> ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

RESEARCH AND INNOVATION 354<br />

we have learned over the last four<br />

decades have shown that “too cheap<br />

to meter” is equally unobtainable in a<br />

modern world. Thus we should call<br />

both a dream or “the end of the<br />

rainbow”. However, this dream<br />

provides a far-reaching development<br />

goal which should give R&D the right<br />

direction. The key words <strong>for</strong> our vision<br />

and the goals of our mission are given<br />

below:<br />

| | Fig. 2.<br />

Expected improvements by the proposed disruptive demand driven, innovative development.<br />

| | Fig. 1.<br />

The steps of the strategic development process<br />

<strong>for</strong> future nuclear reactor systems.<br />

The very general vision has to be<br />

developed into a mission, which is<br />

­demand specific. It reflects a weighting<br />

of the different attributes <strong>for</strong>ming<br />

the vision. Our mission could be, to<br />

develop a reactor that can breed and<br />

burn its own fuel using existing SNF<br />

stockpiles. This mission <strong>for</strong> a disruptive<br />

nuclear energy system <strong>for</strong>ms the<br />

basis <strong>for</strong> creating an economically as<br />

well as environmentally sustainable<br />

approach to deliver a solution <strong>for</strong> the<br />

future massive demand on low carbon<br />

energy production. Besides the discussed<br />

sustainability, the ideal disruptive<br />

nuclear system has to deliver a<br />

solution <strong>for</strong> historically created problems<br />

of nuclear reactor operation,<br />

the nuclear waste accumulation while<br />

avoiding the creation of additional<br />

proliferation issues. “<strong>Nuclear</strong> proliferation,<br />

[is] the spread of nuclear<br />

weapons, nuclear weapons technology,<br />

or fissile material to countries<br />

that do not already possess them”<br />

[24]. Our mission leads to a fast<br />

molten salt reactor and the related,<br />

significantly reduced fuel cycle with<br />

the potential <strong>for</strong> massively improved<br />

sustainability indices, see Figure 2.<br />

The approach is based on a system<br />

­operating on existing SNF without<br />

prior reprocessing.<br />

Assembling all given arguments,<br />

the aim is to harvest the fruits of the<br />

closed fuel cycle, while avoiding the<br />

massive upfront investment which has<br />

always been associated with liquid<br />

metal cooled fast reactors (like the<br />

French PHENIX/SUPERPHENIX reactors)<br />

and aqueous reprocessing<br />

(like THORP in Sellafield/UK).<br />

Today, almost all nuclear reactors<br />

are operated in open fuel cycle mode,<br />

see Figure 3. This terminus describes,<br />

the process when fuel is produced,<br />

only once inserted into a reactor and<br />

then stored/disposed in the <strong>for</strong>m of<br />

fuel assemblies without further treatment<br />

of the SNF. For a future nuclear<br />

system with improved sustainability<br />

indices, it has always been envisaged<br />

to achieve closed fuel cycle operation<br />

and the feasibility has been demonstrated,<br />

applying fast reactor technology<br />

[16]. The UK has followed this<br />

approach too, which led to the industrial<br />

reprocessing of SNF at Sellafield<br />

and the demonstration of fast reactor<br />

technology in the Dounreay fast<br />

reactor (DFR) and the prototype fast<br />

reactor (PFR). However, closure of the<br />

fuel cycle has never been achieved on<br />

an industrial scale leading to a stockpile<br />

of separated Pu as leftover of<br />

the successful reprocessing without<br />

having the required fast reactor technology<br />

established. The driver <strong>for</strong><br />

the closure of the fuel cycle had<br />

dis appeared after the oil crisis had<br />

been resolved, the uranium prices<br />

decreased, and the growth rate of the<br />

nuclear reactor programmes slowed<br />

worldwide after the Three Mile Island<br />

accident. Fast reactor technology as<br />

well as the required fuel cycle technologies,<br />

specifically the production<br />

of the required Pu bearing mixed<br />

­oxide fuel, has been shown, to be<br />

much more complex to be operated<br />

than expected.<br />

With the view on long term<br />

sustainability, the challenges of the<br />

­final disposal, and the demand <strong>for</strong> a<br />

massive growth of the nuclear power<br />

as one of the most attractive low<br />

carbon technologies, we propose to<br />

revive closing the fuel cycle but in<br />

contrast to the historic approaches<br />

now by applying new, demand driven,<br />

tailored technologies.<br />

We will consider the idea of closing<br />

the nuclear fuel cycle using a molten<br />

salt fast reactor operating on SNF<br />

which will neither require a supply<br />

with new, fresh fuel nor create additional<br />

waste to the already existing<br />

SNF. In comparison to today’s strategy,<br />

see Figure 3, there are significantly<br />

fewer steps and fewer specific<br />

­demands. The most significant of<br />

which is that a fast reactor demands a<br />

significantly higher amount of fissile<br />

material in the core than in a thermal<br />

reactor. This <strong>for</strong>ms the need <strong>for</strong><br />

some additional fissile material<br />

<strong>for</strong> the start-up, either by enriched<br />

Uranium or by Plutonium originating<br />

from historic reprocessing operation<br />

like it is avail able in the UK. The<br />

additional fissile material is only<br />

required <strong>for</strong> the start-up phase,<br />

during operation sufficient new fissile<br />

Research and Innovation<br />

iMAGINE – A Disruptive Change to <strong>Nuclear</strong> ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

| | Fig. 3.<br />

Todays fuel cycle and fuel cycle options <strong>for</strong> the future closing of the fuel cycle.<br />

material will be bred from the fertile<br />

U-238.<br />

The feasibility of operating purely<br />

on SNF has been demonstrated using<br />

advanced modelling & simulation<br />

(M&S) [18, 19]. The inserted SNF<br />

(~95 % Uranium, ~1 % Plutonium<br />

and ~4 % fission products) will be<br />

trans<strong>for</strong>med into vast amounts of<br />

­energy and a clean stream of fission<br />

products, partly out of the salt cleanup<br />

system, partly appearing in the<br />

off-gas scrubbing system. Both<br />

streams have to be conditioned in an<br />

appropriate way to limit the source<br />

term under accidental conditions.<br />

Compared to the existing process,<br />

considering spent nuclear fuel as<br />

waste, the mass of waste will remain<br />

the same, while the short term activity<br />

will clearly increase due to the proportionality<br />

between the amount of<br />

­fission products and the amount of<br />

energy produced out of the fuel. The<br />

energy ‘squeezed out’ from the SNF<br />

will be increased by a factor of 20<br />

which will lead to the increase of short<br />

term activity (up to 500 years) while<br />

the long term activity will be significantly<br />

reduced due the burning of all<br />

TRUs.<br />

This proposed innovative nuclear<br />

system will require a complete redesign<br />

of the nuclear chemistry<br />

applied in the salt clean-up based on<br />

the principles described in [19] using<br />

the inter- disciplinary optimization<br />

potential described in “Demand<br />

driven salt clean-up in a molten salt<br />

fast reactor – Defining a priority list”<br />

[20]. There are further challenges to<br />

be con sidered on the development<br />

path. Challenges on plant structural<br />

inte grity will need to be addressed<br />

either through clever design or operational<br />

procedures. Control systems<br />

will also need to be developed to<br />

manage plant throughput against the<br />

strong thermal feedback effects that<br />

would occur in such a reactor system<br />

which is an essential part of the<br />

general safety approach which has to<br />

be developed among the other challenges<br />

[21]. We would be expect to be<br />

able to exploit a range of technical<br />

inno vations drawn from outside of the<br />

nuclear sector. Digitalisation and<br />

industry 4.0 are delivering digital<br />

twin solutions that create a high<br />

­degree of confidence in our ability to<br />

effectively operate such a plant.<br />

The consequences of the proposed<br />

approach on the fuel cycle, see Figure<br />

3, are massive since the whole concept<br />

of the complex closed fuel cycle will<br />

be replaced by a really slick process<br />

with promised lower complexity, less<br />

proliferation concern, and because of<br />

this reason, cost reductions can be realised<br />

across the industry.<br />

Based on the calculations that have<br />

been per<strong>for</strong>med to date the overall<br />

per<strong>for</strong>mance indicators of a closed<br />

fuel cycle based on the molten salt fast<br />

reactor are impressive. The neutronic<br />

feasibility study indicated that a<br />

­classical 3 GWth reactor (roughly<br />

equivalent in scale to Sizewell B)<br />

could be operated <strong>for</strong> 60 years on<br />

130 tons of SNF and ~ 17 tons of<br />

plutonium [18, 19] <strong>for</strong> the start-up.<br />

Thus the UK Pu stockpile of 140 tons<br />

in 2020 [22] would be sufficient to<br />

start 8 reactors and the currently<br />

stored 8000 tons of SNF (6000 t AGR<br />

fuel, 2000 t LWR fuel [23]) would be<br />

sufficient to operate these 8 reactors<br />

<strong>for</strong> more than 930 years each.<br />

Taking a view into the UK approach<br />

to build several new light water<br />

reactors and the opportunity of<br />

increasing the number of reactors by<br />

splitting the salt of operating reactors,<br />

it gets clear that this reactor system<br />

could be a long term available,<br />

reliable, and sustainable low carbon<br />

electricity source.<br />

The process of developing<br />

a new, innovative nuclear<br />

energy system<br />

This journey will be started with a<br />

glance into the historic steps and time<br />

scales of, at that time, new reactor<br />

developments. It will be followed by a<br />

short description of each process step<br />

<strong>for</strong> a state of the art development plan<br />

to get a deeper understanding what<br />

would have to be done to make a new,<br />

disruptive nuclear energy system real.<br />

This will lead at the end to a short<br />

closing remark on the role of the<br />

government required <strong>for</strong> success.<br />

A glance into history<br />

The analysis of the historic development<br />

of UKs MAGNOX technology<br />

gives insight into the time scale as well<br />

as the process of a new reactor development,<br />

even when it has taken place<br />

in the middle of the last century.<br />

Figure 4 shows the timeline of the<br />

development with several zero power<br />

facilities GLEEP (Graphite Low Energy<br />

Experimental Pile) in 1947 to Windscale-1<br />

in 1952 [26], which have<br />

been used to get first insight into the<br />

considered technology and to create<br />

the skilled work<strong>for</strong>ce <strong>for</strong> the next<br />

steps. This first phase was followed by<br />

a small scale experimental reactor<br />

Calder Hall (180 MWth), and after<br />

several intermediate steps the full<br />

scale demonstrator, with the Hinckley<br />

Point power stations achieving<br />

almost 1000 MWth. The application<br />

of modern, digital M&S technologies<br />

will not avoid all real world experiments,<br />

but has definitively the<br />

| | Fig. 4.<br />

Magnox development timeline as described by the Electric <strong>Power</strong> Research<br />

Institute [26].<br />

RESEARCH AND INNOVATION 355<br />

Research and Innovation<br />

iMAGINE – A Disruptive Change to <strong>Nuclear</strong> ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

RESEARCH AND INNOVATION 356<br />

potential to reduce the number of<br />

steps as well as to improve the confidence<br />

in choosing the right/ideal<br />

settings <strong>for</strong> the still required experiments.<br />

It seems essential to operate<br />

at least in a three step approach producing<br />

real life facilities as marked in<br />

Figure 4 above by the red circles.<br />

There is the argument that the<br />

MAGONX development is from a time<br />

that is too distant to be relevant today<br />

(1947 to 1956). Instead, let’s compare<br />

it with a more modern case, one of<br />

the last developments of a really new<br />

nuclear power technology in the west,<br />

the pebble bed high temperature<br />

reactor technology in Germany (see<br />

Figure 5). Even then, this was over<br />

3 decades ago (1966 to 1983). The<br />

process still indicates the three major<br />

steps, even if the order seems surprising<br />

– the small scale technology<br />

demonstrator AVR be<strong>for</strong>e the zero<br />

power experiment. This approach was<br />

the ­result of a very efficient planning<br />

based on the experience with the<br />

graphite moderated reactor technology<br />

in the 60ies, specifically our<br />

previous case the MAGNOX programme,<br />

and the follow up AGR<br />

programme which was an evolution of<br />

the MAGNOX technology. Even with<br />

this experience of graphite technology,<br />

a skilled work<strong>for</strong>ce, and<br />

­experience with building reactors, the<br />

developers came back to the zero<br />

power experiment (the KAHTER<br />

facility) to gain a deeper insight into<br />

the mode of operation and the optimization<br />

potential be<strong>for</strong>e taking the<br />

step to the industrial demonstrator<br />

THTR-300.<br />

In the development of the indus trial<br />

demonstrator, the major arguments <strong>for</strong><br />

the zero power experiment are the<br />

comparably low cost and the opportunity<br />

of rapid, flexible, very well<br />

instrumented tests to demonstrate and<br />

improve understanding of the system<br />

behaviour as well as to support licensing<br />

code validation, <strong>for</strong> example<br />

<strong>for</strong>the pebble flow [27]. The benefits of<br />

the zero power experiment are an almost<br />

immediate accessibility after shut<br />

down, the significantly ­reduced shielding<br />

requirements during operation<br />

and the flexible ­operational envelop,<br />

allow signifi­cantly faster take up of a<br />

relevant set of experimental results.<br />

Experiments of this kind are almost<br />

impossible to implement in power producing<br />

systems (in this case the AVR)<br />

with high operational temperature,<br />

high neutron flux, and a high radiation<br />

level due to fission products and<br />

material activation.<br />

pp<br />

How can we use this experience<br />

<strong>for</strong> the planning of a new, disruptive<br />

system? What are the arguments<br />

<strong>for</strong> the initial step, an own<br />

zero or low power experiment in<br />

the UK <strong>for</strong> new developments?<br />

pp<br />

Many arguments have been given<br />

in the last paragraph why a zero<br />

­power experimental facility is of<br />

high importance <strong>for</strong> the development<br />

of a dis ruptive, new reactor<br />

technology. However, there are<br />

two questions remaining: Could<br />

we make progress relying on M&S<br />

without an experiment at this<br />

stage? Can we just go and ‘order’<br />

some experiments <strong>for</strong> validation in<br />

another facility?<br />

The massive use of M&S will help to<br />

create a much better overview of<br />

the opportunities and thus to optimize<br />

the nuclear system but it cannot<br />

­replace the experience in experiments<br />

­completely. Experimental data is<br />

at a minimum required to establish<br />

model credibility through a process of<br />

validation, especially since the per<strong>for</strong>mance<br />

characteristics of any novel<br />

system are to an extent unknown.<br />

M&S will help to get the best possible<br />

outcome and reduce the number of<br />

costly experiments via a down selection<br />

process.<br />

There are clear reasons why the<br />

start of a nuclear programme is often<br />

associated <strong>for</strong> with the first significant<br />

reactor experiment, see the GLEEP<br />

­experiment in the MAGNOX process<br />

given in Figure 4. The decision <strong>for</strong> a<br />

low power experiment requires:<br />

pp<br />

a real commitment to kick off a<br />

serious programme <strong>for</strong> building<br />

and operating the facility and the<br />

<strong>for</strong>mation of a team of specialists<br />

which is able to develop the project<br />

pp<br />

development and production of<br />

the first key components, e. g. the<br />

fuel with governmental agency<br />

support needed to cover licensing<br />

and proliferation of nuclear<br />

materials<br />

pp<br />

the establishment of a supply<br />

chain, bringing in Small and<br />

Medium Sized enterprises and<br />

cross organisation agile delivery<br />

pp<br />

the close interaction with the regulator<br />

to get the experiment licensed<br />

pp<br />

strong links to nuclear innovation<br />

programmes, which will supply the<br />

innovative methods and partnerships<br />

to undertake our mission<br />

Thus, the zero power experiment will<br />

help the UK to create/re-create the<br />

essential skills basis in designing,<br />

licensing, building, commissioning,<br />

and operating an innovative reactor<br />

of a completely new type. In addition,<br />

an experiment will<br />

pp<br />

help creating international recognition<br />

as basis <strong>for</strong> future collaboration<br />

pp<br />

give an opportunity <strong>for</strong> necessary<br />

safety demonstrations in the regulatory<br />

process of the next step<br />

pp<br />

leverage cost saving opportunities<br />

by reducing the uncertainty margins<br />

in the following design steps<br />

pp<br />

create a business opportunity by<br />

providing financed reactor experiments<br />

<strong>for</strong> other MSR developers<br />

with their own designs who cannot<br />

collaborate due to sensitivities over<br />

sharing of IP.<br />

pp<br />

serve as a case study and collaborative<br />

R&D plat<strong>for</strong>m <strong>for</strong> linking<br />

with international partners who<br />

want to access the UK market.<br />

| | Fig. 5.<br />

Timeline of the pebble bed reactor development in Germany.<br />

| | Fig. 6.<br />

Time and investment scales <strong>for</strong> the development<br />

of a disruptive nuclear system<br />

Research and Innovation<br />

iMAGINE – A Disruptive Change to <strong>Nuclear</strong> ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

The 4 steps in the process<br />

Based on the already proposed reduction<br />

of the number experimental facilities<br />

a 4 step process will be developed<br />

with a rough description what should<br />

be achieved in each step. The 4 steps<br />

will have different time requirements<br />

and will be interlinked. The given<br />

timescales are based on the future<br />

plan of the BEIS (Department<br />

<strong>for</strong> Business, Energy & Industrial<br />

Strategy) nuclear innovation programme<br />

with the aim to have a<br />

market ready, in industrial application<br />

demonstrated product in 2050.<br />

Figure 6 gives a qualitative overview<br />

on the time scales (construction and<br />

operation) and the required investment<br />

<strong>for</strong> the different steps. From the<br />

figure it already gets clear, that the<br />

development of a new, disruptive<br />

nuclear system does not require large<br />

investments in the first years (step 1<br />

and 2, see red mark), which opens<br />

the opportunity to work on different<br />

systems in the early stages to down<br />

­select the options be<strong>for</strong>e the first large<br />

investment <strong>for</strong> the small scale demonstrator<br />

is to be made. Current UK<br />

strategy <strong>for</strong> AMR’s could provide a<br />

route to kick-start the necessary R&D.<br />

Basic studies<br />

The basic studies of a new nuclear<br />

technology is the time to <strong>for</strong>m a first<br />

consortium with academic partners,<br />

national laboratories, and industrial<br />

players to exploit the proposed disruptive<br />

approach and demonstrate its<br />

feasibility. It will provide attraction to<br />

the industry due to new long term IP<br />

creation, and provide scientific underpinning<br />

to their own proprietory<br />

designs and ideally create public<br />

belief and trust in the innovative<br />

capacities of nuclear research, ‘we are<br />

solving the problems of the future’.<br />

The necessary modern digital M&S<br />

tools will be created and a pool of<br />

­experts will be <strong>for</strong>med. They will<br />

­identify possible deficiencies on M&S<br />

basis to work out the challenges and<br />

shape the future requirements in more<br />

detail. Basic studies will make use of<br />

the traditional strength of the country<br />

to leverage from recent governmental<br />

investments. New capabilities will<br />

be built up in subject areas where<br />

currently strength is missing by<br />

leveraging from international networking,<br />

working with supra-national<br />

institutions, and attracting specialists<br />

from abroad.<br />

Experiments can be used in order<br />

to establish fact (validation) or to<br />

understand the characteristics of<br />

critical components/processes of the<br />

system – proof of principle as well as<br />

to validate models using basic<br />

­experiments that examine separate<br />

effects [25]. In general, large scale<br />

modelling does not by definition mean<br />

fewer experiments as the number of<br />

experiments could increase. But these<br />

will be smaller in scale – separate<br />

effects – and more numerous, and<br />

can be delivered at a lower cost per<br />

­experiment.<br />

The basic studies step will create<br />

the first interaction with the regulator<br />

to develop an understanding of a<br />

reasonable safety approach and the<br />

definition of supporting experiments<br />

required <strong>for</strong> licensing. It will lead to<br />

international recognition which can<br />

be supported by establishing international<br />

research collaborations. This<br />

step will support the UK strategic<br />

vision <strong>for</strong> the nuclear 2020 target to<br />

establish the capabilities & collaborations<br />

necessary <strong>for</strong> a collaborative<br />

research programme across industry<br />

and research organizations.<br />

Advanced studies<br />

In this stage new technology<br />

approaches (e. g. salt clean-up) have<br />

to be developed and demonstrated<br />

­using existing infrastructure leveraging<br />

past investments. For the scale<br />

up a hot salt laboratory <strong>for</strong> thermalfluid<br />

dynamics and material interaction<br />

studies as well as a fuel lab <strong>for</strong><br />

salt clean-up studies and fuel production<br />

(<strong>for</strong> the zero power experiment)<br />

has to be established. Advanced<br />

studies will leverage the traditional<br />

strength to create innovative approaches<br />

and can foster the development<br />

of IP within the industry support<br />

base. Within this step, the zero power<br />

reactor will be a key stage to <strong>for</strong>m a<br />

consortium and develop the skilled<br />

workers <strong>for</strong> the next step. Ideally, the<br />

zero power reactor can be based on<br />

refurbishment of a recently shutdown<br />

facility like it has been shown in the<br />

GUINEVERE experiments in Belgium.<br />

This approach has shown to create<br />

­significant cost and time savings. As<br />

already mentioned a zero power<br />

reactor will create the international<br />

collaboration opportunities and can<br />

serve with experiments <strong>for</strong> money <strong>for</strong><br />

industrial players. A comparable<br />

approach is offered, e. g. by the IPPE<br />

in Russia using the BFS facility <strong>for</strong><br />

fast reactor technology.<br />

Experimental reactor<br />

The experimental reactor is typically<br />

the small scale technology demon strator<br />

and the first step into a power producing<br />

unit. However, it could be used<br />

later on as demonstrator <strong>for</strong> a small<br />

size reactor <strong>for</strong> remote siting. However,<br />

this dual approach will require a<br />

disruptive development in the process<br />

of establishing a reactor system. In<br />

our case, the experimental reactor<br />

could be initially designed without<br />

salt clean-up, operating on enriched<br />

uranium (smaller and cheaper)<br />

serving a market niche like the<br />

Akademik Lomonosov <strong>for</strong> remote site<br />

electricity production [28] or <strong>for</strong> propulsion.<br />

The system will be of small<br />

size with a power of 10 to 50 MWth<br />

even if the demonstration of the<br />

self-sustained operation on SNF will<br />

not be achievable in a such small size<br />

system. To limit and stretch the initial<br />

investment requirement the salt<br />

clean-up step could be added offline<br />

in a second development stage to<br />

demonstrate the new technologies.<br />

Detailed design, licensing, construction,<br />

and commissioning will create<br />

the future skilled work<strong>for</strong>ce <strong>for</strong> the<br />

full scale industrial demonstrator.<br />

Close technological and financial<br />

collaboration with industrial partners<br />

will be a key to create innovative<br />

solutions in the supply chain as well<br />

as possibly a system integrator <strong>for</strong><br />

the next step. At this point two approaches<br />

are possible, a collaboration<br />

driven approach <strong>for</strong> international<br />

innovative reactor development, or a<br />

more commercially driven approach.<br />

The historic boiling water reactor<br />

development shows that both approaches<br />

can even be followed in<br />

parallel [26].<br />

In our case, the experimental reactor<br />

will deliver the first operational<br />

experience with a liquid fuelled<br />

system since the molten salt reactor<br />

experiment at Oak Ridge National<br />

laboratory in 1965 to 1969 [29]. A key<br />

point <strong>for</strong> a rapid application of the<br />

disruptive innovation will be starting<br />

with a conservative approach with<br />

reduced temperature level and low<br />

power density followed by a successive<br />

process of stretching the operational<br />

envelop to improve the economy<br />

per<strong>for</strong>mance based on the operational<br />

experience and detailed observation<br />

of the material behaviour. The experimental<br />

reactor is the first opportunity<br />

<strong>for</strong> material testing under real<br />

operational con ditions involving high<br />

temperature, corrosive environment<br />

and high radiation level. Taking the<br />

step into the experimental reactor<br />

early will provide the developer with a<br />

steeper learning curve in a new<br />

technology and thus an earlier success,<br />

but sure on the cost of taking a<br />

higher risk. Taking leadership will<br />

RESEARCH AND INNOVATION 357<br />

Research and Innovation<br />

iMAGINE – A Disruptive Change to <strong>Nuclear</strong> ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

RESEARCH AND INNOVATION 358<br />

give the developers the early lead in<br />

an innovative technology resulting in<br />

excellent ­market opportunities.<br />

Full scale industrial system<br />

demonstration<br />

In this stage industrial demonstration<br />

of economic, reliable, sustainable,<br />

and safe power production using a<br />

new technology <strong>for</strong> the national as<br />

well as the international market is the<br />

essential function. The functionality<br />

of the entire nuclear system from fuel<br />

production over reactor operation as<br />

well as salt clean-up and off-gas<br />

treatment as one unit has to be<br />

demonstrated, thus the application of<br />

a new highly sustainable low carbon<br />

technology. By providing the first<br />

industrial demonstrator since generations,<br />

the UK will demonstrate industrial<br />

leadership and create the<br />

related market opportunities required<br />

to achieve a significant market share.<br />

The industrial demonstrator can/<br />

should already be owned by a commercial<br />

operator and should be supported<br />

by the government in critical<br />

components like the nuclear island<br />

and the fuel as well as in the licensing.<br />

In the UK currently, this approach is<br />

consistent with current policy of<br />

supporting industry through the<br />

Advanced Modular Reactor programme<br />

and is in-line with recent<br />

NIRAB recommendations to the UK<br />

government.<br />

The IP generated during the development<br />

and operation of an industrial<br />

scale demonstrator will serve the<br />

­specific purpose of lowering the technical<br />

and commercial risk of licensing<br />

and operating a novel reactor technology.<br />

Commercial solutions will<br />

share some of the underlying technologies,<br />

though with additional privately<br />

held IP in order to differentiate<br />

one commercial design from its competitor.<br />

By no means, the full scale demonstrator<br />

need to be a short term<br />

operating prototype. Based on massive<br />

use of M&S it should be a welldeveloped,<br />

M&S supported, ideal experiment<br />

which will be a first of class<br />

and thus go into full production <strong>for</strong> a<br />

significant time. There is history <strong>for</strong> this<br />

– the Calder Hall reactor, see Figure 4,<br />

operated <strong>for</strong> decades but it was also<br />

the full scale demonstrator. It powered<br />

Sellafield site (a large town in scale)<br />

[30], and was com parable to EBR-II at<br />

the Argonne-West site in US [31].<br />

Closing remark<br />

The link between the proposed 4<br />

stages of the process, the required<br />

| | Fig. 7.<br />

Interlinked development processes required <strong>for</strong> establishing an innovative.<br />

­in<strong>for</strong>mation exchange between the<br />

stages, and a proposed time scale is<br />

given in Figure 7, supported by a<br />

qualitative sketch <strong>for</strong> the national<br />

skills base and the requested shares of<br />

governmental investment.<br />

The governmental share of the<br />

required investment is proportionally<br />

higher in earlier phases of the project<br />

where the driver is to develop the<br />

wider skills base. Later in the programme,<br />

the share of government<br />

investment is lower due to the fact<br />

that industry will be more able to<br />

attract the investment needed to<br />

commercialise the tech nology when<br />

it is demonstrated as an attractive<br />

investment opportunity.<br />

Electric <strong>Power</strong> Research Institute<br />

(EPRI) has analysed the historic<br />

development of 4 different reactor<br />

types [26]. In all cases, the development<br />

activities have been carried out<br />

and financed by different partners in<br />

government and industry. The topic of<br />

the zero power reactor is typically in<br />

the hand of the government (not<br />

shown in Figure 8 since the study was<br />

based on power producing systems),<br />

while the next steps are shared with<br />

increasing level of industry involvement<br />

correlated with the increasing<br />

maturity of the technology, see<br />

Figure 8 [26]. A detailed analysis<br />

indicates that the nuclear island as<br />

well as the fuel fabrication and supply<br />

<strong>for</strong> the demonstrators are mainly<br />

in the hand of the government<br />

while other com ponents are already<br />

delivered by the industrial partners.<br />

The main reason is that a new, innovative<br />

fuel supply has to be handled<br />

on governmental level due to proliferation<br />

concerns while the nuclear<br />

island is subject to supervision of the<br />

IAEA and the regulator.<br />

Based on the given arguments<br />

highly innovative reactor technologies<br />

without a planning <strong>for</strong> zero power<br />

­reactor experiment lacks the seriousness<br />

which is required to start such an<br />

important endeavour. Thus, investing<br />

into a reactor physics experiment on<br />

an innovative technology will immediately<br />

give the UK a high profile in<br />

research and the connected international<br />

recognition.<br />

Cost estimations given by insiders<br />

of the Indian fast reactor programme<br />

and the lead cooled fast reactor programme<br />

in Russia indicate an overall<br />

investment volume of ~10 bn $ and<br />

10 bn € respectively to achieve the<br />

level of the industrial demonstrator.<br />

Within the analysed historic US Programme<br />

the investment shares <strong>for</strong> the<br />

first of a kind reactor ranged between<br />

8 % and 86 % governmental contribution<br />

with an average of ~40 % with<br />

higher industrial contribution <strong>for</strong><br />

mature technologies. In some promising<br />

technologies industry has<br />

­already taken a significant share in the<br />

small scale demonstrator (e. g. BWR<br />

technology)while in other high risk<br />

approaches even the industrial<br />

demonstrator has been supported by<br />

national governments.<br />

Typically significant teams within a<br />

strong leadership in national programmes<br />

and research centres have<br />

been operated creating the required<br />

number of qualified experts and the<br />

essential skills level <strong>for</strong> designing,<br />

licensing, constructing, commissioning,<br />

as well as operating the ‘new<br />

nuclear reactors’ at that time.<br />

Conclusions<br />

The energy trilemma and the UN<br />

development goals <strong>for</strong>m the key<br />

driving <strong>for</strong>ces <strong>for</strong> all kind of energy<br />

research. Based on these requirements<br />

a universal vision <strong>for</strong> strictly<br />

demand driven strategic development<br />

has been worked out based on the key<br />

words: no resources requested, no<br />

waste produced while being highly<br />

economic, reliable, safe, and secure.<br />

Following this vision a mission <strong>for</strong> a<br />

future disruptive, demand driven<br />

nuclear energy system with the<br />

Research and Innovation<br />

iMAGINE – A Disruptive Change to <strong>Nuclear</strong> ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

| | Fig. 8.<br />

Visualization of evolving government and industry roles in the design, construction and operation<br />

of test, demonstration and first commercial reactors as described by the Electric <strong>Power</strong> Research<br />

Institute [26].<br />

additional aim of solving the long<br />

term nuclear waste problem is developed.<br />

Key point <strong>for</strong> the massively<br />

improved sustainability indices is<br />

the operation in closed fuel cycle<br />

mode based on already existing spent<br />

nuclear fuel. Even if the advantages of<br />

closed fuel cycle operation are well<br />

known, the technology has never been<br />

established successfully due to the<br />

prohibitively high development cost<br />

and high commercial risk.<br />

In the first part, we describe the<br />

requirement <strong>for</strong> a disruptive technology,<br />

an innovative molten salt<br />

­reactor operating on already exiting<br />

SNF without extensive and expensive<br />

pre-processing. The side requirement<br />

is on developing an online salt cleanup,<br />

<strong>for</strong> online removing elements<br />

which prevent the reactor from long<br />

term operation. This approach will<br />

significantly ­reduce the proliferation<br />

risk, the radiation to human in fuel<br />

manu facturing, as well as the high<br />

reprocessing cost and the even higher<br />

cost of solid fuel production, while<br />

opening a massive optimization potential<br />

due to online linking of reactor<br />

and fuel cycle.<br />

In a second part, we developed an<br />

innovative process to establish a new,<br />

disruptive nuclear system. In contrast<br />

to historic approaches, the new process<br />

consist only of 4 major stages<br />

supported by the massive application<br />

of modelling and simulation to reduce<br />

the number of required experimental<br />

facilities. The process is characterized<br />

by: basic studies, advanced studies<br />

and zero power experiment, small<br />

scale demonstrator, and finally the<br />

industrial demonstrator. The process<br />

gives a clear structure <strong>for</strong> innovative<br />

nuclear development with specific<br />

roles which have to be taken over by<br />

the government and industrial players<br />

with different shares. It indicates<br />

the requirement to involve different<br />

partners, but the reward of the successful<br />

development has the potential<br />

to give the world one of the most<br />

promising, sustainable, and reliable<br />

low carbon technologies.<br />

References<br />

1. https://www.worldenergy.org/work-programme/strategicinsight/assessment-of-energy-climate-change-policy/<br />

2. environmental Scientist, The <strong>Journal</strong> of the Institution of<br />

Environmental Sciences Volume 23 No 1, 2014, available:<br />

https://www.the-ies.org/sites/default/files/journals/<br />

env_sci_feb_14.pdf, accessed 07/03/2019<br />

3. https://unchronicle.un.org/article/goal-7-ensure-accessaf<strong>for</strong>dable-reliable-sustainable-and-modern-energy-all<br />

4. http://www.cop21paris.org/knowledge-centre/reports/<br />

5. The Emissions Gap Report 2017 A UN Environment Synthesis<br />

Report, UNEP available : https://wedocs.unep.org/bitstream/<br />

handle/20.500.11822/22070/EGR_2017.pdf, accessed<br />

13/07/2018<br />

6. Long-term <strong>Nuclear</strong> Energy Strategy, HM government,<br />

available: https://assets.publishing.service.gov.uk/<br />

government/uploads/system/uploads/attachment_data/<br />

file/168047/bis-13-630-long-term-nuclear-energy-strategy.<br />

pdf, accessed 13/07/2018<br />

7. https://www.edfenergy.com/energy/nuclear-new-buildprojects/hinkley-point-c/about#timeline<br />

8. http://www.hitachi-hgne-uk-abwr.co.uk/downloads/<br />

2017-12-14_uk_abwr_completes_regulatory_assessment.pdf<br />

9. Argonne’s <strong>Nuclear</strong> Science and Technology Legacy, Historical<br />

News Releases, available: https://www.ne.anl.gov/About/hn/<br />

news111220.shtml, accessed 07/03/2019<br />

10. B. Merk et al.: The Current Status of Partitioning &<br />

Transmutation and how to develop an Innovative Approach<br />

to <strong>Nuclear</strong> Waste Management, ATE 5, 2019<br />

11. End of reprocessing at Thorp signals new era <strong>for</strong> Sellafield,<br />

available https://www.gov.uk/government/news/<br />

end-of-reprocessing-at-thorp-signals-new-era-<strong>for</strong>-sellafiel,<br />

accessed 28/03/2019d<br />

12. Generation IV <strong>International</strong> Forum https://www.gen-4.org/<br />

gif/jcms/c_9260/public<br />

13. Malik, F. Strategy—Navigating the Complexity of the World;<br />

Campus Verlag: Frankfurt, Germany; New York, NY, USA, 2013.<br />

14. V. Dekusar et al: “Comparative Analysis of Electricity<br />

Generation Fuel Cost Component at NPPs with WWER and<br />

BN-type Reactor Facilities, FR17 Yekaterinburg, Russian<br />

Federation, 26 – 29 June 2017, available:<br />

https://www-legacy.iaea.org/<strong>Nuclear</strong><strong>Power</strong>/Downloadable/<br />

Meetings/2017/2017-12-12-12-12-NPTDS-test/FR17_<br />

WebSite/papers/FR17-435.pdf, accessed 26/02/2019<br />

15. A. Khaperskaya: Conceptual approaches and the main<br />

directions of R & D on partitioning and transmutation of minor<br />

actinides and long-lived fission products in the Russian<br />

Federation 15th IEM P&T, 30 Sept.3 Oct. 2018, Manchester<br />

Hall, Manchester, UK<br />

16. Merk B, Stanculescu A, Chellapandi P, Hill R (2015) Progress<br />

in reliability of fast reactor operation and new trends to<br />

increased inherent safety, Applied Energy 147, 1 June 2015,<br />

Pages 104–116<br />

17. WPFC Task Force on Potential Benefits and Impacts of<br />

Advanced Fuel Cycles with Partitioning and Transmutation<br />

(TFPT), https://www.oecd-nea.org/science/wpfc/index_<br />

pt.html<br />

18. B. Merk, D. Litskevich, K. R. Whittle, M. Bankhead, R. Taylor, D.<br />

Mathers: ”On a Long Term Strategy <strong>for</strong> the Success of <strong>Nuclear</strong><br />

<strong>Power</strong>”, ENERGIES, 8(11), 12557-12572. doi:10.3390/<br />

en81112328.<br />

19. B. Merk, D. Litskevich, M. Bankhead, R. Taylor: ”An innovative<br />

way of thinking <strong>Nuclear</strong> Waste Management – Neutron<br />

physics of a reactor directly operating on SNF”, PLOS ONE July<br />

27, 2017, https://doi.org/10.1371/journal.pone.0180703<br />

20. B Merk, D Litskevich, R Gregg, AR Mount: Demand driven salt<br />

clean-up in a molten salt fast reactor–Defining a priority list,<br />

PloS one 13 (3), e0192020<br />

21. acatech (Hrsg.): Partitionierung und Transmutation nuklearer<br />

Abfälle. Chancen und Risiken in Forschung und Anwendung<br />

(acatech POSITION), München: Herbert Utz Verlag 2014<br />

22. N. C. Hyatt: Plutonium management policy in the United<br />

Kingdom: The need <strong>for</strong> a dual track strategy, Energy Policy,<br />

Volume 101, February 2017, Pages 303-309<br />

23. David Hambley: Management of <strong>Nuclear</strong> Fuel in the UK:<br />

Past, Present and Future, INMM 32nd Spent Fuel Workshop<br />

January 10 – 12, 2017 Washington, DC USA, available:<br />

https://www.inmm.org/INMM/media/Documents/<br />

Presenations/Spent%20Fuel%20Seminar/2017%20Spent%20<br />

Fuel%20Seminar/Hambley_ManagementOf<strong>Nuclear</strong>FuelInThe-<br />

UKPastPresentAndFuture.pdf, accessed 11/10/2018<br />

24. https://www.britannica.com/topic/nuclear-proliferation<br />

25. P. Peterson: Integral and Separate Effects Tests <strong>for</strong> Thermal<br />

Hydraulics Code Validation <strong>for</strong> Liquid-Salt Cooled <strong>Nuclear</strong><br />

Reactors, NEUP Project No. 09-789, available: https://neup.inl.<br />

gov/SiteAssets/Final%20%20Reports/09-789%20NEUP%20<br />

Final%20Report.pdf, accessed 28/03/2019<br />

26. Program on Technology Innovation: Government and Industry<br />

Roles in the Research, Development, Demonstration, and<br />

Deployment of Commercial <strong>Nuclear</strong> Reactors: Historical<br />

Review and Analysis. EPRI, Palo Alto, CA: 2017. 3002010478<br />

27. V. Drüke & D. Filges (1987) The Critical HTGR Test Facility<br />

KAHTER–An Experimental Program <strong>for</strong> Verification of<br />

Theoretical Models, Codes, and <strong>Nuclear</strong> Data Bases, <strong>Nuclear</strong><br />

Science and Engineering, 97:1, 30-36, DOI: 10.13182/<br />

NSE87-A23493<br />

28. Akademik Lomonosov Floating <strong>Nuclear</strong> Co-generation Plant,<br />

https://www.power-technology.com/projects/<br />

akademik-lomonosov-nuclear-co-generation-russia/<br />

29. MSRE’s 50 th – The short-lived Molten Salt Reactor Experiment<br />

is far from <strong>for</strong>gotten, https://www.ornl.gov/news/msres-50th<br />

30. First nuclear power plant to close, available:<br />

https://www.theguardian.com/uk/2003/mar/21/<br />

nuclear.world, accessed 28/03/2019<br />

31. EBR-II Sixteen Years of Operation, available:<br />

https://inldigitallibrary.inl.gov/Reports/ANL-0001.pdf,<br />

accessed 28/03/2019<br />

Authors<br />

Bruno Merk<br />

Dzianis Litskevich<br />

University of Liverpool,<br />

School of Engineering, L69 3GH,<br />

United Kingdom<br />

Bruno Merk<br />

Dzianis Litskevich<br />

Aiden Peakman<br />

Mark Bankhead<br />

National <strong>Nuclear</strong> Laboratory,<br />

Chadwick House, Warrington,<br />

WA3 6AE, United Kingdom<br />

RESEARCH AND INNOVATION 359<br />

Research and Innovation<br />

iMAGINE – A Disruptive Change to <strong>Nuclear</strong> ı Bruno Merk, Dzianis Litskevich, Aiden Peakman and Mark Bankhead


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

360<br />

DECOMMISSIONING AND WASTE MANAGEMENT<br />

Due to the length<br />

of the article it is<br />

published in some<br />

different parts. The<br />

authors and editor<br />

hope you will enjoy<br />

and look <strong>for</strong>ward to<br />

reading the entire<br />

article, as each<br />

portion is published.<br />

This republication is a<br />

shortened version of<br />

an article originally<br />

published in the<br />

journal Progress in<br />

<strong>Nuclear</strong> Energy. The<br />

full-length version of<br />

the article may be<br />

found at: Sanders, M,<br />

& Sanders, C 2019<br />

“A world’s dilemma<br />

‘upon which the sun<br />

never sets’ – The<br />

nuclear waste<br />

management strategy<br />

(part II): Russia, Asia<br />

and the Southern<br />

Hemisphere”, Progress<br />

in <strong>Nuclear</strong> Energy<br />

110, 148-169.<br />

A World’s Dilemma ‘Upon Which<br />

the Sun Never Sets’: The <strong>Nuclear</strong> Waste<br />

Management Strategy: Japan and China<br />

Part 3<br />

Mark Callis Sanders and Charlotta E. Sanders<br />

5 Asian Continent<br />

5.1 State of Japan or 日 本 国<br />

Nippon-koku or<br />

Nihon-koku (Japan)<br />

5.1.1 Historical Overview & Law<br />

Un<strong>for</strong>tunately, Japan’s story with<br />

“ nuclear” suddenly and sadly began<br />

on August <strong>06</strong>, 1945 when the world’s<br />

first atom bomb fell on the beautiful<br />

city of Hiroshima. On March 11, 2011,<br />

Japan was struck with a tsunami<br />

(­resulting in approximately 19,000<br />

deaths) that crippled the Fukushima<br />

Daiichi nuclear power plant causing a<br />

release of radiation into the environment<br />

of surrounding communities<br />

[38]. Japan is unique in that it is<br />

the only nation state to date to have<br />

experienced the use of atomic<br />

weapons during wartime, resulting in<br />

approximately 100,000 deaths [39].<br />

Despite Japan’s horrendous experiences<br />

with nuclear during the Second<br />

World War; in the years post ceding<br />

the end of the Second World War<br />

(1939-1945), Japan shortly thereafter<br />

embarked on establishing a civilian<br />

nuclear power program.<br />

The paradigm of Japan having<br />

few natural resources and limited<br />

land surface <strong>for</strong> its population has<br />

­resulted in a spate of complex and<br />

awkward politically sensitive situations<br />

through out recent Japanese<br />

history. During the 20 th Century, this<br />

need <strong>for</strong> access to raw materials saw<br />

the Japanese invasion of Manchuria<br />

(1933), as well as the attack on Pearl<br />

Harbor, Hawaii, USA (December 07,<br />

1941), to name a few. These two<br />

acts, and others, were intended to<br />

secure supplies and provide vital raw<br />

materials needed <strong>for</strong> the Japanese<br />

homeland and its growing industry. It<br />

should be observed, that aggressive<br />

behavior to secure access to natural<br />

resources is certainly not unique to<br />

Japan and is a reoccurring theme<br />

among nation states since the beginning<br />

of human history. Certainly, one<br />

of the potential benefits of nuclear<br />

power generation is that nation states<br />

may have access to an abundant,<br />

secure, and stable supply of energy,<br />

thereby theoretically resulting in a<br />

downward spiral of aggressive behavior<br />

among nation states as they<br />

engage <strong>for</strong> access of energy supplies.<br />

Similarly, to other western nation<br />

states, Japan imported much of its<br />

energy, especially its oil supplies from<br />

the Middle East. This dependence on<br />

<strong>for</strong>eign imports was made bare during<br />

the 1973 oil shock that shook all<br />

western industrialized nation states.<br />

One important consequence <strong>for</strong><br />

Japanese energy policy was the<br />

­impetus to expand its nuclear power<br />

generating program. Since this time,<br />

“ensuring a stable supply of energy at<br />

a low cost” [40] has <strong>for</strong>med a cornerstone<br />

of Japanese political persuasion.<br />

5.1.2 Government and<br />

legislative regime<br />

As a democratic system of government<br />

with open and fair elections, the<br />

citizens of Japan are warmly involved<br />

with affairs of state through its<br />

government structure. There<strong>for</strong>e,<br />

politicians are concerned with issues<br />

surrounding the cost of energy and its<br />

relation to the national economy. Thus,<br />

Japan’s nuclear power program is a<br />

political football at the <strong>for</strong>efront of Japanese<br />

politics. As a constitutional monarchy,<br />

the government system is based<br />

on a separation of power between three<br />

branches of government (executive,<br />

legislative and judicial), with the<br />

Japanese emperor maintaining mostly<br />

a ceremonial role. The cabinet houses<br />

the powers of the ­executive and <strong>for</strong>mulates<br />

national policy and direction <strong>for</strong> a<br />

nuclear program in Japan. In practice,<br />

the prime minister of Japan is<br />

appointed by the emperor, having been<br />

first nominated by the parliament and<br />

is usually a member of the House of<br />

Represen tatives. Japan’s constitution,<br />

which arose from the ashes of the<br />

Second World War, became operative<br />

on May 3, 1947, and consists of 103<br />

articles [41].<br />

5.1.2.1 Corruption<br />

The country of Japan holds the<br />

distinction of being one of the world’s<br />

least corrupt nations. Japan’s Penal<br />

Code, and Unfair Competition Prevention<br />

Act 1 , which was promulgated<br />

in 1993 2 , <strong>for</strong>ms the centerpiece of<br />

anti- corruption legislation and en<strong>for</strong>cement<br />

mechanisms in the country<br />

and are largely well imposed. In the<br />

latest Transparency <strong>International</strong><br />

­Corruption Perceptions Index (CPI),<br />

Japan ranked 20 out of 180 countries<br />

in 2017. Japan does per<strong>for</strong>m relatively<br />

excellent work in the en<strong>for</strong>cement of<br />

its penal codes and legislation in this<br />

area. However, the Organization <strong>for</strong><br />

Economic Cooperation and Development<br />

3 (OECD) pointed out in 2014<br />

that it is worried there is not enough<br />

attention being paid to the potential<br />

bribing of <strong>for</strong>eign public officials<br />

by Japanese companies. At the end<br />

of 2013, it recommended that the<br />

country take steps to develop all<br />

necessary resources “to proactively<br />

detect, investigate, and prosecute<br />

cases of <strong>for</strong>eign bribery by Japanese<br />

companies” [42].<br />

5.1.2.2 Legislative Framework<br />

In light of Japan’s terrifying ending to<br />

the Second World War, Japan sought<br />

to establish a solely civilian nuclear<br />

1 See: Unfair Competition Prevention Act (Act No. 47 of May 19, 1993, as amended up to April 23, 1999)<br />

http://www.wipo.int/wipolex/en/text.jsp?file_id=128372, viewed April 19, 2018.<br />

2 It was last amended almost 20 years ago in 1999.<br />

3 For in<strong>for</strong>mation about the OECD, See: http://www.oecd.org/about/, viewed July 12, 2018.<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Japan and China Part 3<br />

ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

| | Japan, nuclear power, again a vital source <strong>for</strong> a reliable energy supply.<br />

Inside view of a pressurised water reactor.<br />

program dedicated to the promotion<br />

of peaceful economic application in<br />

passing The Atomic Energy Basic Law<br />

(AEBL) in 1955. The AEBL enshrines<br />

into law that as a nation Japan is<br />

dedicated to upholding three overriding<br />

philosophies of: (1) democratic<br />

methods, (2) independent management,<br />

and (3) transparency. These<br />

three philosophies establish the starting<br />

point <strong>for</strong> any nuclear activities at<br />

home and <strong>for</strong> Japanese cooperation<br />

internationally [43]. Subsequently,<br />

the Atomic Energy Commission (AEC)<br />

was created to promote nuclear power<br />

development and utilization. To<br />

further provide a nuclear regulating<br />

infrastructure in Japan, a number of<br />

other organizations were set up in the<br />

year following the promulgation of<br />

the AEBL including, the <strong>Nuclear</strong><br />

Safety Commission (NSC), and the<br />

Japan Atomic Energy Research<br />

Institute, to name two [44].<br />

where it restated its commitment to<br />

solving the high-level nuclear waste<br />

disposal dilemma 5 . More recently<br />

(2016), the Diet agreed on legislation<br />

to “tak[e] measures necessary <strong>for</strong><br />

the steady implementation of the reprocessing<br />

of used nuclear fuel” [45]<br />

by <strong>for</strong>ming a new organization, the<br />

Spent Fuel Reprocessing Organization<br />

6 (SFRO).<br />

Japan classifies its radioactive<br />

waste dependent on the waste’s<br />

activity and/or source of origination<br />

as either high- or low-level waste.<br />

Additionally, low-level waste may<br />

also be further sub-classified depending<br />

on its origin, such as<br />

waste containing transuranic radionuclides,<br />

with a further category of<br />

very-low-level waste from reactors<br />

sites being acknowledged. The setting<br />

of upper limits on the concentrations<br />

of radionuclides <strong>for</strong> wastes authorized<br />

<strong>for</strong> disposal in Japan are delineated<br />

per the Reactor Regulation Law 7 . The<br />

­scientific basis <strong>for</strong> the setting of<br />

these limits originate from published<br />

reports by the <strong>Nuclear</strong> Safety Commission<br />

of Japan (NCS), which are<br />

then used <strong>for</strong> preparation of license<br />

applications.<br />

The legislative framework <strong>for</strong> the<br />

final disposal of radioactive waste in<br />

Japan is outlined in the Specified<br />

Radioactive Waste Final Disposal Act,<br />

Law No. 117 (Final Disposal Act)<br />

which was passed by the Diet on June<br />

7, 2000. This law contains provisions<br />

governing the definition and implementation<br />

of policy in what may be<br />

called the final disposal plan. This law<br />

also provides <strong>for</strong> the funds necessary<br />

to finance such disposal activity, <strong>for</strong><br />

the entity responsible in carrying out<br />

this mandate, and the procedures to<br />

be used <strong>for</strong> site selection. The law<br />

mandates that high-level waste is only<br />

disposed of in deep geological constructed<br />

sites (i.e., only vitrified waste<br />

resulting from the reprocessing of<br />

spent nuclear fuel) [46].<br />

5.1.3.1 Permanent disposal<br />

The Japanese program <strong>for</strong> high-level<br />

nuclear waste management envisages<br />

that such vitrified high-level waste<br />

will be stored in “a stable host rock<br />

<strong>for</strong>mation more than 300 meters<br />

under ground, using a multi-barrier<br />

system [comprising both] engineered<br />

DECOMMISSIONING AND WASTE MANAGEMENT 361<br />

5.1.3 <strong>Nuclear</strong> waste<br />

management<br />

Currently, government policy <strong>for</strong><br />

shepherding its nuclear waste<br />

manage ment program is to conduct<br />

all the obligatory reviews <strong>for</strong> needed<br />

sites “<strong>for</strong> the final disposal of high-­<br />

level radioactive waste, without<br />

postponing the issue” [40]. On June<br />

14, 2013, the Japanese cabinet agreed<br />

on its yearly report relating any<br />

measures it has taken regarding<br />

energy supplies and demand, as<br />

required by Article 11 of the Basic Act<br />

on Energy Policy 4 (Act No. 71 of 2002)<br />

| | Japan: remediation work at the Fukushima site.<br />

4 See: http://www.japaneselawtranslation.go.jp/law/detail/?printID=&ky=payment&page=10&vm=02&re=02, viewed July 12, 2018<br />

5 See: FY2013 Annual Report on Energy (Energy White Paper 2014) Outline,<br />

http://www.meti.go.jp/english/report/downloadfiles/2014_outline.pdf, viewed July 12, 2018.<br />

6 See: http://www.meti.go.jp/english/policy/energy_environment/law/index.html, viewed July 12, 2018.<br />

7 See: https://www.oecd-nea.org/law/legislation/jpn-material-reactors.pdf, viewed July 12, 2018.<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Japan and China Part 3 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

DECOMMISSIONING AND WASTE MANAGEMENT 362<br />

and natural barriers” in order to provide<br />

sufficient isolation of this waste<br />

to the outside environment [47]. The<br />

current plan is to begin operation of a<br />

final disposal facility sometime in<br />

the 2030’s. These ef<strong>for</strong>ts are to be<br />

conducted under the purview of the<br />

<strong>Nuclear</strong> Waste Management Organization<br />

of Japan (NUMO) and as<br />

sanctioned by the Final Disposal Act.<br />

In April 2014, the newly adopted<br />

‘ Basic Energy Plan’ considers matters<br />

surrounding high-level waste disposal,<br />

and in 2016 Japan’s cabinet<br />

endorsed taking a more active<br />

approach on this issue by working<br />

with local governments. In conjunction<br />

with these ef<strong>for</strong>ts, the Geological<br />

Disposal Working Group issued<br />

a report titled “Summary of<br />

Requirements and Criteria <strong>for</strong> a<br />

Nation­wide Map of Scientific Features<br />

<strong>for</strong> Geological Disposal”. 8<br />

The siting of a geological storage<br />

facility involves the investigation of<br />

many complex variables. To help<br />

­facilitate this process, METI identified<br />

pertinent criteria based on scientific<br />

characteristics publishing a map<br />

allowing it to differentiate areas of<br />

interest nationwide <strong>for</strong> possible locations<br />

<strong>for</strong> the siting of a national nuclear<br />

geologic storage facility [48]. The map<br />

allows <strong>for</strong> readily identifi­able regions<br />

having the suitable geological requirements<br />

<strong>for</strong> hosting a repository and provides<br />

a working plat<strong>for</strong>m as Japan<br />

­begins any site ­selection examination.<br />

Locations that are located within a<br />

close proximity to volcanoes, active<br />

fault zones, or areas containing<br />

mineral resources, and more especially<br />

the Fukushima prefecture, are<br />

considered to be disqualified when<br />

conducting any site search. This is to<br />

ensure that the chosen area is seismically<br />

stable, that mineral reserves are<br />

protected, and that a greater burden is<br />

not placed on specified regions already<br />

hosting other aspects of Japan’s<br />

nuclear fuel cycle [49].<br />

Previously, Japan has engaged in<br />

investigation and experimentation of<br />

appropriate media <strong>for</strong> the disposing<br />

of high-level nuclear waste. It has<br />

considered the use of sedimentary<br />

rock at a depth of 500 meters, undertaking<br />

tests at the Horonobe Underground<br />

Research Centre, as well as at<br />

a depth of 1000 meters in igneous<br />

rock at the Tona Geoscience Centre,<br />

as part of Mizunami Underground<br />

Research Laboratory. The current<br />

concept that Japan is investigating is<br />

to store approximately “20 high-level<br />

waste canisters in a massive steel cask<br />

or over pack and surrounding this by<br />

bentonite clay” [49].<br />

5.2 People’s Republic of China<br />

or 中 华 人 民 共 和 国 (China)<br />

5.2.1 Historical Overview & Law<br />

China’s continued rapid economic<br />

­expansion is creating numerous challenges<br />

in meeting its ever-increasing<br />

energy demands, and is placing an<br />

ever-greater burden on its energy<br />

­infrastructure. There<strong>for</strong>e, experts<br />

recommend and believe China should<br />

continue developing nuclear power<br />

[50]. In the first quarter of 2018,<br />

power production increased by<br />

10 ­percent from the same period<br />

in 2017, with dramatic increases seen<br />

in power production from wind,<br />

solar, and nuclear (37.9 %, 58.7 %,<br />

and 12.7 %, respectively) [51].<br />

Extremely high levels of air pollution<br />

in China has led to diminishing<br />

crop yields, as well as an increase in<br />

respiratory disease, with this now<br />

becoming the leading cause of death<br />

[52]. Due to the environmental<br />

impact and health risks of pollution,<br />

current government policy considers<br />

nuclear power as a clean energy<br />

source, and <strong>for</strong>ms part of the government’s<br />

commitment to tackle climate<br />

change, and secure its energy supply<br />

[52].<br />

China’s nuclear power program<br />

began its initial development in 1970.<br />

Construction began on China’s first<br />

self-designed nuclear power plant 9 in<br />

March 1985, with start of commercial<br />

operation taking place six years later<br />

[53]. From this initial <strong>for</strong>ay into<br />

nuclear power production, China has<br />

witnessed the construction of 38<br />

nuclear power reactors with about 20<br />

more under construction [54].<br />

5.2.2 Government and<br />

legislative regime<br />

China is a socialist state that is<br />

based on a dictatorship comprising<br />

its working class, combined with an<br />

alliance between the workers and<br />

peasants 10 . This system <strong>for</strong>ms the basis<br />

of the working interaction between<br />

the government and the people, with<br />

any disruption of this system<br />

“by any organization or individual<br />

[being] prohibited”. 11<br />

Though the<br />

State considers it has three main<br />

obligations towards its citizenry of<br />

“equality, unity and mutual assistance”,<br />

12<br />

with discrimination or oppression<br />

of any nationality prohibited,<br />

­tension exists within this ‘class’ system<br />

as Chinese society has evolved from<br />

Mao’s ideology to a more market<br />

based economic system, leading to<br />

sometimes “unequal treatment be<strong>for</strong>e<br />

the law <strong>for</strong> a certain segment of<br />

the population” [55].<br />

Mao Zedong’s version of the ideal<br />

society was one in which the citizen is<br />

totally committed to societal goals as<br />

set <strong>for</strong>th by the ruling class. In this<br />

ef<strong>for</strong>t, he viewed it as the State’s duty<br />

to ensure that all powers associated<br />

with the functioning and governing<br />

of the State over the individual be<br />

employed to ensure that this vision is<br />

achieved [56]. Following the conclusion<br />

of the Second World War, the<br />

Communist Party of China under Mao<br />

established strict controls and policies<br />

at the time costing the lives of tens of<br />

millions of people [57]. From the<br />

1970’s, China has loosened policies in<br />

certain areas as it seeks to strike a<br />

balance in the government-market<br />

relationship. Pivotal issues in its<br />

continued economic structural re<strong>for</strong>m<br />

include a streamlining of administration<br />

and an increased delegation of<br />

8 Recommended: Matsumoto, et. al., Scientific Basis <strong>for</strong> Nationwide Screening of Geological Disposal Sites in Japan, <strong>Nuclear</strong> Waste Management<br />

Organization of Japan, http://ea<strong>for</strong>m2017.aesj.or.jp/file/PapersList/Session1/(1C-2)_T.Matsumoto%20(NUMO).pdf, viewed July 12, 2018.<br />

9 A 300 MG prototype reactor.<br />

10 Constitution of the People's Republic of China, amendment on March 14, 2004, Art. 1,<br />

http://www.npc.gov.cn/englishnpc/Constitution/2007-11/15/content_1372963.htm, viewed June 15, 2018.<br />

11 Id. art. 1<br />

12 Id. art. 4; Kellogg states that though an authoritarian constitutional document may contain within its text many lofty ideals, which are not<br />

generally put into practice, this should not denote that those same concepts are false and have little value in the political framework of that<br />

nation state. Additionally, one may not automatically assume that the state will not attempt to acquiesce to exert its actions in relation to the<br />

underpinning argument. He notes that because many authoritarian rules mandate an allocation of authority between various internal state<br />

actors; it is this division/separation of powers that can still be beneficial as these powers are spread over the purview of various agencies and<br />

departments. See: Kellogg, Thomas E. "Arguing Chinese Constitutionalism: The 2013 Constitutional Debate and the 'Urgency' of Political<br />

Re<strong>for</strong>m," University of Pennsylvania Asian Law Review vol. 11, no. 3 (Spring 2016): p. 337-408.<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Japan and China Part 3<br />

ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

power, as well as improved regulation<br />

and services. 13<br />

China’s chief of state (President) is<br />

indirectly elected <strong>for</strong> a five-year term<br />

by the National People’s Congress,<br />

which also appoints members to the<br />

State Council (Cabinet). Legislative<br />

power is centered in a unicameral<br />

chamber, the National People’s Congress.<br />

However, its 2,987 members<br />

typically only meet about once every<br />

five years, which provides limits on its<br />

spheres of influence as powers to act<br />

on its behalf are mostly subsumed into<br />

various standing committees [57].<br />

China’s judicial system consists of its<br />

high court (the Supreme People’s<br />

Court), with other subordinate courts.<br />

Though considered in many areas to<br />

be effective, it faces such challenges as<br />

a lack of qualified personnel, as well<br />

as concerns that such personnel are<br />

unable to fully divest the separation<br />

between judicial and political decision<br />

making [58].<br />

5.2.2.1 Corruption<br />

During the 1950’s and 1960’s, corruption<br />

in China was largely driven<br />

underground, but from the “post-Mao<br />

re<strong>for</strong>m period in 1978-79,” China has<br />

experienced an exponential upward<br />

growth of corruption, as more light is<br />

shed on these incidents [59]. In the<br />

latest Transparency <strong>International</strong><br />

­Corruption Perceptions Index (CPI),<br />

China ranked 77 out of 180 countries<br />

in 2017, 14<br />

and Chinese President Xi<br />

­Jinping has made fighting corruption<br />

a cornerstone of his legacy to “fundamentally<br />

improve the political ecosystem<br />

of the Party” [60]. Since<br />

launching a campaign against corruption<br />

in 2012, the Communist Party<br />

has disciplined well over one million<br />

persons [61].<br />

Guanxi (pronounced gwon-she)<br />

symbolizes the process through which<br />

networks or connections are able to<br />

open closed doors and through which<br />

the axel of the wheel of business is<br />

greased. Li explains the most fundamental<br />

definition synonymous with<br />

“guanxi”: “is used as an entity which<br />

an agent can act upon, such as ‘gao<br />

(to make/play) guanxi’” [62]. Zhan<br />

indicates that “guanxi” has at times<br />

been used to influence the decision-­<br />

making process of a court, but that<br />

this has now become more difficult<br />

due judicial re<strong>for</strong>m and the anti-corruption<br />

movement [63]. Corruption<br />

can lead to a number of social challenges<br />

in a nation state, as a person’s<br />

feelings of self-worth from engaging<br />

in corruption reflect negatively on<br />

their happiness as a result of feelings<br />

of “guilt when paying or accepting<br />

bribes” [64]. The greatest impacts on<br />

a nation state and its society are economic<br />

in that:<br />

“Corruption takes much needed<br />

resources from economic development<br />

and diverts them into the<br />

­pockets of corrupt officials... [and]<br />

politically, corruption undermines the<br />

trust of citizens in public officials and<br />

the government” [65].<br />

5.2.2.2 Legislative framework<br />

China is a party to the Joint Convention<br />

on the Safety of Spent Fuel<br />

Management and on the Safety of<br />

Radioactive Waste Management, with<br />

its submission of accession submitted<br />

on September 13, 20<strong>06</strong>. The Legislation<br />

Law of the People’s Republic of<br />

China 15 (LLRPC) institutes the necessary<br />

and proper framework <strong>for</strong> spent<br />

fuel and radioactive waste management<br />

in China. This embodies the<br />

incorporation of a comprehensive set<br />

of relevant national laws, administrative<br />

regulations, departmental rules,<br />

management guides, as well as reference<br />

documents. The China Atomic<br />

Energy Authority is charged with the<br />

developing of plans and projects<br />

related to the disposal of high-level<br />

radioactive wastes, while The Ministry<br />

of Environment Protection and its<br />

­affiliated institute (the National<br />

<strong>Nuclear</strong> Safety Administration), make<br />

up the relevant regulatory bodies. The<br />

China National <strong>Nuclear</strong> Corporation is<br />

the current agent charged with the<br />

implementation of activities <strong>for</strong> radioactive<br />

waste disposal [66].<br />

China’s hierarchy <strong>for</strong> its legislative<br />

framework consists (from highest to<br />

| | China: new build of a NPP.<br />

lowest): (1) law; (2) State Council<br />

Regulations; (3) Departmental Rules;<br />

(4) Guides; and, (5) Reference documents.<br />

Laws governing safe disposal<br />

or storage of spent fuel and radioactive<br />

wastes are promulgated by the<br />

National People’s Congress Standing<br />

Committee 16 (NPCSC), and are:<br />

1. Law of the People’s Republic of<br />

China on Prevention and Control<br />

of Radioactive Pollution (LPCRP),<br />

enacted by the NPCSC in 2003.<br />

2. Regulations of the People’s Republic<br />

of China on Safety Control<br />

of Civilian <strong>Nuclear</strong> Installations<br />

(HAF001), issued by the State<br />

Council in 1986.<br />

3. Regulations on Safety and Protection<br />

of Radioisotope and Raygenerating<br />

Installations (RSPRRI),<br />

issued by the State Council executive<br />

meeting in 2004.<br />

4. Regulations on Safety of Radioactive<br />

Waste Management<br />

(RSRWM), issued by the State<br />

Council executive meeting in 2011.<br />

Due to China having embarked on<br />

such an ambitious nuclear power program,<br />

within a short time span, this<br />

has resulted in many potential challenges.<br />

Hou et. al. (2011) 17 highlighted<br />

a number of areas of concern,<br />

which has a direct effect towards the<br />

legitimacy and sustainability of the<br />

Chinese nuclear power program.<br />

Challenges include: (1) having access<br />

to a limited pool of educated and<br />

trained nuclear professionals; (2)<br />

governmental departments working<br />

DECOMMISSIONING AND WASTE MANAGEMENT 363<br />

13 Report on the Work of the Government delivered by Premier Li Keqiang at the Fifth Session of the 12th National People's Congress on March 5,<br />

2017 and adopted on March 15, 2017, http://www.npc.gov.cn/englishnpc/Special_13_1/2018-03/04/content_2041364.htm, viewed June 15,<br />

2018.<br />

14 Transparency <strong>International</strong> Corruption Perceptions Index, https://www.transparency.org/news/feature/corruption_perceptions_index_2017,<br />

viewed April 19, 2018.<br />

15 The Legislation Law of the People's Republic of China is designed to “standardize lawmaking activities” in the country ensuring that good<br />

governance is achieved through the establishment of legal mechanisms, so that the rule of law is more comprehensively developed.<br />

See: Article 1 – http://www.cecc.gov/resources/legal-provisions/legislation-law-chinese-and-english-text, viewed July 24, 2018.<br />

16 A standing committee of the National People's Congress with about 150 members.<br />

17 Hou, J, Tan, Z, Wang, J, & Xie, P 2011, 'Government Policy and Future Projection <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong> in China', <strong>Journal</strong> Of Energy Engineering,<br />

137, 3, pp. 151-158, Academic Search Complete, EBSCOhost, viewed 19 February 2014.<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Japan and China Part 3 ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

DECOMMISSIONING AND WASTE MANAGEMENT 364<br />

| | China: four nuclear power plants at one site,<br />

a common picture <strong>for</strong>m Chinas nuclear power programme.<br />

under different ministries, with different<br />

interests in developing nuclear<br />

power, leading to overlap of ef<strong>for</strong>t;<br />

and, (3) a con­tinuing developing<br />

nuclear legal framework, that is not<br />

yet as effective as it should be.<br />

The Chinese government has yet to<br />

adequately address the role of private<br />

investment in its civilian nuclear<br />

power program, and currently manages<br />

its operations through state owned<br />

enterprises. 18<br />

5.2.3 <strong>Nuclear</strong> waste<br />

management<br />

To maximize resources and reduce the<br />

amount of high-level waste requiring<br />

long-term disposal, China intends to<br />

engage in the reprocessing of spent<br />

fuel. Currently, spent fuel generated<br />

from nuclear power plants and research<br />

reactors are stored at the reactor<br />

site. Necessary funding <strong>for</strong> the<br />

storage and treatment of spent fuel, as<br />

well as the disposal of high-level<br />

waste, is conducted under the purview<br />

of the ‘Projects Management<br />

Methods of the Funds <strong>for</strong> Treatment<br />

and Disposal of Spent Fuel from<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants’ [67]. To meet<br />

the cost of the back end of the nuclear<br />

fuel cycle, a “levy of CNY 2.6 cents/<br />

kWh [is imposed] from the fifth year<br />

of commercial operation of each<br />

reactor” [68].<br />

5.2.3.1 Permanent disposal<br />

As previously mentioned, spent<br />

nuclear fuel management in China is<br />

to be conducted in a series of three<br />

stages: (Stage 1) the reprocessing of<br />

the spent nuclear fuel, (Stage 2)<br />

­vitrification, and (Stage 3) permanent<br />

disposal in a suitable geologic repository.<br />

The concept <strong>for</strong> storing this<br />

­vitrified high-level waste “is a shaft-­<br />

tunnel model, located in saturated<br />

zones in granite” [66]. China’s highlevel<br />

waste program is to be conducted<br />

in three phases: “(Phase 1) laboratory<br />

studies and site selection <strong>for</strong> a<br />

[high- level waste] repository to be<br />

com pleted by 2020; (Phase 2) underground<br />

in-situ tests (2021–2040); and<br />

(Phase 3) repository construction<br />

(2041–2050) followed by operation”<br />

[66].<br />

Three types of radioactive waste<br />

management facilities currently exist<br />

in China: (1) the on-site nuclear<br />

facility’s waste management system;<br />

(2) storage facilities <strong>for</strong> radioactive<br />

waste arising from nuclear technology<br />

applications; and, (3) Low and Intermediate<br />

Level Waste (LILW) disposal<br />

sites. There are currently two solid<br />

LILW disposal sites in operation,<br />

which are the Guangdong Beilong<br />

disposal site and Northwest China<br />

disposal site. Both Sites began commercial<br />

operation following the<br />

granting of operation licenses by the<br />

Ministry of Environmental Protection,<br />

National <strong>Nuclear</strong> Safety Administration<br />

in 2011. China’s legacy radioactive<br />

wastes generated in past practices<br />

are retrievable. Where these are<br />

unable to meet current storage and<br />

disposal requirements, this radioactive<br />

waste is required to be retrieved<br />

and re-conditioned to meet any new<br />

acceptance requirements [67, 68].<br />

References<br />

[38] FUKUSHIMA DAIICHI: ANS Committee Report, A Report by<br />

The American <strong>Nuclear</strong> Society Special Committee on Fukushima,<br />

http://fukushima.ans.org/, viewed April <strong>06</strong>, 2018.<br />

[39] The Atomic Bombings of Hiroshima and Nagasaki,<br />

www.atomicarchive.com/Docs/MED/med_chp10.shtml,<br />

viewed April <strong>06</strong>, 2018.<br />

[40] Policy Speech of Mr. Toshimitsu Motegi, Minister of Economy,<br />

Trade and Industry, Minister of State <strong>for</strong> the Corporation in support<br />

of Compensation <strong>for</strong> <strong>Nuclear</strong> Damage, Minister in charge of <strong>Nuclear</strong><br />

Incident Economic Countermeasures, and Minister in charge of<br />

Industrial Competitiveness March 19, 2013 http://www.meti.go.jp/<br />

english/speeches/20130319.html, viewed April <strong>06</strong>, 2018.<br />

[41] Encyclopedia Britannica - Japan, https://www.britannica.<br />

com/place/Japan/Government-and-society, viewed July 12, 2018.<br />

[42] Statement of OECD on Japan’s Ef<strong>for</strong>ts to Increase Foreign<br />

Bribery En<strong>for</strong>cement, http://www.oecd.org/corruption/<br />

statement-of-oecd-on-japan-ef<strong>for</strong>ts-to-increase-<strong>for</strong>eign-briberyen<strong>for</strong>cement.htm,<br />

viewed April 19, 2018.<br />

[43] Atomic Energy Basic Act (Act No.186 of 1955), http://www.<br />

nsr.go.jp/law_kijyun/index.html, viewed April <strong>06</strong>, 2018.<br />

[44] <strong>Nuclear</strong> <strong>Power</strong> in Japan, World <strong>Nuclear</strong> Association,<br />

http://www.world-nuclear.org/in<strong>for</strong>mation-library/<br />

country-profiles/countries-g-n/japan-nuclear-power.aspx,<br />

viewed April <strong>06</strong>, 2018.<br />

[45] World <strong>Nuclear</strong> News, “Japanese bill seeks to support<br />

reprocessing business,” February 09, 2016,<br />

http://www.world-nuclear-news.org/WR-Japanese-billseeks-to-support-reprocessing-business-0902164.html,<br />

viewed April 05, 2018.<br />

[46] RADIOACTIVE WASTE MANAGEMENT PROGRAMMES IN<br />

OECD/NEA MEMBER COUNTRIES JAPAN, 2011,<br />

https://www.oecd-nea.org/rwm/profiles/Japan_profile_web.pdf,<br />

viewed April <strong>06</strong>, 2018.<br />

[47] Vitrified Waste Storage, https://www.jnfl.co.jp/en/business/<br />

hlw/, viewed April <strong>06</strong>, 2016.<br />

[48] Takehiro Matsumotoa, Hideaki Hyodo, Hiromitsu Saegus,<br />

Akira Deguchi, Hiroyuki Umeki, “SCIENTIFIC BASIS FOR<br />

NATIONWIDE SCREENING OF GEOLOGICAL DISPOSAL SITES IN<br />

JAPAN, <strong>Nuclear</strong> Waste Management Organization (NUMO),<br />

http://ea<strong>for</strong>m2017.aesj.or.jp/file/PapersList/Session1/(1C-2)_T.<br />

Matsumoto%20(NUMO).pdf, viewed April 05, 2018.<br />

[49] <strong>Nuclear</strong> Fuel Cycle - Japan, World <strong>Nuclear</strong> Association,<br />

http://www.world-nuclear.org/in<strong>for</strong>mation-library/<br />

country-profiles/countries-g-n/japan-nuclear-fuel-cycle.aspx,<br />

viewed April <strong>06</strong>, 2018.<br />

[50] ‘Hit by Energy Shortages, China Looks at <strong>Nuclear</strong> Safety’<br />

2011, Mechanical Engineering, 133, 7, p. 18, Academic Search<br />

Complete, EBSCOhost, viewed 19 February 2014.<br />

[51] China Daily.com, China’s Q1 power generation up 10%,<br />

http://www.chinadaily.com.cn/a/201804/08/<br />

WS5ac986d5a3105cdcf6516ac5.html, viewed June 15, 2018.<br />

[52] ZHONG, L., 2000. <strong>Nuclear</strong> energy: China’s approach<br />

towards addressing global warming, Georgetown <strong>International</strong><br />

Environmental Law Review, 12(2), pp. 493-522.<br />

[53] Hou, J, Tan, Z, Wang, J, & Xie, P 2011, ‘Government Policy<br />

and Future Projection <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong> in China’, <strong>Journal</strong> Of<br />

Energy Engineering, 137, 3, pp. 151-158, Academic Search<br />

Complete, EBSCOhost, viewed 19 February 2014.<br />

[54] <strong>Nuclear</strong> <strong>Power</strong> in China, World <strong>Nuclear</strong> Association,<br />

http://www.world-nuclear.org/info/Country-Profiles/<br />

Countries-A-F/China--<strong>Nuclear</strong>-<strong>Power</strong>, viewed April 21, 2018.<br />

[55] Kim, Chin. “Modern Chinese Legal System,” Tulane Law<br />

Review vol. 61, no. 6 (1986-1987): p. 1413-1452.<br />

[56] Tsou, Tang. “The Cultural Revolution and the Chinese<br />

Political System,” China Quarterly vol. 1969, no. 38 (April-June<br />

1969): p. 63-91.<br />

[57] China’ CIA Fact book, Central Intelligence Agency,<br />

https://www.cia.gov/library/publications/the-world-factbook/<br />

geos/ch.html, viewed April 19, 2018.<br />

[58] Encyclopedia Britannica - China, Constitutional Framework<br />

https://www.britannica.com/place/China/Constitutionalframework#ref71019,<br />

viewed July 24, 2018.<br />

[59] Wedeman, A, 2012, Growth and Corruption in China,<br />

https://www.chinacenter.net/2012/china_currents/11-2/<br />

growth-and-corruption-in-china/, viewed April 19, 2018.<br />

[60] Yuan, Y 2018, ‘Crime and Punishment. (Cover story)’, Beijing<br />

Review, 4, pp. 12-15, Academic Search Premier, EBSCOhost,<br />

viewed 19 April 2018.<br />

[61] Skidmore, D, 2018, Understanding Chinese President Xi’s<br />

anti-corruption campaign, http://theconversation.com/<br />

understanding-chinese-president-xis-anti-corruptioncampaign-<br />

86396, viewed April 19, 2018.<br />

[62] Li, L 2011, ‘Per<strong>for</strong>ming Bribery in China: guanxi-practice,<br />

corruption with a human face’, <strong>Journal</strong> Of Contemporary China, 20,<br />

68, pp. 1-20, Academic Search Premier, EBSCOhost, viewed 19<br />

April 2018.<br />

[63] Zhan, Jinying. “Understanding the Chinese Judicial System,”<br />

Iowa Lawyer vol. 77, no. 3 (April 2017): p. 13-14.<br />

[64] Wu, Y, & Zhu, J 2016, ‘When Are People Unhappy? Corruption<br />

Experience, Environment, and Life Satisfaction in Mainland<br />

China’, <strong>Journal</strong> Of Happiness Studies, 17, 3, pp. 1125-1147,<br />

Academic Search Premier, EBSCOhost, viewed 19 April 2018.<br />

[65] SHAOMIN, L 2017, ‘ASSESSMENT OF AND OUTLOOK ON<br />

CHINA’S CORRUPTION AND ANTICORRUPTION CAMPAIGNS:<br />

STAGNATION IN THE AUTHORITARIAN TRAP’, Modern China<br />

Studies, 24, 2, pp. 139-157, Academic Search Premier, EBSCOhost,<br />

viewed 19 April 2018.<br />

[66] Ju Wang, High-level radioactive waste disposal in China:<br />

update 2010, <strong>Journal</strong> of Rock Mechanics and Geotechnical<br />

Engineering. 2010, 2 (1): 1–11.<br />

[67] The People’s Republic of China, Third National Report <strong>for</strong> the<br />

Joint Convention on the Safety of Spent Fuel Management and on<br />

the Safety of Radioactive Waste Management, 2014,<br />

http://www-ns.iaea.org/downloads/rw/conventions/fifth-reviewmeeting/jc-china-5th.pdf,<br />

viewed April 21, 2018.<br />

[68] China’s <strong>Nuclear</strong> Fuel Cycle, World <strong>Nuclear</strong> Association,<br />

http://www.world-nuclear.org/in<strong>for</strong>mation-library/<br />

country-profiles/countries-a-f/china-nuclear-fuel-cycle.aspx,<br />

viewed April 07, 2018.<br />

Authors<br />

Mark Callis Sanders<br />

Sanders Engineering<br />

1350 E. Flamingo Road<br />

Ste. 13B #290<br />

Las Vegas NV 89119<br />

USA<br />

Charlotta E. Sanders<br />

Department of Mechanical<br />

Engineering<br />

University of Nevada<br />

Las Vegas (UNLV)<br />

4505 S. Maryland Pwky<br />

Las Vegas, NV 89154<br />

USA<br />

18 Includes: China National <strong>Nuclear</strong> Corporation (CNNC), China Guangdong <strong>Nuclear</strong> <strong>Power</strong> Holding Co., Ltd. (CGNPC),<br />

and China <strong>Power</strong> Investment Corporation (CPI).<br />

Decommissioning and Waste Management<br />

A World’s Dilemma ‘Upon Which the Sun Never Sets’: The <strong>Nuclear</strong> Waste Management Strategy: Japan and China Part 3<br />

ı Mark Callis Sanders and Charlotta E. Sanders


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Politik mit Vernunft und<br />

Güterabwägung betreiben<br />

Norbert Blüm<br />

In den sechziger Jahren hatten wir eine Kernenergie-Euphorie. Die friedliche Nutzung der Atomkraft schien ein<br />

Universalschlüssel für die Lösung unserer Energieprobleme weltweit zu sein. Inzwischen ist das Pendel zurückgeschlagen,<br />

jedenfalls in Teilen der Öffentlichkeit. Wir erleben eine Ablehnung der Kernenergie, bei der das Irrationale<br />

das Rationale überdeckt.<br />

Exaltierte Gemütsstimmungen sind Denkblockaden.<br />

Deshalb ist weder die Euphorie noch die Panik die<br />

Gemüts lage für einen rationalen Diskurs über unsere<br />

Energiepolitik. Euphorie, weil sie zur Sorglosigkeit in<br />

Sicherheitsfragen verführt, auch zur Suche nach weitergehenden<br />

Energie<strong>for</strong>men. Die Hysterie, weil Panik ein<br />

schlechtes Fundament für die Entscheidung ist. Aber<br />

auch deshalb, weil das Kolossalgemälde der atomaren<br />

Gefahren, Gefahren, die bei anderen Energiegewinnungen<br />

auftreten, Umweltgefahren verdrängt und so insgesamt<br />

eine nüchterne Wertung versagt. Die Darstellung gleicht<br />

der Darstellung im Märchen, als sei eine Energie<strong>for</strong>m die<br />

Hexe und die anderen, das seien die guten Feen. Als seien<br />

die einen mit Gefahren überwuchert und die anderen<br />

gefahrlos. Das trifft die eigentliche Frage der Güterabwägung,<br />

in der wir uns befinden, nicht.<br />

Ich stelle unsere Gesellschaft nicht als problemlos und<br />

gefahrlos dar. Aber wenn sie tatsächlich nur noch von<br />

Katastrophen begleitet wird, wenn in jedem Lufthauch<br />

bereits der Tod enthalten wäre, wenn in jedem Schluck<br />

Wasser bereits das Gift wäre – dann frage ich mich, wieso<br />

die Leute alle älter werden, wenn das so ist. Wir wollen<br />

Gefahren minimieren. Aber bei der Suche dürfen wir nicht<br />

der Illusion erliegen, es gäbe ein Licht ohne Schatten,<br />

es gäbe eine Welt ohne jedes Risiko. Aber über der<br />

Beschreibung der Risiken dürfen wir die Chancen nicht<br />

vergessen. Manchmal pflegen und hätscheln wir die<br />

Risiken und vergessen darüber, die Chancen zu nutzen.<br />

Es gilt darum, Risiken zurückzudrängen. Es gilt darum,<br />

Gefahren zu minimieren, aber die Politik muß Güter<br />

abwägen, muß einen Saldo von Positivem und Negativem<br />

ziehen.<br />

Wenn etwa die Stigmatisierung bestimmter Techniken in<br />

gläubiger Hast denjenigen folgt, die gerade die<br />

Meinungsführerschaft auf dem publizistischen Schadstoffmarkt<br />

behaupten, geht politische Gestaltungskraft ver loren.<br />

Man wird zum Spielball nicht mehr beherrschbarer<br />

Irrationalität. Wir erleben tagtäglich, daß man –<br />

Stimmungen folgend – abstrakte Gefährdungen bizarr überzeichnet,<br />

während man zugleich konkrete Schädigungen<br />

kaum wahrnimmt. Mit der Energie gewinnung aus fossilen<br />

Rohstoffen sind auch Gefahren verbunden.<br />

Diese Art rationaler Problembewältigung, Gefahren<br />

nicht zu verdrängen, sie ernst zu nehmen, diese Art<br />

vermisse ich bei der Kernenergiediskussion, weil sie nur<br />

ihre Gefahren beschreibt und nicht die Chancen, die in ihr<br />

liegen. Unsere Gesellschaft neigt zu einer selektiven Angstbewältigung.<br />

Während man die Angst gewissermaßen<br />

punktuell, und zwar manchmal völlig ungetrübt von<br />

Kompetenz- und Beurteilungsfähigkeit, auf ausgewählte<br />

Gefahrenpunkte konzentriert, lebt man ansonsten ein<br />

sorgloses Leben.<br />

Welche Therapie hat die Gesellschaft anzubieten? Die<br />

Therapie: Aufklärung! Es ist eine große Zumutung, an die<br />

Vernunft zu glauben. Aber wie käme denn eine aufgeklärte<br />

Zivilisation weiter, wenn sie nur Gefühle manipulieren<br />

wollte, wenn sie nicht geradezu vom aufklärerischen<br />

Optimismus geprägt wäre, daß man durch In<strong>for</strong>mation,<br />

durch Vernunft und Einschätzung politische Probleme<br />

bewältigen kann. Wollten wir uns einer Stimmungs-<br />

Demokratie anheimgeben, wäre das der Abschied von der<br />

Tradition der Aufklärung. Das wäre der Abschied vom<br />

Menschen als vernunftbegabtes Wesen.<br />

Daher mein erster und wichtigster Beitrag: Laßt uns<br />

den Versuch nicht aufgeben, Politik mit Vernunft zu<br />

verbinden, mit rationaler Argumentation. Laßt uns den<br />

Versuch nicht aufgeben, Politik als eine Güterabwägung zu<br />

begreifen. Es gibt nicht die reinen Lösungen, es gibt auf<br />

dieser Erde nicht die Patentlösungen. Es gibt auch nicht<br />

die Lösungen ohne Risiken. Ideologen haben für solche<br />

Politik wenig Sinn, weil ihr Geschäft die Verkürzung ist.<br />

Kernenergie birgt Risiko, das wissen wir nicht erst seit<br />

Tschernobyl. Mit dem Stand von Wissenschaft und Technik<br />

verbessern wir immer wieder den Sicherheitsstandard.<br />

Dieses ständige Streben nach verbesserter Sicherheit<br />

darf seriöserweise nicht interpretiert werden als das<br />

Eingeständnis, bisher sei die Sicherheit demnach vernachlässigt<br />

worden. Nichts ist so gut, daß es nicht noch<br />

verbessert werden könnte.<br />

Das explosionsartige Bevölkerungswachstum und<br />

die zunehmende Industrialisierung auch bisher wenig<br />

entwickelter Teile der Erde lassen den weltweiten<br />

Energiebedarf in den nächsten Jahrzehnten weiter stark<br />

ansteigen. Auch wenn wir alle Anstrengungen zum<br />

Energiesparen unternehmen – wofür ich bin – der<br />

Energiebedarf steigt. Heute decken wir 90 % des Weltenergieverbrauchs<br />

durch das Verbrennen fossiler Energiereserven.<br />

90 %! In einem Jahr vernichten wir dadurch das<br />

Ergebnis von 500.000 Jahren Erdgeschichte, und zwar<br />

unwiederbringlich. Die Frage nach der Verantwortung<br />

stellt sich hier nicht minder ernsthaft als bei der Kernenergie.<br />

Sie beschränkt sich im übrigen nicht auf diesen<br />

Aspekt des Ressourcenabbaus. Hier stellt sich auch die<br />

Frage nach unserer Verantwortung für den Lebens standard<br />

in der Zukunft, für das Schicksal in der Dritten Welt.<br />

Wir müssen sorgsamer umgehen mit der Energie. Wir<br />

müssen den ärmeren Staaten die leichter verfügbaren<br />

Energiearten überlassen. Wir müssen alles tun, um<br />

alternative Energie auch zu nutzen und zu entwickeln.<br />

Dazu zählt auch die Kernenergie. Für sie sprechen auch<br />

Am 7. und 8. Mai<br />

2019 begingen wir<br />

das 50. Jubiläum<br />

unserer Jahrestagung<br />

Kerntechnik. Zu<br />

diesem Anlass öffnen<br />

wir unser <strong>atw</strong>-Archiv<br />

für Sie und präsentieren<br />

Ihnen in jeder<br />

Ausgabe einen<br />

historischen Artikel.<br />

Aus der Ansprache<br />

des Bundesministers<br />

für Arbeit und<br />

Sozialordnung, Bonn,<br />

Dr. Norbert Blüm,<br />

am 9. Mai 1989 in<br />

Düsseldorf.<br />

365<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Make Policy With Prudence and Consideration of Assets ı Norbert Blüm


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

366<br />

SPECIAL TOPIC | A JOURNEY THROUGH 50 YEARS AMNT<br />

| | 1989: Jahrestagung Kerntechnik – JK ´89 in Düsseldorf, Eröffnungsveranstaltung.<br />

ökologische Gründe. Klima<strong>for</strong>scher warnen immer dringlicher<br />

vor einem Treibhauseffekt mit einer drohenden<br />

globalen Katastrophe, der auf das Verbrennen von Kohlenstoffen<br />

zurückgeht. Die schleichende Schädigung durch<br />

diese konventionelle, nicht-nukleare Energiegewinnung<br />

ist sicher, allein ihr Ausmaß ist strittig. Ausstieg aus<br />

der Kernenergie heißt zwingend, Verstärkung des CO 2 -<br />

Problems und Beschleunigung der dadurch verursachten<br />

Schäden.<br />

In unserem selektiven Angstsyndrom nehmen wir diese<br />

Alternative des Erduntergangs gar nicht wahr. Wollen wir<br />

denn die Folgen in Kauf nehmen? Sind sich überhaupt<br />

diejenigen dessen bewußt, die auf einen so<strong>for</strong>tigen<br />

Ausstieg aus der Kernenergie drängen? Gegner und<br />

Befürworter der Kernenergie sind sich einig, daß regenerative<br />

Energiequellen intensiv er<strong>for</strong>scht werden müssen.<br />

Einig ist man sich auch, daß diese Energiequellen nicht,<br />

derzeit noch nicht, geeignet sind, in größerem Umfange<br />

die klassischen Formen der Energiegewinnung zu<br />

substituieren. Die Tatsache, daß alle – einschließlich der<br />

Energiewirtschaft – die Kernenergie nicht als die einzige<br />

Energiequelle und schon gar nicht so, als hätte sie<br />

Ewigkeitsdauer, proklamieren, entzieht uns doch nicht der<br />

Verantwortung, sie heute zu nutzen und mit ihr auch die<br />

Erde zu schonen.<br />

Wer heute die nuklearen Risiken verabsolutiert und<br />

sie mit dem Traum von einer gefahrlosen heilen Welt<br />

konfrontiert, vernachlässigt die nötigen Anstrengungen,<br />

unser Wissen zu bündeln und Gefahren zu beherrschen.<br />

Politische und wissenschaftliche Lösungen können sich<br />

nicht an dem Kinderspiel orientieren, in unangenehmen<br />

Situationen einfach die Bettdecke über den Kopf zu ziehen.<br />

Eine Gesellschaft, die sich in eine permanente<br />

­Angst­psychose flüchtet, narkotisiert ihre Fähigkeit zur<br />

Zukunftsgestaltung. Ich sehe derzeit keine Möglichkeit,<br />

uns einseitig aus der Kernenergie zu verabschieden. Sparsame<br />

Energieverwendung, Ressourcenschonung, Risikominderung<br />

und die Erschließung regenerativer Energiequellen<br />

– das ist ein Viereck unserer Energiepolitik. Und<br />

in unserem Land Nordrhein-Westfalen sind wir im<br />

besonderen Maße darauf angewiesen, in der Frage einer<br />

friedlichen Nutzung der Kernenergie zu einem Konsens<br />

zurückzufinden. Wir in Nordrhein-Westfalen wollen das<br />

herausragende Energieland der Bundesrepublik bleiben.<br />

Dafür brauchen wir den Verbund Kohle – Kernenergie.<br />

Unsere Kohle wird nur überleben in einer Mischkalkulation<br />

mit dem billigeren Atomstrom. Wer den<br />

Kumpels die Treue halten will, darf sich nicht um diese<br />

Wahrheit drücken. Die Bergleute verlangen nach Klarheit.<br />

Es muß jetzt über Anschlußregelungen, auch über den<br />

Jahrhundertvertrag, gesprochen werden. Je schneller<br />

Regelungen gefunden werden, um so sanfter die Lösungen.<br />

Wir brauchen eine europäische Zusammenarbeit, auch<br />

bei der Energieerzeugung und beim Umweltschutz. Aber<br />

in die Europäisierung der Energiepolitik muß unser<br />

nationales Interesse einbezogen werden, auch unser<br />

nationales Kohleinteresse und unsere nationale Versorgungssicherheit.<br />

Es geht nicht, Kernenergie zu europäisieren<br />

und Kohle zu nationalisieren – das wird nicht<br />

klappen, dieses Konzept.<br />

Daß Unternehmen in Frankreich wiederaufarbeiten<br />

wollen, weil sie dabei Geld sparen – jährlich 1,5 Milliarden<br />

–, das leuchtet ein. Aber ich warne auch vor einer<br />

Energiepolitik, die sich nur am Geld ausrichtet. Wir wissen<br />

doch alle, daß der Atomstrom aus Frankreich billiger<br />

ist, als der Strom bei uns. Hieße das nicht auch, dann<br />

die Kohle zu beerdigen? Wenn man es nur unter Kostengesichtspunkten<br />

sieht, ja dann ist das „Aus“ für die<br />

Kohle gesprochen. Und wenn man mit Kohle und Kernenergie<br />

einen Verbund eingehen will, dann entweder<br />

national oder europäisch. Aber diese Fragen müssen noch<br />

geklärt werden.<br />

Wer überall nur die wirtschaftliche Lösung will, der<br />

wird bald anstelle des Jahrhundertvertrags auch der<br />

Importkohle das Wort reden. Europäische Zusammenarbeit<br />

„ja“, aber neben der Wirtschaftlichkeit gibt es auch<br />

für uns noch andere Kriterien: Sicherheit der Energieversorgung<br />

und Umweltverträglichkeit.<br />

Im übrigen, auch für Kalkar und den Hochtemperatur-<br />

Reaktor in Hamm-Uentrop gilt immer: Sicherheit geht vor<br />

Wirtschaftlichkeit. Sicherheit, das ist die politische Verantwortung.<br />

Und wenn der HTR ein besonders attraktives<br />

Modell einer Kerntechnologie ist, dann kann er auch nicht<br />

Augenblicksüberlegungen zum Opfer fallen. Da muß<br />

Sicherheit gewährleistet und an dieser Technologie weitergearbeitet<br />

werden. Nordrhein-Westfalen kann doch keine<br />

Blaupausen in die Welt exportieren. Wenn es Exporteur<br />

von Spitzentechnologie sein will, wird es sie am eigenen<br />

Leibe ausprobieren müssen, wenn es Absatz finden will.<br />

Diese Dimension der Kernenergie muß viel stärker ins<br />

öffentliche Bewußtsein. Und wir sollten auch unsere<br />

Industriegesellschaft, die Ressourcen in unserer Industriegesellschaft<br />

nutzen, um Umwelttechnologie als ein<br />

Produktionsangebot der Bundesrepublik Deutschland<br />

stärker herauszustellen.<br />

Ich bin zu Ihnen gekommen auch aus Demonstrationsgründen.<br />

Nicht, weil ich die Kernenergie vergöttlichen<br />

möchte. Wer das erwartet hat, den muß ich enttäuschen.<br />

Aber ich wehre mich auch gegen ihre Verteufelung. Und<br />

ich weiß, daß unser Konzept einer Energieversorgung am<br />

besten aufgehoben ist in einem Mischsystem, das aus<br />

verschiedenen Trägern besteht, für die allerdings die<br />

Kern energie unverzichtbar ist. Und solange niemand<br />

etwas Besseres weiß, halte ich es für verantwortungslos,<br />

vom Aussteigen zu sprechen und weiterhin den hohen<br />

Lebensstandard genießen zu wollen, den unsere Industriegesellschaft<br />

zur Verfügung stellt.<br />

Special Topic | A Journey Through 50 Years AMNT<br />

Politik mit Vernunft und Güterabwägung betreiben ı Norbert Blüm


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Inside<br />

367<br />

Schlussrede des Vorsitzenden der<br />

Kerntechnischen Gesellschaft e. V.<br />

Frank Apel<br />

Plenarsitzung,<br />

Dienstag,<br />

den 7. Mai 2019<br />

Sehr geehrte Damen und Herren,<br />

liebe Mitglieder der KTG,<br />

Auch zur Halbzeit unserer Veranstaltung noch einmal ein<br />

„Herzliches Willkommen“ zu unserer Jahrestagung<br />

Kerntechnik – dem Original – seit 50 Jahren. Die kerntechnische<br />

Branche trifft sich erneut im großen Rahmen zum<br />

zweiten Mal in diesem Jahr, nach Dresden zur „Kontec“<br />

jetzt in Berlin zur AMNT“.<br />

Wir erleben gerade, dass die diesjährige Jahrestagung<br />

ganz besonders und auch ganz besonders gut ist und auch<br />

sicherlich noch bleibt. Ganz besonders, weil wir für diese<br />

AMNT eine Reihe von außergewöhnlichen Highlights für<br />

Sie vorbereitet haben:<br />

Wir haben einen Film mit dem Titel „Die ersten<br />

50 Jahre“ für Sie gedreht, sie konnten Ihn heute Vormittag<br />

anschauen. Wir wollten mit dem Titel „Die ersten 50“<br />

einen Rückblick auf relevante Meilensteine der Vergangenheit<br />

liefern aber eben auch einen Ausblick auf die<br />

Zukunft geben. Florian Gremme hat heute der KTG zu den<br />

ersten 50 gratuliert. Unsere „Junge Generation“ und auch<br />

viele andere sind von der Zukunft der KTG über zeugt.<br />

„Der nukleare Traum“ ist der Titel eine Fotoausstellung,<br />

in der der Fotograf – und für mich auch Künstler – Bernhard<br />

Ludewig Motive aus dem Bereichen Forschung, Bau und<br />

Betrieb, Rückbau und Entsorgung eindrucksvoll in Szene<br />

gesetzt hat. Falls Sie noch nicht dort waren: es lohnt sich!<br />

Eine Reihe unserer Aussteller präsentieren zur<br />

50. Jahrestagung „besondere“ Exponate an ihren Ständen,<br />

besuchen Sie auch weiter rege unsere Industrie ausstellung.<br />

Circa 600 Besucher aus dem In- und Ausland haben den<br />

Weg zu unserer 50. Jahrestagung Kerntechnik gefunden.<br />

Die Anzahl unserer ausländischen Teilnehmer bleibt<br />

erfreulicherweise konstant.<br />

So haben wir neben dem UK und tschechischen Pavillion<br />

auch Vertreter aus anderen Ländern auf der Jahrestagung,<br />

unter ihnen Schweden. Schweden galt in der Vergangenheit<br />

oft als Blaupause für Kernenergie entwicklungen in<br />

Deutschland: Ausstieg aus der Kern energie, Wiedereinstieg,<br />

Laufzeitverlängerung, vorzeitiges Abschalten von<br />

Blöcken aufgrund fehlender Wirtschaft lichkeit…<br />

Aber es gibt auch Unterschiede: die Schweden, die<br />

Ihren Strom zu ca. 50 % aus Wasserkraft und 50 % aus<br />

Kernenergie erzeugen, haben ein Endlager für schwach-,<br />

mittel- und hochaktive Abfälle und sie haben Greta.<br />

Greta Thunberg, eine 16-jährige schwedische Klimaaktivistin,<br />

die zur Ikone einer neuen Jugendbewegung für<br />

den Klimaschutz wurde. Sie hat eine Wahrheit ausgesprochen,<br />

die so unbequem ist, dass sie in Deutschland<br />

kaum jemand hören will. Sie twitterte: „Ich bin eigentlich<br />

gegen die Kernenergie. Aber laut Weltklimarat kann<br />

Kernenergie tatsächlich ein kleiner Teil einer großen,<br />

neuen CO 2 -freien Energielösung sein... nämlich dann,<br />

wenn Länder keinen Zugang zu erneuerbaren Energien<br />

haben. Darüber sollten wir debattieren.“<br />

Gefragt nach Lösungen zum Klimaproblem antwortet<br />

Greta Thunberg, dass sie die Antwort nicht kenne.<br />

„ Niemand weiß genau, was zu tun ist. Und darum geht es:<br />

Wir können nicht einfach ein paar Steuern erhöhen oder in<br />

ein paar grüne Fonds investieren und dann weitermachen<br />

wie bisher. Mit unseren aktuellen Systemen gibt es keine<br />

Lösung. Wir müssen uns das ganze Thema anschauen …<br />

und nur durch die beste verfügbare Wissenschaft, könne<br />

man eine Lösung finden.“ Zur Wissenschaft kommen wir<br />

nachher noch einmal…<br />

Lesenswert ist übrigens auch der Vortrag von Michael<br />

Schellenberger, dem Präsidenten von „Environmental<br />

Progress“ und Mitbegründer von „<strong>Nuclear</strong> Pride Fest“, den<br />

er auf der diesjährigen Atomexpo hielt. Michael Schellenberger<br />

vergleicht Frankreich und den Klimaschützer Nr. 1:<br />

Deutschland. Er sagte: „Deutschland erzeugt im Vergleich<br />

zu Frankreich weniger als die Hälfte seines Stroms aus<br />

CO 2 -armen Rohstoffen und produziert pro Kraftwerk das<br />

Zehnfache an CO 2 -Emissionen. Dazu kommt, dass der<br />

emissionsarme Strom in Frankreich nur wenig mehr als die<br />

Hälfte des Stromes in Deutschland kostet.“<br />

Greta Thunberg und Michael Schellenberger sind mit<br />

ihrer Haltung nicht allein: 446 aktive Kernkraftwerke gibt<br />

es weltweit und noch einmal fast 150 befinden sich derzeit<br />

in Bau oder Planung. Die deutsche Energiewende hat<br />

weltweit wenig Nachahmer gefunden.<br />

In Deutschland sind derzeit noch 7 Kernkraftwerke am<br />

Netz und speisen im Mittel ca. 14 % der in Deutschland<br />

benötigten Grundenergieversorgung in die Energieübertragungsnetze<br />

ein. 26 Anlagen sind in der Nachbetriebs-<br />

bzw. Stilllegungsphase, nur zwei der abgeschalteten<br />

Anlagen haben noch keine Stilllegungsgenehmigung<br />

erhalten; die Anträge sind gestellt, sodass<br />

auch diese Anlagen in absehbarer Zeit mit der Stilllegung<br />

beginnen werden. Die hohe Zahl an Projekten im Rückbau,<br />

die gleichzeitig in Bearbeitung sind, zeigt, dass für kerntechnische<br />

Unternehmen genügend Aufgaben anstehen.<br />

Unsere Kerntechnische Gesellschaft wurde am 14. April<br />

1969 zunächst als Kerntechnische Gesellschaft im<br />

Deutschen Atom<strong>for</strong>um gegründet. Bei der Gründungsversammlung<br />

in der Aula der Universität Frankfurt am<br />

Main wählten die 163 Neu-Mitglieder Herrn Prof. Wolf<br />

Häfele zu ihrem ersten Vorsitzenden.<br />

Professor Häfele beschrieb unsere KTG als „gemeinsamen<br />

kerntechnischen Heimathafen von Wissenschaft und<br />

Technik“. Ein schönes Bild, das bis heute so Bestand hat.<br />

Werner von Siemens beschrieb den Zusammenhang<br />

von Wissenschaft und Technik übrigens wie folgt: „Die<br />

naturwissenschaftliche Forschung bildet immer den<br />

sicheren Boden des technischen Fortschritts, und die<br />

Industrie eines Landes wird niemals eine internationale,<br />

leitende Stellung erwerben und sich selbst erhalten<br />

können, wenn das Land nicht gleichzeitig an der Spitze des<br />

naturwissenschaftlichen Fortschritts steht.“<br />

Betreiber, Hersteller, Behörden und Gutachter, Lehre<br />

und Forschung verbindet nach wie vor ein zentrales<br />

Thema: das kerntechnische Know-how muss in<br />

Deutschland erhalten werden, um den verbleibenden<br />

Leistungsbetrieb, den Nachbetrieb, die Stilllegung und<br />

KTG INSIDE<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

368<br />

KTG INSIDE<br />

den Rückbau deutscher Anlagen sicherzustellen und die<br />

Entsorgungsfrage nachhaltig zu lösen.<br />

Deutschland ist ein Land der Spitzen<strong>for</strong>schung, das<br />

Forschungsreaktoren betreibt und in internationalen<br />

Nuklear<strong>for</strong>schungsprogrammen mitarbeitet. Deutschland<br />

hat einzigartige wissenschaftliche und industrielle Fähigkeiten<br />

in der Kerntechnik, zu deren langfristigen Erhalt<br />

eine ausreichend große kritische Masse von deutschen<br />

Herstellern, ihren Zulieferern und Dienstleistern notwendig<br />

ist. In unserem Land wurden und werden die<br />

verlässlichsten Kernkraftwerke und kerntechnischen<br />

Anlagen betrieben.<br />

Die Bundesregierung plant, auch in der Zukunft<br />

internationale Sicherheitsbewertungen durchführen zu<br />

können. Dieses Interesse wird sicherlich langfristig<br />

bestehen, da die Mehrzahl der anderen Staaten, die Kernenergie<br />

nutzen, keinen Ausstieg anstreben. Ohne eine<br />

eigene kerntechnische Industrie und einer entsprechend<br />

eingebetteten Forschungslandschaft, wird es schwer<br />

möglich sein, weiter weltweit eine treibende Kraft kerntechnischer<br />

Sicherheit zu sein.<br />

Heute Vormittag haben wir den Vortrag von Florian<br />

Gremme zum Thema „Selbstverständnis und Perspektive<br />

des kerntechnischen Nachwuchses“ gehört. Ich fand die<br />

Ausführungen von Florian als Vertreter unserer „Jungen<br />

Generation“ sehr gelungen und hervorragend ehrlich. Da<br />

haben wir Zuversicht gehört: „Wir sind da! Einer muss sich<br />

um den Rückbau des ungeliebten Klimaschützers ja<br />

kümmern.“<br />

Der Arbeitsplatz in der Kernenergie ist zumindest bis<br />

zum Ende des Rückbaus stabil, aber Kernenergie hat in der<br />

Öffentlichkeit ein schlechtes Image, die Stigmatisierung<br />

der Kernenergie muss beendet werden.“<br />

Florian schloss seinen Vortrag wie folgt: „Es muss<br />

daher ein integrales Konzept von Industrie, Wissenschaft<br />

und Forschung, Ausbildung sowie Politik her, um die<br />

Attraktivität der Kerntechnik zu erhöhen, um kerntechnischen,<br />

ggf. lehrenden, Nachwuchs zu finden und zu<br />

fördern und um schließlich die kerntechnischen Aufgaben<br />

in unserem Land zu bewältigen.“<br />

Abschließend möchte ich mich bei allen bedanken,<br />

die diese Tagung organisiert und mitgestaltet haben.<br />

Insbesondere gilt mein Dank dem Programmausschuss<br />

und allen Referenten dieser Tagung. Unsere KTG hat<br />

­erneut ein exzellentes und hochaktuelles Programm<br />

vorbereitet. Gerade in Zeiten großer Heraus<strong>for</strong>derungen<br />

ist der Beitrag unserer KTG-Mitglieder, die sich persönlich<br />

mit großem Engagement für Kerntechnik „made in<br />

Germany“ im Allgemeinen und für unsere Jahrestagung<br />

im Speziellen einbringen, nicht hoch genug zu würdigen.<br />

Dafür möchten wir uns auch an dieser Stelle nach drücklich<br />

noch einmal bedanken. Wir gehen auch weiterhin davon<br />

aus, dass die Unternehmen und Organisationen, in denen<br />

unsere ehrenamtlichen Mitglieder arbeiten, diese<br />

KTG-Tätigkeit wertschätzen. Was die Mitglieder der KTG<br />

verbindet, ist die „Faszination Kerntechnik“. Lassen auch<br />

Sie sich davon anstecken…<br />

Ihr Frank Apel<br />

Verleihung der Ehrenmitgliedschaft<br />

der Kerntechnischen Gesellschaft e. V.<br />

an Dr. Ralf Güldner<br />

Sehr geehrten Damen und Herren!<br />

Liebe KTG-Mitglieder!<br />

Werte Gäste!<br />

Ich freue mich, dass Sie den Weg zurück in den Plenarsaal<br />

gefunden haben und hoffe, dass Sie am Nachmittag<br />

in den Focus Sessions interessante Präsentationen erleben<br />

konnten und einen aktiven Austausch zu den Themen<br />

hatten.<br />

Seit Jahren ehren wir verdiente Größen unserer<br />

Branche und es ist mir eine große Freude, Sie so zahl reich<br />

zur diesjährigen Verleihung der KTG-Ehren mitgliedschaft<br />

begrüßen zu dürfen.<br />

Zum 39. Mal wird heute eine Persönlichkeit für ihre<br />

Verdienste um die Kerntechnik ausgezeichnet und ich<br />

freue mich ganz besonders, in diesem Jahr Dr. Ralf ­Güldner<br />

für sein unermüdliches Engagement und seinen tatkräftigen<br />

Einsatz für die Kerntechnik ehren zu dürfen.<br />

Lieber Dr. Güldner, seien Sie uns auf das Herzlichste<br />

hier im Estrel Convention Center willkommen!<br />

Im Besonderen möchte ich an dieser Stelle auch unsere<br />

hier anwesenden Ehrenmitglieder der KTG und auch die<br />

ehemaligen Präsidenten des DAtF begrüßen.<br />

Ich darf das Handelsblatt vom 15. April 2010 zitieren:<br />

„Während die Energiekonzerne mit der Bundesregierung<br />

über längere Laufzeiten für Kernkraftwerke verhandeln,<br />

wechselt der Mann an der Spitze des deutschen<br />

Atom <strong>for</strong>ums. Energie-Manager Ralf Güldner soll neuer<br />

­Cheflobbyist der Atombranche werden. Er gilt als offensiver<br />

Verfechter der Kerntechnik.“ So die Überschrift und<br />

dann geht es weiter: „Das Deutsche Atom<strong>for</strong>um bekommt<br />

einen neuen Präsidenten: Ralf Güldner wird das Amt in<br />

Kürze übernehmen, Güldner stellt sich der Aufgabe in<br />

einer schwierigen Phase. Die Erfahrungen, die Güldner im<br />

Umgang mit Verbänden und Politik gesammelt hat, wird er<br />

künftig gut gebrauchen können. In den kommenden<br />

Monaten müssen die vier deutschen Kernkraftwerksbetreiber<br />

mit der Bundesregierung über die Verlängerung<br />

der Laufzeiten verhandeln. Güldner ist ein offensiver Verfechter<br />

der Kerntechnik. „Die politischen Entscheidungen<br />

der Vergangenheit waren schädlich, Deutschland hat sich<br />

in dieser Frage isoliert“, sagt Güldner mit Blick auf den<br />

Atomausstieg. Technisch einwandfreie Kraftwerke vom<br />

Netz zu nehmen, die kostengünstig und verlässlich Strom<br />

erzeugten, ergebe keinen Sinn.“<br />

Starke Worte. Und damals wie heute: bewegte Zeiten,<br />

in denen es auf engagierte und beherzte Menschen<br />

ankommt, die sich von der Kerntechnik nicht nur faszinieren<br />

lassen sondern sich für diese auch stark machen.<br />

Menschen wie Sie, Dr. Güldner, die sich mit tiefster Überzeugung<br />

und unermüdlicher Hingabe für unsere Branche<br />

einsetzen. Hierfür gilt Ihnen unser ausdrücklicher Dank!<br />

Sie haben in Ihrem gesamten Berufsleben Ehrgeiz,<br />

Einsatz und Engagement bewiesen, das verrät auch ein<br />

Blick auf Ihre berufliche Vita:<br />

Ralf Güldner studierte von 1972 bis 1978 an der<br />

Ludwig-­Maximilians-Universität in München Chemie,<br />

1981 promovierte er dort in Radiochemie. Ab 1981 war er<br />

bei der Alkem GmbH, dem spätereren Brennelemente­werk<br />

in Hanau tätig. Von 1995 bis 1999 war Dr. Güldner bei<br />

Advanced <strong>Nuclear</strong> Fuels, der ANF zunächst als Werkleiter<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

in Duisburg (heute ist übrigens die Duisburg Tubes<br />

Production ein Unternehmen der Chinesischen Taihai-<br />

Gruppe) und dann als Geschäftsführer in Lingen tätig.<br />

Danach verantwortete er für zwei Jahre das europäische<br />

Brennelement-Geschäft der Siemens AG in Erlangen. Von<br />

2001 bis 2008 war Dr. Güldner technischer Geschäftsführer<br />

und Arbeitsdirektor der Framatome ANP GmbH<br />

in Erlangen, heute sind aus der damaligen Framatome<br />

ANP drei Firmen am Standort Erlangen entstanden: die<br />

Framatome, die Orano und die AREVA GmbH. In seinen<br />

letzten drei Jahren bei der AREVA leitete Dr. Güldner als<br />

Executive Vice President von Paris aus das weltweite<br />

Brenn elementegeschäft des Nuklearunternehmens.<br />

In 2008 wechselten Sie, lieber Dr. Güldner – leider,<br />

denn damit hatte ich in Erlangen meinen Chef verloren –<br />

zur E.ON.<br />

In Hannover war Dr. Güldner von 2008 bis 2016<br />

Mitglied der Geschäftsführung der E.ON Kernkraft GmbH<br />

bzw. der PreussenElektra GmbH und in den Jahren 2010<br />

bis 2015 deren Vorsitzender. Seine Zuständigkeit betraf<br />

die Bereiche „Neubau“, „Rückbau“ und „Brennstoffkreislauf“.<br />

Bis heute ist Dr. Ralf Güldner Mitglied des Aufsichtsrats<br />

der PreussenElektra GmbH in Hannover.<br />

Neben Ihrem eindrucksvollen beruflichen Werdegang<br />

haben Sie sich – Dr. Güldner – auch in verschiedenen<br />

Verbänden national und international für die Kerntechnik<br />

nachhaltig eingesetzt:<br />

Egoistisch beginne ich mit der KTG: in der Zeit von<br />

2003 bis 20<strong>06</strong> waren Sie unser Vorsitzender; von 20<strong>06</strong> bis<br />

2008 waren Sie Vorsitzender der World <strong>Nuclear</strong><br />

Association; von 2009 bis 2011 waren Sie Präsident des<br />

europäischen Branchenverbandes FORATOM und das<br />

Präsidium des Deutschen Atom<strong>for</strong>ums hat Sie im April<br />

2010 einstimmig zu seinem neuen Präsidenten gewählt,<br />

der Sie bis gestern waren.<br />

Ihre fachlichen Stärken auf den Gebieten des Kernbrennstoffkreislaufes,<br />

dem KKW-Neubau und Rückbau<br />

haben Ihre Dienstherren hervorragend erkannt und für<br />

eine starke Kerntechnik „Made in Germany“ genutzt. Dazu<br />

kommen Ihre einzigartigen Kommunikationsfähigkeiten.<br />

Der Reihe nach: ich konnte Sie Ende der neunziger<br />

Jahre im Wesentlichen bei Brennelement-Kunden in den<br />

Nordic Countries erleben. Neben erfolgreichen Geschäftsabschlüssen<br />

in Schweden und Finnland, deren Anlagen<br />

übrigens partiell heute noch deutsche Brennelemente<br />

in den Kernen haben, war für Sie der Dialog über die<br />

Nutzung der Kernenergie als CO 2 -armer Stromlieferant<br />

und der gesellschaftliche Energie-Dialog wichtig. Es<br />

gelang Ihnen, internationale Kontakte zu knüpfen, die Sie<br />

als Netzwerker heute noch nutzen.<br />

Im Neubau haben Sie sich für die E.ON oder auch partiell<br />

gemeinsam mit anderen Deutschen EVU’s einen<br />

hervorragenden Ruf erarbeitet. In den Gesprächen in<br />

Großbritannien, Finnland, Frankreich oder Italien war es<br />

Ihr Ziel, hervorragende Anlagentechnik und Anlagenkenntnis<br />

vereint mit einem fundierten Betreiber wissen in<br />

KKW-Neubau-Projekten einzu bringen. Die Anlagen der<br />

neuen Generation, die im Ausland gebaut werden sollten,<br />

basierten auch auf deutschen Referenzen eines sicheren<br />

Leistungs betriebes und wiederholten Weltmeistertiteln<br />

bei Verfügbarkeit und Stromproduktion.<br />

Bezüglich des KKW-Neubaus haben Sie – wie viele<br />

andere auch – in der ersten Dekade dieses Jahrhunderts an<br />

eine bevorstehende KKW-Renaissance geglaubt, so sicher,<br />

dass Sie mit der Grünen-Politikerin Bärbel Höhn<br />

wetteten, in Italien werde bis 2020 mindestens ein<br />

neues Kernkraftwerk die Stromproduktion aufnehmen.<br />

Ansonsten würden Sie Sekt auf einem Grünen- Parteitag<br />

ausschenken. Mit dem Referendum in Italien ist es<br />

anders gekommen…<br />

Die im Eingangszitat erwähnten Verhandlungen über<br />

eine Laufzeitverlängerung für deutsche Anlagen waren<br />

erfolgreich: Betrieb der Kernkraftwerke bis zum Jahre<br />

2036. Mit dem 11. März 2011 und den Ereignissen in<br />

Fukushima kam dann jedoch alles ganz anders. Aber Sie<br />

haben gekämpft und hier hat der „Kommunikator Güldner“<br />

Großes geleistet.<br />

Als Präsident des Atom<strong>for</strong>ums waren Sie Deutschlands<br />

begehrtester Gesprächspartner zu allen sich aufdrängenden<br />

Fragen. Keine Talkshow, die nicht dieses<br />

Thema aufgemacht und Sie nicht angefragt hat und kein<br />

ZDF-Spezial- oder Morgenmagazin ohne Ralf Güldner.<br />

Und hier ist sich die Branche einig: Sie haben einen supertollen<br />

Job gemacht.<br />

Ihre Präsenz in den Medien Dr. Güldner – und übrigens<br />

nicht nur im Jahr 2011 – war und ist beein druckend, Ihre<br />

inhaltlichen Ausführungen, Ihre verbale Überzeugungskraft<br />

aber auch Ihre bemerkenswerte Sachlichkeit und<br />

Ruhe selbst bei provo zierenden Frage stellungen deutscher<br />

und inter nationaler Medienvertreter waren und sind<br />

einzigartig.<br />

„Rückbau können wir“ haben Sie uns oft gesagt und das<br />

stimmt. Hier – wie auch im internationalen Neubau, bei<br />

Nachrüstungen und im Brennelementgeschäft – setzen Sie<br />

sich dafür ein, dass deutsche Lieferanten von Kerntechnik<br />

auch im Ausland erfolgreich sind. Neben dem Geschäftserfolg<br />

für die Unternehmen kann dies einen Beitrag zum<br />

Kompetenzerhalt Kerntechnik leisten. Ob im Rahmen von<br />

„Energie im Dialog“, Interviews oder anderen öffentlichen<br />

Debatten <strong>for</strong>dern Sie den „Masterplan für die Weiterentwicklung<br />

der kerntechnischen Kompetenz“. Ich zitiere<br />

aus Ihrer Eröffnungsrede der AMNT des letzten Jahres:<br />

„ Angesichts der Notwendigkeit der Weiterentwicklung<br />

der kerntechnischen Kompetenz und Fähigkeiten zur<br />

Bewältigung der anstehenden Aufgaben in Deutschland<br />

und zum Erhalt der internationalen Mitsprache fähigkeit<br />

ist die Frage angebracht, wann es einen Masterplan der<br />

Bundesregierung für die Weiterent wicklung der kerntechnischen<br />

Kompetenz geben wird. Einen Masterplan,<br />

der es Deutschland auch in zehn, in 20 und in 30 Jahren<br />

erlauben wird, internationale Entwicklungen sei es im<br />

Betrieb, in der Regulierung oder in der Forschung adäquat<br />

bewerten zu können.“<br />

In den zurückliegenden Jahrzehnten verbanden Sie<br />

Ihr Talent und Ihre beeindruckende Fachkenntnis mit<br />

politischem Geschick, Beharrlichkeit, Durchsetzungsvermögen<br />

und der charmanten und höflichen Art, die<br />

wir so an Ihnen schätzen. Neben Fachmann, Netz werker<br />

und Kommunikator sind Sie Dr. Güldner übrigens<br />

immer eins geblieben: ein Mensch / ein Chef – mit<br />

großem Herz und Empathie, einem offenen Ohr für<br />

­berufliches und ­privates. Für mich persönlich waren und<br />

sind Sie Vorbild. Sie sind Familienmensch, der jetzt – auch<br />

– Zeit für die Enkel und die Hobbies hat. Obwohl<br />

Sie im Besitz des bayerischen Jagdscheins sind, habe ich<br />

bislang wenig Jägerlatein von Ihnen vernommen,<br />

Geschichten vom Fischen im eigenen Gewässer gab es<br />

schon.<br />

Für Ihren jahrzehntelangen unermüdlichen Einsatz<br />

für die Deutsche, aber auch Europäische und internationale<br />

Kerntechnik möchten wir Ihnen aufrichtig<br />

danken und Sie als Zeichen unserer hohen Wert schätzung<br />

mit der diesjährigen Ehrenmitgliedschaft der Kerntechnischen<br />

Gesellschaft auszeichnen.<br />

369<br />

KTG INSIDE<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

370<br />

KTG INSIDE<br />

Lieber Herr Dr. Güldner, willkommen als neues Ehrenmitglied<br />

der KTG! Sie sind uns eine große Bereicherung<br />

und ich hoffe, dass Sie uns auch noch aus Ihrem Fast-Ruhestand<br />

in Herrsching am Ammersee mit Ihren Erfahrungen<br />

als Ratgeber zur Verfügung stehen werden.<br />

Dr. Ralf Güldner ist promovierter Chemiker. Lassen Sie<br />

mich deshalb an dieser Stelle den deutschen Chemiker<br />

Prof. Quadbeck-Seeger zitieren „Reden ist Silber, Loben ist<br />

Gold!“. Damit schließe ich auch in der Hoffnung, dass Sie<br />

sich in meinen Worten wieder gefunden haben. Das Motto<br />

der KTG könnte – lieber Herr Dr. Güldner – Ihr Lebenscredo<br />

sein: „Kerntechnik – Meine Faszination“.<br />

Herzlichen Dank!<br />

Frank Apel<br />

Im Anschluss an die Verleihung und die Laudatio<br />

bedankte sich Dr. Ralf Güldner wie folgt:<br />

Lieber Herr Apel,<br />

zunächst einmal herzlichen Dank für diese – natürlich<br />

etwas übertriebene – Laudatio.<br />

Lieber Herr Apel, liebe Mitglieder des KTG Vorstands,<br />

liebe Mitgliederinnen und Mitglieder der KTG, Ihnen allen<br />

einen ganz herzlichen Dank für diese Aus zeichnung. Ich<br />

empfinde diese Ehrenmitgliedschaft als eine große Ehre.<br />

Natürlich sehe ich persönlich darin eine Aner kennung<br />

meines Wirkens in den verschiedenen Funktionen meiner<br />

beruflichen Laufbahn, in den hauptamtlichen Aufgaben<br />

bei Siemens, AREVA und EON/PreussenElektra aber auch<br />

in den „Nebentätigkeiten“ beim DAtF, WNA, Foratom und<br />

natürlich in der KTG. Dies gilt umso mehr als das Verhältnis<br />

zur KTG und Teilen der Mitgliedschaft nicht<br />

immer konfliktfrei war. Ich erinnere mich an Zeiten der<br />

politischen Aus stiegsbeschlüsse als aus der KTG heraus –<br />

inhaltlich berechtigt – eine klarere öffentliche Positionierung<br />

für unsere Technologie ge<strong>for</strong>dert wurde, dies aber<br />

politisch insbesondere mit Blick auf die Interessen der EVU<br />

nicht opportun war. Oder die <strong>International</strong>isierung des<br />

AMNT mit einer verstärkten Ausrichtung auf englische<br />

Vorträge, die auch nicht in allen Teilen der KTG positiv<br />

gesehen wurde. Rückblickend glaube ich, dass es richtig<br />

war nicht auf öffentliche Konfrontation zu setzen<br />

auch wenn mehr Investitionen in eine aufklärende Öffentlichkeitsarbeit<br />

sinnvoll gewesen wären. Auch die internationale<br />

Ausrichtung des AMNT hat Früchte getragen,<br />

wie wir hier und heute wieder feststellen können.<br />

Die besondere Wertschätzung dieser Auszeichnung<br />

leite ich aber aus den Leistungen der KTG und Ihrer<br />

Mitglieder ab, ohne die „Kerntechnik made in Germany“<br />

heute nicht die internationale Wertschätzung erfahren<br />

würde, die wir immer noch spüren.<br />

Wenn man die Listen der KTG Vorsitzenden und der<br />

Ehrenmitglieder durchgeht, dann liest sich das wie das<br />

„Who is Who“ der deutschen Kerntechnik: da finden sich<br />

herausragende Ingenieure, großartige Wissenschaftler,<br />

Vorstände, die mutige Investitionsentscheidungen<br />

getroffen haben, sogar der eine oder andere Politiker –<br />

heute kaum noch denkbar – und auch ein paar ausländische<br />

Kollegen.<br />

In meiner Zeit als Vorsitzender durfte ich einige Ehrenmitgliedschaften<br />

selbst überreichen und ich war bei vielen<br />

Verleihungen dabei. In besonderer Erinnerung ist mir<br />

aber die Verleihung an Dr. Yumi Akimoto im Jahr 2001<br />

geblieben. Dr. Wolf-Dieter Krebs war damals der KTG<br />

­Vorsitzende. Dr. Akimoto berichtete in seiner Dankes­rede,<br />

dass er als Jugendlicher Augenzeuge eines der Atombombenabwürfe<br />

in Japan war. Er sagte dann, dass er so<strong>for</strong>t<br />

von dieser Energie fasziniert war und den Gedanken hatte,<br />

diese für friedliche Zwecke zu nutzen. Beeindruckend,<br />

Faszination Kerntechnik auf eine ganz besondere Art!<br />

Meine Damen und Herren, es ist mir eine große Ehre<br />

und ich bin stolz darauf Mitglied in diesem erlesenen Kreis<br />

zu werden.<br />

Meine Damen und Herren, bei einem derartigen Anlass<br />

und zum 50. Geburtstag der KTG muss man natürlich auch<br />

nach vorne sehen. Wie geht es weiter. Ich bin der Überzeugung,<br />

dass wir auch in Zukunft kerntechnische<br />

Kompetenz in Deutschland brauchen, für die restlichen<br />

Betriebsjahre der Kernkraftwerke, den geordneten Rückbau,<br />

die sichere Endlagerung, die kerntechnische<br />

Forschung, den Betrieb von For schungsreaktoren, die<br />

Teilnahme an internationalen Forschungsprojekten wie<br />

z. B. Iter, die Anwendung von Kerntechnik in Medizin und<br />

Technik natürlich für die Diskussion um zukünftige<br />

Reaktorentwicklungen auf internationaler Ebene.<br />

Dafür brauchen wir junge Menschen, die ebenfalls von<br />

der Kerntechnik und ihren Möglichkeiten fasziniert sind<br />

und diesen jungen Menschen sollte die KTG ein attraktives<br />

Angebot machen, das sie nicht ausschlagen können. Das ist<br />

in unserer heutigen Gesellschaft, in der das Engagement<br />

für eine Sache in Organisationen oder Vereinen etwas aus<br />

der Mode gekommen ist, nicht einfach.<br />

Es gibt aber Hoffnung. Kürzlich gab es in Bayern unter<br />

dem Titel „Rettet die Bienen“ ein Bürgerbegehren für<br />

mehr Artenvielfalt. Das Bürgerbegehren wurde angenommen<br />

und die Bayerische Staatsregierung ist dabei die<br />

Forderungen umzusetzen. Nun wird es sicher nicht gleich<br />

ein Bürgerbegehren für mehr Artenvielfalt in der grundlastfähigen,<br />

CO 2 -freien Stromerzeugung geben, aber<br />

vielleicht hat ja die Kernenergie in Deutschland doch noch<br />

eine Zukunft.<br />

Nehmen wir doch die Windenergie als Beispiel, die<br />

gab es in früheren Jahrhunderten auch schon mal und<br />

heute bewundern wir mit nostalgischem Blick die noch<br />

­existierenden dickbäuchigen Windmühlen vergangener<br />

Jahr hunderte. Heute ist die Windenergie wieder da, in<br />

neuer Form, eleganter, schlanker, effizienter, ein Stützpfeiler<br />

unserer Energiewende.<br />

Es gibt keinen Grund, heute eine derartige Ent wicklung<br />

für die Kernenergie auszuschließen. Das Klimaproblem<br />

wird uns erhalten bleiben und der Bedarf an CO 2 -freier Energie<br />

wird steigen. Bleiben wir am Ball. Welche Rolle mir<br />

als Ehrenmitglied dabei zukommt weiß ich nicht, ich halte<br />

es da wie Franz Beckenbauer. Als er Ehrenpräsident des FC<br />

Bayern wurde, fragte ihn ein <strong>Journal</strong>ist nach den Aufgaben<br />

eines Ehren präsidenten. Franz antwortete, das<br />

wisse er nicht, aber wenn er gebraucht wird, sei er da.<br />

Herzlichen Dank!<br />

Dr. Ralf Güldner<br />

KTG Inside


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Herzlichen Glückwunsch!<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

371<br />

Juli 2019<br />

30 Jahre | 1989<br />

10. Dirk Voß, Lingen, Ems<br />

50 Jahre | 1969<br />

6. Dipl.-Ing. Tadeusz Kozielewski, Düren<br />

55 Jahre | 1964<br />

4. Siegfried Krüger, Grevenbroich<br />

14. Jens-Peter Seyer, Hemmingstedt<br />

60 Jahre | 1959<br />

10. Prof. Dr. Ulrich W. Scherer, Jülich<br />

70 Jahre | 1949<br />

9. Roland Gottfried, Baiersdorf<br />

26. Kurt Wagner, Recklinghausen<br />

75 Jahre | 1944<br />

17. J. Krellmann, Le Puy Ste. Réparade/FR<br />

20. Günter Langer , Rosbach<br />

76 Jahre | 1943<br />

10. Dipl.-Ing. Dieter Eder, Alzenau<br />

79 Jahre | 1940<br />

31. Dr. Peter Schneider-Kühnle, Worms<br />

80 Jahre | 1939<br />

10. Dr. Bernhard Steinmetz,<br />

Bergisch Gladbach<br />

23. Heinz Stahlschmidt, Erlangen<br />

26. Dipl.-Ing. Ewald Passig, Bochum<br />

81 Jahre | 1938<br />

30. Dr. Philipp Dünner, Odenthal<br />

82 Jahre | 1937<br />

29. Dr. Herbert Reutler, Köln<br />

85 Jahre | 1934<br />

14. Prof. Dr. Walter-H. Köhler, Wien/AU<br />

87 Jahre | 1932<br />

24. Dipl.-Ing. Joachim May, Burgwesel<br />

31. Dr. Theodor Dippel,<br />

Eggenstein-Leopoldshafen<br />

August 2019<br />

40 Jahre | 1979<br />

20. Dr. Chris Breuer, Gronau<br />

60 Jahre | 1959<br />

29. Dr. Martin Steinbrück,<br />

Linkenheim-Hochstetten<br />

30. Dr. Marina Sokcic-Kostic,<br />

Eggenstein-Leopoldshafen<br />

70 Jahre | 1949<br />

8. Dipl.-Ing. Frank-Egbert Rubbel,<br />

Hannover<br />

22. Dipl.-Ing. Gerold Klein, Stadland<br />

75 Jahre | 1944<br />

24. Dr. Gerd Uhlmann, Dresden<br />

29. Dipl.-Phys. Harald Scharf, AX<br />

Goes/NL<br />

77 Jahre | 1942<br />

28. Dipl.-Ing. Hans-J. Fröhlich, Berzhahn<br />

78 Jahre | 1941<br />

17. Dipl.-Ing. Jörg-Hermann Gutena,<br />

Emmerthal<br />

21. Dipl.-Phys. Peter Kahlstatt, Hameln<br />

80 Jahre | 1939<br />

1. Dipl.-Ing. Gerhard Becker,<br />

Neunkirchen-Seelscheid<br />

29. Dr.-Ing. E. h. Adolf Hüttl, Monte Estoril<br />

(Parque Palmela)/PT<br />

81 Jahre | 1938<br />

6. Prof. Dr. Rudolf Avenhaus, Baldham<br />

21. Dr. Gerhard Schücktanz, Altdorf<br />

84 Jahre | 1935<br />

16. Dr. Dietmar Albert, Salzgitter<br />

85 Jahre | 1934<br />

15. Dipl.-Phys. Heinrich Glantz,<br />

Eggenstein-Leopoldsh.<br />

88 Jahre | 1931<br />

11. Dipl.-Ing. Siegfried Dreyer, Overath<br />

90 Jahre | 1929<br />

2. Dipl.-Phys. Wolfgang Schwarzer,<br />

Weilerswist<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

NEWS<br />

Top<br />

IEA: Steep decline in nuclear<br />

power would threaten energy<br />

security and climate goals<br />

(iea) With nuclear power facing an<br />

uncertain future in many countries,<br />

the world risks a steep decline in<br />

its use in advanced economies that<br />

could result in billions of tonnes of<br />

additional carbon emissions, according<br />

to a new report by the <strong>International</strong><br />

Energy Agency.<br />

<strong>Nuclear</strong> is the second-largest lowcarbon<br />

power source in the world<br />

today, accounting <strong>for</strong> 10 % of global<br />

electricity generation. It is second<br />

only to hydropower at 16 %. For advanced<br />

economies – including the<br />

United States, Canada, the European<br />

Union and Japan – nuclear has<br />

been the biggest low-carbon source<br />

of electricity <strong>for</strong> more than 30 years<br />

and remains so today. It plays an<br />

important role in electricity security in<br />

several countries.<br />

However, the future of nuclear<br />

power is uncertain as ageing plants<br />

are beginning to close in advanced<br />

economies, partly because of policies<br />

to phase them out but also as a result<br />

of economic and regulatory factors.<br />

Without policy changes, advanced<br />

economies could lose 25 % of their<br />

nuclear capacity by 2025 and as much<br />

as two-thirds of it by 2040, according<br />

to the new report, <strong>Nuclear</strong> <strong>Power</strong> in a<br />

Clean Energy System.<br />

The lack of further lifetime extensions<br />

of existing nuclear plants and<br />

new projects could result in an<br />

additional 4 billion tonnes of CO 2<br />

emissions.<br />

Some countries have opted out of<br />

nuclear power in light of concerns<br />

about safety and other issues. Many<br />

others, however, still see a role <strong>for</strong><br />

nuclear in their energy transitions but<br />

are not doing enough to meet their<br />

goals, according to the report.<br />

With its mission to cover all fuels<br />

and technologies, the IEA hopes that<br />

the publication of its first report<br />

addressing nuclear power in nearly<br />

two decades will help bring the topic<br />

back into the global energy debate.<br />

The report is being released during<br />

the 10th Clean Energy Ministerial in<br />

Vancouver, Canada.<br />

“Without an important contribution<br />

from nuclear power, the global<br />

energy transition will be that much<br />

harder,” said Dr Fatih Birol, the IEA’s<br />

Executive Director. “Alongside renewables,<br />

energy efficiency and other<br />

innovative technologies, nuclear can<br />

make a significant contribution to<br />

achieving sustainable energy goals<br />

and enhancing energy security. But<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

372<br />

NEWS<br />

| | IEA: Steep decline in nuclear power would<br />

threaten energy security and climate goals<br />

unless the barriers it faces are overcome,<br />

its role will soon be on a steep<br />

decline worldwide, particularly in the<br />

United States, Europe and Japan.”<br />

The new report finds that extending<br />

the operational life of existing<br />

nuclear plants requires substantial<br />

capital investment. But its cost is<br />

competitive with other electricity<br />

generation technologies, including<br />

new solar and wind projects, and can<br />

lead to a more secure, less disruptive<br />

energy transition.<br />

Market conditions remain unfavourable,<br />

however, <strong>for</strong> lengthening<br />

the lifetimes of nuclear plants. An<br />

­extended period of low wholesale<br />

electricity prices in most advanced<br />

economies has sharply reduced or<br />

eliminated profit margins <strong>for</strong> many<br />

technologies, putting nuclear plants<br />

at risk of shutting down early.<br />

In the United States, <strong>for</strong> example,<br />

some 90 reactors have 60-year operating<br />

licenses, yet several have already<br />

retired early and many more are at<br />

risk. In Europe, Japan and other<br />

­advanced economies, extensions of<br />

plants’ lifetimes also face uncertain<br />

prospects.<br />

Investment in new nuclear projects<br />

in advanced economies is even more<br />

difficult. New projects planned in<br />

Finland, France and the United States<br />

are not yet in service and have faced<br />

major cost overruns. Korea has been<br />

an important exception, with a record<br />

of completing construction of new<br />

projects on time and on budget,<br />

though government policy aims to end<br />

new nuclear construction.<br />

A sharp decline in nuclear power<br />

capacity in advanced economies<br />

would have major implications. Without<br />

additional lifetime extensions and<br />

new builds, achieving key sustainable<br />

energy goals, including international<br />

climate targets, would become more<br />

difficult and expensive.<br />

If other low-carbon sources,<br />

­namely wind and solar PV, are to fill<br />

the shortfall in nuclear, their deployment<br />

would have to accelerate to an<br />

unprecedented level. In the past 20<br />

years, wind and solar PV capacity has<br />

increased by about 580 gigawatts in<br />

advanced economies. But over the<br />

next 20 years, nearly five times that<br />

amount would need to be added. Such<br />

a drastic increase in renewable power<br />

generation would create serious<br />

challenges in integrating the new<br />

sources into the broader energy<br />

system. Clean energy transitions in<br />

advanced economies would also<br />

­require $1.6 trillion in additional<br />

investment over the same period,<br />

which would end up hurting consumers<br />

through higher electricity<br />

bills.<br />

“Policy makers hold the key to<br />

nuclear power’s future,” Dr Birol said.<br />

“Electricity market design must value<br />

the environmental and energy security<br />

attributes of nuclear power and<br />

other clean energy sources. Governments<br />

should recognise the costcompetitiveness<br />

of safely extending<br />

the lifetimes of existing nuclear<br />

plants.”<br />

As governments and industry<br />

address these challenges, the IEA is<br />

ready to provide support with data,<br />

analysis and real-world solutions.<br />

| | www.iea.org<br />

Deloitte study: The widespread<br />

economic benefits<br />

of Europe’s nuclear<br />

energy industry<br />

(nucnet) A high nuclear power capacity<br />

of 150 GW by 2050 – up from<br />

about 118 GW today – would result<br />

in widespread economic benefits<br />

throughout the EU, sustaining more<br />

than one million jobs and hundreds of<br />

billions of euros in additional GDP<br />

growth, tax revenues and household<br />

income, a study has concluded.<br />

The aim of the study, carried out<br />

by Deloitte <strong>for</strong> the Brussels-based<br />

nuclear industry Foratom, was to<br />

assess the contribution of the nuclear<br />

sector to the overall economy of the<br />

EU-28 both today and until 2050.<br />

It said the European nuclear industry<br />

sustains in 2019 more than<br />

1.1 million full-time jobs in the EU and<br />

generates more than half a trillion<br />

euros in GDP. The report also<br />

con cluded that in 2019 the nuclear<br />

­industry generates € 124.2 bn in<br />

state revenues, generates € 383.1 bn<br />

in household income, generates<br />

€ 507.4 bn in EU GDP, and generates<br />

€ 1,092.3 bn volume of investment<br />

and an € 18.1 bn trade surplus in the<br />

EU economy.<br />

| | www.deloitte.com<br />

Sustainable Finance:<br />

FORATOM calls <strong>for</strong> relevant<br />

criteria to be applied equally<br />

to all technologies<br />

(<strong>for</strong>atom) FORATOM welcomes the<br />

European Commission’s goal of<br />

­creating a sustainable finance initiative<br />

which supports technologies that<br />

can help Europe decarbonise its<br />

economy. We take note of the work<br />

undertaken so far to develop an EU<br />

classification ­system <strong>for</strong> environmentally<br />

sustainable economic activities,<br />

however, we believe that much still<br />

needs to be done, especially as coal<br />

and nuclear have been put on an equal<br />

footing. In FORATOM’s opinion, the<br />

Taxonomy ­report published yesterday<br />

discriminates between technologies<br />

as it does not apply the same criteria<br />

equally to the different low-carbon<br />

power sources.<br />

“Both the IPCC and the IEA have<br />

made it very clear that decarboni sation<br />

goals cannot be achieved without<br />

nuclear energy. On this point, we<br />

welcome the fact that the report<br />

recognises that nuclear is a contributor<br />

to climate mitigation objectives”, says<br />

Yves Desbazeille, FORATOM Director<br />

General. “However, whilst we understand<br />

concerns regarding nuclear<br />

waste – despite the fact that the industry<br />

manages it in a respon sible and<br />

sustainable way – we question why it is<br />

only this particular type of waste which<br />

has been targeted. We expect that,<br />

moving <strong>for</strong>ward, the Commission will<br />

engage with experts on this issue to<br />

enable a fact-based debate which will<br />

ultimately lead to nuclear being included<br />

in this initiative”.<br />

The ultimate goal of the sustainable<br />

finance initiative is to decarbonise<br />

the economy, there<strong>for</strong>e it is<br />

important that it does not include<br />

fossil fuel-based technologies. At the<br />

same time, it is also essential that it<br />

does not trigger other environmental<br />

impacts. Indeed, all power producing<br />

technologies have an environmental<br />

impact at some point during their life<br />

cycle (such as significant land use or<br />

the generation of toxic/hazardous<br />

waste). Whilst reducing CO 2 emissions<br />

is important, so is using less raw<br />

materials and minimising our impact<br />

on biodiversity, <strong>for</strong> example.<br />

FORATOM believes that this<br />

­initiative should not aim to exclude<br />

a particular technology without<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Operating Results February 2019<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 672 622 312 1 302 341 262 957 549 100.00 100.00 100.00 99.39 100.66 99.97<br />

OL2 Olkiluoto BWR FI 910 880 672 620 873 1 307 315 253 203 858 100.00 100.00 100.00 99.96 100.43 100.35<br />

KCB Borssele 2) PWR NL 512 484 514 2 611 230 2 991 699 164 713 388 75.54 88.16 75.37 88.08 76.13 88.77<br />

KKB 1 Beznau 7) PWR CH 380 365 672 259 <strong>06</strong>3 545 909 127 880 019 100.00 100.00 100.00 100.00 101.49 101.51<br />

KKB 2 Beznau 7) PWR CH 380 365 672 257 626 542 761 134 893 168 100.00 100.00 100.00 100.00 100.88 100.87<br />

KKG Gösgen 7) PWR CH 1<strong>06</strong>0 1010 630 658 478 1 455 121 315 330 649 93.75 97.03 91.98 96.17 92.44 96.95<br />

KKM Mühleberg BWR CH 390 373 672 259 730 544 220 127 948 535 100.00 100.00 99.95 99.51 99.10 98.55<br />

CNT-I Trillo PWR ES 1<strong>06</strong>6 1003 672 713 243 1 502 767 248 794 436 100.00 100.00 100.00 100.00 99.14 99.05<br />

Dukovany B1 PWR CZ 500 473 665 318 249 690 302 112 919 796 98.96 99.51 98.96 99.51 94.72 97.50<br />

Dukovany B2 PWR CZ 500 473 672 331 929 701 445 108 935 616 100.00 100.00 100.00 100.00 98.79 99.07<br />

Dukovany B3 2) PWR CZ 500 473 361 168 874 168 874 1<strong>06</strong> 666 915 53.72 25.49 50.28 23.86 50.26 23.85<br />

Dukovany B4 PWR CZ 500 473 672 337 618 710 715 107 153 984 100.00 100.00 99.92 99.70 100.48 100.38<br />

Temelin B1 PWR CZ 1080 1030 672 707 307 1 517 389 115 878 431 100.00 100.00 100.00 100.00 97.28 99.04<br />

Temelin B2 PWR CZ 1080 1030 672 735 915 1 550 643 110 823 160 100.00 100.00 100.00 100.00 101.21 101.21<br />

Doel 1 2) PWR BE 454 433 0 0 0 135 444 462 0 0 0 0 0 0<br />

Doel 2 2) PWR BE 454 433 595 239 087 239 087 134 041 027 88.76 42.13 77.08 36.58 77.65 36.85<br />

Doel 3 3) PWR BE 1056 10<strong>06</strong> 542 576 785 1 382 502 256 514 987 80.65 90.82 79.74 90.39 80.72 91.86<br />

Doel 4 PWR BE 1084 1033 672 734 514 1 481 070 261 854 480 100.00 100.00 99.52 94.85 99.56 94.96<br />

Tihange 1 PWR BE 1009 962 672 687 221 1 450 879 300 281 737 100.00 100.00 100.00 100.00 101.58 101.78<br />

Tihange 2 2) PWR BE 1055 1008 0 0 0 254 651 930 0 0 0 0 0 0<br />

Tihange 3 PWR BE 1089 1038 672 725 869 1 483 056 272 710 329 100.00 99.85 99.75 96.54 99.75 96.58<br />

373<br />

NEWS<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 672 896 739 1 836 834 352 404 644 100.00 100.00 94.30 94.23 89.89 87.28<br />

KKE Emsland DWR 14<strong>06</strong> 1335 672 936 652 1 972 463 348 791 432 100.00 100.00 100.00 100.00 99.17 99.11<br />

KWG Grohnde DWR 1430 1360 672 918 011 1 936 645 379 510 859 100.00 100.00 100.00 99.94 95.00 95.11<br />

KRB C Gundremmingen SWR 1344 1288 672 902 983 1 912 453 332 854 208 100.00 100.00 99.43 99.73 99.38 99.91<br />

KKI-2 Isar DWR 1485 1410 672 987 624 2 081 475 355 807 288 100.00 100.00 100.00 99.99 98.71 98.74<br />

GKN-II Neckarwestheim DWR 1400 1310 672 928 600 1 953 900 331 780 734 100.00 100.00 99.93 99.97 99.03 98.88<br />

KKP-2 Philippsburg DWR 1468 1402 672 973 507 2 054 789 368 215 944 100.00 100.00 100.00 99.96 97.20 97.35<br />

pro­viding a valid justification. In order<br />

to identify whether an energy source<br />

is sustainable or not, it is important to<br />

evaluate each one on the basis of<br />

objective criteria and using a whole<br />

life-cycle approach. In our opinion,<br />

the following criteria should be considered:<br />

pp<br />

Impact on CO 2 emissions<br />

pp<br />

Impact on air pollution<br />

pp<br />

Impact on water<br />

pp<br />

Impact on raw materials (volume<br />

of raw materials required, presence<br />

of responsible sourcing<br />

schemes, social responsibility and<br />

traceability of origin in front end<br />

activities<br />

pp<br />

Waste generation and prevention<br />

(volume, toxicity, traceability, responsibility<br />

in back-end treatment/<br />

disposal)<br />

pp<br />

Impact on land use<br />

pp<br />

Impact on habitats and biodiversity<br />

By producing such criteria and applying<br />

it equally, we have the chance to<br />

achieve our CO 2 emission reduction<br />

targets, whilst at the same time minimising<br />

other environmental impacts.<br />

FORATOM hopes that future discussions<br />

on the taxonomy will remain<br />

open and transparent, include real<br />

­experts on the various issues and focus<br />

on a fact-based, rather than an ideological,<br />

debate.<br />

| | www<strong>for</strong>atom.org<br />

Reactors<br />

South Korea’s Shin-Kori-4<br />

reaches first criticality<br />

(nucnet) Unit 4 at South Korea’s<br />

Shin-Kori nuclear power station in Busan<br />

has reached first criticality with<br />

grid connection scheduled <strong>for</strong> the end<br />

of April, operator Korea Hydro and<br />

<strong>Nuclear</strong> <strong>Power</strong> said.<br />

The company, a subsidiary of stateowned<br />

Korea Electric <strong>Power</strong> Corporation,<br />

said commercial operation is<br />

scheduled <strong>for</strong> September following<br />

seven months of commissioning tests.<br />

In February South Korea’s <strong>Nuclear</strong><br />

Safety and Security Commission<br />

­approved the start of the 1,340-MW<br />

domestic APR-1400 pressurised water<br />

reactor, which has been under construction<br />

since August 2009.<br />

The unit was initially expected to<br />

enter commercial operation in 2018.<br />

However, construction was delayed<br />

several times because of seismic safety<br />

reassessments, design changes, and<br />

the 2017 decision by the government to<br />

suspend construction of new nuclear<br />

plants because of a proposed phaseout<br />

strategy. The suspension was later<br />

overturned due to public opposition.<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data <strong>for</strong> the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

374<br />

NEWS<br />

There are three units in commercial<br />

operation at the Shin-Kori site.<br />

Units 1 and 2 are 996-MW OPR-1000<br />

PWRs, while Unit 3 is an APR-1400.<br />

Three more units – Shin-Kori-4, -5,<br />

and -6 – are under construction and<br />

all of the APR-1400 design.<br />

| | www.khnp.co.kr<br />

Novovoronezh 2-2 supplies<br />

first electricity to grid<br />

(nucnet) Unit 2 of the Novovoronezh 2<br />

nuclear power station in Voronezh<br />

oblast, western Russia, has supplied<br />

electricity to the country’s grid<br />

<strong>for</strong> the first time, Rosenergoatom,<br />

the operating subsidiary of state<br />

nuclear corporation Rosatom, has<br />

announced.<br />

The 1,114-MW VVER-1200 plant,<br />

construction of which began in 2009,<br />

was brought to minimum controlled<br />

power level on 22 March and on 1 May<br />

reached a level of 240 MW<br />

The unit’s power will now be<br />

­gradually increased to 100 % with full<br />

commissioning scheduled by the end<br />

of 2019, Rosenergoatom said.<br />

Construction of Novovoronezh<br />

2-2, a Generation III+ unit, began<br />

in July 2009. It will be the third<br />

unit of its type to be completed<br />

in Russia. The others were its sister<br />

unit, Novovoronezh 2-1, which began<br />

commercial operation in February<br />

2017, and Leningrad 2-1, which began<br />

commercial operation in October<br />

2018.<br />

| | www.rosatom.ru<br />

Science & Research<br />

IAEA launches project to help<br />

countries fight food fraud<br />

(iaea) The <strong>International</strong> Atomic<br />

Energy Agency (IAEA) has launched a<br />

five-year research project with experts<br />

from 16 countries to refine methods to<br />

apply nuclear-derived techniques to<br />

test <strong>for</strong> accuracy in food labels.<br />

The outcome of the project, carried<br />

out in cooperation with the Food and<br />

Agriculture Organization of the United<br />

Nations (FAO), will assist countries in<br />

combatting fraud in high-value food<br />

products, such as premium honey,<br />

coffee and speciality rice varieties.<br />

“Numerous foods are sold at<br />

­premium prices because of specific<br />

production methods, or geographical<br />

origins,” said project coordinator and<br />

IAEA food safety specialist Simon<br />

Kelly. “In order to protect consumers<br />

from fraud, and potential unintended<br />

food safety issues, we need standardized<br />

methods to confirm that the<br />

product has the characteristics that<br />

are claimed on the label.”<br />

The project will help countries<br />

apply stable isotope techniques to<br />

protect and promote foods with<br />

added- value, such as organic food or<br />

products with specific geographical<br />

origins like Jamaican Blue Mountain<br />

coffee. The method works by looking<br />

at the ratio of stable isotopes in<br />

­elements – such as hydrogen, oxygen<br />

and carbon – and the concentration of<br />

elements in a sample of the product.<br />

These can provide a unique fingerprint<br />

that links a crop to the place<br />

where it is cultivated.<br />

The research project started with<br />

a kick-off meeting last week and<br />

will run <strong>for</strong> five years. Participating<br />

countries include China, Costa Rica,<br />

Denmark, India, Indonesia, Italy,<br />

Jamaica, Japan, Malaysia, Morocco,<br />

Myanmar, New Zealand, Slovenia,<br />

Spain, Thailand and Uruguay.<br />

| | www.iaea.org<br />

Imprint<br />

| | Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Dr. Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Anton Kastenmüller<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Joachim Ohnemus<br />

Olaf Oldiges<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

| | Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Nicole Koch (Editor)<br />

c/o INFORUM, Berlin, Germany<br />

Phone: +49 176 84184604<br />

E-mail: nicole.koch@nucmag.com<br />

| | Official <strong>Journal</strong> of<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| | General Manager<br />

Dr. Thomas Behringer<br />

| | Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| | Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| | Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11, 53113 Bonn, Germany<br />

| | Price List <strong>for</strong> Advertisement<br />

Valid as of 1 January 2019<br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| | Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations,<br />

micro filming and the input and incorporation into electronic systems.<br />

The individual author is held responsible <strong>for</strong> the contents of the<br />

respective paper. Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the association´s staff.<br />

We do not assume any responsibility <strong>for</strong> unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

German-French workshop:<br />

How will Europe maintain<br />

its pole position in neutron<br />

science?<br />

(frm) The Heinz Maier-Leibnitz<br />

Zentrum (MLZ) and the French<br />

Neutron Scattering Federation (2DFN)<br />

organized a German-French workshop<br />

on the research campus in Garching<br />

from the 14th until the 16 May 2019.<br />

As two national neutron sources in<br />

Germany and France will be decommissioned<br />

at the end of 2019, the<br />

European neutron landscape will<br />

change. There<strong>for</strong>e, the workshop<br />

served to discuss the opportunity of<br />

an enhanced French-German cooperation<br />

among European neutron scientists.<br />

Scientists of the MLZ and the<br />

2DFN (La Fédération Française de la<br />

Diffusion Neutronique) discussed the<br />

opportunities of an enhanced cooperation<br />

among German and French<br />

neutron scientists during the workshop<br />

at the research campus in<br />

Garching. Europe is leading neutron<br />

science due to the Institute Laue-<br />

Langevin (ILL), the future European<br />

Spallation Source (ESS), and a network<br />

of powerful national sources like<br />

the MLZ. However, the closure of the<br />

two national neutron sources (Orphée<br />

in France and BER II in Germany)<br />

together with the increasing competition<br />

from Asia will lead to a change<br />

in the European neutron landscape.<br />

Neutrons <strong>for</strong> science<br />

Neutron research is indispensable<br />

when it comes to competition to<br />

solve the major challenges of today’s<br />

industrial societies. Neutrons guide us<br />

to more efficient energy storage,<br />

­low-loss circuits of high fluxes and<br />

voltages, sustainable mobility, lightweight<br />

and long-lived motors as well<br />

as better data storage. Finally, neutron<br />

sources are the backbone <strong>for</strong> generating<br />

radioisotopes that are used <strong>for</strong><br />

medicine.<br />

The role of the MLZ<br />

The MLZ is a cooperation between<br />

the Technical University of Munich<br />

(TUM), the Forschungszentrum<br />

Jülich, and the Helmholtz-Zentrum<br />

Geestracht <strong>for</strong> Materials and Coastal<br />

Research (HZG), the Max Planck<br />

Society, and nine university groups.<br />

The MLZ offers the scientific use of the<br />

Research Neutron Source Heinz<br />

Maier-Leibnitz (FRM II) to 1000<br />

national and international research<br />

groups per year. Considering its 30<br />

cutting-edge instruments as well as its<br />

high neutron flux, the FRM II is<br />

Europe’s most modern research reactor.<br />

Already, the demand <strong>for</strong> beamtime<br />

at the MLZ is twice as high as the<br />

available capacity. The decommissioning<br />

of Orphée and BER II in 2019<br />

as well as of several smaller European<br />

research reactors in the upcoming<br />

years will increase the future demand<br />

at the MLZ drastically. Enhanced<br />

cooperation among the national neutron<br />

centers is the silver bullet to<br />

­capacity expansion and, thus,<br />

strengthens European neutron science.<br />

“As of 2020, the MLZ will be the<br />

German center <strong>for</strong> neutron science.<br />

Towards the end of the decade, it<br />

will provide the greatest research<br />

capacity with neutrons in Europe”,<br />

says the director of the MLZ,<br />

Prof. Dr. Peter Müller-Buschbaum,<br />

“The MLZ also fulfils a European<br />

­service as 55 ­percent of our users are<br />

international.”<br />

German-French co-operation –<br />

now and then<br />

The German-French neutron community<br />

can already look back on a<br />

joint success story. It started with the<br />

foundation of the ILL, which was<br />

followed by the membership in<br />

the League of Advanced European<br />

Neutron Science (LENS), numerous<br />

shared publications, the corporate<br />

construction of four instruments at<br />

the ESS in Lund, and the high numbers<br />

of French users at the MLZ.<br />

However, the changing neutron landscape<br />

demands <strong>for</strong> an even stronger<br />

German-French cooperation, which<br />

was extensively discussed at the workshop.<br />

The MLZ hopes <strong>for</strong> assistance to<br />

provide more sophisticated and innovative<br />

instrumentation and is looking<br />

<strong>for</strong>ward to exploring new fields of<br />

neutron science. The 2DFN hopes<br />

<strong>for</strong> support regarding the education<br />

of France’s prospective neutron<br />

scientists. “Until now, young scientists<br />

were trained at our national source,<br />

­Orphée”, explains Virginie Simonet,<br />

the director of the 2DFN, “With the<br />

closure of this research reactor, we<br />

lose our education program and risk<br />

losing knowledge in neutron science.”<br />

The MLZ <strong>for</strong> its part supports over<br />

200 PhD students per year, offers<br />

practical courses and lectures at the<br />

TUM and at its partner universities,<br />

and promotes the establishment of an<br />

international doctoral program. In<br />

particular, young French neutron<br />

­scientists would profit from a cooperation<br />

with the MLZ; especially until<br />

the full operation of the ESS. Simonet<br />

and Müller-Buschbaum agreed that<br />

research reactors like FRM II or ILL<br />

will not lose their importance beyond<br />

the commissioning of the ESS. On the<br />

contrary: the two directors emphasized<br />

that although the ESS would<br />

provide new measuring qualities, it<br />

will not contribute much to the measuring<br />

capacity. So, there will be a high<br />

competition <strong>for</strong> access to the ESS. The<br />

national sources will enable scientists<br />

to remain competitive. “We should not<br />

feel constrained by new neutron<br />

sources like the ESS. We should see<br />

them as an impulse <strong>for</strong> new ideas!”,<br />

Müller-Buschbaum concludes the<br />

workshop.<br />

| | www.frm2.tum.de<br />

Company News<br />

Switzerland: Framatome<br />

awarded contract <strong>for</strong><br />

modernization of reactor<br />

protection system at Gösgen<br />

<strong>Nuclear</strong> <strong>Power</strong> Plant<br />

(framatome) Framatome was awarded<br />

a contract to modernize the reactor<br />

protection system (RPS) of the Gösgen<br />

<strong>Nuclear</strong> <strong>Power</strong> Plant (NPP)* operated<br />

by the Swiss utility Kernkraftwerk<br />

Gösgen-Däniken AG. The RPS powers<br />

down reactors safely in case of any<br />

deviations.<br />

“This contract marks another<br />

important milestone in the longlasting<br />

cooperation between Gösgen<br />

NPP and Framatome,” said Frédéric<br />

Lelièvre, Framatome’s senior executive<br />

vice president in charge of Sales,<br />

Regional Plat<strong>for</strong>ms and the Instrumentation<br />

and Control Business Unit.<br />

“It is yet another example showing<br />

how, over the years, we have managed<br />

the trans<strong>for</strong>mation from analog to<br />

digital technology successfully together.”<br />

The scope of the contract includes<br />

modernization of the entire RPS using<br />

Framatome‘s proven digital instrumentation<br />

and control (I&C) plat<strong>for</strong>m,<br />

TELEPERM XS. In addition,<br />

important functions will be realized<br />

with a diverse hardwired back-up<br />

system. Installation and commissioning<br />

of the new RPS are scheduled<br />

<strong>for</strong> the plant’s 2022 outage. The<br />

modernization project enhances plant<br />

safety, supports long-term operation<br />

and protects investments into the<br />

future.<br />

The signing of the contract was<br />

preceded by the successful modernization<br />

of the plant’s four emergency<br />

diesel generators, including the upgrade<br />

of the entire I&C and electrical<br />

systems with Framatome’s digital<br />

375<br />

NEWS<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

376<br />

NEWS<br />

technology. In 2014, Framatome<br />

completed the digital modernization<br />

of the plant’s reactor control and<br />

limitation.<br />

* The Gösgen pressurized water<br />

reactor was connected to the grid in<br />

1979 and has a net electric output of<br />

1,010 megawatts.<br />

| | www.framatome.com<br />

NUKEM wins decommissioning<br />

project in Sweden<br />

(nukem) The Uniper Anlagenservice<br />

led consortium with NUKEM Technologies<br />

has been awarded a contract<br />

<strong>for</strong> the dismantling of two reactor<br />

pressure vessels at Oskarshamn<br />

and two reactor pressure vessels at<br />

Barsebäck.<br />

The consolidation of all four units<br />

under the Cover Agreement will allow<br />

to achieve synergy effects under the<br />

contract.<br />

The dismantling of the Barsebäck<br />

reactor pressure vessels is scheduled<br />

to begin in early 2020 after receiving<br />

a dismantling license. The entire project<br />

is expected to be completed at<br />

Oskarshamn in 2024. The <strong>Nuclear</strong><br />

Decommissioning Programme comprises<br />

several work packages including<br />

fragmentation and removal of<br />

the reactor pressure vessels and the<br />

removal of turbine and generator<br />

parts. The dismantling will be per<strong>for</strong>med<br />

consecutively, starting in<br />

Barsebäck and then moving on to<br />

Oskarshamn so as to ensure a “lead<br />

and learn” approach. The synergy<br />

gains arising from common planning<br />

and investments will be used to<br />

achieve higher efficiency within<br />

the Programme. Transferring the<br />

­expertise from the first unit to the<br />

subsequent ones will contribute to the<br />

project safety.<br />

This contract marks an important<br />

milestone since it is the first dismantling<br />

contract covering the reactor<br />

pressure vessels at both Oskarshamn<br />

and Barsebäck. It is the result of a long<br />

and intensive procurement work, says<br />

Billy Slättengren, Project Manager<br />

Decommissioning at Oskarshamn.<br />

Åsa Carlson, CEO Barsebäck Kraft,<br />

thanked Oskarshamns Kraftgrupp<br />

(OKG), Barsebäck Kraft (BKAB),<br />

Uniper Anlagenservice and NUKEM<br />

Technologies <strong>for</strong> the good cooperation:<br />

“For over a year, this fantastic team<br />

has worked so hard and intensively<br />

and made it possible <strong>for</strong> us to stand<br />

here today and sign the contract. Now<br />

we are up and running and we know<br />

what we have to do!”<br />

| | www.nukemtechnologies.de<br />

| | Urenco makes significant investment in new UK facility <strong>for</strong> sustainable energy<br />

Urenco makes significant<br />

investment in new UK facility<br />

<strong>for</strong> sustainable energy<br />

(urenco) Urenco announces the completed<br />

construction of a new multimillion<br />

pound Tails Management<br />

Facility (TMF) in Capenhurst near<br />

Chester, UK, as part of a long standing<br />

commitment to help provide reliable,<br />

cost effective and sustainable power<br />

generation.<br />

The TMF was officially opened at a<br />

ceremony attended by senior representatives<br />

from Government, industry<br />

and the local community.<br />

Urenco’s core business is enriching<br />

uranium to provide sustainable<br />

energy <strong>for</strong> the world. Enriched<br />

uranium is an integral component in<br />

civil nuclear power generation. The<br />

responsible management of the<br />

by-product of the enrichment process,<br />

known as tails, is crucial to Urenco’s<br />

commitment to sustainability. Tails<br />

are converted to uranium oxide,<br />

which is stable and allows long-term<br />

storage prior to either further enrichment<br />

or safe disposal of the residual<br />

uranium. To enable the conversion,<br />

Urenco invested in the TMF, which is<br />

operated by a subsidiary company<br />

Urenco ChemPlants.<br />

Boris Schucht, Chief Executive<br />

­Officer, Urenco, said:<br />

“The TMF is a key element in<br />

Urenco’s commitment to sustainable<br />

energy generation. It is a further<br />

tangible demonstration of our responsible<br />

management of nuclear materials.<br />

“We are very proud of our safety<br />

record during the construction of the<br />

TMF. We achieved more than seven<br />

million hours of safe working, making<br />

the TMF one of the safest construction<br />

sites in the UK and a credit to the<br />

whole work<strong>for</strong>ce.<br />

“Urenco makes an important contribution<br />

to the UK and globally – in<br />

terms of supplier spend, salaries,<br />

work<strong>for</strong>ce and new infrastructure<br />

and we are proud to have made this<br />

signi­ficant addition to our organisation<br />

and the UK economy.”<br />

| | www.urenco.com<br />

Market data<br />

(All in<strong>for</strong>mation is supplied without<br />

guarantee.)<br />

<strong>Nuclear</strong> Fuel Supply<br />

Market Data<br />

In<strong>for</strong>mation in current (nominal)<br />

­U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data <strong>for</strong> the <strong>for</strong>merly “secondary<br />

­market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

2015<br />

pp<br />

Uranium: 35.00–39.75<br />

pp<br />

Conversion: 6.25–9.50<br />

pp<br />

Separative work: 58.00–92.00<br />

2016<br />

pp<br />

Uranium: 18.75–35.25<br />

pp<br />

Conversion: 5.50–6.75<br />

pp<br />

Separative work: 47.00–62.00<br />

2017<br />

pp<br />

Uranium: 19.25–26.50<br />

pp<br />

Conversion: 4.50–6.75<br />

pp<br />

Separative work: 39.00–50.00<br />

2018<br />

January to June 2018<br />

pp<br />

Uranium: 21.75–24.00<br />

pp<br />

Conversion: 6.00–9.50<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

Uranium<br />

Prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

) 1<br />

Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

120.00<br />

120.00<br />

377<br />

100.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

1980<br />

Yearly average prices in real USD, base: US prices (1982 to1984) *<br />

1985<br />

1990<br />

1995<br />

2000<br />

2005<br />

2010<br />

2015<br />

2019<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

Year<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

) 1 ) 1<br />

real prices * Actual nominal USD prices, not referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

| | Uranium spot market prices from 1980 to 2019 and from 2008 to 2019. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

Separative work: Spot market price range [USD*/kg UTA]<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

180.00<br />

20.00<br />

NEWS<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

) 1 Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

160.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

18.00<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

60.00<br />

6.00<br />

40.00<br />

4.00<br />

20.00<br />

2.00<br />

0.00<br />

0.00<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

| | Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation <strong>for</strong> spot market prices. The change results in virtual price leaps.<br />

pp<br />

Separative work: 35.00–42.00<br />

February 2018<br />

pp<br />

Uranium: 21.25–22.50<br />

pp<br />

Conversion: 6.25–7.25<br />

pp<br />

Separative work: 37.00–40.00<br />

March 2018<br />

pp<br />

Uranium: 20.50–22.25<br />

pp<br />

Conversion: 6.50–7.50<br />

pp<br />

Separative work: 36.00–39.00<br />

April 2018<br />

pp<br />

Uranium: 20.00–21.75<br />

pp<br />

Conversion: 7.50–8.50<br />

pp<br />

Separative work: 36.00–39.00<br />

May 2018<br />

pp<br />

Uranium: 21.75–22.80<br />

pp<br />

Conversion: 8.00–8.75<br />

pp<br />

Separative work: 36.00–39.00<br />

June 2018<br />

pp<br />

Uranium: 22.50–23.75<br />

pp<br />

Conversion: 8.50–9.50<br />

pp<br />

Separative work: 35.00–38.00<br />

July 2018<br />

pp<br />

Uranium: 23.00–25.90<br />

pp<br />

Conversion: 9.00–10.50<br />

pp<br />

Separative work: 34.00–38.00<br />

August 2018<br />

pp<br />

Uranium: 25.50–26.50<br />

pp<br />

Conversion: 11.00–14.00<br />

pp<br />

Separative work: 34.00–38.00<br />

September 2018<br />

pp<br />

Uranium: 26.50–27.50<br />

pp<br />

Conversion: 12.00–13.00<br />

pp<br />

Separative work: 38.00–40.00<br />

October 2018<br />

pp<br />

Uranium: 27.30–29.00<br />

pp<br />

Conversion: 12.00–15.00<br />

pp<br />

Separative work: 37.00–40.00<br />

November 2018<br />

pp<br />

Uranium: 28.00–29.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 39.00–40.00<br />

December 2018<br />

pp<br />

Uranium: 28.50–29.20<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 40.00–41.00<br />

2019<br />

January 2019<br />

pp<br />

Uranium: 28.70–29.10<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 41.00–44.00<br />

February 2019<br />

pp<br />

Uranium: 27.50–29.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 42.00–45.00<br />

March 2019<br />

pp<br />

Uranium: 24.85–28.25<br />

pp<br />

Conversion: 13.50–14.50<br />

pp<br />

Separative work: 43.00–46.00<br />

April 2019<br />

pp<br />

Uranium: 25.50–25.88<br />

pp<br />

Conversion: 15.00–17.00<br />

pp<br />

Separative work: 44.00–46.00<br />

| | Source: Energy Intelligence<br />

www.energyintel.com<br />

Cross-border Price<br />

<strong>for</strong> Hard Coal<br />

Cross-border price <strong>for</strong> hard coal in<br />

[€/t TCE] and orders in [t TCE] <strong>for</strong><br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

2014: 72.94, 30,591,663<br />

2015: 67.90; 28,919,230<br />

2016: 67.07; 29,787,178<br />

2017: 91.28, 25,739,010<br />

2018<br />

I. quarter: 89.88; 5,838,003<br />

II. quarter: 88.25; 4,341,359<br />

III. quarter: 100.79; 5,135,198<br />

IV. quarter: 100.91; 6,814,244<br />

| | Source: BAFA, some data provisional<br />

www.bafa.de<br />

News


<strong>atw</strong> Vol. 64 (2019) | Issue 6/7 ı June/July<br />

378<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

journalist who has<br />

covered the nuclear<br />

industry <strong>for</strong> the past<br />

20 years and is<br />

currently editor-in-chief<br />

of UK-based Energy<br />

Storage Publishing.<br />

References<br />

Natural History<br />

Museum letter –<br />

https://bit.ly/<br />

2ZsMF6k<br />

European Energy<br />

Agency report –<br />

https://bit.ly/<br />

2WRldgS<br />

EV Revolution Could be Running on Empty<br />

Without <strong>Nuclear</strong><br />

Hardly a day goes by when we don’t hear about another model of electric car being launched. Fully electric and<br />

hybrid vehicles are all the craze.<br />

There is a frantic race – encouraged by governments<br />

around the world – to put the most electric vehicles (EVs)<br />

onto the roads. The aim is noble enough: to make every<br />

ef<strong>for</strong>t to cut greenhouse gas emissions and scrap the petrol<br />

and diesel-guzzling internal combustion engines.<br />

TV adverts and slick promotional videos show these<br />

‘green’ EVs darting around cities with solar panels on every<br />

building’s rooftop and running silently through the<br />

country­side, where windmills are more prolific than trees.<br />

But there is a big problem looming <strong>for</strong> this EV utopia…<br />

where is the electricity going to come from to keep<br />

recharging the vehicles’ batteries? And don’t <strong>for</strong>get the<br />

grid-scale battery energy storage systems that countries<br />

are also encouraging to be installed at a rapid pace. Solar<br />

and wind alone, on the scale that we currently know it, will<br />

not nearly be enough to keep these battery systems topped<br />

up and ready to be utilised at a moment’s notice.<br />

All this, perhaps unsurprisingly <strong>for</strong> readers of this<br />

journal, brings me to nuclear energy. The electric revolution<br />

in mobility is an incredible opportunity <strong>for</strong> nuclear<br />

and policymakers and politicians need to be made aware of<br />

that.<br />

In a recent announcement, experts warned that<br />

producing a new generation of electric vehicles and<br />

supplying the electricity to keep their batteries charged<br />

would add up to “huge implications” <strong>for</strong> the world’s natural<br />

resources.<br />

The UK alone would need just under twice the current<br />

annual world cobalt production to meet its EV targets <strong>for</strong><br />

2050, according to a letter to government climate change<br />

advisers co-authored by the head of earth sciences at the<br />

UK’s Natural History Museum, Prof Richard Herrington.<br />

In the letter, to the Committee on Climate Change,<br />

Herrington said the world must face up to the “raw<br />

­material cost of going green” – which he explained would<br />

require supplies of some metals to “increase dramatically”<br />

to fuel the desire <strong>for</strong> the “revolution in the way we travel”.<br />

In the UK, petrol and diesel cars make up the biggest<br />

share of the UK’s climate pollution, with an estimated<br />

31.5 million cars currently on UK roads, covering<br />

252.5 ­billion miles per year.<br />

To replace all these with EVs today, “assuming they use<br />

the most resource-frugal next-generation batteries”, the<br />

letter said it would require: 207,900 tonnes of cobalt (just<br />

under twice the annual global production), 264,600 tonnes<br />

of lithium carbonate (three quarters the world’s production),<br />

at least 7,200 tonnes of neodymium and dysprosium<br />

(nearly the entire world production of neodymium) and<br />

2,362,500 tonnes of copper (more than half the world’s<br />

production in 2018).<br />

On a global basis, <strong>for</strong> the expected 2bn cars on the<br />

world’s roads by 2050 to be electric, the letter said experts<br />

had calculated that the “annual production of neodymium<br />

and dysprosium would have to increase by 70%, copper<br />

output would need to more than double and cobalt output<br />

would need to increase at least three and a half times<br />

<strong>for</strong> the entire period from now until 2050 to satisfy the<br />

demand”.<br />

Switching to EVs <strong>for</strong> the UK fleet “comes with an energy<br />

cost too”, the letter said. “Energy costs <strong>for</strong> cobalt production<br />

are estimated at 7,000-8,000 kilowatt-hours<br />

(kWh) <strong>for</strong> every tonne of metal produced and <strong>for</strong> copper<br />

9,000 kWh/t. The rare-earth energy costs are at least<br />

3,350 kWh/t, so <strong>for</strong> the target of all 31.5 million cars, that<br />

requires 22.5 terawatt hours of power to produce the new<br />

metals, amounting to 6% of the UK’s current annual<br />

electrical usage.”<br />

There are also challenges of using ‘green energy’ to<br />

power electric cars, the letter said. “If wind farms are<br />

chosen to generate the power <strong>for</strong> the projected two billion<br />

cars, at UK average usage, this requires the equivalent of a<br />

further years’ worth of total global copper supply and 10<br />

years’ worth of global neodymium and dysprosium production<br />

to build the wind farms.”<br />

Solar power is also “problematic and resource hungry”,<br />

according to Herrington’s letter. “All the photovoltaic<br />

systems currently on the market are reliant on one or<br />

more raw materials classed as critical or near critical by<br />

the EU and/or the US Department of Energy.”<br />

Meanwhile, a new report from the European Environment<br />

Agency has warned that all parts of Europe’s energy<br />

system, from availability of energy sources to energy consumption,<br />

are potentially vulnerable to climate change and<br />

extreme weather events. The report said Europe’s energy<br />

system needs to adapt and become more climate resilient<br />

to secure reliable supplies of clean energy.<br />

Crucially, the Agency’s assessment warns that the most<br />

important changes “include increases in mean and ­extreme<br />

air and water temperatures, and changes in water availability,<br />

extreme climate‐related events, and coastal and<br />

marine hazards”. These changes will affect the availability<br />

of primary energy sources – especially renewable energy<br />

sources – as well as the trans<strong>for</strong>mation, transmission,<br />

distribution and storage of energy, and energy demand,<br />

the Agency said.<br />

The facts I present here not only speak <strong>for</strong> themselves,<br />

but they speak volumes <strong>for</strong> why nuclear energy must<br />

remain part of the global energy equation. In terms of the<br />

raw material on which nuclear power generation depends,<br />

the world’s supply of uranium is more than adequate to<br />

meet projected requirements <strong>for</strong> the <strong>for</strong>eseeable future,<br />

according to the latest edition of the ‘Red Book’.<br />

The evidence is clear and must be increasingly so, even<br />

to nuclear’s critics and naysayers. <strong>Nuclear</strong> has been at the<br />

<strong>for</strong>efront of the green, electricity-generating revolution <strong>for</strong><br />

decades and is a reliable and necessary technology partner<br />

<strong>for</strong> the future.<br />

<strong>Nuclear</strong> should not be treated as the ‘Cinderella’ of the<br />

energy family – left working to keep the lights on and<br />

industry running without recognition. If the EV revolution<br />

is to prosper it needs nuclear to shine and prosper too.<br />

Author<br />

John Shepherd<br />

<strong>Nuclear</strong> Today<br />

EV Revolution Could be Running on Empty Without <strong>Nuclear</strong> ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Rückbau kerntechnischer Anlagen<br />

In Kooperation mit<br />

TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

Seminar:<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Seminarinhalte<br />

Genehmigungen für die Stilllegung und den Rückbau<br />

ı<br />

ı<br />

Gestaltung der Übergänge zwischen der Betriebs- und der Stilllegungsgenehmigung<br />

Gestaltung der Übergänge zwischen Genehmigungs- und Aufsichtsphase<br />

Rechtliche Gestaltung des Genehmigungsverfahrens<br />

ı<br />

ı<br />

ı<br />

ı<br />

Elemente des Umweltbereiches<br />

UVP und Erörterungstermin<br />

Anfechtung von Genehmigungen<br />

Stellungnahmen der EU-Kommission<br />

Reststoffe und Abfälle<br />

ı<br />

ı<br />

ı<br />

ı<br />

Vorstellung von Reststoffkonzepten<br />

Bewertung der Reststoffkonzepte<br />

Neue Regelungen zum Übergang der Entsorgungsverantwortung<br />

Entsorgungsfragen rund um Abfälle aus dem Rückbau<br />

Zielgruppe<br />

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, Mitarbeiterinnen und Mitarbeiter<br />

von Betreibern, Industrie und Dienstleistern, die sich mit der Thematik aktuell bereits beschäftigen<br />

oder sich künftig damit auseinander setzen werden.<br />

Maximale Teilnehmerzahl: 12 Personen<br />

Referenten<br />

Dr. Stefan Kirsch<br />

Dr. Christian Raetzke<br />

Wir freuen uns auf Ihre Teilnahme!<br />

ı Abteilung Stilllegung, Entsorgung, Reaktorphysik, TÜV SÜD Energietechnik<br />

GmbH Baden-Württemberg<br />

ı Rechtsanwalt, Leipzig<br />

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />

Termin<br />

2 Tage<br />

24. bis 25. September 2019<br />

Tag 1: 10:30 bis 17:45 Uhr<br />

Tag 2: 09:00 bis 16:45 Uhr<br />

Veranstaltungsort<br />

Geschäftsstelle der INFORUM<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Teilnahmegebühr<br />

1.598,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

seminare@kernenergie.de


All-in-one:<br />

Proceedings of AMNT 2019<br />

Get presentations of all sessions on disc.<br />

p Order online: 89.– € *<br />

www.KernD.eu<br />

www.amnt2019.com<br />

#50AMNT

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!