05.05.2020 Views

atw - International Journal for Nuclear Power | 05.2020

Description Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information. www.nucmag.com

Description

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information.

www.nucmag.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>atw</strong> Vol. 65 (2020) | Issue 5 ı May<br />

292<br />

Inside<br />

Herzlichen Glückwunsch!<br />

KTG INSIDE<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

Juni 2020<br />

55 Jahre | 1965<br />

04. Dipl.-Phys. Jan-Christian Lewitz,<br />

Dresden<br />

60 Jahre | 1960<br />

14. Dipl.-Ing. Hermann Altendorfer,<br />

Essenbach<br />

81 Jahre | 1939<br />

06. Dr. Peter Drehmann, Kornwestheim<br />

07. Dr. Peter Antony-Spies, Liederbach<br />

10. Dipl.-Ing. Reinhard Seepolt, Hamburg<br />

14. Dr. Gustav Meyer-Kretschmer, Jülich<br />

23. Dr. Rolf Krieg, Karlsruhe<br />

82 Jahre | 1938<br />

25. Dipl.-Ing. Horst Roepenack, Bruchköbel<br />

87 Jahre | 1933<br />

12. Prof. Dr. Carsten Salander, Bad Sachsa<br />

88 Jahre | 1932<br />

28. Hans Schuster, Aachen<br />

94 Jahre | 1926<br />

27. Dipl.-Ing. Heinz-Arnold Leising,<br />

Bergisch Gladbach<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

70 Jahre | 1950<br />

21. Dr. Sieghard Hellmann, Grossenseebach<br />

76 Jahre | 1944<br />

08. Jürgen Fabian, Büsingen am Hochrhein<br />

24. Hans-Jürgen Schlesinger, Essen<br />

78 Jahre | 1942<br />

10. Ing. Wolfgang Feltes,<br />

Bergisch Gladbach<br />

79 Jahre | 1941<br />

15. Dr. Frank Depisch, Erlangen<br />

80 Jahre | 1940<br />

04. Dipl.-Phys. Hans-Peter Dyck, Forchheim<br />

13. Dr. Heinz Hoffmann, Einhausen<br />

83 Jahre | 1937<br />

10. Dipl.-Phys. Reinhard Wolf,<br />

Grosskrotzenburg<br />

84 Jahre | 1936<br />

12. Dipl.-Ing. Heinz Malmström, Ahaus<br />

24. Dipl.-Ing. Christian-Theodor Körner,<br />

Breitenbronn<br />

30. Kai-Michael Pülschen, Erlangen<br />

85 Jahre | 1935<br />

08. Dr. Ing. Heinrich Löffler, Wennigsen/CH<br />

08. Ing. Karl Rudolph, Wettingen<br />

17. Dipl.-Ing. Peter Gottlob,<br />

Stutensee-Friedrichstal<br />

23. Dipl.-Ing. Werner Schultz, Hirschberg<br />

22. Dipl.-Ing. Johann Pisecker, Tulln<br />

Nachträgliche<br />

Geburtstagsnennungen:<br />

März 2020<br />

80 Jahre | 1940<br />

7. Dr. Volker Klix, Gehrden<br />

Mai 2020<br />

79 Jahre | 1941<br />

16. Dr. Jürgen Baier, Höchberg<br />

NEWS<br />

Top<br />

<strong>Nuclear</strong> power supports clean<br />

energy transition with secure<br />

and flexible electricity supply<br />

(iaea) With a transition underway in<br />

the global energy industry to reduce<br />

greenhouse gas emissions and stem<br />

climate change, countries are looking<br />

at ways to ensure a continuous 24/7<br />

supply of clean electricity while avoiding<br />

power blackouts and disruptions<br />

to other critical facilities, such as<br />

public transport and medical care.<br />

<strong>Nuclear</strong> power is one solution, as<br />

the <strong>International</strong> Energy Agency<br />

noted this week in a commentary on<br />

how the Covid-19 crisis also highlights<br />

the need <strong>for</strong> a secure and flexible<br />

electricity supply.<br />

As countries increasingly turn to<br />

solar and wind to generate electricity,<br />

flexibly operated nuclear power plants<br />

(NPPs) can provide a reliable stream<br />

of low carbon power as well as fill the<br />

output gaps left when variable<br />

renewable sources (VREs) lack<br />

sunshine or wind. Likewise, NPPs can<br />

adapt their power production when<br />

renewable generation varies. This<br />

balancing act, known as non-baseload<br />

operation, can ensure the supply of<br />

power and limit the risk of disruptions<br />

by enhancing the reliability of the<br />

electrical grid.<br />

But this flexibility comes at a cost.<br />

Most existing NPPs are best run at<br />

full or “baseload power” because<br />

with high upfront costs but very low<br />

operating costs, their economics<br />

depend on running close to capacity<br />

over many years.<br />

“Flexible operation results in<br />

higher operation and maintenance<br />

costs, and the magnitude of those<br />

costs will depend on the grid system’s<br />

flexibility needs,” said Nikhil Kumar, a<br />

contributor to a <strong>for</strong>thcoming IAEA<br />

report on the economics of flexible<br />

operation and Managing Director at<br />

U.K.-based Intertek, an assurance,<br />

inspection, product testing and certification<br />

company. “These costs increase<br />

as the depth and periodicity of load<br />

following increases.”<br />

France, where NPPs provide<br />

almost three-quarters of the country's<br />

electricity, has years of operational<br />

experience adjusting output based<br />

on electricity demand. Around twothirds<br />

of France's NPPs utilize load<br />

following and frequency control on a<br />

regular basis, which helps minimize<br />

the days per year in which electricity<br />

generation exceeds demand.<br />

Germany also uses load following<br />

and frequency control to respond to<br />

market demand and ensure grid<br />

stability. Load following NPPs have<br />

KTG Inside

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!