16.01.2013 Views

pdf file

pdf file

pdf file

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

18 M. LEWIN, P. T. NAM, S. SERFATY, AND J. P. SOLOVEJ<br />

Lemma 4 (Strong condensation of bosonic atoms). If t ≤ tc, then<br />

�<br />

Ht,N −NeH ≥ 1−N −2/3� �N<br />

(ht)i −CN 1/3 . (31)<br />

Remark 8. In particular, from (31) it follows that if 〈Ht,N〉Ψ ≤ NeH +R,<br />

then 〈u0,γΨu0〉 ≥ N − CN 1/3 which is (A3). When t < tc, by Theorem 2<br />

we can improve the estimate to 〈u0,γΨu0〉 ≥ N −C. The latter was shown<br />

by Bach, Lewis, Lieb and Siedentop in [4] using a different method.<br />

Proof. We start by estimating the terms on the right side of the Lieb-Oxford<br />

inequality (30). First, from the positivity D(f,f) ≥ 0, we have<br />

1<br />

2 D(ρΨ,ρΨ) ≥ D(ρΨ,N|ut| 2 )− 1<br />

2 D(N|ut| 2 ,N|ut| 2 )<br />

= ND(ρΨ,|ut| 2 )+N 2 (eH(t)−µH(t)). (32)<br />

Ontheotherhand,usingtheHoffmann-Ostenhofinequality[29]andSobolev’s<br />

inequality [36, Theorem 8.3] we can estimate<br />

� �<br />

N�<br />

� �<br />

Ψ, −∆i Ψ = Tr[−∆γΨ] ≥ 〈 √ ρΨ,−∆ √ �� �1/3 ρΨ〉 ≥ C .<br />

i=1<br />

i=1<br />

R3 ρ 3 Ψ<br />

Therefore, by Hölder inequality, we find that<br />

�<br />

ρ 4/3<br />

Ψ ≤<br />

��<br />

ρ 3 �1/6�� �5/6 Ψ ρΨ ≤ εTr[−∆γΨ]+C N5/3<br />

.<br />

ε<br />

Thus using the Lieb-Oxford inequality (30), the estimate (32) and ht ≥<br />

−∆/2−C we get<br />

�<br />

〈Ht,N〉Ψ ≥ NeH(t)+ 1− 2ε<br />

�<br />

Tr[htγΨ]−2Cε−Cε<br />

N<br />

−1 N 2/3<br />

for all ε > 0. Replacing ε by N 1/3 /2, we obtain (31). �<br />

All this shows that if t < tc, then Assumptions (A1)-(A2)-(A3s) hold<br />

true, and we may apply Theorem 2 to show that the lower spectrum of Ht,Z<br />

converges to the lower spectrum of the Bogoliubov Hamiltonian<br />

�<br />

Ht := a ∗ (x) � (ht +Kt)a � (x)dx<br />

Ω<br />

+ 1<br />

2<br />

�<br />

Ω<br />

�<br />

Ω<br />

�<br />

Kt(x,y)<br />

which acts on the Fock space F+ = � ∞<br />

n=0<br />

a ∗ (x)a ∗ (y)+a(x)a(y)<br />

�<br />

dxdy,<br />

� n<br />

sym H+. Beside some basic<br />

propertiesofHt alreadygiven inTheorem1, wehavethefollowingadditional<br />

information.<br />

Proposition 5 (Bogoliubov Hamiltonian of bosonic atoms). For every t ∈<br />

(0,tc) one has<br />

σess(Ht) = [infσ(Ht)−µH(t),∞).<br />

Moreover, if t < 1, then Ht has infinitely many eigenvalues below its essential<br />

spectrum. On the other hand, if t ≥ 1, then Ht only has finitely many<br />

eigenvalues below its essential spectrum.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!