28.01.2013 Views

Three-dimensional Lagrangian Tracer Modelling in Wadden Sea ...

Three-dimensional Lagrangian Tracer Modelling in Wadden Sea ...

Three-dimensional Lagrangian Tracer Modelling in Wadden Sea ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 2. THEORY 27<br />

i, j, k and not x,y,z. The position of a particle as well as its velocity is transformed<br />

by divid<strong>in</strong>g their components by the correspond<strong>in</strong>g grid spac<strong>in</strong>g (i.e.<br />

�xT = (xT /∆x, yT /∆y, zT /∆z) = (iT , jT , kT ). The <strong>in</strong>dex (i, j, k) of the grid<br />

box conta<strong>in</strong><strong>in</strong>g a particle is computed from the particle position as<br />

i = <strong>in</strong>t(iT + 0.5) (2.4.22)<br />

j = <strong>in</strong>t(jT + 0.5) (2.4.23)<br />

k = <strong>in</strong>t(kT + 0.5). (2.4.24)<br />

Necessary for the <strong>in</strong>terpolation of the velocity are the weight<strong>in</strong>g factors which<br />

are determ<strong>in</strong>ed through<br />

a = iT − real(i − 1) (2.4.25)<br />

b = jT − real(j − 1) (2.4.26)<br />

c = kT − real(k − 1) (2.4.27)<br />

so that the tracer velocity can be obta<strong>in</strong>ed from Eq. (2.4.2) - (2.4.4). F<strong>in</strong>ally,<br />

the position is updated with respect to cross<strong>in</strong>g of boundaries<br />

i n+1<br />

T<br />

j n+1<br />

T<br />

k n+1<br />

T<br />

= <strong>in</strong>T + un � �<br />

T ∆tT ∆u<br />

e − 1<br />

∆u<br />

= jn T + vn T<br />

∆v<br />

= kn T + wn T<br />

∆w<br />

� e ∆tT ∆v − 1 �<br />

(2.4.28)<br />

(2.4.29)<br />

� e ∆tT ∆w − 1 � . (2.4.30)<br />

The gradients of u, v and w are discretised as<br />

∆u =<br />

∆v =<br />

∆w =<br />

1<br />

1<br />

n+<br />

un+ 2 (i, j, k) − u 2 (i − 1, j, k)<br />

∆x<br />

1<br />

1<br />

n+<br />

vn+ 2 (i, j, k) − v<br />

∆y<br />

2 (i, j − 1, k)<br />

(2.4.31)<br />

(2.4.32)<br />

1<br />

1<br />

n+<br />

wn+ 2 (i, j, k) − w 2 (i, j, k − 1)<br />

, (2.4.33)<br />

h(i, j, k)<br />

s<strong>in</strong>ce they are updated <strong>in</strong> GETM with an offset of 1/2∆t (see Fig. 2.1.1).<br />

2.4.2 <strong>Modell<strong>in</strong>g</strong> diffusion<br />

2.4.2.1 The stochastic differential equation (SDE)<br />

In 1908, Langev<strong>in</strong> considered the problem of the dynamical description of<br />

molecular diffusion. He suggested that the equation of motion of a particle

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!