28.01.2013 Views

Three-dimensional Lagrangian Tracer Modelling in Wadden Sea ...

Three-dimensional Lagrangian Tracer Modelling in Wadden Sea ...

Three-dimensional Lagrangian Tracer Modelling in Wadden Sea ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 2. THEORY 33<br />

where BT is the transpose of matrix B. Sett<strong>in</strong>g n = 3, � A = (u, v, w),<br />

⎡<br />

⎤<br />

Ax 0 0<br />

⎢<br />

⎥<br />

⎣ 0 Ay 0 ⎦ and p(�x, t| �x0, t0) = C(�x, t) the Fokker-Planck<br />

1<br />

2BBT =<br />

0 0 ν ′<br />

equation becomes<br />

∂C<br />

∂t<br />

+ ∇ · (�u C) = ∂2<br />

∂x 2 (Ax C) + ∂2<br />

∂y 2 (Ay C) + ∂2<br />

∂z 2 (ν′ C) (2.4.54)<br />

which is similar to the three-<strong>dimensional</strong> advection-diffusion equation (2.2.37)<br />

∂C<br />

∂t<br />

�<br />

∂<br />

+ ∇ · (�u C) = Ax<br />

∂x<br />

�<br />

∂C<br />

+<br />

∂x<br />

∂<br />

�<br />

Ay<br />

∂y<br />

�<br />

∂C<br />

+<br />

∂y<br />

∂<br />

�<br />

ν<br />

∂z<br />

�<br />

′ ∂C<br />

. (2.4.55)<br />

∂z<br />

The apparent difference between both equations (at the right-hand side) and<br />

its mean<strong>in</strong>g for modell<strong>in</strong>g diffusion with the Fokker-Planck equation (2.4.54)<br />

will be discussed <strong>in</strong> the next section.<br />

2.4.2.3 <strong>Modell<strong>in</strong>g</strong> diffusion with random walk<br />

A random walk model consist<strong>in</strong>g of a large number of statistically <strong>in</strong>dependent<br />

steps is suitable to represent the chaotic nature of turbulent diffusion.<br />

The size of the diffusive step is determ<strong>in</strong>ed by the stochastic differential<br />

equation (2.4.35) whose unknown quantities have been determ<strong>in</strong>ed <strong>in</strong> the<br />

last section as<br />

�A(�x, t) = (u(�x, t), v(�x, t), w(�x, t)) (2.4.56)<br />

⎡ √<br />

2 Ax 0 0<br />

⎢<br />

B = ⎣ 0 � ⎤<br />

⎥<br />

2 Ay 0 ⎦ . (2.4.57)<br />

√<br />

0 0 2 ν ′<br />

Now, it is possible to write down Eq. (2.4.40) as follows<br />

d�x(t) =<br />

⎛<br />

⎜<br />

⎝<br />

u(�x, t)<br />

v(�x, t)<br />

w(�x, t)<br />

⎞<br />

⎡<br />

⎟ ⎢<br />

⎠ dt + ⎣<br />

√<br />

2 Ax 0 0<br />

0 � ⎤ ⎛<br />

⎥ ⎜<br />

2 Ay 0 ⎦ ⎝<br />

√<br />

0 0 2 ν ′<br />

Z1<br />

Z2<br />

Z3<br />

⎞<br />

⎟<br />

⎠ √ dt,<br />

(2.4.58)<br />

where Z1, Z2, Z3 are <strong>in</strong>dependent random numbers from the standard normal<br />

distribution with zero mean and unit variance. Unfortunately, modell<strong>in</strong>g<br />

turbulent diffusion with the Fokker-Planck equation is not realistic. Visser

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!