30.01.2013 Views

november 2010 volume 1 number 2 - Advances in Electronics and ...

november 2010 volume 1 number 2 - Advances in Electronics and ...

november 2010 volume 1 number 2 - Advances in Electronics and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

62 ADVANCES IN ELECTRONICS AND TELECOMMUNICATIONS, VOL. 1, NO. 2, NOVEMBER <strong>2010</strong><br />

Fig. 1. Evolution of the first-order soliton (N = 1) over one soliton period.<br />

the core, then the optimal value of the normalized frequency<br />

Vopt ofthemodeledstep<strong>in</strong>dexfiberisalso<strong>in</strong>creas<strong>in</strong>g.Increase<br />

of Vopt implies <strong>in</strong>crease of zero dispersion wavelength λZD<br />

<strong>and</strong> cut off wavelength λC, which are equal <strong>in</strong> case of<br />

normalized frequency optimization. Additionally, growth of<br />

Vopt value is responsible for rise of the average power curried<br />

by the core P1. There is only one more parameter which<br />

value is <strong>in</strong>creas<strong>in</strong>g when mol % dop<strong>in</strong>g of germaniumdioxide<br />

is <strong>in</strong>creas<strong>in</strong>g. It is nonl<strong>in</strong>ear parameter γ, which <strong>in</strong> turn is<br />

responsible for decreas<strong>in</strong>g the peak power needed to generate<br />

fundamental soliton <strong>in</strong> each case of step <strong>in</strong>dex fiber model<strong>in</strong>g<br />

process. Furthermore, decrease of dispersion parameter D<br />

<strong>and</strong> absolute value of group velocity dispersion parameter<br />

β2 is responsible for <strong>in</strong>crease of dispersion length LD <strong>and</strong><br />

value of the soliton period z0. Fundamental disadvantage<br />

of <strong>in</strong>creas<strong>in</strong>g λZD <strong>and</strong> λC is decreas<strong>in</strong>g of bright soliton<br />

generation region ∆λZD <strong>and</strong> s<strong>in</strong>gle mode operation region<br />

∆λC, which are essential <strong>in</strong> wavelength division multiplex<strong>in</strong>g<br />

technique application.<br />

REFERENCES<br />

[1] G. P.Agrawal, Nonl<strong>in</strong>ear Fiber Optics, third edition ed. Academic Press,<br />

2001.<br />

[2] ——, Applications of Nonl<strong>in</strong>ear Fiber Optics. Academic Press, 2001.<br />

[3] ——, Fiber-Optic Communication Systems. John Wiley & Sons, 2002.<br />

[4] E. Iannone, F. Matera, A. Mecozzi, <strong>and</strong> M. Settembre, Nonl<strong>in</strong>ear Optical<br />

Communication Networks. John Wiley & Sons, 1998.<br />

[5] G. Keiser, Optical Fiber Communications. McGraw-Hill, 1991.<br />

[6] A. Majewski, Teoria i projektowanie ´Swiatłowodów. WNT, Warszawa,<br />

1991, (<strong>in</strong> Polish).<br />

[7] M. J. Adams, An Introduction to Optical Waveguides. John Wiley &<br />

Sons, 1981.<br />

Tomasz Kaczmarek received the M.Sc. degree <strong>in</strong> electrical eng<strong>in</strong>eer<strong>in</strong>g from<br />

Kielce University of Technology <strong>in</strong> 1994 <strong>and</strong> the Ph.D. degree <strong>in</strong> electronic<br />

eng<strong>in</strong>eer<strong>in</strong>g from Warsaw University of Technology <strong>in</strong> 2002. Currently he<br />

is the Head of Laboratory of Optical Fiber Technology of the Institute of<br />

Telecommunication, Photonics <strong>and</strong> Nanomaterials at the Kielce University of<br />

Technology. He authored <strong>and</strong> co-authored over 30 publications. His current<br />

research <strong>in</strong>terests <strong>in</strong>clude fiber optics <strong>and</strong> nonl<strong>in</strong>ear fiber optics.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!