30.01.2013 Views

THÈSE DE DOCTORAT ELLOUMI Mounir Espaces duaux de ...

THÈSE DE DOCTORAT ELLOUMI Mounir Espaces duaux de ...

THÈSE DE DOCTORAT ELLOUMI Mounir Espaces duaux de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

36 Dual topology of the motion groups SO(n) ⋉ R n<br />

instead of ρ for the representation of SO(n − 1) with highest weight µ and<br />

π(µ,r) instead of π(ρµ,ℓr). The representation π(µ,r) is realized on L 2 (SO(n)) as<br />

follows ; for all (A, x) ∈ Mn and all B ∈ SO(n)<br />

π(µ,r)(A, x)F (B) = e −i〈Bℓr,x〉 F (A −1 B), (F ∈ L 2 (SO(n))). (2.10)<br />

In this way we obtain all the irreducible representations of Mn, which are<br />

not trivial on its normal subgroup R n .<br />

On the other hand, every irreducible unitary representation τλ of SO(n)<br />

extends to an irreducible representation (also <strong>de</strong>noted by τλ) of the entire<br />

group Mn, <strong>de</strong>fined by<br />

Now Mackey’s theory tells us that<br />

Proposition 2.2.2.<br />

Pn := � SO(n − 1) × R∗ +<br />

τλ(A, x) := τλ(A), A ∈ SO(n), x ∈ R n .<br />

� SO(n) ⋉ Rn is in bijection with the set of parameters<br />

�<br />

�SO(n).<br />

2.2.3 Co-adjoint orbits attached to irreducible representations.<br />

Let J =<br />

�<br />

0<br />

−1<br />

�<br />

1<br />

. We associate to the representation π(µ,r)<br />

0<br />

the linear<br />

functional (Jµ, ℓr) in m∗ n where<br />

⎛<br />

µ1J<br />

⎜<br />

Jµ = ⎜<br />

.<br />

⎝ 0<br />

. . .<br />

. ..<br />

. . .<br />

0<br />

.<br />

µdJ<br />

⎞<br />

0<br />

⎟<br />

. ⎟<br />

0 ⎠<br />

0 . . . 0 0<br />

,<br />

if n = 2d + 1 is odd and if n = 2d is even, then<br />

⎛<br />

µ1J . . . 0 0<br />

⎜<br />

.<br />

⎜<br />

. .. . .<br />

Jµ = ⎜<br />

0 . . . µd−1J 0<br />

⎝ 0 . . . 0 0<br />

⎞<br />

0<br />

⎟<br />

. ⎟<br />

0 ⎟ .<br />

⎟<br />

0 ⎠<br />

0 . . . 0 0 0<br />

We see that the stabilizer Mn(ℓ) of ℓ = (Jµ, ℓr) in Mn is equal to Mn(ℓ) =<br />

SO(n)(ℓ) ⋉ R n (ℓ). In<strong>de</strong>ed, by (2.3), we have that<br />

Mn(ℓ) = {(A, a) ∈ Mn; (AJµA t + (Aℓra t − a(Aℓr) t ), Aℓr) = (Jµ, ℓr)}<br />

= {(A, a) ∈ Mn; A ∈ SO(n − 1), AJµA t + (ℓra t − a(ℓr) t ) = Jµ}<br />

= {(A, a) ∈ Mn; a ∈ Rℓr, A ∈ SO(n − 1), AJµA t = Jµ},

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!