30.01.2013 Views

THÈSE DE DOCTORAT ELLOUMI Mounir Espaces duaux de ...

THÈSE DE DOCTORAT ELLOUMI Mounir Espaces duaux de ...

THÈSE DE DOCTORAT ELLOUMI Mounir Espaces duaux de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

42 Dual topology of the motion groups SO(n) ⋉ R n<br />

Lemma 2.4.5. Let µ1 ≥ ... ≥ µd−1 ≥ |µd| and λ1 ≥ ... ≥ λd ≥ 0, where the<br />

λ’s and µ’s are integers. Then, we have λ1 ≥ µ1 ≥ λ2 ≥ ... ≥ µd−1 ≥ λd ≥<br />

|µd| if and only if there exists a skew-symmetric matrix<br />

⎛<br />

⎞<br />

0 0 . . . 0 0 −b1<br />

⎜ 0 0 . . . 0 0 −b2<br />

⎟<br />

⎜<br />

..<br />

⎟<br />

. . . . . . ⎟<br />

B = ⎜<br />

⎝<br />

0 0 . . . 0 0 −b2d−1<br />

0 0 . . . 0 0 −b2d<br />

b1 b2 . . . b2d−1 b2d 0<br />

such that spectrum(Jµ + B) = {0, ±iλ1, ±iλ2, ..., ±iλd}.<br />

⎟<br />

⎠<br />

(2.19)<br />

Démonstration. It is easy to prove that, for all x ∈ R, <strong>de</strong>t(Jµ + B − ixI) =<br />

i(−1) d+1 xP (x) where<br />

P (x) =<br />

d�<br />

(x 2 − µ 2 i ) −<br />

i=1<br />

d�<br />

j=1<br />

�<br />

(b 2 2j−1 + b 2 2j)<br />

d�<br />

i=1,i�=j<br />

(x 2 − µ 2 �<br />

i ) . (2.20)<br />

Hence we remark so that zero is always an element of the spectrum and that<br />

lim P (x) = +∞,<br />

x→+∞<br />

P (µ1) = −(b2 1 + b2 2) �d (µ 2 1 − µ 2 i ) ≤ 0,<br />

i=2<br />

P (µ2) = −(b 2 3 + b 2 4) � d<br />

i=1,i�=2<br />

P (µ3) = −(b 2 5 + b 2 6) � d<br />

i=1,i�=3<br />

P (µ4) = −(b 2 7 + b 2 8) � d<br />

i=1,i�=4<br />

(µ 2 2 − µ 2 i ) ≥ 0,<br />

(µ 2 3 − µ 2 i ) ≤ 0,<br />

(µ 2 4 − µ 2 i ) ≥ 0,<br />

and so on, i.e P (µi) ≤ 0 if i is odd and P (µi) ≥ 0, if i is even. We <strong>de</strong>duce<br />

that if ±iλ1, ±iλ2, ..., ±iλd are the elements of the spectrum of Jµ + B,<br />

(i.e. ±λ1, ±λ2, ..., ±λd are all possible roots of the polynomial P ), then we<br />

necessarily have<br />

λ1 ≥ µ1 ≥ λ2 ≥ ... ≥ µd−1 ≥ λd ≥ |µd|. (2.21)<br />

Conversely, assume first that all µj are pairwise distinct. We can choose the<br />

skew-symmetric matrix B such that<br />

b 2 2j−1 + b 2 �i=j i=1<br />

2j =<br />

(λ2i − µ 2 j) �i=d i=j+1 (µ2j − λ2 i )<br />

�i=j−1 i=1 (µ 2 i − µ2j ) �i=d i=j+1 (µ2j − µ2 �i=d i=1<br />

=<br />

i ) (λ2i − µ 2 j)<br />

�i=d i=1,i�=j (µ2i − µ2 (2.22)<br />

j )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!