13.07.2015 Views

Successioni e serie geometrica

Successioni e serie geometrica

Successioni e serie geometrica

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2•Allora2. Analisi del caso mistolim x n =n→∞⎧⎪⎨⎪⎩x n = q n+∞ q > 11 q = 10 q ∈] − 1, 1[̸ ∃ q ≤ −1Consideriamo•1 + q + q 2 + · · · + q n−1 + · · ·<strong>serie</strong> <strong>geometrica</strong> di ragione q.Ridotta −nsimas n = 1 + q + q 2 + · · · + q n−1Se q = 1 si has n = 1 + 1 + · · · + 1 = n.Sia q ≠ 1. Abbiamo dimostrato ches n = 1 + q + q 2 + · · · + q n−1 = 1 − qn1 − qSe |q| < 1 allora lim n→∞ q n = 0 e pertantolim s 1 − q nn = limn→∞ n→∞ 1 − q = 11 − q .Se q > 1, poichè lim n→∞ q n = +∞ si halim s n = limn→∞ n→∞Sia ora q = −1,q n − 1q − 1 = 1q − 1 · limn→∞ qn − 1 = 1 · +∞ = +∞q − 1s n = 1 − (−1)n2={0 , n = 2p1 , n = 2p + 1Pertanto la successione (s n ) N non è regolare.Sia infine q < −1. Possiamo scrivere q = −|q|, e quindis n = 1 − (−|q|)n1 + |q|= 1 − (−1)n |q| n1 + |q|⎧⎪⎨=⎪⎩1 − |q| 2p1 + |q| , n = 2p1 + |q| 2p−1, n = 2p − 11 + |q|Ne segue che S 2p → −∞ e S 2p−1 → +∞ e pertanto ̸ ∃ lim n→∞ s nAllora⎧+∞ q ≥ 1⎪⎨lim s 1n =q ∈] − 1, 1[n→∞ ⎪⎩ 1 − q̸ ∃ q ≤ −1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!