02.07.2013 Aufrufe

bunsenmagazin - Deutsche Bunsengesellschaft für Physikalische ...

bunsenmagazin - Deutsche Bunsengesellschaft für Physikalische ...

bunsenmagazin - Deutsche Bunsengesellschaft für Physikalische ...

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

UNTERRICHT<br />

A z<br />

B<br />

C<br />

secular<br />

forbidden<br />

transition<br />

FIG. 16: Principle of three-pulse ESEEM. (A) Electron-nuclear forbidden transitions<br />

occur since the nuclear spin has different quantization axes for the<br />

electron spin α and β states. This is because the hyperfine coupling (magenta)<br />

has different signs for the two states and is comparable to the nuclear Zeeman<br />

interaction (dark blue). When the electron spin is flipped to its β state, the<br />

longitudinal nuclear magnetization for the former α electron spin state is partially<br />

converted to transversal magnetization and starts to precess about the<br />

new quantization axis (green). (B) Level scheme for a system consisting of an<br />

electron spin S = 1/2 (red) and a nuclear spin I = 1/2 (blue). Transitions with<br />

mw frequencies are shown red, transitions with Τ frequencies blue. (C) Pulse<br />

sequence of the three-puIse ESEEM experiment with transition types for one<br />

of the coherence transfer pathways that lead to modulation of the stimulated<br />

echo with nuclear frequencies.<br />

The stimulated echo formed after another delay time Τ is thus<br />

superimposed by a modulation with nuclear frequencies ωα,<br />

and ωβ. The ESEEM spectrum is obtained by subtracting the<br />

unmodulated part of the echo decay, which originates from coherence<br />

transfer pathways with only allowed transitions, and<br />

Fourier transformation of the nuclear frequency oscillations.<br />

IX. BOX 5<br />

<br />

A/2<br />

- A/2<br />

- B/2 B/2<br />

electron/nuclear nuclear<br />

/2<br />

coherence<br />

/2<br />

coherence<br />

/2<br />

electron<br />

coherence<br />

T<br />

<br />

allowed<br />

transition<br />

I<br />

pseudosecular<br />

<br />

<br />

x<br />

forbidden<br />

transition<br />

nuclear modulation<br />

of electron spin<br />

echo decay<br />

In order to separate the interaction between two electron spins<br />

from other interactions two mw fi elds with different frequencies<br />

are used to excite them individually (“two color excitation“).<br />

At the observer frequency an echo experiment is performed,<br />

which refocusses all interactions of the observed A spins that<br />

110<br />

allowed electron<br />

<br />

<br />

forbidden<br />

forbidden<br />

<br />

nuclear<br />

<br />

nuclear<br />

<br />

<br />

allowed electron<br />

lead to inhomogeneous line broadening. At a variable time<br />

during the pulse sequence an mw π pulse is applied at the<br />

(different) pump frequency. This pulse exclusively excites another<br />

set of spins (B spins), if the frequency separation is much<br />

larger than both the homogeneous line width of spin packets A<br />

and B and the excitation bandwidth of the pulses.<br />

The local fi eld induced at the A spin by a B spin is thus inverted,<br />

which leads to a shift of tbe resonance frequency of the<br />

A spin, determined by the dipole-dipole coupling (see Fig. 17).<br />

This frequency shift is observed as a modulation of the echo<br />

signal as a function of the position of the pump pulse in the<br />

sequence 15,16 .<br />

For a well defi ned distance r the oscillation frequency is proportional<br />

to r –3 with a proportionality constant that can be computed<br />

from fi rst principles. Exact distance measurements are thus<br />

possible without calibration. For disordered structures the observed<br />

time dependence can be<br />

A<br />

B<br />

BUNSEN-MAGAZIN · 10. JAHRGANG · 3/2008<br />

local field inverted local field<br />

pump<br />

pulse<br />

dd A 2<br />

<br />

dd B 2<br />

dd<br />

A<br />

2<br />

<br />

dd<br />

B<br />

2<br />

<br />

<br />

<br />

<br />

dd B 2<br />

<br />

dd<br />

A<br />

<br />

2<br />

dd<br />

B<br />

2<br />

<br />

dd<br />

A<br />

<br />

2<br />

FIG. 17: Principle of the DEER experiment. (A) The π pump pulse inverts the<br />

B spin (red) and thus the local field at the A spin (green). (B) This inversion<br />

causes a transfer of an electron coherence (wavy lines) between the two transitions<br />

belonging to the dipolar doublet of the A spin. The resonance frequency<br />

changes by the dipole-dipole coupling ωdd. An analogous local field inversion<br />

and coherence transfer is effected by the π pulse in the HYSCORE experiment,<br />

with the nuclear spin substituting for the observer A spin and the electron spin<br />

for the pumped B spin.<br />

directly converted into a distance distribution using appropriate<br />

transformations 4,17,18 .

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!