23.01.2014 Aufrufe

Übungsblatt 4 - IGPM

Übungsblatt 4 - IGPM

Übungsblatt 4 - IGPM

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

Numerische Analysis III - WS 13/14<br />

Prof. Dr. Wolfgang Dahmen — Felix Gruber, M. Sc.<br />

4. Übung<br />

Abgabe: bis Freitag den 8.11.2013 um 8:10 Uhr in den Einwurfkasten vor Raum 149, Hauptgebäude<br />

oder in der Übung. Um die Korrektur der Übungen zu erleichtern, bitte Programme an gruber@igpm.<br />

rwth-aachen.de schicken. Bitte zusätzlich immer einen Ausdruck des Programms abgeben.<br />

Aufgabe 9: (Weiße Mäuse)<br />

In den Ecken des Einheitsquadrates [0, 1] 2 sitzen vier weiße Mäuse. Zur Zeit t = 0 beginnen<br />

diese so zu laufen, dass jede Maus jederzeit mit konstanter Geschwindigkeit v = 1 auf ihren<br />

rechten Nachbarn zuläuft.<br />

a) Geben Sie ein Anfangswertproblem an, welches die Laufwege (Trajektorien) der Mäuse<br />

beschreibt.<br />

b) Berechnen Sie mit dem Programm aus Aufgabe 7 eine Approximationslösung des in a)<br />

aufgestellten Systems und plotten Sie die Laufwege der Mäuse.<br />

Punkte: 3 + 3 = 6<br />

Aufgabe 10: (Programmieraufgabe Einschrittverfahren Teil II)<br />

Ziel dieser Aufgabe ist es, ihr Programm aus Aufgabe 7 so zu erweitern, dass nun auch implizite<br />

Verfahren damit gerechnet werden können. Dazu vervollständigen Sie Schritt für Schritt das<br />

vorliegende Framework (ssmA10.cpp).<br />

a) Formulieren Sie das Newton-Verfahren für das implizite Euler-Verfahren.<br />

b) Leiten Sie von der Klasse ssm eine Klasse ssmImplicitEuler ab, in welche Sie die Schrittfunktion<br />

des impliziten Euler-Verfahrens implementieren. Das auftretende nichtlineare<br />

Gleichungssystem soll mithilfe des Newton-Verfahrens gelöst werden.<br />

c) Testen Sie ihr Programm mit dem folgenden Anfangswertproblem<br />

y ′ (t) = y(t) · (1 − y(t)) , y(0) = 10,<br />

und bestimmen Sie analog zu Aufgabe 7d) die Konvergenzordnung.<br />

Hinweis: Zeigen Sie, dass y(t) = ( 1 − e −t 9<br />

10 )) −1<br />

die exakte Lösung des Anfangswertproblems<br />

ist.<br />

Punkte: 3 + 7 + 3 = 13


Aufgabe 11: (Inkrement-Vorschrift impliziter Verfahren)<br />

Sei ein implizites Einschrittverfahren für das Anfangswertproblem<br />

y ′ (t) = f(t, y(t)), y(t a ) = y a<br />

gegeben durch die folgende Verfahrensvorschrift:<br />

Zeigen Sie folgende Aussagen:<br />

y j+1 = y j + h ˜φ f (t j , y j , y j+1 , h).<br />

a) Falls ˜φ f : [a, b]×R m ×R m ×[0, h 0 ] → R m Lipschitz-stetig bezüglich der dritten Komponente<br />

ist, dann existiert für hinreichend kleines h 0 ein φ f : [a, b] × R m × [0, h 0 ] → R m , so dass<br />

gilt:<br />

y j+1 = y j + hφ f (t j , y j , h).<br />

Hinweis: Zeigen Sie, dass z = y j +h ˜φ f (t j , y j , z, h) für hinreichend kleines h eine eindeutige<br />

Lösung besitzt.<br />

b) Sei y ′ = Ay, für ein A ∈ R n×n . Leiten Sie für die Trapezregel die Verfahrensvorschrift<br />

φ f (t j , y j , h) her.<br />

c) Es existiere ein φ f : [a, b] × R m × [0, h 0 ] → R m mit<br />

y j+1 = y j + hφ f (t j , y j , h).<br />

Dann hat das implizite Einschrittverfahren genau dann Konsistenzordnung 1, wenn<br />

gilt.<br />

f(t a , y a ) = ˜φ f (t a , y a , y a , 0)<br />

d) Sei ˜φ f Lipschitz-stetig bezüglich der zweiten und dritten Komponente. Weiterhin existiere<br />

ein φ f : [a, b] × R m × [0, h 0 ] → R m mit<br />

y j+1 = y j + hφ f (t j , y j , h).<br />

Dann ist φ f Lipschitz-stetig bezüglich der zweiten Komponente.<br />

Punkte: 5 + 3 + 3 + 5 = 16<br />

Gesamtpunktzahl: 35 Punkte

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!