19.05.2012 Views

Wear parts

Wear parts

Wear parts

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Wear</strong> <strong>parts</strong>


2<br />

CERATIZIT – the parent companies<br />

Headquarters and parent company in<br />

MAMER / Luxembourg<br />

Hard material matters – it is the<br />

core of our business. Through<br />

in-depth knowledge and highly<br />

flexible production facilities we<br />

strive to provide our business<br />

partners with direct competitive<br />

advantages in the field of hard<br />

materials for tooling solutions<br />

and wear <strong>parts</strong>. Our dedication<br />

to hard material matters creates<br />

intelligent solutions for tomorrow<br />

and time to come.<br />

North America<br />

• USA<br />

South America<br />

• Brasil<br />

Direct sales and distribution partners<br />

Production plants in the three<br />

main economic areas and a<br />

worldwide sales network of<br />

subsidiaries and distribution<br />

partners ensure a quick response<br />

to customer needs. In-house<br />

training courses and seminars<br />

guarantee that both business<br />

partners and employees share<br />

the latest information on our product<br />

range.<br />

Europe<br />

• Austria<br />

• Bulgaria<br />

• Czech Republic<br />

• France<br />

• Germany<br />

• Hungary<br />

• Italy<br />

• Luxembourg<br />

• Netherlands<br />

• Poland<br />

• Switzerland<br />

• Spain<br />

• United Kingdom<br />

Parent company in REUTTE / Austria<br />

We promote intensive dialogue<br />

with our customers and strive for<br />

long-term business relations on<br />

a partnership basis.<br />

The CERATIZIT corporate value<br />

‘The focus and point of view of<br />

our business partners matters’<br />

is a guiding principle for all<br />

CERATIZIT employees worldwide.<br />

Asia<br />

• China<br />

• India<br />

• Japan


CERATIZIT – other production sites for wear <strong>parts</strong><br />

CERATIZIT Hitzacker, Germany<br />

Production site for:<br />

• blanks for metal forming<br />

CERATIZIT Horb, Germany<br />

Production site for:<br />

• general wear <strong>parts</strong> and preforms<br />

CERATIZIT Schweiz AG<br />

Production site for:<br />

• blanks and finished <strong>parts</strong> for<br />

various segments<br />

CERATIZIT Columbia South Carolina, USA<br />

Production site for:<br />

• balls and products for the wood industry<br />

CERATIZIT Warren Michigan,<br />

USA<br />

Production site for:<br />

• carbide formed <strong>parts</strong> for<br />

the American market<br />

3


4<br />

Blanks for<br />

metal forming<br />

Sealing rings<br />

Automotive industry<br />

Food industry<br />

Wire industry<br />

<strong>Wear</strong> <strong>parts</strong> for<br />

industrial applications<br />

Oil industry<br />

Brick industry<br />

Chemical industry<br />

Electronics/electrical engineering<br />

Nozzles


<strong>Wear</strong> <strong>parts</strong> for<br />

industrial applications<br />

Glass industry<br />

Coating technology<br />

Rotary cutters<br />

CERATIZIT is the world market<br />

leader in selected industry sectors<br />

for unique and consistently<br />

innovative hard material products.<br />

General<br />

wear <strong>parts</strong><br />

Lock industry<br />

Crushing/recycling<br />

Stone working<br />

High-pressure tools<br />

Parts for high-speed<br />

machines<br />

5


6<br />

Hard materials for wear <strong>parts</strong><br />

Hard materials in general and hard metals in particular offer a series of interesting properties for all<br />

applications where maximum wear resistance is required. In practical applications, wear <strong>parts</strong> are<br />

usually influenced by various interdependent factors: high pressure, high temperature, use of abrasive<br />

or aggressive media, machining of hard materials. These are only some examples of criteria causing<br />

wear, which hard materials or hard metals have to be resistant to. The powder-metallurgical production<br />

of CERATIZIT wear <strong>parts</strong> enables tailor-made wear resistance of the material.<br />

This is what makes CERATIZIT hard materials and hard metals indispensable when it comes to<br />

decisively increasing the service life of highly stressed components. Ever more powerful machines,<br />

facilities and machining methods create daily new challenges for the CERATIZIT development<br />

engineers. Our development projects are characterised by close cooperation with customers as well as<br />

a joint search for solutions to application problems.<br />

Causes of wear<br />

Abrasion<br />

Cutting with water-jet and abrasive<br />

additives at a pressure of<br />

4000 bar (approx. 500g sand/min.)<br />

Temperature<br />

Cutting of molten glass.<br />

Temperature 1,250°C<br />

Pressure/mechanical<br />

stress<br />

Tool for the synthesis<br />

of CBN and PCD<br />

pressure during operation:<br />

72,000 bar


Competence and know-how<br />

At CERATIZIT we consider the carbide<br />

business to be a matter of confidence.<br />

Decades of experience in carbide<br />

development and production enable us<br />

to offer you this confidence. Our quality<br />

management systems meet the highest<br />

standards. This is documented by the<br />

ISO9001:2000 quality certificate.<br />

Our facilities and production methods<br />

represent state-of-the-art technology<br />

because only modern and innovative<br />

production procedures offer the possibility<br />

to fulfil complex tasks economically.<br />

Engineering know-how and competent<br />

on site application advice, as well<br />

as intensive cooperation with our<br />

customers make the difference.<br />

Make use of our professional service.<br />

Our dedication to hard material matters<br />

creates intelligent solutions for<br />

tomorrow and time to come.<br />

7


8<br />

Tungsten oxide<br />

Reduction<br />

Tungsten<br />

Carburising<br />

Tungsten<br />

carbide<br />

Carbide production / blanks<br />

Carbide is a composite material consisting of particles mainly with tungsten carbide as hard material<br />

and a metallic binder. For this reason, with carbide it is possible to achieve hardness and toughness<br />

combinations which cannot be obtained with other materials. The graphic illustration below shows the<br />

basic steps for producing carbide blanks in the metal forming sector.<br />

Powder preparation<br />

Due to its high melting point tungsten carbide (WC) can only be produced through sintering when needed<br />

for technically sophisticated applications. For this purpose, the powder consisting of the tungsten carbide,<br />

the cobalt binder (Co) and sometimes additional alloys, is mixed, milled and spray-dried.<br />

This process results in a spray-dried granulate which can easily be used for production, since its chemical<br />

and physical properties have already been adapted to the final carbide specification (e.g. WC grain<br />

size).<br />

Co (NI,Fe)<br />

Mixing<br />

Milling<br />

TiC, TaC, NbC<br />

Cr3C2 , VC, MoC<br />

Granulation<br />

Carbide powder<br />

granulate


Manufacture and machining of blanks<br />

Carbide production<br />

By applying pressure the carbide powder is converted into a blank. The material will receive its near net<br />

shape through the application of traditional machining methods (sawing, drilling, milling, turning), so that<br />

extended machining of the sintered carbide blank is no longer necessary. The density of the blank is<br />

approx. 50% of the sintered carbide‘s density which leads to an approx. 20% shrinkage in length.<br />

Sintering<br />

Die<br />

pressing<br />

Sintering<br />

Blanks<br />

Isostatic<br />

pressing (cold)<br />

Optional:<br />

machining of blanks<br />

The sintering process converts the blank into a homogeneous piece of carbide with a high degree of<br />

hardness. When sintering hard metal (usually at a temperature of approx. 1400°C), this process is called<br />

liquid phase sintering. In this case, the binder (e.g. cobalt) melts and wets the WC hard material particles.<br />

After sintering, the density of the carbide is almost, or even precisely, the same as the theoretical density.<br />

Any residual porosity which occurs after the sintering procedure may be removed through an ensuing<br />

HIP process.<br />

Further processing<br />

9


10<br />

Grinding<br />

Carbide manufacturing / finishing<br />

CNC external and<br />

internal cylindrical<br />

grinding<br />

CNC surface and<br />

profile grinding<br />

Coatings / surface treatment<br />

Precision centreless grinding<br />

<strong>Wear</strong> <strong>parts</strong> with<br />

PVD or CVD coatings<br />

Face and parallel<br />

lapping<br />

CNC 5-axesgrinding<br />

Our machines and plants meet highest demands with regard to standards and functionality,<br />

precision and reliability.<br />

Our coating competence covers classic hard material coatings and functional tailor-made coatings<br />

for specific customer applications. For the production of coatings we apply CVD, PVD and galvanic<br />

processes. Special surface treatments are mainly applied to improve brazing properties.<br />

Parts with cobalt coating


Composite <strong>parts</strong><br />

For several applications it does not make sense to manufacture the entire component in hard metal.<br />

The use of hard metal is limited to the area in which wear occurs. Materials with suitable wearresistance<br />

are used for the carrier tool; they are easier to machine than carbide. For the combination of<br />

carbide with other materials, numerous tried and tested technologies are applied.<br />

Examples: brazing, gluing, clamping, connections with screws and shrinking.<br />

Erosion<br />

Control<br />

Chamfering insert<br />

brazed on steel part<br />

Cavity sinking of a<br />

coining die<br />

3D measurement of an<br />

extrusion pressing die<br />

Carbide ring glued on<br />

steel core<br />

Carbide treatment by means of spark erosion meets the highest technological standards. Wire erosion<br />

and cavity sinking by EDM additionally guarantee high precision. Long-standing experience combined<br />

with carbide grades that are specially adapted for erosion guarantee optimum machining results.<br />

Wire erosion of a<br />

formed part<br />

The control of finished components is part of our certified quality management system. This control is<br />

carried out by qualified staff, mainly on computer-controlled measuring machines. Control records are<br />

archived for 10 years. Upon request the customer can view the quality management records which are<br />

relevant for him.<br />

11


12<br />

<strong>Wear</strong> resistance<br />

Cermet<br />

Natural diamond<br />

Hard materials / carbide<br />

PCD<br />

Diamond coated<br />

CBN<br />

Ceramic (O)<br />

Ceramic (N)<br />

What is carbide?<br />

Cemented carbide<br />

HSS<br />

Toughness<br />

Carbide is a brittle, hard material<br />

with mechanical properties that<br />

can be adjusted within a very wide<br />

range, given its composition and<br />

microstructure. The hardness and<br />

toughness range of the CERATIZIT<br />

grades includes everything from<br />

wear resistant tool steel to super-hard<br />

ceramic materials.<br />

Carbide is a powder metallurgically produced composite material consisting of a hard material<br />

(e.g. tungsten carbide, WC) and a metallic binder (e.g. cobalt, Co)<br />

The hard material provides the necessary<br />

→ hardness<br />

→ wear resistance<br />

The metallic binder provides<br />

→ toughness<br />

Carbide properties depending on the Co contents<br />

and WC grain size<br />

Cobalt content ↑↑<br />

Grain size ↓↓<br />

T.R.S.<br />

High hardness<br />

(= wear resistance)<br />

WC<br />

Co<br />

WC<br />

Micrograph of WC-Co carbide<br />

Cobalt content ↓↓<br />

Grain size ↓↓<br />

Fracture<br />

toughness<br />

Cobalt content ↑↑<br />

Grain size ↑↑


The basis for optimum quality<br />

The graphic illustrations below show that the mechanical properties of the carbide mainly depend on the binder<br />

content (Co) and the TC grain size. Hardness, i.e. wear resistance, increases inversely/reciprocally proportional<br />

to the fracture toughness. This means that the harder the material the more it reacts to notch tensions and impact<br />

stress (the ‘impact resistance’ parameter, which cannot be precisely defined, correlates to a high degree with the<br />

fracture toughness of the material).<br />

On the other hand, the transverse rupture strength does not directly depend on the hardness but rather on the TC<br />

grain size and the cobalt content. The adhesive wear (tendency to stick), however, decreases with the grain size and<br />

the cobalt content of the carbide used. The list of the mentioned interdependencies, which could be extended at will<br />

for other wear and failure mechanisms, show that it is only possible to choose the correct carbide grade following a<br />

systematic procedure and/or based on experience with similar forming processes.<br />

Submicron grain<br />

Fine / medium grain<br />

Coarse grain<br />

Hardness [HV30]<br />

Transverse rupture strength [MPa]<br />

Toughness K IC-value [MPa*m 1/2 ]<br />

Submicron grain<br />

Fine / medium grain<br />

Coarse grain<br />

Submicron grain<br />

Fine / medium grain<br />

Coarse grain<br />

Submicron grain<br />

Fine / medium grain<br />

Coarse grain<br />

13


14<br />

CT<br />

grade<br />

code<br />

Grades ISO K Application<br />

range<br />

WC/Co grain size coarse/medium<br />

Grade characteristics<br />

Binder Hardness T.R.S. Grain<br />

size<br />

[%] HV10 HV30 HRA [MPa] [P.S.I.]<br />

CTM12 B10T K20 G10 6 1520 1500 91,1 2200 319.000<br />

CTM14 GC12 K25 G10 7 1550 1530 91,4 2600 377.000<br />

CTM17 GC15 K30-K40 G15 8,5 1420 1400 90,4 2800 406.000<br />

CTC12 GC17 K30 G10-G20 6 1350 1340 89,9 2800 406.000<br />

CTC20 B30T/GC32 K40 G20-G30 10 1170 1160 88,2 3000 435.000<br />

CTC25 B40T/CE65 >K40 G20-G30 12,5 1080 1070 87,2 3100 450.000<br />

CTC30 B50T/GC40 - G30-G40 15 1020 1010 86,5 3150 457.000<br />

CTC35 GC50 - G40-G50 17,5 950 940 85,6 3200 464.000<br />

CTC40 B60T/GC60 - G40-G50 20 900 890 84,9 3200 464.000<br />

CTC50 B70T/GC65 - >G50 25 810 800 83,5 3200 464.000<br />

CTC60 GC70 - >G50 30 730 720 82,2 3200 464.000<br />

WC/Co grain size fine<br />

CTF08 GC01 K05-K10 G01 4 1850 1820 93,2 2100 305.000<br />

CTF11 GC05/H10T K10 G05 5,5 1760 1730 92,7 2300 334.000<br />

CTF12 GC10/H20T/AG06 K20 G10 6 1630 1610 91,9 2300 334.000<br />

CTF18 H30T/AG09 K30 G15 9 1490 1470 91,1 2800 406.000<br />

CTF24 GC20/H40T/AG12 K40 G20 12 1350 1340 89,8 3000 435.000<br />

CTF30 GC30/H50T >K40 G30 15 1240 1230 88,8 3100 450.000<br />

CTF40 GC37/H60T - G40 20 1050 1040 86,7 3400 493.000<br />

CTF50 GC55/H70T - G50 25 950 940 85,4 3400 493.000<br />

CTF54 GC62 - >G50 27 920 910 85,0 3200 464.000<br />

WC/Co grain size submicron<br />

CTS06 MG06/TSM01 K01 - 3,3 2020 1980 93,9 3300 479.000<br />

CTS10 TSM05 K05 - 4,8 1980 1940 93,8 3300 479.000<br />

CTS12 MG12/TSM10 K05-K10 - 6 1850 1820 93,3 3500 508.000<br />

CTS15 MG15/TSM20 K10-K30 - 7,5 1740 1710 92,6 3600 522.000<br />

CTS20 MG18/TSM33 K20-K40 - 10 1650 1630 92,1 3700 537.000<br />

CTS24 MG24/TSM40 K40 - 12 1490 1470 90,9 4000 580.000<br />

CTS30 MG30 >K40 - 15 1330 1320 89,7 3800 551.000<br />

WC/Co grain size ultrafine<br />

CTU05 SMG02


CT<br />

grade<br />

code<br />

Grade characteristics<br />

CTU05R CTU05R 2,5 (NiCr) 2350 2250 95,0 2000 290.000<br />

CTU06M KCR05 - - 2,8 (CoNiCr) 2150 2110 94,5 2500 363.000<br />

CTS06M KCR06 - - 3 (CoNiCr) 1950 1910 93,6 2300 334.000<br />

CTU12R CTU12R - - 6 (NiCr) 1750 1720 92,6 2600 377.000<br />

CTU17R KR15 - - 8,5 (NiCr) 1760 1730 92,7 2500 363.000<br />

CTS17R KR16/V714 - - 8,5 (NiCr) 1600 1580 91,7 2800 406.000<br />

CTF16R KR17/TNI25 - - 8 (NiCr) 1480 1460 90,8 2900 421.000<br />

CTM16N K16 - - 8 (Ni) 1300 1290 89,4 2400 348.000<br />

CTC20M CTC20M - - 10 (CoNiCr) 1100 1090 87,3 2600 377.000<br />

CTC40M CTC40M - - 20 (CoNiCr) 850 840 84,0 2800 406.000<br />

CTC60M CTC60M - - 30 (CoNiCr) 650 640 80,9 2700 392.000<br />

When referring to carbide, ‘corrosion’ means the detachment of the binder caused by corrosive<br />

materials. This can cause early breakage (notching!) or notably increased wear. In this context<br />

carbides containing Co/Ni or Ni or a chromium-doped binder represent an advantage.<br />

The ferromagnetic properties of cobalt and nickel make it possible to magnetise carbides which have<br />

a suitable binder. Upon request some of the nickel-bound carbide grades can also be delivered as non<br />

magnetic grades.<br />

CT<br />

grade<br />

code<br />

Grades Density Binder Hardness T.R.S. Grain<br />

size<br />

[g/cm 3 ] [%] HV10 HV30 HRA [MPa] [P.S.I.]<br />

Cermets (TiC basis carbides)<br />

CTF28T TCN541 6,4 14 (CoNi) 1550 1530 91,4 2400 348.000<br />

CTF36T TWF18 5,9 18 (Ni) 1470 1450 90,8 1800 261.000<br />

Silicon nitride (Si3N4)<br />

Grades ISO K Application<br />

range<br />

Corrosion resistant grades<br />

SNC1 SNC1 3,25 9 1550 1530 91,4 1100 160.000<br />

Classification of the WC grain size<br />

WC grain size [µm] Classification<br />

< 0,2<br />

nano<br />

0,2 - 0,5<br />

ultrafine<br />

0,5 - 0,8<br />

submicron<br />

0,8 - 1,3<br />

fine<br />

1,3 - 2,5<br />

medium<br />

2,5 - 6,0<br />

coarse<br />

> 6,0<br />

extra-coarse<br />

Binder Hardness T.R.S. Grain<br />

size<br />

[%] HV10 HV30 HRA [MPa] [P.S.I.]<br />

ultrafine<br />

submicron<br />

ultrafine<br />

ultrafine<br />

submicron<br />

submicron<br />

medium<br />

coarse<br />

coarse<br />

coarse<br />

fine<br />

fine<br />

ultrafine<br />

Comments:<br />

1. The data in this table<br />

represents typical material<br />

parameters. We reserve the<br />

right to modify the data due to<br />

technical progress or due to<br />

further development within our<br />

company.<br />

15


16<br />

Modulus of elasticity [GPa]<br />

Grain size Impact stress<br />

700<br />

0,245<br />

600<br />

0,240<br />

500<br />

0,235<br />

400<br />

0,230<br />

300<br />

0,225<br />

200<br />

0,220<br />

100<br />

0,215<br />

0<br />

0,210<br />

2 6 10 14 18 22 26<br />

Co content<br />

Modulus of elasticiy [GPa]<br />

Poisson‘s ratio [-]<br />

Grade characteristics<br />

Basic guidelines for the selection of carbide grades:<br />

Poisson‘s ratio [-]<br />

Stress caused<br />

by notching<br />

Density [GPa]<br />

15,5<br />

15,0<br />

14,5<br />

14,0<br />

13,5<br />

13,0<br />

Tension and<br />

compression<br />

(with good surface<br />

quality!)<br />

Resistance<br />

to adhesion<br />

(against metal)<br />

Coarse/medium ++ + o o<br />

Fine + o o +<br />

Submicron o - + ++<br />

Ultrafine - -- ++ ++<br />

Within the various classes of grain sizes the following applies: the lower the Co content (=increased hardness), the higher the<br />

wear resistance and compressive strength, but toughness decreases notably.<br />

Modulus of elasticity, Poisson‘s ratio, density<br />

and thermal expansion coefficient<br />

4<br />

2 6 10 14 18 22 26<br />

Co content<br />

Modulus of elasticity<br />

Thermal expansion<br />

Co content<br />

[GPa] Poisson‘s ratio [-] Density [g/cm³] coefficient [10-6 1/K]<br />

4 648 0,21 15,2 4,6<br />

6 623 0,22 15,0 4,8<br />

8 598 0,22 14,8 5<br />

10 574 0,22 14,6 5,2<br />

12 549 0,24 14,4 5,4<br />

14 524 0,23 14,2 5,6<br />

16 499 0,23 14,0 5,8<br />

18 474 0,23 13,8 6<br />

20 449 0,24 13,6 6,2<br />

22 424 0,24 13,4 6,4<br />

24 399 0,24 13,2 6,6<br />

Grinding micrographs 1500 x<br />

7<br />

6,5<br />

6<br />

5,5<br />

5<br />

4,5<br />

Density [GPa]<br />

Thermal expansion coefficient [10-6 1/K]<br />

WC-Co carbide Cermets Silicon nitride<br />

Thermal expansion<br />

coefficient [10-6 1/K ]


Si 3 N 4 for cutting tools<br />

Si 3 N 4 for wear <strong>parts</strong><br />

Range for wear applications<br />

Silicon nitride<br />

Ceramic hard materials and particularly silicon nitride have several characteristics which compared to<br />

metallic hard materials are advantageous for numerous applications. This is not only true for cutting<br />

tool applications but also for certain fields in wear protection. Silicon nitride is mainly used where the<br />

following properties are required:<br />

● Low weight<br />

● Good mechanical properties up to 1200°C<br />

● Good reliability<br />

● High resistance to thermal shock<br />

● Good corrosion resistance<br />

● High wear resistance<br />

● Low thermal expansion<br />

● Low conductivity<br />

● Good anti-friction properties<br />

Application examples:<br />

– <strong>parts</strong> in grey cast iron<br />

– rolls in chilled casting<br />

Sinicut grades<br />

CTN3110, CTM3110 for rough machining of rolls in cast<br />

iron and the new CTN3105 for the machining of cast iron<br />

<strong>parts</strong> in high volume production<br />

Application examples:<br />

– bearing rings and roller bearings<br />

– guide rolls<br />

– rods<br />

Our grade SNCB5 is certified at<br />

leading companies in the sector.<br />

Properties Unit SNC1 SNC20 SNCB5<br />

Colour grey black black<br />

Binder (Al2O3 / Y2O3 ) % 9 11 12.5<br />

Grain size ultrafine ultrafine ultrafine<br />

Density (ISO3369) g/cm 3<br />

3.25 3.25 3.25<br />

Hardness (ISO3878) HV10 1550 1430 1500<br />

Hardness (ISO3738) HRA 91.5 90.8 91.1<br />

Transverse rupture strength<br />

(ISO3327 – 3 point)<br />

MPa 1100 850 900<br />

Compressive strength MPa 3000 3000 3000<br />

Modulus of elasticity GPa 300 290 300<br />

Toughness (SEVNB) MPa.m -1/2<br />

6.5 6.0 6.0<br />

Thermal conductivity Wm -1 K -1<br />

30 30 30<br />

Expansion coefficient 10 -6 K -1<br />

3.3 3.5 3.4<br />

17


18<br />

Tolerance table<br />

Blank tolerances<br />

Compact formed <strong>parts</strong> are manufactured through pressing and subsequent sintering which implies a<br />

volume shrinkage of around 20%. It is therefore a special challenge for the production specialists to<br />

obtain tight blank tolerances.<br />

Apart from the composition and the geometrical shape the type of machining operation is mainly decisive<br />

for the result achieved.<br />

For standard <strong>parts</strong>, tolerances are also specified in the ISO standards (e.g.: ISO 2768).<br />

Examples for blank tolerances depending on the manufacturing method:<br />

Manufacturing method<br />

Directly pressed <strong>parts</strong><br />

Extrusion pressed <strong>parts</strong><br />

Formed <strong>parts</strong><br />

Preform<br />

Dimensions<br />

(example)<br />

[mm]<br />

d s<br />

12,7 x 12,7 x 4,76<br />

15,88 x 15,88 x 6,35<br />

19,05 x 11,05 x 7,15<br />

d L<br />

3,25 330<br />

6,2 330<br />

16,2 330<br />

L B<br />

40–50 50–50<br />

100–120 80–120<br />

200–225 > 120<br />

Tolerances<br />

[mm]<br />

d s<br />

± 0,10 ± 0,05<br />

± 0,12 ± 0,06<br />

± 0,15 ± 0,07<br />

d<br />

+ 0,1 0,25<br />

+ 0,25 0,25<br />

+ 0,3 0,25<br />

± 0,45<br />

± 1,1<br />

± 1,25<br />

Sintered part<br />

Grinding<br />

allowance<br />

[mm]<br />

0,2 – 0,5/page<br />

+ 50% of the sintering<br />

tolerance<br />

0,25<br />

0,20<br />

0,20<br />

0,4<br />

0,5<br />

0,5


Roughness and surface<br />

Table for the comparison of measuring systems<br />

(metric vs. inch) of surface roughness<br />

R tmax<br />

[µm]<br />

CLA/R a<br />

[µm]<br />

CLA<br />

[µ"]<br />

RMS<br />

[µm]<br />

RMS<br />

[µ"]<br />

0,06 0,02 0,75 0,02 0,8<br />

0,1 0,03 1,2 0,04 13<br />

0,2 0,06 2,5 0,08 2,8<br />

0,3 0,09 3,7 0,1 4,2<br />

0,4 0,13 5,0 0,14 5,6<br />

0,5 0,16 6,7 0,18 6,9<br />

0,6 0,19 7,5 0,21 8,3<br />

0,7 0,22 8,7 0,25 9,7<br />

0,8 0,25 10,0 0,28 11,1<br />

0,9 0,28 11,2 0,32 12,5<br />

1,0 0,31 12,5 0,35 14,0<br />

1,2 0,38 15,8 0,42 16,7<br />

1,5 0,47 18,8 0,53 20,9<br />

1,8 0,57 22,6 0,64 25,5<br />

2,0 0,64 25,1 0,78 27,9<br />

CLA (centre line average)<br />

RMS (root mean square)<br />

Surface quality according to manufacturer<br />

Surface symbol<br />

according to ISO 1302<br />

Surface symbol<br />

according to ISO 3141<br />

Roughness index<br />

Arithmetic<br />

mean value<br />

Surface roughness<br />

Longitudinal grinding<br />

Surface grinding<br />

Peripheral grinding<br />

Face grinding<br />

Grinding of hole<br />

Polish grinding<br />

Long stroke honing<br />

Short stroke honing<br />

Cylindrical lapping<br />

Flat lapping<br />

Ultrasonic lapping<br />

Polish lapping<br />

Surface roughness (produced<br />

through special methods)<br />

new<br />

until now<br />

Surface quality<br />

R tmax<br />

[µm]<br />

CLA/R a<br />

[µm]<br />

1 µm = 0,001 mm = 39,37 µ″<br />

1 µ″ = 0,000001″ = 0,0000254 mm<br />

CLA<br />

[µ"]<br />

RMS<br />

[µm]<br />

RMS<br />

[µ"]<br />

2,4 0,73 30,1 0,85 33,4<br />

2,8 0,89 35,2 0,99 39,0<br />

3,0 0,95 37,6 1,06 41,9<br />

3,5 1,11 43,9 1,24 48,8<br />

4,0 1,27 50,2 1,41 55,8<br />

5,0 1,59 62,7 1,77 69,7<br />

6,0 1,91 75,5 2,12 83,6<br />

7,0 2,22 87,5 2,48 92,6<br />

8,0 2,54 100,0 2,83 111,7<br />

10,0 3,18 125,5 3,54 140,0<br />

20,0 6,64 251,5 7,8 279,0<br />

40,0 12,7 502,0 14,1 558,0<br />

60,0 19,1 755,0 21,2 836,0<br />

125,0 39,5 1560,0 43,5 1750,0<br />

200,0 64,0 2510,0 78,0 2790,0<br />

0,025 0,05 0,1 0,2 0,4 0,8 1,6 3,2 6,3 12,5 25 50<br />

N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10 N 11 N 12<br />

R a [µm] 0,025 0,05 0,1 0,2 0,4 0,8 1,6 3,2 6,3 12,5 25 50<br />

R z [µm] 0,25 0,63 1 1,6 2,5 4-6,3 10 16-25 40 63 100 160<br />

Surface roughness (produced through<br />

normal workshop methods)<br />

Surface roughness (produced through<br />

rough machining methods)<br />

19


20<br />

CERATIZIT corporate values<br />

1 3<br />

The views and focus of our<br />

business partners matters<br />

2 4<br />

Innovative and flexible<br />

thinking matters<br />

CERATIZIT consulting<br />

Our external service staff elaborate<br />

individual carbide solutions on site. In this<br />

manner you will benefit from our longstanding<br />

and worldwide know-how already<br />

in the product development phase. You<br />

will be continuously informed on new<br />

tendencies in the carbide sector, new<br />

grades or standard products from our<br />

CERATIZIT plants throughout the world.<br />

CERATIZIT<br />

Carbide injection moulding<br />

technology<br />

Carbide <strong>parts</strong> with a complex geometry<br />

can virtually be injection moulded at will,<br />

just like plastic <strong>parts</strong>. This creates new<br />

possibilities for:<br />

• filigree constructions<br />

• thin walls<br />

• undercuts, transverse holes, etc.<br />

Injection moulding of carbide is<br />

particularly suitable for large volume<br />

production.<br />

Communication matters<br />

Employee development<br />

matters<br />

CERATIZIT<br />

feasibility studies<br />

5<br />

Professionalism<br />

matters<br />

6<br />

Our environment<br />

matters<br />

Every request is discussed by our<br />

specialist teams: carbide grades are<br />

defined, mass, tolerances, forming<br />

and surface quality are controlled, the<br />

production process is optimised for the<br />

respective batch size and manufacturing<br />

costs are analysed.<br />

CERATIZIT<br />

alternative solutions<br />

Our team elaborates optimised<br />

alternative solutions for you in order<br />

to ensure low-cost manufacturing.<br />

In this way solutions, tailor-made to<br />

your needs, are created.<br />

The views and focus<br />

of our business partners<br />

matters<br />

– Instead of talking product with<br />

customers, we work on real solutions<br />

for business partners.


September<br />

M D M D F S S<br />

29 30 31 1 2 3 4<br />

5 6 7 8 9 10 11<br />

12 13 14 15 16 17 18<br />

19 20 21 22 23 24 25<br />

26 27 28 29 30 1 2<br />

CERATIZIT preparation of work<br />

Precise manufacturing dimensions and<br />

optimal operation plans are our strength.<br />

This requires drawings of blanks and<br />

finished <strong>parts</strong> where the shrinkage<br />

(around 20%) is taken into account. Also<br />

pressing tools, devices for working blanks<br />

and diamond grinding disks for finishing<br />

operations have to be included in the<br />

planning. Programs have to be written for<br />

CNC machining of blanks and finished<br />

<strong>parts</strong>.<br />

CERATIZIT construction of<br />

tools and fixtures<br />

Our in-house tool and fixture department<br />

allows us to quickly respond to your<br />

requirements as well as to maintain tools<br />

and repair them if necessary.<br />

CERATIZIT prototype <strong>parts</strong><br />

Prototype <strong>parts</strong> make quick<br />

implementation of your product<br />

ideas possible. In this context you<br />

will continuously be advised by our<br />

specialists. In this way volume batches<br />

suitable for the market are manufactured:<br />

both material and geometry are optimised<br />

and can be manufactured economically.<br />

CERATIZIT SAP network<br />

All processes, from order acceptance<br />

via production and quality control, stock<br />

management, dispatch and invoicing of<br />

the products are memorised in the SAP.<br />

The manufacturing state of the orders is<br />

continuously monitored so that delivery<br />

deadlines can be met.<br />

For contract orders the SAP system<br />

automatically checks the minimum<br />

quantities and production is planned<br />

dynamically<br />

All CERATIZIT production sites are<br />

connected online via the SAP.<br />

21


22<br />

Extract of our print media for wear <strong>parts</strong><br />

Circuit boards,<br />

disks and hobs<br />

Forming<br />

technology<br />

Knives<br />

Tool and die<br />

industry<br />

Gen. industry<br />

cutting tools<br />

No. 332 ‘Carbide blanks for hobs, slitting<br />

knives and circular shear knives’<br />

No. 339 ‘Blanks for printed circuit boards’<br />

No. 322 ‘Carbide drawing tools’<br />

No. 323 Carbide tools for cold<br />

forming’<br />

No. 304 ‘Cemented carbide cold<br />

heading die nibs‘<br />

No. 176 ‘Paper cutting<br />

systems’<br />

No. 285 ‘Carbide for the tool<br />

and die industry’<br />

No. 311 ‘Silicon nitride’<br />

Glass<br />

Nozzles<br />

Hot rolls<br />

General<br />

industry I<br />

General<br />

industry II<br />

Nr. 288<br />

‘Tungsten carbide for the<br />

glass industry‘<br />

No. 257<br />

‘Water jet nozzles’<br />

No. 275 ‘Carbide rolls’<br />

No. 298 ‘High pressure<br />

tools’<br />

No. 277 ‘Carbide formed<br />

<strong>parts</strong> - tailor-made’


Headquarters: CERATIZIT S.A.<br />

Main site Luxembourg<br />

CERATIZIT Luxembourg Sarl<br />

Route de Holzem, B.P. 51<br />

L-8201 Mamer<br />

Tel.: +352 312 085-1<br />

Fax: +352 311 911<br />

E-Mail: info@ceratizit.com<br />

www.ceratizit.com<br />

Sales Companies<br />

Austria<br />

CERATIZIT Austria Gesellschaft m.b.H.<br />

A-6600 Reutte/Tyrol<br />

Tel.: +43 (5672) 200-0<br />

Fax: +43 (5672) 200-502<br />

E-Mail: info.austria@ceratizit.com<br />

Bulgaria<br />

CERATIZIT Bulgaria AG<br />

Boulevard Stoletov 157<br />

BG-5301 Gabrovo<br />

Tel: +359 (66) 812 207<br />

Fax: +359 (66) 801 608<br />

E-Mail: info.bulgaria@ceratizit.com<br />

China<br />

CERATIZIT China Ltd.<br />

Room 1201-1204<br />

Hollywood Centre<br />

233 Hollywood Rd., Sheung Wan<br />

Hong Kong<br />

Tel.: +852 (2542)-1838<br />

Fax: +852 (2854) 3777<br />

E-Mail: info.china@ceratizit.com.hk<br />

Czech Republic<br />

CERATIZIT<br />

Kancelar Ceska Republika<br />

Pod Hradbami 2002/1<br />

CZ-59401 Velke Mezirici<br />

Tel.: +420 (566) 520-341<br />

Fax: +420 (566) 521-340<br />

E-Mail: info.cz@ceratizit.com<br />

France<br />

CERATIZIT France Sarl<br />

Offi ce Pontoise<br />

20, Rue Lavoisier<br />

F-95300 Pontoise<br />

Tel.: +33 (1) 3433-3180<br />

Fax: +33 (1) 3030-9339<br />

E-Mail: info.france@ceratizit.com<br />

Germany<br />

CERATIZIT Deutschland GmbH<br />

Offi ce Langenfeld<br />

Hans-Böckler-Straße 10<br />

D-40764 Langenfeld<br />

Tel.: +49 (2173) 97 25-0<br />

Fax: +49 (2173) 97 25-25<br />

E-Mail: info.deutschland@ceratizit.com<br />

CERATIZIT Deutschland GmbH<br />

Büro Dettingen<br />

Karlstraße 80<br />

D-72581 Dettingen<br />

Tel.: +49 (7123) 9201-0<br />

Fax: +49 (7123) 9201-210<br />

E-Mail: info.dettingen@ceratizit.com<br />

Main site Austria<br />

CERATIZIT Austria Gesellschaft m.b.H.<br />

A-6600 Reutte/Tyrol<br />

Tel.: +43 (5672) 200-0<br />

Fax: +43 (5672) 200-502<br />

E-Mail: info.austria@ceratizit.com<br />

CERATIZIT Horb GmbH<br />

Stadionstraße<br />

D-72160 Horb<br />

Tel.: +49 (7451) 522 0<br />

Fax: +49 (7451) 522 288<br />

E-Mail: info.horb@ceratizit.com<br />

CERATIZIT Hitzacker GmbH<br />

Am Räsenberg 3<br />

D-29456 Hitzacker<br />

Tel.: +49 (5862) 969 10-0<br />

Fax: +49 (5862) 9696 10-70<br />

E-Mail: info.hitzacker@ceratizit.com<br />

CERATIZIT Logistik GmbH<br />

Daimlerstraße 70<br />

D-87437 Kempten<br />

Tel.: +49 (831) 570 11-0<br />

Fax: +49 (831) 570 11-3811<br />

E-Mail: info.logistik@ceratizit.com<br />

Great Britain<br />

CERATIZIT UK Ltd.<br />

Cliff Lane<br />

Grappenhall<br />

Warrington WA4 3JX<br />

Tel.: +44 (1925) 261-161<br />

Fax: +44 (1925) 267-933<br />

E-Mail: info.uk@ceratizit.com<br />

Hungary<br />

CERATIZIT<br />

Iroda Magyarorszag<br />

Kórház u 6-12<br />

HU-1033 Budapest<br />

Tel.: +36 1 43709-30<br />

Fax: +36 1 43709-31<br />

E-Mail: info.hu@ceratizit.com<br />

India<br />

CERATIZIT India Pvt. Ltd.<br />

58, Motilal Gupta Road<br />

Barisha<br />

IN-700 008 Kolkata<br />

Tel.: +91 (33) 2494-5435<br />

Fax: +91 (33) 2494-1472<br />

Telex: 021 8142 ihm in<br />

E-Mail: info.india@ceratizit.com<br />

Italy<br />

CERATIZIT Italia SpA<br />

Piazza F. Martelli, 7<br />

I-20162 Milano<br />

Tel.: +39 (02) 6441-111<br />

Fax: +39 (02) 6611-6040<br />

E-Mail: info.italia@ceratizit.com<br />

Japan<br />

CERATIZIT Japan Ltd.<br />

3-13-9, Mizuho<br />

Shizuoka 421 – 0115<br />

Tel.: +81 (54) 268 1060<br />

Fax: +81 (54) 257 8181<br />

E-Mail: info.japan@ceratizit.com<br />

Luxembourg<br />

CERATIZIT Luxembourg Sarl<br />

Route de Holzem, B.P. 51<br />

L-8201 Mamer<br />

Tel.: +352 312 085-1<br />

Fax: +352 311 911<br />

E-Mail: info@ceratizit.com<br />

Netherlands<br />

CERATIZIT Nederland B.V.<br />

Bergrand 224<br />

NL-4707 AT Roosendaal<br />

Tel.: +31 (165) 55 08 00<br />

Fax: +31 (165) 55 61 76<br />

E-Mail: info.nederland@ceratizit.com<br />

Spain<br />

CERATIZIT Ibérica SL<br />

Offi ce Pozuelo<br />

Vía de las Dos Castillas, 9c<br />

Portal 2, Bajo B<br />

E-28224 Pozuelo (Madrid)<br />

Tel.: +34 (91) 351-0609<br />

Fax: +34 (91) 351-2813<br />

E-Mail: info.iberica@ceratizit.com<br />

CERATIZIT Ibérica SL<br />

Offi ce Bilbao<br />

Avda. Mazarredo 41 1 Izqda.<br />

E-48009 Bilbao<br />

Tel.: +34 (944) 23 71 18<br />

Fax: +34 (944) 23 97 18<br />

E-Mail: info.bilbao@ceratizit.com<br />

Poland<br />

CERATIZIT<br />

Biuro Polska<br />

U. Lagiewnicka 33a<br />

PL-30-417 Kraków<br />

Tel.: +48 12 252 85-91<br />

Fax: +48 12 252 85-93<br />

E-Mail: info.pl@ceratizit.com<br />

Switzerland<br />

CERATIZIT Schweiz AG<br />

Solothurnstrasse 68<br />

CH-2504 Biel<br />

Tel.: +41 (32) 344 93 93<br />

Fax: +41 (32) 344 93 94<br />

E-Mail: info.schweiz@ceratizit.com<br />

USA<br />

CERATIZIT USA Inc.<br />

777 Old Clemson Road<br />

Columbia<br />

South Carolina 29229<br />

Toll free: +1 (800) 334 1165<br />

Tel.: +1 (803) 736 1900<br />

Fax: +1 (803) 736 1902<br />

E-Mail: info.usa@ceratizit.com


272/ 0<br />

272 EN 03.06<br />

7001071<br />

We reserve the right to make technical changes for<br />

improvement of the product.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!