29.03.2013 Views

Tpl2 Kinase Is Upregulated in Adipose Tissue in Obesity ... - Diabetes

Tpl2 Kinase Is Upregulated in Adipose Tissue in Obesity ... - Diabetes

Tpl2 Kinase Is Upregulated in Adipose Tissue in Obesity ... - Diabetes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>in</strong> Fig. 7E, and the observation that <strong>Tpl2</strong> overexpression<br />

<strong>in</strong>creases ERK1/2 activity (32), suggest that <strong>Tpl2</strong> expression<br />

could be rate-limit<strong>in</strong>g for the activation of ERK<br />

pathway. The <strong>in</strong>crease <strong>in</strong> <strong>Tpl2</strong> mRNA level was prevented<br />

by both IKK <strong>in</strong>hibition and NF-B/p65 gene silenc<strong>in</strong>g, and<br />

<strong>in</strong>formatics analysis of the <strong>Tpl2</strong> promoter suggests a<br />

potential NF-B b<strong>in</strong>d<strong>in</strong>g site. Thus, it is likely that the<br />

IKK/NF-B pathway is <strong>in</strong>volved <strong>in</strong> the upregulation of<br />

<strong>Tpl2</strong> mRNA, whereas IKK regulates <strong>Tpl2</strong> activation and<br />

stability through the phosphorylation and degradation of<br />

NF-B1/p105. In agreement with this hypothesis, <strong>Tpl2</strong> gene<br />

expression is not modified <strong>in</strong> nfb1 / macrophages,<br />

whereas <strong>Tpl2</strong> prote<strong>in</strong> expression is markedly reduced due<br />

to its degradation (29). Thus, <strong>in</strong>flammation l<strong>in</strong>ked to<br />

obesity could promote both the activation of <strong>Tpl2</strong> that is<br />

coupled to its rapid degradation and the stimulation of<br />

<strong>Tpl2</strong> gene transcription. This coord<strong>in</strong>ated molecular mechanism<br />

could allow the rapid replenishment of the <strong>Tpl2</strong><br />

pool <strong>in</strong> <strong>in</strong>flamed adipocytes and could be responsible for<br />

the elevated activity of ERK found <strong>in</strong> adipose tissue of<br />

obese and <strong>in</strong>sul<strong>in</strong>-resistant rodents and humans (7).<br />

The pharmacological target<strong>in</strong>g of <strong>in</strong>flammatory k<strong>in</strong>ases<br />

such as IKK has demonstrated beneficial effects <strong>in</strong> obesity.<br />

Our data suggest that <strong>Tpl2</strong> could be also a new target<br />

to improve adipose dysfunction. Furthermore, compared<br />

with <strong>Tpl2</strong> <strong>in</strong>hibitors, drugs that <strong>in</strong>hibit IKK would be<br />

expected to have more unwanted effects because the<br />

activation of NF-B would be suppressed. Indeed, as<br />

recently discussed (26), NF-B has many roles outside the<br />

immune system, and IKK is activated by many stimuli<br />

<strong>in</strong> addition to <strong>in</strong>flammatory mediators. Furthermore,<br />

whereas IKK knockout mice are embryonic lethal, the<br />

<strong>in</strong>validation of <strong>Tpl2</strong> is well tolerated with no obvious<br />

severe defects of the mice (34).<br />

In conclusion, our work demonstrates that <strong>Tpl2</strong> is<br />

expressed <strong>in</strong> adipocytes and is specifically <strong>in</strong>volved <strong>in</strong><br />

ERK pathway activation by IL-1 and TNF-, whereas it is<br />

dispensable for <strong>in</strong>sul<strong>in</strong> signal<strong>in</strong>g. We demonstrate that<br />

<strong>in</strong>flammatory cytok<strong>in</strong>es regulate both the activity and the<br />

expression of <strong>Tpl2</strong>, and this latter seems dependent on<br />

NF-B. F<strong>in</strong>ally, we provide evidence that <strong>Tpl2</strong> signal<strong>in</strong>g<br />

pathway is implicated <strong>in</strong> adipocyte lipolysis <strong>in</strong>duced by<br />

these cytok<strong>in</strong>es and <strong>in</strong> IRS-1 ser<strong>in</strong>e phosphorylation. The<br />

deregulated expression of <strong>Tpl2</strong> <strong>in</strong> adipose tissue of obese<br />

subjects suggests that <strong>Tpl2</strong> may be a new actor <strong>in</strong> abnormal<br />

adipose tissue function.<br />

ACKNOWLEDGMENTS<br />

This work was supported by the Institut National de la<br />

Santé et de la Recherche Médicale (Paris, France), the<br />

University of Nice-Sophia Antipolis (Nice, France), the<br />

Région Provence-Alpes Côte d’Azur, the Conseil Général<br />

des Alpes Maritimes, and the Programme Hospitalier de<br />

Recherche Cl<strong>in</strong>ique (Nice, France). J.F.T. received support<br />

from the Centre National de la Recherche Scientifique and<br />

from ALFEDIAM-Abbott (Paris, France). P.G. received<br />

support from the French Research M<strong>in</strong>istry (ANR-05-<br />

PCOD-025602 and PNRHGE, Paris, France) and from<br />

charities (ALFEDIAM and AFEF/Scher<strong>in</strong>g-Plough, Paris,<br />

France). This work is part of the project Hepatic and<br />

<strong>Adipose</strong> <strong>Tissue</strong> and Functions <strong>in</strong> the Metabolic Syndrome<br />

(HEPADIP, see http://www.hepadip.org), which is supported<br />

by the European Commission (Brussels, Belgium)<br />

as an Integrated Project under the 6th Framework Programme<br />

(contract no. LSHM-CT-2005-018734). Y.L.M.-B.<br />

J. JAGER AND ASSOCIATES<br />

and P.G. are recipients of an Interface grant with the Nice<br />

University Hospital (Nice, France). S.B. was supported by<br />

ANR-05-PCOD-025-02 (French M<strong>in</strong>istry, Paris, France).<br />

No potential conflicts of <strong>in</strong>terest relevant to this article<br />

were reported.<br />

The authors thank Dr. J.-F. Peyron and Dr. N. Lounnas<br />

for helpful discussions and for the gift of the antibody<br />

aga<strong>in</strong>st NF-B.<br />

REFERENCES<br />

1. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:<br />

860–867<br />

2. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Cl<strong>in</strong><br />

Invest 2005;115:1111–1119<br />

3. Suganami T, Nishida J, Ogawa Y. A paracr<strong>in</strong>e loop between adipocytes and<br />

macrophages aggravates <strong>in</strong>flammatory changes: role of free fatty acids and<br />

tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005;25:2062–<br />

2068<br />

4. Shoelson SE, Herrero L, Naaz A. <strong>Obesity</strong>, <strong>in</strong>flammation, and <strong>in</strong>sul<strong>in</strong><br />

resistance. Gastroenterology 2007;132:2169–2180<br />

5. Tanti JF, Jager J. Cellular mechanisms of <strong>in</strong>sul<strong>in</strong> resistance: role of<br />

stress-regulated ser<strong>in</strong>e k<strong>in</strong>ases and <strong>in</strong>sul<strong>in</strong> receptor substrates (IRS) ser<strong>in</strong>e<br />

phosphorylation. Curr Op<strong>in</strong> Pharmacol, 2009 [Epub ahead of pr<strong>in</strong>t]<br />

6. Bouzakri K, Karlsson HK, Vestergaard H, Madsbad S, Christiansen E,<br />

Zierath JR. IRS-1 ser<strong>in</strong>e phosphorylation and <strong>in</strong>sul<strong>in</strong> resistance <strong>in</strong> skeletal<br />

muscle from pancreas transplant recipients. <strong>Diabetes</strong> 2006;55:785–791<br />

7. Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation<br />

of <strong>in</strong>sul<strong>in</strong> signal<strong>in</strong>g through IRS-1 phosphorylation. Biochimie 2005;87:99–<br />

109<br />

8. Jager J, Gremeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF.<br />

Interleuk<strong>in</strong>-1beta-<strong>in</strong>duced <strong>in</strong>sul<strong>in</strong> resistance <strong>in</strong> adipocytes through downregulation<br />

of <strong>in</strong>sul<strong>in</strong> receptor substrate-1 expression. Endocr<strong>in</strong>ology 2007;<br />

148:241–251<br />

9. Zick Y. Insul<strong>in</strong> resistance: a phosphorylation-based uncoupl<strong>in</strong>g of <strong>in</strong>sul<strong>in</strong><br />

signal<strong>in</strong>g. Trends Cell Biol 2001;11:437–441<br />

10. Souza SC, Palmer HJ, Kang YH, Yamamoto MT, Muliro KV, Paulson KE,<br />

Greenberg AS. TNF-alpha <strong>in</strong>duction of lipolysis is mediated through<br />

activation of the extracellular signal related k<strong>in</strong>ase pathway <strong>in</strong> 3T3-L1<br />

adipocytes. J Cell Biochem 2003;89:1077–1086<br />

11. Zhang HH, Halbleib M, Ahmad F, Manganiello VC, Greenberg AS. Tumor<br />

necrosis factor- stimulates lipolysis <strong>in</strong> differentiated human adipocytes<br />

through activation of extracellular signal–related k<strong>in</strong>ase and elevation of<br />

<strong>in</strong>tracellular cAMP. <strong>Diabetes</strong> 2002;51:2929–2935<br />

12. Greenberg AS, Shen WJ, Muliro K, Patel S, Souza SC, Roth RA, Kraemer<br />

FB. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular<br />

signal-regulated k<strong>in</strong>ase pathway. J Biol Chem 2001;276:45456–45461<br />

13. Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman<br />

P, Pages G, Pouyssegur J, Le Marchand-Brustel Y, B<strong>in</strong>etruy B. The<br />

extracellular signal–regulated k<strong>in</strong>ase isoform ERK1 is specifically required<br />

for <strong>in</strong> vitro and <strong>in</strong> vivo adipogenesis. <strong>Diabetes</strong> 2005;54:402–411<br />

14. Emanuelli B, Eberle D, Suzuki R, Kahn CR. Overexpression of the<br />

dual-specificity phosphatase MKP-4/DUSP-9 protects aga<strong>in</strong>st stress-<strong>in</strong>duced<br />

<strong>in</strong>sul<strong>in</strong> resistance. Proc Natl Acad Sci USA2008;105:3545–3550<br />

15. Rodriguez A, Duran A, Selloum M, Champy M-F, Diez-Guerra FJ, Flores<br />

JM, Serrano M, Auwerx J, Diaz-Meco MT, Moscat J. Mature-onset obesity<br />

and <strong>in</strong>sul<strong>in</strong> resistance <strong>in</strong> mice deficient <strong>in</strong> the signal<strong>in</strong>g adapter p62. Cell<br />

Metab 2006;3:211–222<br />

16. Banerjee A, Gerondakis S. Coord<strong>in</strong>at<strong>in</strong>g TLR-activated signal<strong>in</strong>g pathways<br />

<strong>in</strong> cells of the immune system. Immunol Cell Biol 2007;85:420–424<br />

17. Raman M, Chen W, Cobb MH. Differential regulation and properties of<br />

MAPKs. Oncogene 2007;26:3100–3112<br />

18. Symons A, Be<strong>in</strong>ke S, Ley SC. MAP k<strong>in</strong>ase k<strong>in</strong>ase k<strong>in</strong>ases and <strong>in</strong>nate<br />

immunity. Trends Immunol 2006;27:40–48<br />

19. Ceci JD, Patriotis CP, Tsatsanis C, Makris AM, Kovatch R, Sw<strong>in</strong>g DA,<br />

Jenk<strong>in</strong>s NA, Tsichlis PN, Copeland NG. Tpl-2 is an oncogenic k<strong>in</strong>ase that<br />

is activated by carboxy-term<strong>in</strong>al truncation. Genes Dev 1997;11:688–700<br />

20. Hatziapostolou M, Polytarchou C, Panutsopulos D, Covic L, Tsichlis PN.<br />

Prote<strong>in</strong>ase-activated receptor-1-triggered activation of tumor progression<br />

locus-2 promotes act<strong>in</strong> cytoskeleton reorganization and cell migration.<br />

Cancer Res 2008;68:1851–1861<br />

21. Gavr<strong>in</strong> LK, Green N, Hu Y, Janz K, Kaila N, Li HQ, Tam SY, Thomason JR,<br />

Gopalsamy A, Ciszewski G, Cuozzo JW, Hall JP, Hsu S, Telliez JB, L<strong>in</strong> LL.<br />

Inhibition of <strong>Tpl2</strong> k<strong>in</strong>ase and TNF-alpha production with 1,7-naphthyrid<strong>in</strong>e-3-carbonitriles:<br />

synthesis and structure-activity relationships. Bioorg<br />

Med Chem Lett 2005;15:5288–5292<br />

diabetes.diabetesjournals.org DIABETES, VOL. 59, JANUARY 2010 69

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!