19.07.2013 Views

use of metal templates for microcavity formation in alumina

use of metal templates for microcavity formation in alumina

use of metal templates for microcavity formation in alumina

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Figure 3.4. Pressed samples: (a) be<strong>for</strong>e s<strong>in</strong>ter<strong>in</strong>g <strong>for</strong> furnace, (b) after s<strong>in</strong>ter<strong>in</strong>g<br />

<strong>for</strong> furnace, (c) be<strong>for</strong>e s<strong>in</strong>ter<strong>in</strong>g <strong>for</strong> dilatometer and (d) after s<strong>in</strong>ter<strong>in</strong>g<br />

<strong>for</strong> dilatometer ............................................................................................. 26<br />

Figure 4.1. Relative shr<strong>in</strong>kage curves <strong>for</strong> powder compacts (UP150 MPa)<br />

<strong>of</strong> alum<strong>in</strong>a CR6, CR15, CR30F, CT3000SG and AKP50 dur<strong>in</strong>g<br />

s<strong>in</strong>ter<strong>in</strong>g at a heat<strong>in</strong>g rate <strong>of</strong> 5 o C/m<strong>in</strong> ........................................................... 28<br />

Figure 4.2. Temperature versus time schedules <strong>of</strong> s<strong>in</strong>ter<strong>in</strong>g tests .................................. 30<br />

Figure 4.3. Relative density curve <strong>for</strong> powder compacts (UP 150MPa) <strong>of</strong> alum<strong>in</strong>a<br />

CR6, CR15 , CR30F, CT3000SG and AKP50 dur<strong>in</strong>g s<strong>in</strong>ter<strong>in</strong>g at a<br />

heat<strong>in</strong>g rate <strong>of</strong> 5 o C/m<strong>in</strong> ................................................................................. 30<br />

Figure 4.4. Densification rate curve <strong>for</strong> powder compacts (UP 150MPa) <strong>of</strong> alum<strong>in</strong>a<br />

CR6, CR15 , CR30F, CT3000SG and AKP50 dur<strong>in</strong>g s<strong>in</strong>ter<strong>in</strong>g at a<br />

heat<strong>in</strong>g rate <strong>of</strong> 5 o C/m<strong>in</strong> ................................................................................. 31<br />

Figure 4.5. Relative shr<strong>in</strong>kage curves <strong>for</strong> powder compact (UP150 MPa) <strong>of</strong> alum<strong>in</strong>a<br />

CR6 dur<strong>in</strong>g s<strong>in</strong>ter<strong>in</strong>g at a heat<strong>in</strong>g rate <strong>of</strong> 5 o C/m<strong>in</strong> at 1500 o C ....................... 32<br />

Figure 4.6. Relative density curve <strong>for</strong> powder compact (UP 150MPa) <strong>of</strong> alum<strong>in</strong>a<br />

CR6 dur<strong>in</strong>g s<strong>in</strong>ter<strong>in</strong>g at a heat<strong>in</strong>g rate <strong>of</strong> 5 o C/m<strong>in</strong> at 1500 o C ....................... 32<br />

Figure 4.7. Densification rate curve <strong>for</strong> powder compact (UP 150MPa) <strong>of</strong> alum<strong>in</strong>a<br />

CR6 dur<strong>in</strong>g s<strong>in</strong>ter<strong>in</strong>g at a heat<strong>in</strong>g rate <strong>of</strong> 5 o C/m<strong>in</strong> at 1500 o C ....................... 33<br />

Figure 4.8. SEM images <strong>of</strong> alum<strong>in</strong>a powders (a) alum<strong>in</strong>a CR6 (b) alum<strong>in</strong>a CR15<br />

(c) alum<strong>in</strong>a CR30F (d) alum<strong>in</strong>a CT3000SG (e) alum<strong>in</strong>a AKP50 ................ 35<br />

Figure 4.9. SEM micrographs <strong>of</strong> <strong>metal</strong> <strong>templates</strong> (a) Ti wire (b) Ti plate<br />

(c) Copper wire (d) Sta<strong>in</strong>less steel wire ........................................................ 36<br />

Figure 4.10. EDS analysis <strong>of</strong> the Ti wire ........................................................................ 37<br />

Figure 4.11. EDS analysis <strong>of</strong> the Ti plate ....................................................................... 37<br />

Figure 4.12. EDS analysis <strong>of</strong> the sta<strong>in</strong>less steel wire ..................................................... 37<br />

Figure 4.13. EDS analysis <strong>of</strong> the copper wire ................................................................ 38<br />

Figure 4.14. Picture <strong>of</strong> the sample after s<strong>in</strong>ter<strong>in</strong>g. (a) Top view and (b) cross<br />

sectional view. Notice the dark spots on the cross section that<br />

correspond to the location <strong>of</strong> Ti wire .......................................................... 39<br />

Figure 4.15. SEM micrographs <strong>of</strong> alum<strong>in</strong>a that <strong>use</strong>d Ti wire (a) alum<strong>in</strong>a CR6<br />

(b) alum<strong>in</strong>a CR15 (c) alum<strong>in</strong>a CR30F (d) alum<strong>in</strong>a AKP50<br />

(e) alum<strong>in</strong>a CT3000SG ............................................................................... 40<br />

Figure 4.16. Phase equilibrium diagram <strong>of</strong> Al2O3 – TiO2 system .................................. 41<br />

ix

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!