30.07.2013 Views

Output frequency response function-based analysis for nonlinear ...

Output frequency response function-based analysis for nonlinear ...

Output frequency response function-based analysis for nonlinear ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

else<br />

CEðHnðjo1; ...; jonÞÞ ¼ 0,<br />

which can be summarized as<br />

CEðHnðjo1; ...; jonÞÞ ¼ c<br />

ðn1Þ= pþq 1 ð Þ d<br />

n 1<br />

p þ q 1<br />

n 1<br />

p þ q 1<br />

Proof. The results are directly followed from Propositions 1 and 2. &<br />

ð1dðpÞposðn qÞÞ.<br />

(13)<br />

Corollary 1 provides a more special case of <strong>nonlinear</strong> system (1) or (2). There are only several <strong>nonlinear</strong><br />

parameters of the same <strong>nonlinear</strong> type and degree in the considered system. This result will be used in the example<br />

of Section 5. The following results can be achieved <strong>for</strong> the output <strong>frequency</strong> <strong>response</strong>.<br />

Corollary 2. Consider only the <strong>nonlinear</strong> parameter Cp,q ¼ c. The parametric characteristic vector of the output<br />

spectrum in (6) with respect to the parameter c can be written as<br />

N<br />

N 1<br />

pþq 1 dðpÞ posðN qÞd<br />

N 1<br />

pþq 1<br />

N 1<br />

pþq 1 .<br />

c ¼ CEðYðjoÞÞ ¼ CEðHnð ÞÞ ¼<br />

n¼1<br />

1; c; c 2 ; ...; c<br />

If all the other degree and type of <strong>nonlinear</strong> parameters are zero except that Cp,q ¼ c is non-zero (p+q41).<br />

Then the parametric characteristic vector of the output spectrum in (6) with respect to the parameter c is<br />

if p ¼ 0<br />

c ¼ CEðYðjoÞÞ ¼ 1 CEðHqð ÞÞð1 posðq NÞÞ ¼ ½1cð1posðq NÞÞŠ,<br />

else<br />

bðN c ¼ CEðYðjoÞÞ ¼<br />

1Þ=<br />

ðpþq1Þc CEðHðpþq 1Þiþ1ð ÞÞ ¼ 1; c; c 2 h<br />

ðN ; ...; cb 1Þ=<br />

ðpþq i<br />

1Þc<br />

.<br />

i¼0<br />

Proof. The results are straight<strong>for</strong>ward from Proposition 2 and Corollary 1. &<br />

The results above involve the computation of c n .Ifc is an I-dimension vector, there will be many repetitive<br />

terms involved in c n . To simplify the computation, the following lemma can be used.<br />

Lemma 1. Let be c ¼ [c1,c2,y,cI] which can also be denoted by c [1:I], and cn ¼ c<br />

Kronecker product defined in Jing et al. [24], nX1 and IX1. Then<br />

c c,‘‘<br />

’’ is the reduced<br />

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}<br />

n<br />

c n ¼ c n 1 c1; ...; c n 1 ½sð1Þn sðiÞn þ 1 : sð1ÞnŠci; ...; c n 1 ½sð1ÞnŠcI ,<br />

where sðiÞn ¼ PI<br />

sðjÞn 1, s(.) 1 ¼ 1, and 1pipI. Moreover, DIM(c<br />

j¼i<br />

n n n<br />

) ¼ s(1) n+1, and the location of ci in c is<br />

s(1)n+1–s(i)n+1+1.<br />

Proof. See Appendix C. &<br />

4.2. Analysis <strong>based</strong> on the OFRF with respect to Cp,q<br />

ARTICLE IN PRESS<br />

X.J. Jing et al. / Mechanical Systems and Signal Processing 22 (2008) 102–120 109<br />

Based on the result in Corollary 2 and Eq. (6), with respect to a specific parameter c, the OFRF can be<br />

written as<br />

YðjoÞ ¼ ¯j 0ðjoÞþc ¯j 1ðjoÞþc 2 j2ðjoÞþ þc ‘ j ‘ðjoÞþ . (14a)<br />

Since Y(jo) is also a <strong>function</strong> of c, there<strong>for</strong>e, Eq. (14a) is rewritten more clearly as<br />

Yðjo; cÞ ¼ ¯j 0ðjoÞþc ¯j 1ðjoÞþc 2 j2ðjoÞþ þc ‘ j ‘ðjoÞþ . (14b)<br />

Y(jo;c) is in fact a series of an infinite order, ‘ is a positive integer which can be determined by Corollary 2,<br />

¯j iðjoÞ is the complex valued <strong>function</strong> corresponding to the coefficient c i in Eq. (6), which can be obtained by<br />

following the method in Process C. If all the other degree and type of <strong>nonlinear</strong> parameters are zero

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!