01.08.2013 Views

Quantifying the material and structural determinants of bone strength

Quantifying the material and structural determinants of bone strength

Quantifying the material and structural determinants of bone strength

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

752<br />

M.L. Bouxsein, E. Seeman / Best Practice & Research Clinical Rheumatology 23 (2009) 741–753<br />

[82] Boutroy S, Van Rietbergen B, Sornay-Rendu E, et al. Finite element analysis based on in vivo HR-pQCT images <strong>of</strong> <strong>the</strong><br />

distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res 2008;23(3):392–9.<br />

[83] Seeman E, Delmas PD, Hanley DA, et al. Effects <strong>of</strong> denosumab <strong>and</strong> alendronate on skeletal microarchitecture International<br />

Bone <strong>and</strong> Mineral Society Meeting, Sydney. 2009.<br />

[84] Rizzoli R, Felsenberg D, Laroche M, et al. Strontium ranelate has a more positive influence than alendronate on distal<br />

tibia cortical <strong>and</strong> trabecluar <strong>bone</strong> microstructure in women with postmenopausal osteoporosis. Osteoporos Int 2009;<br />

20:165–6.<br />

[85] Boivin G, Meunier PJ. Changes in <strong>bone</strong> remodeling rate influence <strong>the</strong> degree <strong>of</strong> mineralization <strong>of</strong> <strong>bone</strong>. Connect Tissue<br />

Res 2002;43(2–3):535–7.<br />

[86] Boivin G, Del<strong>of</strong>fre P, Perrat B, et al. Strontium distribution <strong>and</strong> interactions with <strong>bone</strong> mineral in monkey iliac <strong>bone</strong><br />

after strontium salt (S 12911) administration. J Bone Miner Res 1996;11(9):1302–11.<br />

[87] Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for <strong>the</strong> assessment <strong>of</strong> <strong>bone</strong> structure <strong>and</strong> function. NMR<br />

Biomed 2006;19(7):731–64.<br />

*[88] Wehrli FW. Structural <strong>and</strong> functional assessment <strong>of</strong> trabecular <strong>and</strong> cortical <strong>bone</strong> by micro magnetic resonance<br />

imaging.<br />

J Magn Reson Imaging 2007;25(2):390–409.<br />

[89] Link TM, Majumdar S, Grampp S, et al. Imaging <strong>of</strong> trabecular <strong>bone</strong> structure in osteoporosis. Eur Radiol 1999;9(9):1781–8.<br />

[90] Wehrli FW, Saha PK, Gomberg BR, et al. Role <strong>of</strong> magnetic resonance for assessing structure <strong>and</strong> function <strong>of</strong> trabecular<br />

<strong>bone</strong>. Top Magn Reson Imaging 2002;13(5):335–55.<br />

[91] Majumdar S, Newitt D, Mathur A, et al. Magnetic resonance imaging <strong>of</strong> trabecular <strong>bone</strong> structure in <strong>the</strong> distal radius:<br />

relationship with X-ray tomographic microscopy <strong>and</strong> biomechanics. Osteoporos Int 1996;6(5):376–85.<br />

[92] Link TM, Vieth V, Stehling C, et al. High-resolution MRI vs multislice spiral CT: which technique depicts <strong>the</strong> trabecular<br />

<strong>bone</strong> structure best? Eur Radiol 2003;13(4):663–71.<br />

[93] Krug R, Banerjee S, Han ET, et al. Feasibility <strong>of</strong> in vivo <strong>structural</strong> analysis <strong>of</strong> high-resolution magnetic resonance images<br />

<strong>of</strong> <strong>the</strong> proximal femur. Osteoporos Int 2005;16(11):1307–14.<br />

[94] Banerjee S, Han ET, Krug R, et al. Application <strong>of</strong> refocused steady-state free-precession methods at 1.5 <strong>and</strong> 3 T to in<br />

vivo high-resolution MRI <strong>of</strong> trabecular <strong>bone</strong>: simulations <strong>and</strong> experiments. J Magn Reson Imaging 2005;21(6):818–25.<br />

[95] Blumenfeld J, Studholme C, Carballido-Gamio J, et al. Three-dimensional image registration <strong>of</strong> MR proximal femur<br />

images for <strong>the</strong> analysis <strong>of</strong> trabecular <strong>bone</strong> parameters. Med Phys 2008;35(10):4630–9.<br />

[96] Benito M, Gomberg B, Wehrli FW, et al. Deterioration <strong>of</strong> trabecular architecture in hypogonadal men. J Clin Endocrinol<br />

Metab 2003;88(4):1497–502.<br />

[97] Wehrli FW, Leonard MB, Saha PK, Gomberg BR. Quantitative high-resolution magnetic resonance imaging reveals<br />

<strong>structural</strong> implications <strong>of</strong> renal osteodystrophy on trabecular <strong>and</strong> cortical <strong>bone</strong>. J Magn Reson Imaging 2004;20(1):<br />

83–9.<br />

*[98] Majumdar S, Genant HK, Grampp S, et al. Correlation <strong>of</strong> trabecular <strong>bone</strong> structure with age, <strong>bone</strong> mineral density, <strong>and</strong><br />

osteoporotic status: in vivo studies in <strong>the</strong> distal radius using high resolution magnetic resonance imaging. J Bone<br />

Miner Res 1997;12(1):111–8.<br />

[99] Wehrli FW, Hwang SN, Ma J, et al. Cancellous <strong>bone</strong> volume <strong>and</strong> structure in <strong>the</strong> forearm: noninvasive assessment with<br />

MR microimaging <strong>and</strong> image processing. Radiology 1998;206(2):347–57.<br />

[100] Link TM, Majumdar S, Augat P, et al. In vivo high resolution MRI <strong>of</strong> <strong>the</strong> calcaneus: differences in trabecular structure in<br />

osteoporosis patients. J Bone Miner Res 1998;13(7):1175–82.<br />

[101] Majumdar S, Link TM, Augat P, et al. Trabecular <strong>bone</strong> architecture in <strong>the</strong> distal radius using magnetic resonance<br />

imaging in subjects with fractures <strong>of</strong> <strong>the</strong> proximal femur. Magnetic Resonance Science Center <strong>and</strong> Osteoporosis <strong>and</strong><br />

Arthritis Research Group. Osteoporos Int 1999;10(3):231–9.<br />

*[102] Wehrli FW, Gomberg BR, Saha PK, et al. Digital topological analysis <strong>of</strong> in vivo magnetic resonance microimages <strong>of</strong><br />

trabecular <strong>bone</strong> reveals <strong>structural</strong> implications <strong>of</strong> osteoporosis. J Bone Miner Res 2001;16(8):1520–31.<br />

[103] Link TM, Bauer JS. Imaging <strong>of</strong> trabecular <strong>bone</strong> structure. Semin Musculoskelet Radiol 2002;6(3):253–61.<br />

[104] Benito M, Vasilic B, Wehrli FW, et al. Effect <strong>of</strong> testosterone replacement on trabecular architecture in hypogonadal<br />

men.<br />

J Bone Miner Res 2005;20(10):1785–91.<br />

[105] Chesnut 3rd CH, Majumdar S, Newitt DC, et al. Effects <strong>of</strong> salmon calcitonin on trabecular microarchitecture as<br />

determined by magnetic resonance imaging: results from <strong>the</strong> QUEST study. J Bone Miner Res 2005;20(9):<br />

1548–61.<br />

[106] Wu Y, Chesler DA, Glimcher MJ, et al. Multinuclear solid-state three-dimensional MRI <strong>of</strong> <strong>bone</strong> <strong>and</strong> syn<strong>the</strong>tic calcium<br />

phosphates. Proc Natl Acad Sci U S A 1999;96(4):1574–8.<br />

[107] Wu Y, Ackerman JL, Chesler DA, et al. Density <strong>of</strong> organic matrix <strong>of</strong> native mineralized <strong>bone</strong> measured by water- <strong>and</strong><br />

fat-suppressed proton projection MRI. Magn Reson Med 2003;50(1):59–68.<br />

[108] Anumula S, Magl<strong>and</strong> J, Wehrli SL, et al. Measurement <strong>of</strong> phosphorus content in normal <strong>and</strong> osteomalacic rabbit <strong>bone</strong><br />

by solid-state 3D radial imaging. Magn Reson Med 2006;56(5):946–52.<br />

[109] Wu Y, Dai G, Ackerman JL, et al. Water- <strong>and</strong> fat-suppressed proton projection MRI (WASPI) <strong>of</strong> rat femur <strong>bone</strong>. Magn<br />

Reson Med 2007;57(3):554–67.<br />

[110] Cao H, Ackerman JL, Hrovat MI, et al. Quantitative <strong>bone</strong> matrix density measurement by water- <strong>and</strong> fat-suppressed<br />

proton projection MRI (WASPI) with polymer calibration phantoms. Magn Reson Med 2008;60(6):1433–43.<br />

[111] Robson MD, Gatehouse PD, Bydder GM, Neubauer S. Human imaging <strong>of</strong> phosphorus in cortical <strong>and</strong> trabecular <strong>bone</strong> in<br />

vivo. Magn Reson Med 2004;51(5):888–92.<br />

[112] Stokstad E. Bone quality fills holes in fracture risk. Science 2005;308(5728):1580.<br />

[113] Cody DD, Gross GJ, Hou FJ, et al. Femoral <strong>strength</strong> is better predicted by finite element models than QCT <strong>and</strong> DXA.<br />

J Biomech 1999;32(10):1013–20.<br />

[114] Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive <strong>strength</strong> better<br />

than quantitative computed tomography. Bone 2003;33(4):744–50.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!