03.08.2013 Views

Biochemical and Histopathological Effects of Aflatoxin on ...

Biochemical and Histopathological Effects of Aflatoxin on ...

Biochemical and Histopathological Effects of Aflatoxin on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

BIOCHEMICAL AND HISTOPATHOLOGICAL EFFECTS<br />

OF AFLATOXIN ON OREOCHROMIS<br />

MOSSAMBICUS (PETERS)<br />

THESIS SUMITTED TO<br />

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY<br />

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF<br />

DOCTOR OF PHILOSOPHY<br />

IN BIOCHEMISTRY<br />

UNDER THE FACULTY OF MARINE SCIENCES<br />

BY<br />

SUCHITHRA VARIOR<br />

DEPARTMENT OF MARINE BIOLOGY,MICROBIOLOGY AND BIOCHEMISTRY<br />

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY<br />

KOCIll-16, KERALA<br />

MARCH 2003


LIST OF NOTATIONS AND ABBREVIATIONS<br />

IUPAC<br />

LDso<br />

TLC<br />

HPLC<br />

ELlSA<br />

RIA<br />

SOS<br />

TEMED<br />

ALP<br />

ALT<br />

AST<br />

ANOVA<br />

ATPase<br />

IU<br />

LERA<br />

LSD<br />

SOD<br />

Internati<strong>on</strong>al Uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pure <str<strong>on</strong>g>and</str<strong>on</strong>g> Applied Chemistry<br />

Lethal dose causing 50% mortality<br />

Thin layer chromatography<br />

High pressure liquid chromatography<br />

Enzyme Linked ImmunoSorbent Assay<br />

Radioimmunoassay<br />

Sodium dodecyl sulfate<br />

NNNN Tetra methyl ethylenediamine<br />

Alkaline phosphatase<br />

Alanine transaminase<br />

Aspartate transaminase<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Variance<br />

Adenosine triphosphatase<br />

Internati<strong>on</strong>al Unit<br />

Lysosomal enzyme release assay<br />

Least significant difference<br />

Superoxide dismutase.


CHAPTER 1<br />

Introducti<strong>on</strong><br />

CHAPTER2<br />

Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Literature<br />

CHAPTER3<br />

CONTENTS<br />

Extracti<strong>on</strong> And Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

Incorporati<strong>on</strong> into Fish Feed<br />

Introducti<strong>on</strong><br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods<br />

Subculture <str<strong>on</strong>g>of</str<strong>on</strong>g>the fungus, Aspergillusflavus<br />

Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Czapek Yeast Extract Agar<br />

Extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g><br />

Extracti<strong>on</strong> Protocol<br />

Detecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> using Flu'i-otoxinmeter<br />

"<br />

Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Fish Feed<br />

Results<br />

Discussi<strong>on</strong><br />

CHAPTER4<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> <strong>on</strong> the Lipid Peroxidati<strong>on</strong> Process<br />

Introducti<strong>on</strong><br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Catalase<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Superoxide dismutase<br />

1-4<br />

5-17<br />

18-28<br />

29-59


Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Glutathi<strong>on</strong>e reductase<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Mal<strong>on</strong>dialdehyde<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydroperoxide<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>C<strong>on</strong>jugated diene<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Glutathi<strong>on</strong>e<br />

Results<br />

Discussi<strong>on</strong><br />

CHAPTER 5<br />

Histopathology<br />

Introducti<strong>on</strong><br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods<br />

Results<br />

Discussi<strong>on</strong><br />

CHAPTER 6<br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> mediated <str<strong>on</strong>g>Biochemical</str<strong>on</strong>g> Changes In<br />

Oreochromis mossambicus<br />

Introducti<strong>on</strong><br />

Experimental Design<br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pyruvate<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Urea<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Alanine Transaminase<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Aspartate Transaminase<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Alkaline Phosphatase<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Free Amino acids<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Protein<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Serum protein, Albumin <str<strong>on</strong>g>and</str<strong>on</strong>g> Globulin<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Serum LDH<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Blood Glucose<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Alkaline Phosphatase<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Acid Phosphatase<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ALT<br />

60-69<br />

70-114


Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>AST<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Serum creatinine<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Serum Cholesterol<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Triglycerides<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>HDL <str<strong>on</strong>g>and</str<strong>on</strong>g> LDL cholesterol<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Haemoglobin<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Packed cell Volume<br />

RBC Count<br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>RBC c<strong>on</strong>stants<br />

Results<br />

Discussi<strong>on</strong><br />

CHAPTER 7<br />

Electrophoretic Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> Stress in<br />

Dreochromts mossambicus<br />

Introducti<strong>on</strong><br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods<br />

Results<br />

Discussi<strong>on</strong><br />

CHAPTER 8<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> <strong>on</strong> Biological Membranes, Na+K+<br />

ATPase <str<strong>on</strong>g>and</str<strong>on</strong>g> studies <strong>on</strong> Muscle Retenti<strong>on</strong><br />

Introducti<strong>on</strong><br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods<br />

Results<br />

Discussi<strong>on</strong><br />

CHAPTER 9<br />

Summary <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>clusi<strong>on</strong><br />

Bibliography<br />

115-132<br />

133-163<br />

164-167<br />

168-185


C<br />

H<br />

A<br />

P<br />

T<br />

E<br />

R Introducti<strong>on</strong><br />

1


1.0 Introducti<strong>on</strong><br />

Aquaculture today c<strong>on</strong>tributes substantially to the global fish<br />

producti<strong>on</strong> <strong>on</strong> account <str<strong>on</strong>g>of</str<strong>on</strong>g> the all round development during the past decades.<br />

A few decades ago, traditi<strong>on</strong>al tilapia farming depended mostly <strong>on</strong> extensive<br />

farming methods, where the fish obtained all their nutriti<strong>on</strong> from the aquatic<br />

envir<strong>on</strong>ments in which they were cultured. Nutrient input into the culture<br />

systems were limited to fertilizers, <str<strong>on</strong>g>and</str<strong>on</strong>g> agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> animal products or<br />

byproducts. In resp<strong>on</strong>se to the increased cost <str<strong>on</strong>g>of</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> labor, as well as<br />

increased dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for fish, nowadays tilapia husb<str<strong>on</strong>g>and</str<strong>on</strong>g>ry requires aquafarmers<br />

to stock fish at densities higher than could be supported by the natural<br />

productivity. Hence intensive culture <str<strong>on</strong>g>of</str<strong>on</strong>g> tilapia has gained popularity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

nutriti<strong>on</strong>ally complete feeds have become a necessity. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial<br />

feeds in aquaculture systems .has increased producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>its<br />

c<strong>on</strong>siderably (Alceste, 2000).<br />

The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquafeeds has been widely recognized as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fastest exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ing aquaculture industries in the world with annual growth<br />

rates in excess <str<strong>on</strong>g>of</str<strong>on</strong>g> 30% per year. It has been estimated (Tac<strong>on</strong>, 1997) that the<br />

total world producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> manufactured compound animal feeds was about<br />

560 milli<strong>on</strong> metric t<strong>on</strong>nes in 1995 <str<strong>on</strong>g>of</str<strong>on</strong>g> which aquatic feeds c<strong>on</strong>stituted 3% or<br />

16.8 milli<strong>on</strong> metric t<strong>on</strong>nes. An estimated 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total world aquafeed<br />

producti<strong>on</strong> was manufactured in Asia <str<strong>on</strong>g>and</str<strong>on</strong>g> Europe with a fourth produced for<br />

carp, tilapia, milkfish <str<strong>on</strong>g>and</str<strong>on</strong>g> other fish species feeding low <strong>on</strong> the food chain.<br />

In tropical countries like India where aquaculture is still developing, it<br />

IS comm<strong>on</strong> to observe pelleted feeds that are being produced with<br />

inappropriate procedures for bagging, transport <str<strong>on</strong>g>and</str<strong>on</strong>g> storage. These facts, in<br />

c<strong>on</strong>juncti<strong>on</strong> with the high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> humidity in these areas<br />

1


are probably the causes for the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal growth <str<strong>on</strong>g>and</str<strong>on</strong>g> the potential<br />

for aflatoxin producti<strong>on</strong>. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s are a family <str<strong>on</strong>g>of</str<strong>on</strong>g> closely related<br />

heterocyclic compounds produced by some strains <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungi, Aspergillus<br />

flavus <str<strong>on</strong>g>and</str<strong>on</strong>g> Aspergillus parasiticus. The important feed ingredients like<br />

soybean meal, rice bran, groundnut oil cake <str<strong>on</strong>g>and</str<strong>on</strong>g> mustard oil cake at present<br />

c<strong>on</strong>sidered as very valuable items in fish feeds may be c<strong>on</strong>taminated by<br />

aflatoxins. During harvest <str<strong>on</strong>g>and</str<strong>on</strong>g> post harvest operati<strong>on</strong>s, the grain <str<strong>on</strong>g>and</str<strong>on</strong>g> oil<br />

seeds may not get dried up properly <str<strong>on</strong>g>and</str<strong>on</strong>g> these c<strong>on</strong>tain high undesirable<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture, which makes them good media for the growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moulds. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> is a potent liver toxin <str<strong>on</strong>g>and</str<strong>on</strong>g> carcinogen, with aflatoxin B1<br />

being the most toxic compound (Ngethe et al, 1992) resp<strong>on</strong>sible for the<br />

major toxicity syndrome "aflatoxicosis".<br />

Aquatic vertebrates <str<strong>on</strong>g>of</str<strong>on</strong>g> widely divergent taxa are known to suffer toxic<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary aflatoxin. For example, dietary levels <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB1 at or below<br />

25 ppb adversely affected the productive performance <str<strong>on</strong>g>of</str<strong>on</strong>g> ducklings<br />

(Ostrowski - Meissner, 1982 a,b); teleosts are also susceptible to AFB 1<br />

toxicity. Rainbow trout has <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the highest sensitivities to aflatoxin <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

animals. In this species, an intake <str<strong>on</strong>g>of</str<strong>on</strong>g> less than Iug AFB1 per kg diet can<br />

cause liver tumors, <str<strong>on</strong>g>and</str<strong>on</strong>g> the LDso for aflatoxin in fish weighing 50g is 0.5 ­<br />

1.0 mg/kg <str<strong>on</strong>g>of</str<strong>on</strong>g> diet (LoveIl, 1989). Warm water fishes are generally less<br />

sensitive to aflatoxin than cold-water species. Pathological resp<strong>on</strong>ses to<br />

aflatoxin have been reported for channel catfish (Smith, 1982) <str<strong>on</strong>g>and</str<strong>on</strong>g> tilapia,<br />

Sarotherod<strong>on</strong> spiluris (HaIler <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, 1980).<br />

The increasing awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> the scale <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic envir<strong>on</strong>mental<br />

problems has focused attenti<strong>on</strong> <strong>on</strong> the urgent need for sensitive <str<strong>on</strong>g>and</str<strong>on</strong>g> precise<br />

diagnostic tools or biomarkers with a predictive capability for the assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> toxic c<strong>on</strong>taminant impact. Detecti<strong>on</strong> for changes in the amounts <str<strong>on</strong>g>and</str<strong>on</strong>g>/or<br />

2


distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many cellular proteins <str<strong>on</strong>g>and</str<strong>on</strong>g> other c<strong>on</strong>stituents will enable<br />

pathological perturbati<strong>on</strong>s to be diagnosed at the very <strong>on</strong>set itself in<br />

otherwise healthy animals. Investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pathological alterati<strong>on</strong>s at the<br />

molecular <str<strong>on</strong>g>and</str<strong>on</strong>g> cellular levels also provide an improved underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

biomolecular disturbances induced by the toxic c<strong>on</strong>taminants. The alterati<strong>on</strong><br />

in some <str<strong>on</strong>g>of</str<strong>on</strong>g> the biomarkers can thus act as an early warning system for the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> critical levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic pollutants. Histological, cytological <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cytochemical resp<strong>on</strong>ses observable from animal tissue secti<strong>on</strong>s form an<br />

important link between effects at the biochemical level <str<strong>on</strong>g>and</str<strong>on</strong>g> those measured<br />

in the whole organism. The tumour suppressor gene, p53 is a molecular<br />

genetic biomarker that can be exploited for m<strong>on</strong>itoring carcinogens. Though<br />

these genes have been reported in fishes, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> various carcinogens<br />

<strong>on</strong> them are yet to be properly worked out in fishes. There is a lacuna<br />

regarding the molecular changes in nuclear proteins especially the tumor<br />

suppressing protein.<br />

Of late attempts to develop a proper teleost model, which is available<br />

in abundance for the chemically induced carcinogenic studies, are underway.<br />

This is more relevant in the Indian c<strong>on</strong>text, where the tropical climatic<br />

c<strong>on</strong>diti<strong>on</strong>s favour the development <str<strong>on</strong>g>of</str<strong>on</strong>g> organic pollutants in additi<strong>on</strong> to the<br />

severe damage brought about in the aquatic envir<strong>on</strong>ment by unc<strong>on</strong>trolled<br />

anthropogenic discharges. The fish Oreochromis mossambicus is an ideal<br />

teleost model, mainly due to its hardy nature, ease <str<strong>on</strong>g>of</str<strong>on</strong>g> rearing <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

maintenance, availability <str<strong>on</strong>g>and</str<strong>on</strong>g> also because it is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the comm<strong>on</strong>ly<br />

cultured species in the south east asian countries.<br />

Hence the present study was undertaken in Oreochromis mossambicus<br />

with the following objectives:<br />

3


1. To document the biochemical changes mediated by aflatoxin.<br />

2. To study the effect <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin <strong>on</strong> the lipid peroxidati<strong>on</strong> process.<br />

3. To document the histopathological alterati<strong>on</strong>s induced by aflatoxin.<br />

4. To evaluate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin <strong>on</strong> nuclear proteins <str<strong>on</strong>g>and</str<strong>on</strong>g> serum<br />

proteins with special reference to the tumor suppressor protein<br />

namely p53.<br />

5. To evaluate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin <strong>on</strong> biological membranes,<br />

branchial Na+K+ATPase <str<strong>on</strong>g>and</str<strong>on</strong>g> check for the possible retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxin in muscle.<br />

4


C<br />

H<br />

A<br />

P<br />

T<br />

E<br />

R Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Literature<br />

2


2.0. Review <str<strong>on</strong>g>of</str<strong>on</strong>g> literature<br />

2.1. Historical review<br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s were first identified as etiological agents for animal disease<br />

in the early 1960's, following an outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> deaths <str<strong>on</strong>g>of</str<strong>on</strong>g> turkey in Engl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

elsewhere. The disease, termed Turkey X disease because <str<strong>on</strong>g>of</str<strong>on</strong>g> the then<br />

unknown etiology was characterized by acute hepatic necrosis with bile duct<br />

hyperplasia, lethargy, loss <str<strong>on</strong>g>of</str<strong>on</strong>g> appetite <str<strong>on</strong>g>and</str<strong>on</strong>g> death. The cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects was<br />

traced to Brazilian peanut meal that was used in a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the poultry<br />

rati<strong>on</strong> (AIlcr<str<strong>on</strong>g>of</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> Carnaghan, 1963a). The toxic factors in the peanut meal,<br />

namely aflatoxins were separated in to four distinct compounds: aflatoxin Bl,<br />

Bz, G1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Gz (Nesbitt etal, 1962; Sargeant et al,1961).<br />

2.2. Structural diversity <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s<br />

Nearly all <str<strong>on</strong>g>of</str<strong>on</strong>g> the interest in aflatoxins has focused <strong>on</strong> AFBl, primarily<br />

due to its extreme acute <str<strong>on</strong>g>and</str<strong>on</strong>g> chr<strong>on</strong>ic toxicity <str<strong>on</strong>g>and</str<strong>on</strong>g> its carcinogenic activity in<br />

animals, in additi<strong>on</strong> to its potential effects in humans. The toxic factors<br />

isolated from feed were separated chromatographically into four distinct<br />

compounds: aflatoxins Bl, Bz, G1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Gz.The molecular formula indicated<br />

that aflatoxins Bz <str<strong>on</strong>g>and</str<strong>on</strong>g> Gz (AFBz <str<strong>on</strong>g>and</str<strong>on</strong>g> AFGz) were dihydro derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

parent AFB1 <str<strong>on</strong>g>and</str<strong>on</strong>g> G1 respectively (Asao et al, 1963;Chang et al, 1963;<br />

Cheung <str<strong>on</strong>g>and</str<strong>on</strong>g> Sill, 1964; Van der Merve et al, 1963; Van Dorp et al, 1963;<br />

Van Soest <str<strong>on</strong>g>and</str<strong>on</strong>g> Peerdeman, 1964). AfIatoxins c<strong>on</strong>tain a coumarin nucleus<br />

fused to a bifuran <str<strong>on</strong>g>and</str<strong>on</strong>g> either a pentan<strong>on</strong>e (AFB 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Bz) or a six membered<br />

lact<strong>on</strong>e (AFG1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Gz). AFB1 <str<strong>on</strong>g>and</str<strong>on</strong>g> G1 were more toxic to ducklings, rats, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fish than either AFBz or AFG2 with AFB 1 being the most toxic (Wogan et al,<br />

1971; Abedi <str<strong>on</strong>g>and</str<strong>on</strong>g> Scott, 1969). A similar pattern holds for its carcinogenic<br />

potency, AFB 1 > AFG 1 > AFBz (Wogan et al, 1971; Ayes et al, 1971).<br />

5


2.3 Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B., B2,Gt<str<strong>on</strong>g>and</str<strong>on</strong>g> G2<br />

AFLATOXIN BI<br />

o 0<br />

AFLATOXIN B2<br />

AFLATOXIN G 1<br />

o 0<br />

o 0<br />

o 0 OCH3<br />

o 0<br />

AFlATOXIN G2


2.4. Biotransformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> BI<br />

The major hydroxylated metabolite <str<strong>on</strong>g>of</str<strong>on</strong>g> AFBI formed by cytochromes<br />

P-450 are aflatoxin MI (AFM 1) , aflatoxin PI (AFP1) , aflatoxin Ql (AFQI)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxin Bza (AFBza). Additi<strong>on</strong>al metabolites, which are generally<br />

formed in smaller quantities depending <strong>on</strong> various c<strong>on</strong>diti<strong>on</strong>s, include<br />

aflatoxicol MI <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxicol HI. These stable metabolites are c<strong>on</strong>sidered to<br />

be detoxified relative to AFBl, are more polar, <str<strong>on</strong>g>and</str<strong>on</strong>g> as such are more easily<br />

extractable. The cyclopentanol aflatoxicol (AFL) is not a product <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oxidative metabolism, but rather a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the reproductive metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AFB I catalyzed by soluble NADPH - dependent reductases (W<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Hsieh, 1978).<br />

2.5. Biosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g><br />

As is the case for many other toxic sec<strong>on</strong>dary metabolites produced by<br />

fungi, aflatoxins are synthesized by the polyketide route, wherein head-to­<br />

tail c<strong>on</strong>densati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acetate units proceed via poly-Bvketo-thiol ester<br />

intermediate (Applebaum <str<strong>on</strong>g>and</str<strong>on</strong>g> Marth,1981). In this biosynthetic pathway, the<br />

chain is initiated by acetyl coenzyme A, <str<strong>on</strong>g>and</str<strong>on</strong>g> mal<strong>on</strong>yl COA is the source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

additi<strong>on</strong>al carb<strong>on</strong> units (M<strong>on</strong>ey, 1976). Relative to other polyketide-derived<br />

mycotoxins, the synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins has been particularly difficult to<br />

elucidate. It is now known that aflatoxins are derived from a C20 polyketide<br />

(Smith <str<strong>on</strong>g>and</str<strong>on</strong>g> Moss, 1985).<br />

2.6. Carcinogenicity <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s<br />

A requisite step in the toxic <str<strong>on</strong>g>and</str<strong>on</strong>g> carcinogenic acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AFBI is its<br />

c<strong>on</strong>versi<strong>on</strong> to <strong>on</strong>e or more metabolites in the various tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> exposed<br />

7


animals. As is the case with other "procarcinogens", the majority <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

metabolic c<strong>on</strong>versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB1 is catalyzed by cytochromes p450 which is a<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed - functi<strong>on</strong> oxidases present in the liver <str<strong>on</strong>g>and</str<strong>on</strong>g> other tissues.<br />

From a toxicological st<str<strong>on</strong>g>and</str<strong>on</strong>g>point, the most important reputed toxic<br />

intermediate <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB1 is the AFBl-2,3 epoxide (or the 8,9 epoxide by IUPAC<br />

nomenclature) which is thought to be the metabolite resp<strong>on</strong>sible for<br />

alkylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular nucleic acids <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent carcinogenic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mutagenic activity. These epoxides bind either to cellular proteins resulting<br />

in cytotoxicity or to cellular DNA (N7- guanidine adducts) resulting in<br />

mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the p53 tumour suppressor genes <str<strong>on</strong>g>and</str<strong>on</strong>g> finally in preneoplastic<br />

lesi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> hepatic cellular carcinoma. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB 1, phase I<br />

biotransformati<strong>on</strong> reacti<strong>on</strong>s facilitate bioactivati<strong>on</strong> whereas phase II<br />

biotransformati<strong>on</strong> reacti<strong>on</strong>s have proven to result in detoxificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

excreti<strong>on</strong>. AFB 1 - oxide can be inactivated. by enzymatic c<strong>on</strong>jugati<strong>on</strong> with<br />

glutathi<strong>on</strong>e (GSH) (Degen <str<strong>on</strong>g>and</str<strong>on</strong>g> Newmann, 1978). Such c<strong>on</strong>jugati<strong>on</strong> has been<br />

shown to protect against the hepatocarcinogenic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB 1 (Degen <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Newmann, 1981; Lotlikar et al, 1984). Only a small porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> administered<br />

AFB1 will be present in the unmetabolized form in either the tissues or<br />

secreti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> animals. Trout possess a complex but incompletely<br />

characterized array <str<strong>on</strong>g>of</str<strong>on</strong>g> cytochromes p450, transferases, <str<strong>on</strong>g>and</str<strong>on</strong>g> other enzymic<br />

systems for phase I <str<strong>on</strong>g>and</str<strong>on</strong>g> phase 11 procarcinogen metabolism. In general, trout<br />

exhibit <strong>on</strong>ly limited capacity for DNA repair, especially for removal <str<strong>on</strong>g>of</str<strong>on</strong>g> bulky<br />

DNA adducts. This factor, together with a high capacity for p450<br />

bioactivati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> negligible glutathi<strong>on</strong>e transferase - mediated detoxificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the epoxide, accounts for the excepti<strong>on</strong>al sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> trout to aflatoxin<br />

B1 carcinogenesis (Bailey GS et al, 1996). Aniline hydroxylase <str<strong>on</strong>g>and</str<strong>on</strong>g> N­<br />

demethylase are enzymes resp<strong>on</strong>sible for modifying key structural features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins. Like many other carcinogens it also acts as a n<strong>on</strong>specific cell<br />

pois<strong>on</strong> that exerts multiple effects <strong>on</strong> the structures <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemically <strong>on</strong><br />

susceptible cells (Swain <str<strong>on</strong>g>and</str<strong>on</strong>g> Singh, 1999).<br />

8


Enzyme pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatic neoplasm induced by AFB 1 in rainbow trout<br />

was studied. Though activities <str<strong>on</strong>g>of</str<strong>on</strong>g> ethoxy resomfin-O-diethylase (EROD),<br />

microsomal <str<strong>on</strong>g>and</str<strong>on</strong>g> cytosolic epoxide hydroxylase (mEH <str<strong>on</strong>g>and</str<strong>on</strong>g> cEH), aldehyde<br />

dehydrogenase (ALDH), DT diaphorase, gamma-glutamyl transferase<br />

(gamma GT), glutathi<strong>on</strong>e transferase (GST), uridine diphospho-glucur<strong>on</strong>yl<br />

bansferase(UDGPT), <str<strong>on</strong>g>and</str<strong>on</strong>g> p450 IAI were measured, <strong>on</strong>ly aldehyde<br />

dehydrogenase <str<strong>on</strong>g>and</str<strong>on</strong>g> gamma-glutamyl transferase showed increase. Inducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aldehyde dehydrogenase, uridine diphosphoglucur<strong>on</strong>yl transferase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytochrome p450 IAI were also noticed. Hepatic accumulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin BI deferred in rainbow trout <str<strong>on</strong>g>and</str<strong>on</strong>g> tilapia (Ngethe et al, 1993).<br />

The major target organ involved following chr<strong>on</strong>ic exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB1<br />

is the liver, but tumours <str<strong>on</strong>g>of</str<strong>on</strong>g> other organs appear, although these are less<br />

prevalent. As is the case with acute toxicity, there exist significant species<br />

differences with respect to susceptibility. The Mt. Shasta strain <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow<br />

trout is by far the most sensitive species <str<strong>on</strong>g>of</str<strong>on</strong>g> animal or fish to the<br />

hepatocarcinogenic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB I (Sinnhuber et al, 1977). Less than 1 ppb<br />

(parts per billi<strong>on</strong>) in the diet will cause liver tumours in 20 m<strong>on</strong>ths. The LDso<br />

(dose causing death in 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> the subjects) for aflatoxin in 50-gram rainbow<br />

trout is 500 to 1000 ppb. Signs <str<strong>on</strong>g>of</str<strong>on</strong>g> severe aflatoxicosis in rainbow trout are<br />

liver damage, pale gills <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced red blood cell c<strong>on</strong>centrati<strong>on</strong>. The use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rainbow trout in AFB1 carcinogenesis studies grew out <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

increased liver cancers in domesticated rainbow trout in many hatcheries in<br />

the V.S from 1957 to 1960. Since then, the rainbow trout has proven to be<br />

an attractive animal model for chemical carcinogenesis studies.<br />

A diet c<strong>on</strong>taining O.4ppb AFB 1 fed to trout over a 14 m<strong>on</strong>th period<br />

resulted in a 14% incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatocellular carcinomas (Lee et al, 1968).<br />

10


When the dose was increased ten fold, a 60% incidence during the same time<br />

period was seen. In c<strong>on</strong>trast, wild steelhead trout had an incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly<br />

6% after 12 m<strong>on</strong>ths <strong>on</strong> 8ppb AFB1 (Sinnhuber et al, 1977).<br />

Research carried out in Auburn University in 1991 revealed that all<br />

fishes are not sensitive to mycotoxins. Rainbow trouts are extremely<br />

sensitive but brook trouts, coho salm<strong>on</strong> are less sensitive to aflatoxin<br />

ingesti<strong>on</strong> (Halver <str<strong>on</strong>g>and</str<strong>on</strong>g> Mitchell, 1967). In coho salm<strong>on</strong>, aflatoxin did not<br />

produce hepatoma but liver lesi<strong>on</strong>s were present. This included necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hepatocytes <str<strong>on</strong>g>and</str<strong>on</strong>g> fatty change (Bruenger <str<strong>on</strong>g>and</str<strong>on</strong>g> Greuel, 1982). In tilapia culture<br />

aflatoxicosis was a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> losses (Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Sommerville,1982).<br />

In carps, aflatoxin did neither produce any liver lesi<strong>on</strong>s nor any alterati<strong>on</strong> in<br />

haematological values. There was no accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins in fish<br />

muscles. (Svobodova <str<strong>on</strong>g>and</str<strong>on</strong>g> Piskac,1982). Warm water fish are less sensitive to<br />

aflatoxin. The LDso for channel catfish was found to be approximately 30<br />

times that for rainbow trout. Pathological signs in channel catfish fed lethal<br />

dose <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin were death, liver damage <str<strong>on</strong>g>and</str<strong>on</strong>g> injury to the lining <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

stomach, intestines, spleen, heart <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney. Some authors also stated that<br />

channel catfish fingerlings showed a relatively low resp<strong>on</strong>se when fed<br />

aflatoxin in doses upto 100mg/kg body weight (Ashley,1967).<br />

2.8. Chr<strong>on</strong>ic aflatoxicosis<br />

The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> trout to aflatoxicosis varies with size <str<strong>on</strong>g>and</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dose. A chr<strong>on</strong>ic resp<strong>on</strong>se may arise from low prol<strong>on</strong>ged dosages <str<strong>on</strong>g>and</str<strong>on</strong>g> usually<br />

results in a significant incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatoma, while acute resp<strong>on</strong>se usually<br />

involves force feeding <str<strong>on</strong>g>of</str<strong>on</strong>g> single or repeated massive dosages <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 or more<br />

mg/kg body weight in 25-50 g fish. These fish generally die within 8-10 days<br />

after exposure. Crude aflatoxin fed to rainbow trout at <strong>on</strong>ly 20 ppb resulted<br />

11


in gross hepatoma in 44 <str<strong>on</strong>g>of</str<strong>on</strong>g> 117 fish after 12 m<strong>on</strong>ths <str<strong>on</strong>g>and</str<strong>on</strong>g> in 50 <str<strong>on</strong>g>of</str<strong>on</strong>g> 88 fish in 16<br />

m<strong>on</strong>ths. Other trout fed crystalline aflatoxin Bb the most toxic fracti<strong>on</strong>, at<br />

0.5,2.0 or 8.0 ppb had gross tumours after 12 m<strong>on</strong>ths in 37 <str<strong>on</strong>g>of</str<strong>on</strong>g> 116, 45 <str<strong>on</strong>g>of</str<strong>on</strong>g> 115<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 52 <str<strong>on</strong>g>of</str<strong>on</strong>g> 121 fish, respectively (Ashley et ai, 1964; Halver, 1967).<br />

2.9. Acute aflatoxicosis<br />

Halver (1967) reported most rainbow trout force fed crude aflatoxin at<br />

1, 3 or 5mg/kg body weight in single dose or Img/kg body weight daily for 5<br />

days were moribund by day 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly six fish survived in the groups fed<br />

Img/kg body weight daily for 5 days. All fish had gross multiple<br />

haemorrhagic areas in liver <str<strong>on</strong>g>and</str<strong>on</strong>g> adjacent viscera. Moribund fish had dark<br />

skin, nearly white gills, indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> severe anaemia, <str<strong>on</strong>g>and</str<strong>on</strong>g> were listless. Death<br />

usually occurred in less than 24 hours after symptoms appeared. Additi<strong>on</strong>al<br />

experiments using the more potent aflatoxin B1 force fed to trout resulted in<br />

similar pathology <str<strong>on</strong>g>and</str<strong>on</strong>g> showed that B] is approximately 10 times more toxic<br />

than the crude aflatoxin previously used (Halver, 1969). <str<strong>on</strong>g>Histopathological</str<strong>on</strong>g>ly,<br />

gills from acutely toxic fish had generalized edema <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten the branchial<br />

vessels were greatly engorged with blood. Livers had varying degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pathological change, depending <strong>on</strong> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin ingested. Some<br />

had <strong>on</strong>ly slight hepatitis with scattered groups <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatocytes whose nuclei<br />

were pycnotic, karyolytic or had chromatin marginati<strong>on</strong>. More severe toxic<br />

resp<strong>on</strong>ses included varying degrees <str<strong>on</strong>g>and</str<strong>on</strong>g> amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatic necrosis with or<br />

without hyperemia <str<strong>on</strong>g>and</str<strong>on</strong>g> patches <str<strong>on</strong>g>of</str<strong>on</strong>g> haemorrhage.<br />

Electr<strong>on</strong> microscopy <str<strong>on</strong>g>of</str<strong>on</strong>g> classical trabecular hepatoma in rainbow trout<br />

was reported by Scarpelli et at (1963) <str<strong>on</strong>g>and</str<strong>on</strong>g> by scarpelli (1967). These authors<br />

observed highly developed endoplasmic reticulum <str<strong>on</strong>g>and</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> glycogen<br />

within the neoplastic cell. The golgi complex was well developed in<br />

12


neoplastic cells <str<strong>on</strong>g>and</str<strong>on</strong>g> was characterized by lamellae <str<strong>on</strong>g>and</str<strong>on</strong>g> vesicles associated<br />

with increased numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> dense granules in some preparati<strong>on</strong>s. Peripherally,<br />

the cell was poorly organized <str<strong>on</strong>g>and</str<strong>on</strong>g> free ribosomes were increased. Plasma<br />

membranes were reticular <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten dense material appeared to be passing<br />

into extracellular spaces. Microsomal incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 14C-lysine from trout<br />

hepatomas was greater than that from normal livers. A well-organized<br />

endoplasmic reticulum generously supplied with ribosomes occurred in most<br />

hepatomas. The evidence pointed out toward extensive protein synthesis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

reduced level <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid <str<strong>on</strong>g>and</str<strong>on</strong>g> glycogen material in tumour cells. Nucleic acids<br />

were formed in abundance <str<strong>on</strong>g>and</str<strong>on</strong>g> up<strong>on</strong> staining showed intense basophilia<br />

typical <str<strong>on</strong>g>of</str<strong>on</strong>g> neoplastic cells in trout hepatoma. Electrophoretic patterns <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

serum from normal <str<strong>on</strong>g>and</str<strong>on</strong>g> tumour bearing trout showed an increase in plasma<br />

protein comp<strong>on</strong>ents in hepatomatous fish (Snieszko et al, 1966).<br />

The susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g> individual animals to aflatoxins vanes<br />

c<strong>on</strong>siderably depending <strong>on</strong> species, age, sex, <str<strong>on</strong>g>and</str<strong>on</strong>g> nutriti<strong>on</strong>. Once absorbed<br />

into the blood, AFB] binds avidly to plasma proteins <str<strong>on</strong>g>and</str<strong>on</strong>g> loosely to red blood<br />

cells (Kumagai et al, 1983; Luthy et al, 1980). Besides liver damage,<br />

aflatoxins cause decreased milk <str<strong>on</strong>g>and</str<strong>on</strong>g> egg producti<strong>on</strong>, recurrent infecti<strong>on</strong> as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> immunity suppressi<strong>on</strong> (eg. Salm<strong>on</strong>ellosis), in additi<strong>on</strong> to embryo<br />

toxicity in animals c<strong>on</strong>suming low dietary c<strong>on</strong>centrati<strong>on</strong>s. While the young<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a species are most susceptible, all ages are susceptible but in different<br />

degrees for different species. Clinical signs <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxicosis in animals<br />

include gastrointestinal dysfuncti<strong>on</strong>, reduced reproductivity, reduced feed<br />

utilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> efficiency, anaemia, <str<strong>on</strong>g>and</str<strong>on</strong>g> jaundice. Nursing animals may be<br />

affected as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin BI to the metabolite<br />

aflatoxin M I excreted in the milk <str<strong>on</strong>g>of</str<strong>on</strong>g> dairy cattle. The inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer has<br />

been extensively studied. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>B I, aflatoxinlvl, <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxirrGj have<br />

been shown to cause various types <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer in different animal species.


However, <strong>on</strong>ly aflatoxinls, is c<strong>on</strong>sidered by the internati<strong>on</strong>al agency for<br />

research <strong>on</strong> cancer (IARC) as having produced sufficient evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carcinogenicity in experimental animal to be identified as a carcinogen.<br />

In a 12 m<strong>on</strong>th feeding study <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout, the hepatocarcinogenic<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin M1 was roughly 25% that <str<strong>on</strong>g>of</str<strong>on</strong>g> the parent compound<br />

(Sinnhuber et al, 1974). Using a sensitive trout embryo exposure<br />

carcinogenesis assay, AFM 1 was n<strong>on</strong>tumourogenic (Hendricks et al,1980). In<br />

hepatocytes isolated from rainbow trout, AFM1 formed DNA adducts at a<br />

level significantly less than that <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB 1 (20% less), but interestingly, this<br />

binding activity was much higher than would be predicted from III VIVO<br />

carcinogenesis studies (Lovel<str<strong>on</strong>g>and</str<strong>on</strong>g> et al, 1988).<br />

2.10. <str<strong>on</strong>g>Biochemical</str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Biochemical</str<strong>on</strong>g>ly, aflatoxins can affect energy metabolism, carbohydrate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> lipid metabolism. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s may be c<strong>on</strong>sidered as biosynthetic<br />

inhibitors both in vivo <str<strong>on</strong>g>and</str<strong>on</strong>g> in vitro, with large doses causing total inhibiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems <str<strong>on</strong>g>and</str<strong>on</strong>g> lower doses affecting different metabolic systems<br />

(Moreau <str<strong>on</strong>g>and</str<strong>on</strong>g> Moss, 1969).<br />

2.10 3. Energy metabolism<br />

It has been shown that aflatoxin Bj, G 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> M 1 inhibit oxygen uptake<br />

in whole tissues by acting <strong>on</strong> the electr<strong>on</strong> transport chain system. They<br />

inhibit the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme adenosine triphosphatase to varying<br />

degrees, resulting in decreased producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adenosine triphosphate (Moss<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Smith, 1985).<br />

14


2.10 b. Carbohydrate <str<strong>on</strong>g>and</str<strong>on</strong>g> lipid metabolism<br />

Several studies have also shown that hepatic glycogen levels are<br />

reduced due to aflatoxin acti<strong>on</strong>. This may be due to the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin<br />

<strong>on</strong> (1) the inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glycogenesis (2) depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> entry <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose into<br />

liver cells, <str<strong>on</strong>g>and</str<strong>on</strong>g> (3) accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glycogenolysis.<br />

2.10c. Nucleic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> Protein metabolism<br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s may bind with DNA affecting its activity. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B 1 has<br />

been shown to bind more str<strong>on</strong>gly with DNA than aflatoxins G 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Gz.<br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B1 can also be c<strong>on</strong>verted to its epoxide form, which binds to DNA,<br />

preventing transcripti<strong>on</strong> (Clifford et al,1967; Swensen et al, 1977). It can<br />

also bind RNA inhibiting protein synthesis. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B 1 also forms an<br />

adduct with serum albumin in a dose dependent manner by binding to the<br />

lysine comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> this protein, resulting in the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lyine - AFB b<br />

which has been used to assess the level <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B 1 in<br />

humans (Sabbi<strong>on</strong>i, 1990). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B1 can also be c<strong>on</strong>verted to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

metabolites, aflatoxin B2a that react readily with free amino groups <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

functi<strong>on</strong>al proteins. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> Bzt is not generally regarded as a mycotoxin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> is believed to be in equilibrium with its dialdehyde, which reacts with<br />

the free amino groups to form schiffs bases, resulting in reduced enzyme<br />

activity (Moreau <str<strong>on</strong>g>and</str<strong>on</strong>g> Moss, 1979).<br />

The level <str<strong>on</strong>g>of</str<strong>on</strong>g> AFBrDNA adducts formed in a species or a tissue is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten an accurate indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptibility to the carcinogenic effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

AFB 1• For example, adduct levels in rainbow trout were found to be 7 to 56<br />

times greater in rainbow trout than in coho salm<strong>on</strong> at various times following<br />

intraperit<strong>on</strong>eal injecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB1, which correlated with data showing that<br />

15


._ the former salm<strong>on</strong>id is clearly more sensitive to the hepatocarcinogenic<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB1 (Bailey et al, 1988). Activated AFB I binds exclusively with<br />

guanyl residues in DNA, <str<strong>on</strong>g>and</str<strong>on</strong>g> the AFB 1-N7-Gua adduct are by far the most<br />

predominant form. Although AFB 1 binds exclusively with guanyl residues,<br />

not all guanines in r<str<strong>on</strong>g>and</str<strong>on</strong>g>om sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> double str<str<strong>on</strong>g>and</str<strong>on</strong>g>ed DNA appear to be<br />

equally reactive, <str<strong>on</strong>g>and</str<strong>on</strong>g> the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> attack am<strong>on</strong>g guanyl sites can vary by<br />

ten fold or more (D Andrea <str<strong>on</strong>g>and</str<strong>on</strong>g> Haseltine, 1978; Misra et al, 1983; Muench<br />

et al, 1983). Not all damains in chromatin are equally accessible to AFB 1 .<br />

Intemucleosomal, or linker DNA is roughly five times as likely to become<br />

adducted with AFB I as is nucleosomal core DNA in rainbow trout liver,<br />

following intraperit<strong>on</strong>eal injecti<strong>on</strong> (Bailey et al, 1980).<br />

More recent evidence indicates that the total level <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA adduct<br />

formati<strong>on</strong> by AFB1- (as well as by other chemical carcinogens) may not<br />

provide an accurate indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> the alkylati<strong>on</strong> potential as genetic "hot­<br />

spots", such as a proto-<strong>on</strong>cogene. Activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proto-<strong>on</strong>cogenes in animal<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> human tumours <str<strong>on</strong>g>and</str<strong>on</strong>g> in cell transformati<strong>on</strong> systems has been shown to<br />

involve specific mutati<strong>on</strong>s in base sequence, an event postulated to play a<br />

cmtial role in the early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical carcinogenesis. Chang et al (1991)<br />

was the first to dem<strong>on</strong>strate ras gene activati<strong>on</strong> by a known carcinogen in<br />

any fish species. Using PCR <str<strong>on</strong>g>and</str<strong>on</strong>g> olig<strong>on</strong>ucleotide hybridizati<strong>on</strong> methods, a<br />

high proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the aflatoxin BI - initiated tumour DNAs showed evidence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> activating point mutati<strong>on</strong>s in the trout ras-1 gene. Am<strong>on</strong>g these a<br />

predominant lesi<strong>on</strong> was a GGA to GTA transversi<strong>on</strong> in cod<strong>on</strong> 12. This<br />

mutati<strong>on</strong> is the most comm<strong>on</strong>ly found molecular lesi<strong>on</strong> in rodent<br />

carcinogenesis models <str<strong>on</strong>g>and</str<strong>on</strong>g> many human tumours. Of the remaining mutant<br />

ras genotypes, two were cod<strong>on</strong> 13 GGT to GTT transversi<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e was a<br />

cod<strong>on</strong> 12 GGA to AGA transiti<strong>on</strong>.<br />

16


Any discussi<strong>on</strong> in multistage carcinogenesis is not complete without<br />

the menti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the role <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour suppressor genes such as pS3 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

re\tinoblastoma (Rb) genes. In c<strong>on</strong>trast to ras genes, such genes are<br />

resp<strong>on</strong>sible for the negative regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell cycling. Unfourtunately, to<br />

date there are limited studies <strong>on</strong> fish tumour suppressor genes <str<strong>on</strong>g>and</str<strong>on</strong>g> their<br />

potential associati<strong>on</strong> with changes in ras (Krause et al, 1997; Bhaskaran et<br />

al,1999; Franklin et al, 2000). Studies have established that although fish<br />

tumour suppressor genes are c<strong>on</strong>served, a role in the etiology <str<strong>on</strong>g>of</str<strong>on</strong>g> feral fish<br />

tumours, with or without ras involvement has yet to be established. Cellular<br />

<strong>on</strong>cogenes <str<strong>on</strong>g>and</str<strong>on</strong>g> tumour suppressor genes from various species <str<strong>on</strong>g>of</str<strong>on</strong>g> fish have<br />

been isolated <str<strong>on</strong>g>and</str<strong>on</strong>g> to some extent characterized. Based <strong>on</strong> the structure,<br />

functi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> cellular locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their protein products several classes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>on</strong>cogenes have been classified <str<strong>on</strong>g>and</str<strong>on</strong>g> those isolated from fish include ras, myc,<br />

src, erb-A, erb-B, Tu, etc <str<strong>on</strong>g>of</str<strong>on</strong>g> which much attenti<strong>on</strong> has focussed <strong>on</strong> ras gene.<br />

The anti<strong>on</strong>cogene pS3 has been c<strong>on</strong>firmed in rainbow trout (Van Beneden<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Ostr<str<strong>on</strong>g>and</str<strong>on</strong>g>er, 1992).<br />

A mutati<strong>on</strong> in the pS3 is emerging as the most comm<strong>on</strong> genetic change<br />

In human cancer. On the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiments c<strong>on</strong>ducted in vitro,<br />

aflatoxinb- specifically targets the third <str<strong>on</strong>g>and</str<strong>on</strong>g> not the sec<strong>on</strong>d nucleotide <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cod<strong>on</strong> 249 (AGG) <str<strong>on</strong>g>of</str<strong>on</strong>g> the human pS3 gene. A high frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong>s at<br />

a mutati<strong>on</strong>al "hotspot" (the third nucleotide <str<strong>on</strong>g>of</str<strong>on</strong>g> cod<strong>on</strong> 249 in ex<strong>on</strong> 7) has been<br />

found in pS3 tumour suppressor genes in hepatocellular carcinomas. Thus<br />

mutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pS3 gene could be related to exposure to a specific<br />

carcinogen <str<strong>on</strong>g>and</str<strong>on</strong>g> may be used as a marker for a specific carcinogen.<br />

17


C<br />

H<br />

A<br />

P<br />

T<br />

E<br />

R<br />

3<br />

Extracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> its Incorporati<strong>on</strong><br />

into Fish Feed


3.0 Introducti<strong>on</strong><br />

Fungi grow <strong>on</strong> pelleted feeds at relative humidities above 65%,<br />

moisture c<strong>on</strong>tents generally above 15% <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures that are specific to<br />

the fungal species. Most fungal growth occurs at temperatures above 25°C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> relative humidities above 85%. Higher temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> moisture level<br />

favor increased growth. Fungal growth causes weight loss, encourages local<br />

rises in temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> moisture c<strong>on</strong>tent, <str<strong>on</strong>g>of</str<strong>on</strong>g>f-flavour <str<strong>on</strong>g>and</str<strong>on</strong>g> discolorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

perhaps worst <str<strong>on</strong>g>of</str<strong>on</strong>g> all, some comm<strong>on</strong> species produce aflatoxins which are<br />

known to be toxic <str<strong>on</strong>g>and</str<strong>on</strong>g> highly carcinogenic to a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> animals,<br />

including some species <str<strong>on</strong>g>of</str<strong>on</strong>g> fish (New, 1987). Several biological, chemical <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

envir<strong>on</strong>mental factors affect the biosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins. The biological<br />

factors include - strain variability, competing micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora <str<strong>on</strong>g>and</str<strong>on</strong>g> inoculum size.<br />

The chemical factors include - the type <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate, type <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

antifungal agents. The envir<strong>on</strong>mental factors include - temperature, water<br />

activity, atmosphere gases, light intensity <str<strong>on</strong>g>and</str<strong>on</strong>g> pH (Ellis et at) 1991).<br />

3.1 Extracti<strong>on</strong><br />

Two major purposes for the extracti<strong>on</strong> steps are: 1) To transfer the<br />

toxin from the sample to a solvent effectively <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) to partially remove the<br />

interference substances from the sample <str<strong>on</strong>g>and</str<strong>on</strong>g> to c<strong>on</strong>centrate the toxins in a<br />

smaller volume that is manageable for subsequent analysis (Fun Chu,1991).<br />

Therefore, extracti<strong>on</strong> procedures must be efficient, quantitative <str<strong>on</strong>g>and</str<strong>on</strong>g> must not<br />

alter or have any effect <strong>on</strong> aflatoxin. Early methods <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong> were based<br />

<strong>on</strong> defatting <str<strong>on</strong>g>of</str<strong>on</strong>g> sample prior to extracti<strong>on</strong>. However, it has since been shown<br />

that aflatoxin extracti<strong>on</strong> is not affected by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid <str<strong>on</strong>g>and</str<strong>on</strong>g> that<br />

interfering substances, such as fats <str<strong>on</strong>g>and</str<strong>on</strong>g> pigments, are simpler <str<strong>on</strong>g>and</str<strong>on</strong>g> faster to<br />

remove from the extract than aflatoxins. Commodities with high lipid <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

18


pigment c<strong>on</strong>tent require a different treatment relative to those with a low<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> these comp<strong>on</strong>ents. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the interfering substances are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

soluble in the same solvents as aflatoxin, therefore, selective extracti<strong>on</strong> or<br />

extensive purificati<strong>on</strong> methods are required to produce pure extracts.<br />

Therefore, the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample <str<strong>on</strong>g>and</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin reflect the<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong> procedure. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s are soluble in slightly polar solvents<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> insoluble in completely n<strong>on</strong> polar solvents. Practically all aflatoxin are<br />

extracted using mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> organic solvents such as acet<strong>on</strong>e, chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm, or<br />

methanol in combinati<strong>on</strong> with small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> water (Bullerman, 1979).<br />

Aqueous solvents more easily penetrate hydrophilic tissues <str<strong>on</strong>g>and</str<strong>on</strong>g> enhance<br />

aflatoxin extracti<strong>on</strong> (Moss <str<strong>on</strong>g>and</str<strong>on</strong>g> Smith, 1985). Characteristic fluorescence<br />

(Sargeant et at) 1961a) <str<strong>on</strong>g>and</str<strong>on</strong>g> absorpti<strong>on</strong> under l<strong>on</strong>g wave ultraviolet light<br />

(V<str<strong>on</strong>g>and</str<strong>on</strong>g>er Merwe <str<strong>on</strong>g>and</str<strong>on</strong>g> Fourie,1963) aid detecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> estimati<strong>on</strong>.<br />

3.2 Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g><br />

Analytical methods followed for the qualitative <str<strong>on</strong>g>and</str<strong>on</strong>g> quantitative<br />

estimati<strong>on</strong> are TLC (Visual <str<strong>on</strong>g>and</str<strong>on</strong>g> fluorodensitometric), HPLC, ELISA <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

RIA. Visual TLC is the method <str<strong>on</strong>g>of</str<strong>on</strong>g> choice in the countries where other<br />

expensive instruments <str<strong>on</strong>g>and</str<strong>on</strong>g> the infrastructure for immunoassays are not<br />

available, though it is criticized for high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> due to<br />

individual's acuity. Visual TLC estimati<strong>on</strong> is simple <str<strong>on</strong>g>and</str<strong>on</strong>g> reliable, so l<strong>on</strong>g as<br />

the analyst ensures the validity <str<strong>on</strong>g>of</str<strong>on</strong>g> the method by acceptable recovery<br />

experiment. Background fluorescence should be c<strong>on</strong>sidered, whenever<br />

fluorodensitometer is used. Immunoassays <str<strong>on</strong>g>and</str<strong>on</strong>g> HPLC methods, although<br />

sensitive are not readily applicable (Shantha, 1994). As Egm<strong>on</strong>d <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Wagstaffe, 1989 opined, it is more important to apply rigorous quality<br />

assurance to the measurement procedure than to rely blindly up<strong>on</strong><br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ardized <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten archaic methods. Bearing this in mind, it became<br />

19


imperative to use a method which is rapid, simple <str<strong>on</strong>g>and</str<strong>on</strong>g> accurate <str<strong>on</strong>g>and</str<strong>on</strong>g> this was<br />

made possible by employing a simple extracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> fluorescence test using<br />

microcolumns <str<strong>on</strong>g>and</str<strong>on</strong>g> the Velasco Fluorotoxinmeter. This part <str<strong>on</strong>g>of</str<strong>on</strong>g> the work<br />

namely the estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin employing the Velasco Fluorotoxinmeter<br />

was carried out at Veterinary College, Kerala Agricultural University,<br />

Mannuthy, Kerala <str<strong>on</strong>g>and</str<strong>on</strong>g> this favour is deeply acknowledged.<br />

3.3 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

3.3.1 Subculture <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungus,Aspergillus flavus<br />

The culture <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungus, Aspergillus flavus, MTCC No : 277 was<br />

obtained from Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Microbial Technology (IMTECH), Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>igarh.<br />

The fungus was maintained <strong>on</strong> CZAPEK YEAST EXTRACT AGAR as<br />

growth medium.<br />

Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Czapek Yeast Extract Agar<br />

• Czapek C<strong>on</strong>centrate 10 ml<br />

K2HPD4<br />

1.0g<br />

Yeast extract 5.0 g<br />

Sucrose 30 g<br />

Agar 15 g<br />

Distilled Water lL<br />

• Czapek c<strong>on</strong>centrate<br />

NaND3<br />

KC!<br />

30 g<br />

5g<br />

20


PUlE·1 ASPERGILLUS FLAVUS CULTURED ON CZAPEK YEAST<br />

EXTRACT AGAR MEDIUM<br />

PUTE·Z<br />

CULruRE OF ASPERGILLUS FLAVUS<br />

GROWN ON RICE GRAINS


MgS04.7H20<br />

FeS0 4.7H20<br />

Distilled water<br />

Culture details<br />

Growth c<strong>on</strong>diti<strong>on</strong><br />

Temperature<br />

Incubati<strong>on</strong> time<br />

Subculture Frequency<br />

3.3.3 Extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g><br />

5g<br />

0.1 g<br />

lOOml<br />

Aerobic<br />

30°C<br />

7 Days<br />

30 Days<br />

A carbohydrate rich source namely, raw rice was used as the solid<br />

substrate for the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungus, Aspergillus flavus. A spore suspensi<strong>on</strong><br />

was prepared by adding 4ml <str<strong>on</strong>g>of</str<strong>on</strong>g> normal saline to slant cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> Aspergillus<br />

flavus <str<strong>on</strong>g>and</str<strong>on</strong>g> shaking it vigorously. This spore suspensi<strong>on</strong> was used for<br />

inoculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the autoclaved substrate. This was then incubated in the dark<br />

for 7 days for the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungus.<br />

Autoclaved Substrate<br />

50 g <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grain was taken in a 500ml c<strong>on</strong>ical flask, moistened with<br />

lOml <str<strong>on</strong>g>of</str<strong>on</strong>g> Czapek c<strong>on</strong>centerate <str<strong>on</strong>g>and</str<strong>on</strong>g> added a pinch <str<strong>on</strong>g>of</str<strong>on</strong>g> dextrose. Twenty nine<br />

such flasks were maintained .<br />

21


excited by DV light <str<strong>on</strong>g>and</str<strong>on</strong>g> the emitted light is detected by photodetectors <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

recorded <strong>on</strong> scale set to ppb (parts per billi<strong>on</strong>).<br />

Procedure<br />

Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the micro-column<br />

• One end <str<strong>on</strong>g>of</str<strong>on</strong>g> the column was plugged with glass wool.<br />

• With the aid <str<strong>on</strong>g>of</str<strong>on</strong>g> a funnel <str<strong>on</strong>g>and</str<strong>on</strong>g> scoop, a layer <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g> about 5 to 7 mm in<br />

depth was added.<br />

• A layer <str<strong>on</strong>g>of</str<strong>on</strong>g> florisil was added to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> not more than 5 - 7 mm.<br />

• A sec<strong>on</strong>d layer <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g> was added about 5-7 mm in depth.<br />

• A layer <str<strong>on</strong>g>of</str<strong>on</strong>g> silica gel was added about 15 mm in depth.<br />

• A layer <str<strong>on</strong>g>of</str<strong>on</strong>g> neutral alumina was added about 15 mm in depth.<br />

Development <str<strong>on</strong>g>and</str<strong>on</strong>g> reading <str<strong>on</strong>g>of</str<strong>on</strong>g> the micro-column<br />

The prepared column was wetted with chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm by lowering bottom<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the column into vial c<strong>on</strong>taining chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm. Using a 1 ml syringe,<br />

transferred Iml <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample soluti<strong>on</strong> from vial into prewetted column <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

allowed to drain in for 2-5 minutes. Added 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm to column <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

allowed to drain. Prepared simultaneously a similar column with 50 ng<br />

(nanogram) <str<strong>on</strong>g>of</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> Bb which corresp<strong>on</strong>ded to 20ppb st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

column. Calibrated the VFM instrument by using both the blank column <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

20 ppb st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard column so as to read zero <str<strong>on</strong>g>and</str<strong>on</strong>g> 20ppb <strong>on</strong> the scale<br />

respectively. Now placed the sample column in calibrated VFM instrument<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> noted the reading <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin. Next the column was turned around 180<br />

degrees <str<strong>on</strong>g>and</str<strong>on</strong>g> the sec<strong>on</strong>d reading taken. The final aflatoxin reading was the<br />

average <str<strong>on</strong>g>of</str<strong>on</strong>g> the two.<br />

23


3.3.6 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Fish Feed<br />

3.3.6.a C<strong>on</strong>trol Diet<br />

The ingredients for the preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol fish feed were similar to<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> the commercial diets except that groundnut oil cake was<br />

replaced by coc<strong>on</strong>ut oil cake to eliminate the chance <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxin in the diet from the groundnut.<br />

Ingredients<br />

Fish Meal<br />

Soybean Flour<br />

Coc<strong>on</strong>ut Oil cake<br />

Tapioca starch<br />

Gelatin binder<br />

Vegetable oil<br />

Fish oil<br />

Mineral mix 0<br />

Vitamin mix 00<br />

OOssopan granules TIK Pharma<br />

OOVit Bl<br />

B2<br />

Pantothenic Acid<br />

Nicotinamide<br />

Calcium pantothenate<br />

Folic acid<br />

Vitamin B12<br />

Vitamin C<br />

Quantity incorporated as<br />

gram percentage<br />

35<br />

25<br />

10<br />

20<br />

3<br />

2<br />

2<br />

1<br />

2<br />

lOmg<br />

lOmg<br />

3mg<br />

100mg<br />

50mg<br />

1500Jlg<br />

15Jlg<br />

150Jlg<br />

24


All the ingredients were powdered, sieved, blended <str<strong>on</strong>g>and</str<strong>on</strong>g> extruded<br />

through a kitchen noodle maker with a 3 mm die, dried at 4SoCovernight <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

stored in airtight c<strong>on</strong>tainers.<br />

3.3.6.b Experimental diet<br />

The experimental diet had the same compositi<strong>on</strong> as that <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol<br />

diet to which varying quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> the toxin was added from the stock<br />

soluti<strong>on</strong>. Three experimental diets with 0.37Sppm, 2.Sppm <str<strong>on</strong>g>and</str<strong>on</strong>g> 6ppm were<br />

prepared by adding the required quantities from the stock soluti<strong>on</strong> into the oil<br />

porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the diet before blending <str<strong>on</strong>g>and</str<strong>on</strong>g> the chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm was allowed to<br />

evaporate. The ingredients were mixed with water, extruded <str<strong>on</strong>g>and</str<strong>on</strong>g> then dried.<br />

3.4Results<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin extracted from 14S0g <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grain inoculated<br />

with the fungus was 2.7 mg <str<strong>on</strong>g>and</str<strong>on</strong>g> this was dissolved in lSml <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm to<br />

obtain the aflatoxin stock st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard.<br />

35 Discussi<strong>on</strong><br />

Am<strong>on</strong>gst the chemical factors affecting aflatoxin synthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin producti<strong>on</strong>, the type <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate used has a major influence <strong>on</strong><br />

aflatoxin producti<strong>on</strong>. In the present study rice was chosen as substrate for<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin since studies have shown that optimum aflatoxin<br />

producti<strong>on</strong> occurs <strong>on</strong> solid substrates rich in carbohydrates such as coc<strong>on</strong>ut,<br />

wheat, rice <str<strong>on</strong>g>and</str<strong>on</strong>g> cott<strong>on</strong>seed (Detroy et al. 1971).<br />

25


<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> biosynthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> is influenced by the<br />

nutrient compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate. Simple sugars such as glucose, fructose<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> sucrose are the preferred carb<strong>on</strong> sources for aflatoxin biosynthesis by<br />

Aspergillus flavus (Davies <str<strong>on</strong>g>and</str<strong>on</strong>g> Diener,1968). In the present study, sucrose<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> glucose were used as carb<strong>on</strong> sources for the synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin.<br />

Northolt et al, 1977 has reported that the optimum temperature range<br />

for fungal growth <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxin producti<strong>on</strong> is 25°c to 30°c. In nature,<br />

temperatures are seldom c<strong>on</strong>stant due to seas<strong>on</strong>al variati<strong>on</strong>s through<br />

sp<strong>on</strong>taneous heating in stored food commodities such as grain. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature variati<strong>on</strong> the yield <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin can vary c<strong>on</strong>siderably. However<br />

in this study, an attempt was made to maintain an almost optimum<br />

temperature range for fungal growth <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxin producti<strong>on</strong>.<br />

Light is essential for many mould species for the inducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong>. It influences both the vegetative growth <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

aflatoxin producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxigenic moulds in both liquid <str<strong>on</strong>g>and</str<strong>on</strong>g> solid media.<br />

With respect to species, the role <str<strong>on</strong>g>of</str<strong>on</strong>g> light may be either inhibitory or<br />

stimulatory due to photochemical effects <strong>on</strong> the medium (Carlile,1970). The<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate also affected photoresp<strong>on</strong>ses <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxin producti<strong>on</strong>. J<str<strong>on</strong>g>of</str<strong>on</strong>g>fe<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Lisker observed that aflatoxin producti<strong>on</strong> was completely inhibited in<br />

Czapek's medium in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> light. Bearing the above observati<strong>on</strong> in<br />

mind, in the present study also the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in Czapek's<br />

medium was carried out in an atmosphere devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> light which was created<br />

in the lab with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> thick black chart paper in order to avoid any<br />

chance <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin producti<strong>on</strong> by light.<br />

Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin analysis are mainly based <strong>on</strong> the properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxins (P<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Goldblatt,1965). Am<strong>on</strong>g the equilibrium extracti<strong>on</strong><br />

26


methods for primary extracti<strong>on</strong>, the solvent system <str<strong>on</strong>g>of</str<strong>on</strong>g>acet<strong>on</strong>e: water (70:30<br />

or 65:35) to extract toxin from cott<strong>on</strong>seed, peanuts <str<strong>on</strong>g>and</str<strong>on</strong>g> other agricultural<br />

commodities, as suggested by P<strong>on</strong>s et al. 1966a or Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f et al.1966, is<br />

advantageous because neutral <str<strong>on</strong>g>and</str<strong>on</strong>g> polar lipids are relatively less soluble in<br />

acet<strong>on</strong>e-water mixture <str<strong>on</strong>g>and</str<strong>on</strong>g> their interference during subsequent analytical<br />

steps, is thus avoided. Hence efficient defatting <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxin extracti<strong>on</strong> are<br />

c<strong>on</strong>ducted simultaneously. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> some water appears to facilitate<br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin or the release <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin into the extracting solvent<br />

(Goldblatt,1971). Later, P<strong>on</strong>s et al.1980 modified the solvent system to<br />

85:15 ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> acet<strong>on</strong>e: water in which neutral <str<strong>on</strong>g>and</str<strong>on</strong>g> polar lipids are not<br />

soluble. Hence in the present study, P<strong>on</strong>s modified solvent system <str<strong>on</strong>g>of</str<strong>on</strong>g> 85:15<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> acet<strong>on</strong>e: water was used as the ideal solvent system believed to<br />

selectively extract aflatoxin.<br />

As it was believed that a certain amount <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture could facilitate<br />

the growth <str<strong>on</strong>g>of</str<strong>on</strong>g>the fungus <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore the extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin from it, in<br />

the present study, rice grain was prewetted with 10 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Czapek's<br />

c<strong>on</strong>centrate instead <str<strong>on</strong>g>of</str<strong>on</strong>g> water. As supporting evidence it was reported that<br />

Lee, 1965 slurried defatted peanuts <str<strong>on</strong>g>and</str<strong>on</strong>g> peanut meal with tenfold excess<br />

water <str<strong>on</strong>g>and</str<strong>on</strong>g> extracted with chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm by shaking for 30 min <strong>on</strong> a shaker. The<br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> prewetting the materials as reported by Lee was that almost<br />

pure aflatoxin extract could be obtained <str<strong>on</strong>g>and</str<strong>on</strong>g> hence this was adopted as the<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ficialmethod for the extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin.<br />

Precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interfering substances, such as pigments, lipids <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fatty acids can also be achieved using clarifying agents, such as lead acetate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> in this study also a 20% lead acetate soluti<strong>on</strong> was used to precipitate the<br />

interferingsubstances.<br />

27


The solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins in organic solvents like chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm,<br />

methanol, acet<strong>on</strong>e, etc. helps their quantitative extracti<strong>on</strong> from the<br />

commodities. Chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm was used as the ideal organic solvent for the<br />

extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin since wherever methanol is used, it undoubtedly<br />

extracts quantitatively but al<strong>on</strong>g with other substances. It also happens to be<br />

a good solvent for fat <str<strong>on</strong>g>and</str<strong>on</strong>g> pigment also (P<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Goldblatt, 1965).<br />

28


C<br />

H<br />

A<br />

P<br />

T<br />

E<br />

R<br />

4<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> <strong>on</strong> the<br />

Lipid Peroxidati<strong>on</strong> Process


4.0 Introducti<strong>on</strong><br />

Chemical compounds <str<strong>on</strong>g>and</str<strong>on</strong>g> reacti<strong>on</strong>s capable <str<strong>on</strong>g>of</str<strong>on</strong>g> generating potential<br />

toxic oxygen species / free radicals are referred to as pro-oxidants. On the<br />

other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, compounds <str<strong>on</strong>g>and</str<strong>on</strong>g> reacti<strong>on</strong>s disposing <str<strong>on</strong>g>of</str<strong>on</strong>g>f these species, scavenging<br />

them, suppressing their formati<strong>on</strong> or opposing their acti<strong>on</strong>s are called anti­<br />

oxidants. In a normal cell, there is an appropriate pro-oxidant: antioxidant<br />

balance. However, this balance can be shifted toward the pro-oxidant when<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen species is increased or when levels <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-oxidants are<br />

diminished. This state is called oxidative stress <str<strong>on</strong>g>and</str<strong>on</strong>g> can result in serious cell<br />

damage if the stress is massive or prol<strong>on</strong>ged (Irshad <str<strong>on</strong>g>and</str<strong>on</strong>g> Chaudhuri, 2002).<br />

The" oxidant / free radicals are species with very short half-life, high<br />

reactivity <str<strong>on</strong>g>and</str<strong>on</strong>g> damaging activity towards biomolecules like proteins, DNA<br />

"<str<strong>on</strong>g>and</str<strong>on</strong>g> lipids. Free radicals are formed by hemolytic cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> a covalent<br />

b<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> a molecule, by the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a single electr<strong>on</strong> from a normal molecule<br />

or by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single electr<strong>on</strong> to a normal molecule. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

molecular oxygen c<strong>on</strong>sumed by aerobic cells during metabolism is reduced<br />

to water by using cytochrome oxidase in mitoch<strong>on</strong>dria. However, when<br />

oxygen is partially reduced it becomes "activated" <str<strong>on</strong>g>and</str<strong>on</strong>g> reacts readily with a<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> biomolecules. This partial reducti<strong>on</strong> occurs in <strong>on</strong>e-electr<strong>on</strong> steps,<br />

by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e, two <str<strong>on</strong>g>and</str<strong>on</strong>g> four electr<strong>on</strong>s to O2, which leads to successive<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive oxygen metabolites (ROMs). These are five possible<br />

. species: O 2 '- (superoxide ani<strong>on</strong>s), H0 2 ' (hydroperoxyl radical), peroxide i<strong>on</strong><br />

(H0 2 .) , H20z (hydrogen peroxide) <str<strong>on</strong>g>and</str<strong>on</strong>g> 'OH ( hydroxyl radical).<br />

29


4.1 Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Reactive Oxygen Species<br />

The exogenous sources <str<strong>on</strong>g>of</str<strong>on</strong>g> Reactive Oxygen Species (ROS) include<br />

electromagnetic radiati<strong>on</strong>, cosmic radiati<strong>on</strong>, cigarette smoke, car exhaust,<br />

UV Light, Oz<strong>on</strong>e (0 3 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> low wavelength electromagnetic radiati<strong>on</strong>.<br />

Similarly the endogenous sources <str<strong>on</strong>g>of</str<strong>on</strong>g> ROS are mitoch<strong>on</strong>drial electr<strong>on</strong><br />

transport chain, respiratory burst by phagocytes, beta oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fat in<br />

peroxisome, auto-oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids, catecholamines <str<strong>on</strong>g>and</str<strong>on</strong>g> hemoglobin.<br />

Superoxide ani<strong>on</strong> radical (02) regulates metabolites capable <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

communicating important informati<strong>on</strong> to the cellular genetic machinery ( Me<br />

Cord, 2000). Hydroxyl radical is another damaging radical with a half-life <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10- 5 sec <str<strong>on</strong>g>and</str<strong>on</strong>g> produced from H202 <str<strong>on</strong>g>and</str<strong>on</strong>g> O2 by Haber - Weiss reacti<strong>on</strong><br />

(Beauchamp <str<strong>on</strong>g>and</str<strong>on</strong>g> Fridovich, 1970). Some HO may be produced from<br />

hypochlorous acid in phagocytic cells. Similarly, H202 is a relatively stable,<br />

poorly reactive n<strong>on</strong>-radical oxygen species, which easily crosses cell<br />

membrane <str<strong>on</strong>g>and</str<strong>on</strong>g> attacks different rates by c<strong>on</strong>verting into -HO. This is<br />

produced by dismutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> O2 by superoxide dismutase (SOD) <str<strong>on</strong>g>and</str<strong>on</strong>g> finally<br />

meets many fates including its reducti<strong>on</strong> to water. H 202 is also involved in<br />

the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong>al metal i<strong>on</strong>s.<br />

4.2 Damage by Reactive Oxygen Species (ROS)<br />

Even without polluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> xenobiotic metabolism there is a c<strong>on</strong>stant<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive oxygen species in all living cells. Due to the high<br />

reactivity <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive oxygen species most comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular structure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>s are likely to be targets <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidative damage (Kappus, 1987).<br />

30


Generalized Scheme for Oxidative Injury to Macromolecules (after J<strong>on</strong>es, 1985)<br />

Activating systems-.IReactive Oxygen specie+----,Detoxifying systems:<br />

+ Enzymes, scavengers<br />

Oxygen<br />

Nucleic acid damage :<br />

Mutati<strong>on</strong>, Carcinogenesis<br />

Membrane damage:<br />

Lipid peroxidati<strong>on</strong><br />

31<br />

Polysaccharide damage:<br />

Hyalur<strong>on</strong>ic acid<br />

Protein damage:<br />

Enzymes, haemoglobin<br />

oxidati<strong>on</strong>, transport<br />

systems


4.3 The Lipid Peroxidati<strong>on</strong> process<br />

Cellular biomolecules like lipids are the most susceptible to oxidative<br />

damage. Reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ROS with lipids leads to the highly damaging reacti<strong>on</strong>,<br />

lipid peroxidati<strong>on</strong>. Singlet oxygen reacts with unsaturated fatty acids, forms<br />

lipid hydroperoxides that breaks down to several products <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid<br />

peroxidati<strong>on</strong>. (Thomas et al, 2002). The reacti<strong>on</strong> sequence starts with a radical<br />

(eg. 'OH) which removes <strong>on</strong>e prot<strong>on</strong> from the hydrocarb<strong>on</strong> tail <str<strong>on</strong>g>of</str<strong>on</strong>g> the fatty<br />

acid leaving the radical <str<strong>on</strong>g>of</str<strong>on</strong>g> the acid. This radical undergoes isomerizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

oxidati<strong>on</strong> with molecular oxygen yielding a peroxy radical <str<strong>on</strong>g>of</str<strong>on</strong>g> the fatty acid.<br />

Peroxy radical removes prot<strong>on</strong>s from other molecules <str<strong>on</strong>g>and</str<strong>on</strong>g> become<br />

hydroperoxide. Since this prot<strong>on</strong> may originate from another fatty acid, a new<br />

cycle is started <str<strong>on</strong>g>and</str<strong>on</strong>g> lipid peroxidati<strong>on</strong> proceeds via a chain reacti<strong>on</strong>, until the<br />

chain is interrupted by either the dimerisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two radicals or until the<br />

prot<strong>on</strong> is removed from a substance which forms relatively stable radicals<br />

with low reactivity (radical scavengers). Through this chain reacti<strong>on</strong>, <strong>on</strong>e<br />

initiating radical may lead to the peroxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acids. The<br />

resulting hydroperoxides are unstable <str<strong>on</strong>g>and</str<strong>on</strong>g> decomposed by chain cleavage to a<br />

very complex mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> aldehydes, ket<strong>on</strong>es, alkanes, carboxylic acids <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

polymerizati<strong>on</strong> products ( Esterbauer et al , 1982). Hydroperoxides <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

decompositi<strong>on</strong> products are toxic <str<strong>on</strong>g>and</str<strong>on</strong>g> may form fluorescent adducts with<br />

DNA (Fujimoto et al , 1984). The <strong>on</strong>ly mechanism, which produces<br />

mal<strong>on</strong>dialdehyde III biological systems, IS lipid peroxidati<strong>on</strong>.<br />

Mal<strong>on</strong>dialdehyde is not the major product <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid peroxidati<strong>on</strong>, but a typical<br />

degradati<strong>on</strong> product.<br />

32


Initiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> propagati<strong>on</strong> reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid peroxidati<strong>on</strong><br />

R<br />

R<br />

R<br />

R<br />

R<br />

I<br />

o<br />

I<br />

0°<br />

COOH<br />

Hydrogen abstracti<strong>on</strong><br />

Poly unsaturated Fatty acid<br />

COOH<br />

Molecular rearrangement<br />

COOH<br />

l0, Oxygen uptake<br />

C<strong>on</strong>jugated diene<br />

COOH<br />

Peroxyl radical<br />

l If Abstracti<strong>on</strong> from neighbouring fatty acid<br />

Lipid hydroperoxide<br />

Cyclic endoperoxide<br />

COOH<br />

Lipid hydroperoxide<br />

Fragmentati<strong>on</strong><br />

to aldehydes<br />

(including<br />

Mal<strong>on</strong>dialdialdehyde)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

polymerizati<strong>on</strong><br />

products


4.5 The Antioxidant Defense Mechanism<br />

To counter the harmful effects <str<strong>on</strong>g>of</str<strong>on</strong>g> ROS, antioxidant defense<br />

mechanism operate to detoxify or scavenge these reactive oxygen species.<br />

The antioxidant system comprises <str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al<br />

comp<strong>on</strong>ents classified as first line, sec<strong>on</strong>d line <str<strong>on</strong>g>and</str<strong>on</strong>g> third line defenses.<br />

4.6 Preventive Antioxidants - First Line Defense<br />

The first line defense comprises preventive antioxidants that act by<br />

quenching <str<strong>on</strong>g>of</str<strong>on</strong>g> Oz, decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HzOz <str<strong>on</strong>g>and</str<strong>on</strong>g> sequestrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metal i<strong>on</strong>s. The<br />

antioxidants bel<strong>on</strong>ging to this category are enzymes like superoxide<br />

dismutase (SOD), catalase, glutathi<strong>on</strong>e peroxidase <str<strong>on</strong>g>and</str<strong>on</strong>g> glutathi<strong>on</strong>e reductase<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-enzymatic molecules like minerals <str<strong>on</strong>g>and</str<strong>on</strong>g> some proteins.<br />

(a) Superoxide dismutase (SOD) (E.C.l.15.1.1)<br />

SOD mainly act by quenching <str<strong>on</strong>g>of</str<strong>on</strong>g> superoxide (02.') , an active oxygen<br />

radical, produced in different stages <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic metabolism (Meier et al,<br />

1998; MacMillan-Crow et al, 1998; Yamakura et al, 1998; LiY et al, 1995;<br />

Kizaki et ai, 1997)<br />

Different enzymes <str<strong>on</strong>g>of</str<strong>on</strong>g> SOD are described. The <strong>on</strong>e present m the<br />

mitoch<strong>on</strong>dria is Mn z + dependent, that present in the cytoplasm is<br />

independent. An extra cellular Cu-Zn dependent enzyme is also reported<br />

(Halliwell <str<strong>on</strong>g>and</str<strong>on</strong>g> Gatteridge, 1985; Fridovich, 1989).<br />

34


(d) Glutathi<strong>on</strong>e peroxidase (E.C.l.ll.1.9)<br />

Glutathi<strong>on</strong>e peroxidases (GSH -PX) are selenoenzymes which<br />

catalyze the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroperoxides at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> GSH ( Flohe,<br />

1989); Ursim et al, 1995). In this process, hydrogen peroxide is reduced to<br />

water whereas organic hydroperoxides are reduced to alcohol.<br />

GSH -PX resides in the cytosol <str<strong>on</strong>g>and</str<strong>on</strong>g> mitoch<strong>on</strong>drial matrix (Mills,<br />

1960). The antioxidant minerals include Si, Mn, Cu <str<strong>on</strong>g>and</str<strong>on</strong>g> Zn <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong><br />

primarily in the metalloenzymes.<br />

4.7 Radical Scavenging Antioxidants - Sec<strong>on</strong>d Line Defense<br />

The antioxidants bel<strong>on</strong>ging to sec<strong>on</strong>d line defense include glutathi<strong>on</strong>e<br />

(GSH), vitamin C, uric acid, albumin, bilirubin, vitamin E (mainly IX­<br />

tocopherol) carotenoids, flav<strong>on</strong>oids <str<strong>on</strong>g>and</str<strong>on</strong>g> ubiquinol.<br />

Glutathi<strong>on</strong>e (GSH)<br />

Glutathi<strong>on</strong>e is a tripeptide (x-glutamyl cysteinyl glycine) <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

unique structure holds the key to its diverse functi<strong>on</strong>al activities. The<br />

multiple physiological <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolic functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> GSH include thiol transfer<br />

reacti<strong>on</strong>s that protect cell membranes <str<strong>on</strong>g>and</str<strong>on</strong>g> proteins. These include thiol<br />

disulfide reacti<strong>on</strong>s that are involved in protein assembly, protein degradati<strong>on</strong><br />

36


<str<strong>on</strong>g>and</str<strong>on</strong>g> catalysis. GSH participates in reacti<strong>on</strong>s that destroy H20 2, orgamc<br />

peroxides, free radicals <str<strong>on</strong>g>and</str<strong>on</strong>g> certain foreign compounds (Rana, 2002)<br />

4.8 Repair <str<strong>on</strong>g>and</str<strong>on</strong>g> De-Novo Enzymes, Third Line Defense<br />

Third line antioxidants are complex group <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes for repair <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

damaged DNA, damaged protein, oxidized lipids <str<strong>on</strong>g>and</str<strong>on</strong>g> peroxide <str<strong>on</strong>g>and</str<strong>on</strong>g> also to<br />

stop chain propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peroxyl lipid radical e.g. lipase, proteases, DNA<br />

repair enzymes, transferase, methi<strong>on</strong>ine sulphoxide reductase etc. (Henle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Linn, 1997)<br />

4.9 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods<br />

4.9.1 Activity <str<strong>on</strong>g>of</str<strong>on</strong>g>Free Radical Scavenging Enzyme<br />

4.9.1.a Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Catalase (Maehly <str<strong>on</strong>g>and</str<strong>on</strong>g> Chance,1955)<br />

Reagents<br />

1. Phosphatebuffer<br />

2. H202<br />

: 0.01 M pH 7.0<br />

:3OmM<br />

The enzyme extracts were prepared by homogenizing the tissues in<br />

O.DIM phosphate buffer, pH 7.0 <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuging at 5000 rpm. The reacti<strong>on</strong><br />

mixture c<strong>on</strong>tained O.OIM phosphate buffer, 30mM hydrogen peroxide <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the enzyme extract. The estimati<strong>on</strong> was d<strong>on</strong>e spectrophotometrically by<br />

following the decrease in absorbance at 230nm. Specific activity was<br />

expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> internati<strong>on</strong>al units/mg protein. IIU = change in<br />

absorbance/miniextincti<strong>on</strong> coefficient (0.021)<br />

37


4.9.l.b Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Superoxide dismutase (SOD) (Kakkar et al (1984»<br />

Reagents<br />

Sodium pyrophosphate buffer<br />

Tris-HCI Buffer<br />

Phenazine methosulphate (PMS)<br />

Nitro Blue tetrazolium (NB1)<br />

NaOH<br />

Glacial Acetic Acid<br />

,,- butanol<br />

: 0.052M (pH 8.3)<br />

: 0.0025M (pH 7.4)<br />

: 186JlM<br />

:300JlM<br />

:780JlM<br />

The tissues were homogenized in 0.33mM sucrose <str<strong>on</strong>g>and</str<strong>on</strong>g> subjected to<br />

differential centrifugati<strong>on</strong> to get the cytosol fracti<strong>on</strong>. This fracti<strong>on</strong> was then<br />

dialysed against 0.0025M Tris-HCI buffer (pH 7.4) overnight before using<br />

for enzyme assay. Assay mixture c<strong>on</strong>tained 1.2ml <str<strong>on</strong>g>of</str<strong>on</strong>g> sodium pyrophosphate<br />

buffer, O.lml <str<strong>on</strong>g>of</str<strong>on</strong>g> PMS , 0.3 m} <str<strong>on</strong>g>of</str<strong>on</strong>g> NBT , 1.3ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1 m} <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the enzyme source. The tubes were kept 30°C for <strong>on</strong>e minute. Reacti<strong>on</strong> was<br />

initiated by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NaOH incubated at 30°C for 90sec <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

reacti<strong>on</strong> stopped by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial acetic acid. Reacti<strong>on</strong> mixture<br />

was shaken vigorously with 4.0ml <str<strong>on</strong>g>of</str<strong>on</strong>g> n- butanol. The mixture was allowed to<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g> for 10 min <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged. The upper butanol layer was taken out.<br />

Color intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the chromogen in butanol was measured at 560nm against<br />

n-butanol blank. A system devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme served as c<strong>on</strong>trol. One unit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enzyme activity is defined as the enzyme c<strong>on</strong>centrati<strong>on</strong> required to inhibit<br />

chromogen producti<strong>on</strong> by 50% in <strong>on</strong>e minute under the assay c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

specific activity expressed as units/mg protein<br />

38


4.9.1.c. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Glutathi<strong>on</strong>e Reductase (Bergmeyer, 1974)<br />

Reagents<br />

Phosphate buffer : 0.067M (pH 6.6)<br />

EDTA : 15mM (Ethylene diamine tetraacetic acid)<br />

NADPH : 0.06%<br />

GSSG : 1.15% (Oxidized glutathi<strong>on</strong>e)<br />

Procedure<br />

The tissues homogenates were prepared in phosphate buffer. The<br />

reacti<strong>on</strong> mixture comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.6 ml <str<strong>on</strong>g>of</str<strong>on</strong>g>phosphate buffer, 0.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g>EDTA ,<br />

0.12 ml <str<strong>on</strong>g>of</str<strong>on</strong>g>NADPH, 0.12 ml <str<strong>on</strong>g>of</str<strong>on</strong>g>GSSG (oxidized glutathi<strong>on</strong>e)<str<strong>on</strong>g>and</str<strong>on</strong>g> O.1ml <str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

enzyme source. The decrease in absorbance was noted for 3-5 minutes at<br />

340nm. The c<strong>on</strong>trols were run with water instead <str<strong>on</strong>g>of</str<strong>on</strong>g>GSSG. Enzyme activity<br />

was expressed as units/mg protein. One unit was defined as the change in<br />

absorbance / minute.<br />

4.9.2 Activity <str<strong>on</strong>g>of</str<strong>on</strong>g>Lipid Peroxidati<strong>on</strong> Prodcucts<br />

4.9.2.a Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Mal<strong>on</strong>dialdehyde (MDA) (Niehaus <str<strong>on</strong>g>and</str<strong>on</strong>g> Samuels<strong>on</strong>,<br />

1968)<br />

Reagents<br />

TCA -TBA -HCI reagent: 1.5% (w/v) TeA, 0.375% w/v TBA in 0.25 N<br />

HCl<br />

TCA- Trichloroacetic acid; TBA- Thiobarbituric acid<br />

39


Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tissue Homogenate<br />

The tissues were homogenized in 0.1 M tris-HCI buffer, pH 7.5 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

allowed to st<str<strong>on</strong>g>and</str<strong>on</strong>g> for 5 minutes. The supernatant was used for the<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid peroxidati<strong>on</strong> products. 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme extract was<br />

combined with 2 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> TCA-TBA-HCI reagent <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed throughly. The<br />

soluti<strong>on</strong> was heated for 15 minutes in a boiling water bath. After cooling, the<br />

flocculent precipitate was removed by centrifugati<strong>on</strong> at 1000 rpm for 10<br />

minutes. The absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample was read at 535 nm against a blank<br />

that c<strong>on</strong>tained no enzyme extract. The extincti<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> MDA is<br />

1.56 x 10 5 M,l cm- l .<br />

4.9.2.b Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydroperoxide (Mair <str<strong>on</strong>g>and</str<strong>on</strong>g> Hall, 1977)<br />

Reagents<br />

Potassium iodide (KI)<br />

Cadmium acetate<br />

Tris - HCl buffer<br />

Procedure:<br />

: 6 g KI in 5 ml distilled water<br />

: 0.5 % in distilled water<br />

: O.lM(pH 7.5)<br />

Liver, heart, muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney homogenates were prepared separately<br />

in Tris-HCl buffer. Iml <str<strong>on</strong>g>of</str<strong>on</strong>g> the tissue homogenates were mixed thoroughly<br />

with 5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm: methanol (2:1) followed by centrifugati<strong>on</strong> at 1000g<br />

to separate the phases. 3ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the lower chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm layer was recovered<br />

using a syringe, transferred to a test tube <str<strong>on</strong>g>and</str<strong>on</strong>g> dried in a water bath set at<br />

45°C. 1ml <str<strong>on</strong>g>of</str<strong>on</strong>g> acetic acid: chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm (3:2) mixture followed by 0.05ml <str<strong>on</strong>g>of</str<strong>on</strong>g> KI<br />

40


was quickly added <str<strong>on</strong>g>and</str<strong>on</strong>g> the tubes were stoppered <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed. The tubes were<br />

placed in the dark at room temperature for exactly 5 min followed by the<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3ml <str<strong>on</strong>g>of</str<strong>on</strong>g> cadmium acetate. The soluti<strong>on</strong> was mixed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

centrifuged at 1000g for 10 min. The absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the upper phase was<br />

read at 353nm against a blank c<strong>on</strong>taining the complete assay mixture except<br />

the tissue homogenate. Molar extincti<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroperoxide is 1.72<br />

l0 4 -1 -1<br />

X M cm .<br />

4.9.2.c Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>jugated Dienes (Retnagal & Ghoshal, 1966)<br />

Procedure<br />

Membrane lipids were extracted <str<strong>on</strong>g>and</str<strong>on</strong>g> taken to dryness as described for<br />

the iodometric assay for hydroperoxide. The lipid residue was dissolved in<br />

1.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclohexane <str<strong>on</strong>g>and</str<strong>on</strong>g> the absorbance at 233nm was determined against<br />

a cyclohexane blank. Molar extincti<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>jugated dienes is<br />

2.52 x 10 4 M- 1cm-1 .<br />

4.9.3 Activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Antioxidants<br />

4.9.3.1 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Glutathi<strong>on</strong>e (Patters<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Lazarov, 1955)<br />

Alloxan<br />

Phosphate buffer<br />

NaOH<br />

NaOH<br />

:O.lM<br />

: 0.5M(pH7.5)<br />

:O.5N<br />

: IN<br />

41


Procedure<br />

Tissues homogenates were prepared in O.5M phosphate buffer, pH 7.5.<br />

The reacti<strong>on</strong> mixture c<strong>on</strong>taining 50 ml tissue homogenate, 50/11 alloxan, 50/11<br />

phosphate buffer <str<strong>on</strong>g>and</str<strong>on</strong>g> 5OilI NaOH (0.5N) was incubated at 25°C for 6<br />

minutes. The reacti<strong>on</strong> was stopped by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 50/11 <str<strong>on</strong>g>of</str<strong>on</strong>g> IN NaOH.<br />

Absorbance was read at 305nm. A c<strong>on</strong>trol tube was maintained with<br />

phosphate buffer instead <str<strong>on</strong>g>of</str<strong>on</strong>g> extract, the values were expressed as mg/lOOg<br />

tissue.<br />

4.10 Results<br />

The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lipid peroxidati<strong>on</strong> products, the activities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the antioxidant enzymes <str<strong>on</strong>g>and</str<strong>on</strong>g> the level <str<strong>on</strong>g>of</str<strong>on</strong>g> the anti- oxidant in the different<br />

tissues subjected to different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin for time periods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two weeks <str<strong>on</strong>g>and</str<strong>on</strong>g> six weeks is presented in tables 4.0 to 4. f <str<strong>on</strong>g>and</str<strong>on</strong>g> figures 4.1 to<br />

4.7 respectively. Results were statistically analyzed using ANOVA (analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> variance) followed by LSD (Least significance difference) analysis.<br />

42


tissues diffe red significantly (p


was 0.559. C<strong>on</strong>centrati<strong>on</strong> 0.375 ppm gave significantly higher values <strong>on</strong><br />

comparis<strong>on</strong> with the other c<strong>on</strong>centrati<strong>on</strong>s. The values at 14 days were<br />

significantly higher than the values at 42 days. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> LSD analysis are<br />

presented in table 4.2. <str<strong>on</strong>g>and</str<strong>on</strong>g> table 4.3.<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> SS df MS F<br />

Total 18.71 31<br />

Between 5.133 3 1.711 5.839 p


4.11 Discussi<strong>on</strong><br />

The mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mycotoxins <strong>on</strong> the cell is mediated<br />

through the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals <str<strong>on</strong>g>and</str<strong>on</strong>g> reactive oxygen species (ROS).<br />

In this study the results obtained reveal that the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid peroxidati<strong>on</strong><br />

products namely c<strong>on</strong>jugated dienes <str<strong>on</strong>g>and</str<strong>on</strong>g> hydroperoxide were maximum in the<br />

liver when compared to other tissues <str<strong>on</strong>g>and</str<strong>on</strong>g> their levels increased c<strong>on</strong>sistently<br />

with increasing c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin. Lipid hydroperoxides are<br />

prominent n<strong>on</strong>-radical intermediates <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid peroxidati<strong>on</strong> whose<br />

identificati<strong>on</strong> can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten provide valuable mechanistic informati<strong>on</strong> as to<br />

whether a primary reacti<strong>on</strong> is mediated by oxy radicals (Thomas et al, 2002).<br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s are important hepatocarcinogens <str<strong>on</strong>g>and</str<strong>on</strong>g> the hepatic tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

liver absorb these toxic substances from the blood stream <str<strong>on</strong>g>and</str<strong>on</strong>g> circulati<strong>on</strong>.<br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s, specifically aflatoxin B1 is eventually secreted in the liver where<br />

it has been shown to be toxic to cells (Moreau <str<strong>on</strong>g>and</str<strong>on</strong>g> Moss,-1979). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> in<br />

the liver is degraded in two phases by 1) - biotransformati<strong>on</strong> to a more toxic<br />

product <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) - detoxificati<strong>on</strong> to a less toxic <str<strong>on</strong>g>and</str<strong>on</strong>g> easily excretable product<br />

(Hodgsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Levi, 1987).<br />

The levels <str<strong>on</strong>g>of</str<strong>on</strong>g> mal<strong>on</strong>dialdehyde, the end product <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid peroxidati<strong>on</strong><br />

process, which recorded a hike after 14 days <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure to the toxin, was<br />

found to decline in the different tissues at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> 42 days. It has been<br />

reported that lipid peroxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidative DNA damage are the<br />

manifestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the aflatoxin B 1 induced toxicity. Supporting this, a<br />

significant increase in lipid peroxidati<strong>on</strong> was reported in the liver <str<strong>on</strong>g>of</str<strong>on</strong>g> rat 72<br />

hours after a single intraperit<strong>on</strong>eal dose <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B 1 (Souza et al, 1999).<br />

Verma <str<strong>on</strong>g>and</str<strong>on</strong>g> Nair have reported increased lipid peroxidati<strong>on</strong> in the<br />

testes <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin treated mice. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s can produce ROS by either direct<br />

57


(Madhusudhanan et al, 2000). But in this study, after a 42 day exposure to<br />

the toxin, a decrease seen in the mal<strong>on</strong>dialdehyde levels could be due to a<br />

rise seen in the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidant enzymes right from 14 days to 42 days<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exposure. In additi<strong>on</strong> to this, the relative activities <str<strong>on</strong>g>of</str<strong>on</strong>g> detoxifying<br />

biotransformati<strong>on</strong> pathways are also critical determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> species<br />

susceptibity. The most important detoxificati<strong>on</strong> system is thought to be the<br />

glutathi<strong>on</strong>e S transferase - catalase c<strong>on</strong>jugati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB I . Glutathi<strong>on</strong>e S<br />

transferase (OST) comprises the family <str<strong>on</strong>g>of</str<strong>on</strong>g> cytosolic <str<strong>on</strong>g>and</str<strong>on</strong>g> microsomal<br />

enzymes that catalyze the c<strong>on</strong>jugati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced glutathi<strong>on</strong>e (GSH) with<br />

compounds possessing an electrophilic centre. C<strong>on</strong>jugati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electrophilic AFBI-2,3 - epoxide with GSH provides an alternative to<br />

binding to nucleophilic sites in cellular macro molecules. Even though the<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme GST was not estimated in this study, an increase noticed<br />

in the glutathi<strong>on</strong>e level suggests a possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> such a c<strong>on</strong>jugati<strong>on</strong> reacti<strong>on</strong><br />

mechanism to have been functi<strong>on</strong>al in the fish <strong>on</strong> exposure to the toxin.<br />

From the foregoing results, it can be perceived that the fish namely 0<br />

mossambicus <strong>on</strong> being subjected to aflatoxin stress for a prol<strong>on</strong>ged period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

6 weeks was able protect itself from the abuse by the toxin with its existing<br />

antioxidant defense mechanism. The results obtained are supported by<br />

ANOVA <str<strong>on</strong>g>and</str<strong>on</strong>g> multiple comparis<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> data according to the Least<br />

Significance Difference procedure.<br />

59


C Histopathology<br />

H<br />

A<br />

P<br />

T<br />

E<br />

R<br />

5


5.0. Introducti<strong>on</strong><br />

Structural <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>al integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> cell organelles <str<strong>on</strong>g>and</str<strong>on</strong>g> cells is<br />

fundamental to the smooth orchestrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological functi<strong>on</strong>s in an<br />

organism. <str<strong>on</strong>g>Histopathological</str<strong>on</strong>g> techniques are rapid, sensitive, reliable <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

comparatively inexpensive tools for the assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> stress resp<strong>on</strong>se to<br />

xenobiotics. Cytological <str<strong>on</strong>g>and</str<strong>on</strong>g> histopathological alterati<strong>on</strong>s provide a direct<br />

record <str<strong>on</strong>g>of</str<strong>on</strong>g> stress effects. Cell damage is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> persistent or irreversible<br />

biochemical <str<strong>on</strong>g>and</str<strong>on</strong>g> subcellular dysfuncti<strong>on</strong> caused by stress. Often stressed<br />

cells undergo inrreversible structural <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical changes, which result<br />

in alterati<strong>on</strong>s in the physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> the animal. Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

histopathological manifestati<strong>on</strong> provides insight into the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> stress,<br />

susceptibility <str<strong>on</strong>g>and</str<strong>on</strong>g> adaptive capability <str<strong>on</strong>g>of</str<strong>on</strong>g> the stressed organism. The route<br />

that the toxicant takes during its metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g>ten dictates the choice <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organs for examining the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> xenobiotics. Liver (being the major<br />

detoxifying organ directly receiving the materials from the intestine) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

kidney (being the major excretory organ involved in xenobiotic excreti<strong>on</strong>)<br />

were c<strong>on</strong>sidered ideal for the study.<br />

5.1. Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

Liver <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney samples <str<strong>on</strong>g>of</str<strong>on</strong>g> 3mm thickness from specimens <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol animals <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes exposed to aflatoxin for periods <str<strong>on</strong>g>of</str<strong>on</strong>g> two <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

six weeks were fixed in 10% formalin for twenty-four hours. The following<br />

protocol was used to make paraffin wax blocks for histopathological studies.<br />

Tissues were dehydrated in ascending grade <str<strong>on</strong>g>of</str<strong>on</strong>g> alcohol - 50% - 1/2 hour;<br />

80% <str<strong>on</strong>g>and</str<strong>on</strong>g> 90%- 3/4 th hour each. Tissues were given two changes in absolute<br />

alcohol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e hour each.<br />

60


5.3. Results<br />

Several changes were observed in the liver <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney tissues <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

animals exposed to different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin <str<strong>on</strong>g>and</str<strong>on</strong>g> different time<br />

periods.<br />

5.3.1. Liver<br />

The liver <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol group that did not receive the toxin had normal<br />

structure. Hepatocytes were polyg<strong>on</strong>al in shape having a distinctive central<br />

nucleus with densely staining chromatin margins <str<strong>on</strong>g>and</str<strong>on</strong>g> a prominent nucleolus.<br />

There was far less tendency for dispositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the hepatocytes in cords or<br />

lobules when compared to the mammalian liver. Sinusoids, which are<br />

irregularly distributed between the polyg<strong>on</strong>al hepatocytes are lined by<br />

endothelial cells with very prominent nuclei. Biliary canaliculi were found in<br />

between hepatic cells as channels.<br />

The fishes that were fed <strong>on</strong> the experimental feed c<strong>on</strong>taining aflatoxin<br />

were divided into three groups- GI, GII, <str<strong>on</strong>g>and</str<strong>on</strong>g> GIll. GI was subdivided into<br />

GIa<str<strong>on</strong>g>and</str<strong>on</strong>g> GIb. GI was designated as the experimental group that was exposed<br />

to 0.375 ppm <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin for 14 days (GIa) <str<strong>on</strong>g>and</str<strong>on</strong>g> 42 days (GIb). G 11 was<br />

subdivided into G Ha <str<strong>on</strong>g>and</str<strong>on</strong>g> GlIb. G 11 was designated as the experimental<br />

group that received 2.5 ppm <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin for 14 days (GIIa) <str<strong>on</strong>g>and</str<strong>on</strong>g> 42 days<br />

(GlIb). G III was designated as the experimental group that was exposed to<br />

6ppmaflatoxin for 14 days (GIll a) <str<strong>on</strong>g>and</str<strong>on</strong>g> 42 days (Glllb).<br />

62


PLATE 8.5<br />

Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liver showing<br />

preneoplastic stage <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue


<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g><br />

Dose 0.375 2.5 6<br />

(ppm)<br />

Group GI GII GIll<br />

Subgroup Gla GIb GIIa GlIb GlIIa GIIlb<br />

Period Two Six Two Six Two Six<br />

(weeks)<br />

The liver secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the group, Gla which received an aflatoxin dose<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.375 ppm for two weeks showed the following changes :-<br />

• Total loss <str<strong>on</strong>g>of</str<strong>on</strong>g> architecture<br />

• Increase in the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ceroid pigments<br />

• Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the gl<str<strong>on</strong>g>and</str<strong>on</strong>g>ular structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the liver<br />

• Necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatic cells<br />

• Biliary epithelial cell proliferati<strong>on</strong>.<br />

In GIb group the changes observed in the liver tissue were more<br />

severe. Proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biliary epithelial cells <str<strong>on</strong>g>and</str<strong>on</strong>g> stromal c<strong>on</strong>nective tissue<br />

was discernable indicating a cirrhotic change. Regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatic cells<br />

was also seen.<br />

The group GIIa (aflatoxin dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5 ppm for 2 weeks) revealed<br />

several changes in the liver tissue. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> the hepatocytes<br />

was seen. The liver c<strong>on</strong>tained a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophages c<strong>on</strong>taining<br />

ceroid pigments. Necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> liver cells was noticed. There was general<br />

swelling <str<strong>on</strong>g>and</str<strong>on</strong>g> pyknosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the hepatocyte nuclei. Biliary epithelium <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>nective tissue cells revealed proliferative changes.<br />

63


The GlIb secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liver tissue showed complete necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

hepatic cells. Hepatic parenchymal tissue showed disorganizati<strong>on</strong>. Cirrohotic<br />

changes were manifested by fibrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatic cords <str<strong>on</strong>g>and</str<strong>on</strong>g> biliary c<strong>on</strong>nective<br />

tissue.<br />

In the liver secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> group GIIla that was exposed to 6 ppm <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxin for two weeks, several areas <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperchromatic, hyperplastic,<br />

basophilic cellular proliferati<strong>on</strong> were seen which may be preneoplastic<br />

lesi<strong>on</strong>s. Extensive biliary proliferati<strong>on</strong> was seen together with necrosis,<br />

accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ceroid pigments <str<strong>on</strong>g>and</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> architecture. Similar changes<br />

were also observed in the liver <str<strong>on</strong>g>of</str<strong>on</strong>g> GIIIb.<br />

5.3.2. Kidney<br />

In the experimental group GIa, the kidney exhibited an increased<br />

cellularity in the glomeruli. A moderate loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the epithelial cells <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tubules was seen.<br />

In group GIb, the changes in the kidney were characterized by the<br />

vacuolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the epithelial cells <str<strong>on</strong>g>of</str<strong>on</strong>g> the proximal c<strong>on</strong>voluted tubules <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

distal c<strong>on</strong>voluted tubules accompanied by a complete loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the epithelial<br />

cells <str<strong>on</strong>g>of</str<strong>on</strong>g> the tubules. Other changes noticed were the degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

epithelial cells <str<strong>on</strong>g>and</str<strong>on</strong>g> fibrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the glomerular tuft.<br />

In GIIa, the glomeruli recorded increased cellularity <str<strong>on</strong>g>and</str<strong>on</strong>g> fibrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

glomerular tuft. Desquamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cells <str<strong>on</strong>g>of</str<strong>on</strong>g> the tubules was noticed.<br />

64


In GlIb both proximal c<strong>on</strong>voluted tubules <str<strong>on</strong>g>and</str<strong>on</strong>g> distal c<strong>on</strong>voluted<br />

tubules revealed degenerative changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the epithelial cells characterized by<br />

necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> tubular epithelial cells, vacuoles in epithelial cells <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

desquamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. The glomeruli revealed hypercellularity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

shrinkage. The Bowman's capsule showed thickening.<br />

In G IlIa, tubular epithelial necrosis was extensive. Mild to moderate<br />

glomerular capillary thickening was apparent in many glomeruli.<br />

In G IIIb, the glomeruli revealed shrinkage <str<strong>on</strong>g>and</str<strong>on</strong>g> sclerotic changes.<br />

5.4. Discussi<strong>on</strong><br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B1, a toxic product <str<strong>on</strong>g>of</str<strong>on</strong>g> the mould Aspergillus is the most<br />

potent <str<strong>on</strong>g>of</str<strong>on</strong>g> several mould metabolites known to produce recognizable liver<br />

abnormalities which precede neoplastic c<strong>on</strong>diti<strong>on</strong>s. For several years,<br />

rainbow trout has been used as a carcinogenic model <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatoma research<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> it is has been proved to be highly sensitive to hepatic carcinoma (Wood<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Lars<strong>on</strong>, 1961). The pathological changes induced by aflatoxin in the<br />

different organs <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreochromis niloticus have already been documented.<br />

However, the present study is probably the first <str<strong>on</strong>g>of</str<strong>on</strong>g> its kind to highlight the<br />

pathological changes in the different organ tissues namely liver <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Oreochromis mossambicus, the widely cultured tilapia species in India.<br />

According to Post 1983, aflatoxins are absorbed from the diet in the<br />

alimentary canal <str<strong>on</strong>g>and</str<strong>on</strong>g> are passed to different organs. Liver being the primary<br />

target organ <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin, most reports is based <strong>on</strong> the<br />

compositi<strong>on</strong>al changes in liver tissue.<br />

65


All experimental fish appeared normal <str<strong>on</strong>g>and</str<strong>on</strong>g> healthy after being fed <strong>on</strong><br />

the experimental diets. This c<strong>on</strong>diti<strong>on</strong> has been observed in rainbow trout<br />

affected with hepatic carcinoma (Wood <str<strong>on</strong>g>and</str<strong>on</strong>g> Lars<strong>on</strong>, 1961). Jantrarotai et al.<br />

1990 fed channel catfish 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.154 mg aflatoxin Bl/kg diet <str<strong>on</strong>g>and</str<strong>on</strong>g> reported<br />

that the gross appearance <str<strong>on</strong>g>and</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> all fish were normal.<br />

Fish fed <strong>on</strong> the diet c<strong>on</strong>taining the highest dose <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin appeared<br />

to detect the aflatoxin c<strong>on</strong>tained in the diet <str<strong>on</strong>g>and</str<strong>on</strong>g> so did not take the feed<br />

completely for the first few days but later <strong>on</strong> began to gradually accept the<br />

entire feed.<br />

Sim<strong>on</strong> et al. 1967, Sinnhuber et al. 1968, Rogers <str<strong>on</strong>g>and</str<strong>on</strong>g> Newbeme, 1969,<br />

Ashley 1970, Sato et al. 1973 <str<strong>on</strong>g>and</str<strong>on</strong>g> Ghittino 1976 have reported necrosis,<br />

fibrosis <str<strong>on</strong>g>and</str<strong>on</strong>g> bile ductular proliferati<strong>on</strong> in advanced tumors induced by<br />

aflatoxin. Acute aflatoxicosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the liver showing necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

parenchymal cells was reported in rainbow trout force fed crude aflatoxin<br />

<strong>on</strong>ce at 5-mg/kg body weights. As necrosis developed, the damaged<br />

hepatocytes took up less stain until when necrosis was complete they were<br />

practically unstainable. Bile ductile proliferati<strong>on</strong> in trout was occasi<strong>on</strong>ally<br />

evident (Ashley,1967b). Moderate to marked proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bile duct was<br />

noticed in liver <str<strong>on</strong>g>of</str<strong>on</strong>g> Labeo rohita administered pure aflatoxin B1<br />

intraperit<strong>on</strong>eally @ 0.75, 1.25 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.5 mg/kg <str<strong>on</strong>g>of</str<strong>on</strong>g> body weight. Bile duct<br />

proliferati<strong>on</strong> (minimal trace) was also observed in the liver <str<strong>on</strong>g>of</str<strong>on</strong>g> the air<br />

breathing teleost, Channa punctatus administered aflatoxin intraperit<strong>on</strong>eally.<br />

In the present study, the liver <str<strong>on</strong>g>of</str<strong>on</strong>g> fish from all dietary treatments showed<br />

necrosis <str<strong>on</strong>g>and</str<strong>on</strong>g> biliary epithelial cell proliferati<strong>on</strong> with damage being more<br />

extensive with increasing c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in the diet.<br />

66


Cirrhosis (a progressive liver disease resulting in liver failure), the<br />

outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> prol<strong>on</strong>ged hepatocellular injury, as manifested by fibrosis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hepatic cords <str<strong>on</strong>g>and</str<strong>on</strong>g> biliary c<strong>on</strong>nective tissue was observed in fish feeding <strong>on</strong><br />

the lower doses <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in the present study. Toxic liver cirrhosis was<br />

observed in the liver <str<strong>on</strong>g>of</str<strong>on</strong>g> the air breathing teleost Channa punctatus<br />

administered aflatoxin intraperit<strong>on</strong>eally. Hepatic Cirrhosis has also been<br />

reported in rainbow trout fed <strong>on</strong> aflatoxin-c<strong>on</strong>taminated feed in additi<strong>on</strong> to<br />

hepatoma (Lopez-Jimenez, 1983).<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> normal architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatocytes as cited by Sanchez et<br />

al.1994 in Oreochromis niloticus <str<strong>on</strong>g>and</str<strong>on</strong>g> by Verma, 1997 in Channa punctatus<br />

was observed in fish feeding <strong>on</strong> all the experimental doses <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in the<br />

present study. Sanchez et al. 1994 <str<strong>on</strong>g>and</str<strong>on</strong>g> George KC,1997 have reported focal<br />

necrosis in the liver <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreochromis niloticus <str<strong>on</strong>g>and</str<strong>on</strong>g> Labeo rohitarespectively.<br />

In this study, focal necrosis was observed in the fish feeding <strong>on</strong> the highest<br />

dose <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin. Acute <str<strong>on</strong>g>and</str<strong>on</strong>g> extensive necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> liver cells may occur in<br />

toxic c<strong>on</strong>diti<strong>on</strong>s but focal necrosis is more comm<strong>on</strong> ..<br />

An increase in the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ceroid pigments as documented by<br />

George KC in Labeo rohita was observed in the present study in<br />

the fish feeding <strong>on</strong> all experimental doses <str<strong>on</strong>g>of</str<strong>on</strong>g> the toxin. In this study, pyknosis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the hepatocyte nuclei, which reflects a state <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cell,<br />

characterized by a very dark, shrunken nucleus <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>densed chromatin<br />

was noticed in the fish c<strong>on</strong>suming 2.5 mg aflatoxin per kg diet. Ashley,<br />

1967b in trout liver, has cited similar observati<strong>on</strong>s.<br />

In the present study, fish exposed to the highest dose <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin<br />

namely 6ppm for 6 weeks revealed hyperchromatic, hyperplastic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

basophilic cellular proliferati<strong>on</strong> that probably c<strong>on</strong>stitutes a preneoplastic<br />

67


lesi<strong>on</strong>, serving as precursors <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatoma. Halver, 1969, has described<br />

hepatoma developing from basophilic patches. Chr<strong>on</strong>ic aflatoxicosis induced<br />

hepatoma when 200ppb crude or 0.5-8.Oppb crystalline aflatoxin B1, was fed<br />

to trout in the daily rati<strong>on</strong> for 3-12 m<strong>on</strong>ths. Salm<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> catfish were<br />

refractive to aflatoxin - n<strong>on</strong>e had hepatoma after 2 years (Ashley, 1967a).<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> preneoplastic nodule in liver during subchr<strong>on</strong>ic aflatoxin<br />

toxicity in rohu, Labeo rohita has been described earlier (Svobodova et<br />

al.1982). The aforesaid evidences project the fact that aflatoxin exposure for<br />

a l<strong>on</strong>ger durati<strong>on</strong> bey<strong>on</strong>d six weeks could possibly induce hepatoma in<br />

.Oreochromis mossambicus.<br />

Ashley,1967 has reported necrotic changes in the kidney <str<strong>on</strong>g>of</str<strong>on</strong>g> Catfish<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Coho salm<strong>on</strong> receiving 15 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B1/kg body weight. Murjani,<br />

Sahoo et al. 2001 <str<strong>on</strong>g>and</str<strong>on</strong>g> George KC, 1997 have also independently reported<br />

necrosis in the kidney <str<strong>on</strong>g>of</str<strong>on</strong>g> Labeo rohita. In this study also, necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tubular epithelial cells was observed in GlIb with necrosis becoming<br />

extensive in the fish c<strong>on</strong>suming the highest dose <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin.<br />

In the present study, an increased cellularity <str<strong>on</strong>g>of</str<strong>on</strong>g> the glomerular tuft was<br />

noticed in the kidney <str<strong>on</strong>g>of</str<strong>on</strong>g> fish exposed to the lower doses <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

shrinkage <str<strong>on</strong>g>of</str<strong>on</strong>g> the glomeruli was observed in the fish exposed to the higher<br />

doses <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin. Supporting evidence has been provided by Sanchez et<br />

al.1994 who reported an increased cellularity <str<strong>on</strong>g>of</str<strong>on</strong>g> the glomeruli in<br />

Oreochromis niloticus together with the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a few shrunken<br />

glomeruli surrounded by widened Bowman's spaces. George KC has also<br />

reported similar changes in Labeo rohita..<br />

68


Both the proximal c<strong>on</strong>voluted tubules <str<strong>on</strong>g>and</str<strong>on</strong>g> the distal c<strong>on</strong>voluted<br />

tubules in the present study revealed vacuolati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> desquamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

epithelial cells <str<strong>on</strong>g>of</str<strong>on</strong>g> the tubules. Similar changes were observed by George KC<br />

in the kidney <str<strong>on</strong>g>of</str<strong>on</strong>g> Labeo rohita exposed to aflatoxin for six weeks @ 0.4 mg<br />

/kg <str<strong>on</strong>g>of</str<strong>on</strong>g> feed. Mild to moderate glomerular capillary thickening <str<strong>on</strong>g>and</str<strong>on</strong>g> also<br />

sclerotic changes in the glomeruli as evidenced by George KC, 1997 in<br />

Labeo rohita was seen in the test animals subjected to the highest dose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxin.<br />

The present study reports the appropriate dose <str<strong>on</strong>g>and</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> time<br />

aflatoxin induces chr<strong>on</strong>icity <str<strong>on</strong>g>and</str<strong>on</strong>g> pathological changes in the tissues towards<br />

preneoplastic c<strong>on</strong>diti<strong>on</strong> (in liver) in Oreochromis mossambicus. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s<br />

are both acutely <str<strong>on</strong>g>and</str<strong>on</strong>g> chr<strong>on</strong>ically toxic to animals, including man. They<br />

produce four distinct effects: acute liver damage; liver cirrhosis; inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tumours; <str<strong>on</strong>g>and</str<strong>on</strong>g> teratogenic effects (Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f, 1977). High temperature <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

'humidity in the tropical countries promote the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> favourable growth<br />

c<strong>on</strong>diti<strong>on</strong>s for fungi. Unfortunately, because aquaculture is a relatively new<br />

technology, most farmers <str<strong>on</strong>g>and</str<strong>on</strong>g> aquaculturists are unaware <str<strong>on</strong>g>of</str<strong>on</strong>g> the deleterious<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore investigati<strong>on</strong>s into the exact nature <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

causes for mortality <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced growth rate are hardly made. In additi<strong>on</strong> to<br />

the alarming increase in deaths due to aflatoxicosis, an ec<strong>on</strong>omical setback<br />

can incur through poor performance, lowered meat producti<strong>on</strong>, decreased<br />

resistance to infecti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> diseases <str<strong>on</strong>g>and</str<strong>on</strong>g> reproductive problems. Furthermore,<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> the developing countries do not have facilities <str<strong>on</strong>g>and</str<strong>on</strong>g> regulati<strong>on</strong>s for<br />

c<strong>on</strong>trolling the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> feed. Enforcement <str<strong>on</strong>g>of</str<strong>on</strong>g> these regulati<strong>on</strong>s is m<str<strong>on</strong>g>and</str<strong>on</strong>g>atory<br />

to bring about a revoluti<strong>on</strong>ary change in the fish health management practices<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tribute substantially to the gross producti<strong>on</strong> statistics.<br />

69


C<br />

H<br />

A<br />

P<br />

T<br />

E<br />

R<br />

6<br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> mediated<br />

<str<strong>on</strong>g>Biochemical</str<strong>on</strong>g> changes In<br />

Oreochromis mossambicus


6.0 Introducti<strong>on</strong><br />

Of the energy resources available at the disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> animals,<br />

carbohydrates form the chief c<strong>on</strong>stituent to be readily utilized. The<br />

carbohydrate metabolism is broadly divided into two segments (a) anaerobic<br />

segment or glycolysis which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> glycogen or glucose<br />

through Embden-Meyerh<str<strong>on</strong>g>of</str<strong>on</strong>g>pathway <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) aerobic segment which c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pyruvate to acetyl CoA to be utilized through citric acid<br />

cycle. This is coupled by utilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> mobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>reduced coenzymes<br />

(NADH or NADPH) for synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP molecules through electr<strong>on</strong><br />

transport system coupled with oxidative phosphorylati<strong>on</strong> (Lehninger, 1978).<br />

Besides synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> glycogen from glucose occurs not <strong>on</strong>ly through<br />

glycogenesis but also from n<strong>on</strong>-carbohydrate precursors like amino acids,<br />

lactate <str<strong>on</strong>g>and</str<strong>on</strong>g> glycerol by gluc<strong>on</strong>eogenesis. The above stamps c<strong>on</strong>stitute the<br />

main pathways <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate metabolism widely present in almost all the<br />

tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> the vertebrates. Functi<strong>on</strong>ally, the operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such complex<br />

biosynthetic <str<strong>on</strong>g>and</str<strong>on</strong>g> biodegradative steps in the carbohydrate metabolism<br />

certainly has a key role to play in supplying energy for cellular functi<strong>on</strong>s<br />

particularly under stress c<strong>on</strong>diti<strong>on</strong>s like aflatoxin induced toxicemia<br />

Glucose, the body's main source <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate energy is found stored as<br />

glycogen in both muscles <str<strong>on</strong>g>and</str<strong>on</strong>g> liver. When the need arises for carbohydrates<br />

energy, glycogen is c<strong>on</strong>verted to glucose in the serum (Melby,1974). Blood<br />

glucose c<strong>on</strong>centrati<strong>on</strong> appears to be a sensitive, reliable indicator <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental stress in fish. Glucose levels in blood <str<strong>on</strong>g>and</str<strong>on</strong>g> tissues may be used<br />

to indicate the toxicological significance <str<strong>on</strong>g>of</str<strong>on</strong>g> a substance in the aquatic<br />

envir<strong>on</strong>ment ( Elizoic et al, 1987)<br />

70


<str<strong>on</strong>g>Biochemical</str<strong>on</strong>g>ly, aflatoxins can affect energy metabolism, carbohydrate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> lipid metabolism, nucleic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> protein metabolism (Ellis et al. 1991).<br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s may be c<strong>on</strong>sidered as inhibitors <str<strong>on</strong>g>of</str<strong>on</strong>g> biosynthetic processes both in<br />

vivo <str<strong>on</strong>g>and</str<strong>on</strong>g> in vitro, with large doses causing total inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

biochemical systems <str<strong>on</strong>g>and</str<strong>on</strong>g> lower doses affecting different metabolic systems<br />

(Moreau et al. 1979).<br />

Interestingly, the animals have the capacity to regulate <str<strong>on</strong>g>and</str<strong>on</strong>g> modulate<br />

the inherent diversi<strong>on</strong>s in their metabolism to meet the altered physiological<br />

or envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (Hoar, 1976). This is easily d<strong>on</strong>e to meet the<br />

energy dem<str<strong>on</strong>g>and</str<strong>on</strong>g> under attenuated or imposed stress c<strong>on</strong>diti<strong>on</strong>s to facilitate<br />

synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> extra energy to overcome such impeding situati<strong>on</strong>s. In the light<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the above literature, some aspects namely total carbohydrate, glycogen<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> pyruvate <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbohydrate metabolism in selected tissues were<br />

determined.<br />

Free ammo acids <str<strong>on</strong>g>and</str<strong>on</strong>g> certain types <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins (like albumin)<br />

c<strong>on</strong>tribute to the maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> osmotic <str<strong>on</strong>g>and</str<strong>on</strong>g> acid base balance (Florkin <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sch<str<strong>on</strong>g>of</str<strong>on</strong>g>feniels,1964; Roberts<strong>on</strong>, 1965).<br />

Aspartate aminotransferases (AS1) <str<strong>on</strong>g>and</str<strong>on</strong>g> alanine aminotransferases<br />

(AL1) functi<strong>on</strong> as a link between carbohydrate <str<strong>on</strong>g>and</str<strong>on</strong>g> protein metabolism by<br />

catalyzing the interc<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strategic compounds like a­<br />

ketoglutarate <str<strong>on</strong>g>and</str<strong>on</strong>g> alanine to glutamic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> pyruvic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> aspartate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a-ketoglutaric acid to oxaloacetic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> glutamic acid respectively<br />

(Knox <str<strong>on</strong>g>and</str<strong>on</strong>g> Greengard,1965; Watts <str<strong>on</strong>g>and</str<strong>on</strong>g> Watts,1974; Martin, Mayes, Rodwell,<br />

1983). These enzymes are released into the circulatory system (serum) by<br />

cellular damage or destructi<strong>on</strong> (Melby <str<strong>on</strong>g>and</str<strong>on</strong>g> Altman, 1977). AST is present in<br />

71


oth cytoplasm <str<strong>on</strong>g>and</str<strong>on</strong>g> mitoch<strong>on</strong>dria <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. In cases involving mild tissue<br />

injury, the predominant form <str<strong>on</strong>g>of</str<strong>on</strong>g> AST is that from the cytoplasm, with a<br />

smaller amount coming from the mitoch<strong>on</strong>dria. Severe tissue damage results<br />

in more <str<strong>on</strong>g>of</str<strong>on</strong>g> the mitoch<strong>on</strong>drial enzyme being released (Bergmeyer et al, 1985).<br />

Liver is rich in AST <str<strong>on</strong>g>and</str<strong>on</strong>g> ALT <str<strong>on</strong>g>and</str<strong>on</strong>g> changes in plasma levels <str<strong>on</strong>g>of</str<strong>on</strong>g> these enzymes<br />

may be indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> liver dysfuncti<strong>on</strong> (Kapila,1999).<br />

Even though fish are mostly amm<strong>on</strong>otelic, there are many reports <strong>on</strong><br />

the excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urea by fish (Wekell <str<strong>on</strong>g>and</str<strong>on</strong>g> Brown, 1973). A full complement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> urea cycle enzymes was reported to be present in the liver<br />

(Campbell,1961). Urea is the main end product <str<strong>on</strong>g>of</str<strong>on</strong>g> protein metabolism in the<br />

body. Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> amino groups from amino acids, from which urea is<br />

formed takes place in the liver (Varley, 1988). The levels found circulating<br />

in sera are dependant <strong>on</strong> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen metabolism <str<strong>on</strong>g>and</str<strong>on</strong>g>-the ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the kidney to remove the end products. Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blood urea is<br />

routinely used as an index <str<strong>on</strong>g>of</str<strong>on</strong>g> renal functi<strong>on</strong> (Melby, 1974)<br />

Acid phosphatase <str<strong>on</strong>g>and</str<strong>on</strong>g> alkaline phosphatase are enzymes, which<br />

catalyze the hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> orthophosphoric acid esters at optimum pH levels<br />

below 7.0 <str<strong>on</strong>g>and</str<strong>on</strong>g> above 7.0 respectively (woodward, 1959). Alkaline<br />

phosphatase is involved in membrane transport <str<strong>on</strong>g>and</str<strong>on</strong>g> is a good indicator <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stress in biological systems (Verma et al.1980).<br />

The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> haematological <str<strong>on</strong>g>and</str<strong>on</strong>g> serological techniques have<br />

proved valuable for fishery biologists in assessing the health <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

m<strong>on</strong>itoring stress resp<strong>on</strong>ses either due to fluctuati<strong>on</strong>s in envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong> or due to sub lethal c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pollutants. Haematology<br />

c<strong>on</strong>cerns mainly investigati<strong>on</strong>s <strong>on</strong> cells present in the blood viz. red blood<br />

cells (RBC) count, haemoglobin c<strong>on</strong>centrati<strong>on</strong> (Hb), packed cell volume<br />

72


}.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

&.2.1 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pyruvate (Friedemann <str<strong>on</strong>g>and</str<strong>on</strong>g> Haugen, 1943)<br />

Reagents<br />

1. 10% Trichloroacetic acid [,CA)<br />

2. 2,4 - Di nitro phenyl hydrazine (0.1%) (DNPH)<br />

3. 2.5N NaOH<br />

4. Pyruvate Stock st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: Dissolved 125mg <str<strong>on</strong>g>of</str<strong>on</strong>g> sodium pyruvate in<br />

O.lN H2S04 <str<strong>on</strong>g>and</str<strong>on</strong>g> diluted to 100ml with 0.1N H2S04• 1 m! <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

soluti<strong>on</strong> c<strong>on</strong>tains 1.25mg <str<strong>on</strong>g>of</str<strong>on</strong>g> sodium pyruvate.<br />

Working St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: Diluted 5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Stock to 100ml such.that 1ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

it c<strong>on</strong>tains 0.0625 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> sodium pyruvate.<br />

Procedure<br />

Liver, heart, muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney tissue homogenates were prepared<br />

separately in 10% TCA <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged at 1000g for 15 min. To 2ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

supematant, O.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1% 2,4 di nitro phenyl hydrazine was added <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

tubes were kept for 5 min at room temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> 3ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5N NaOH<br />

soluti<strong>on</strong> was added. After 10 min the colour was read in a spectrophotometer<br />

at 540 nm against a reagent blank. The blank c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 2ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 10% TCA,<br />

O.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1% 2,4 DNPH <str<strong>on</strong>g>and</str<strong>on</strong>g> 3ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5N NaOH soluti<strong>on</strong>. The st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

graph was prepared by using sodium pyruvate. The values were expressed as<br />

!.t moles <str<strong>on</strong>g>of</str<strong>on</strong>g> pyruvate /g wet wt <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue.<br />

75


DNPH reagent was added to both the tubes <str<strong>on</strong>g>and</str<strong>on</strong>g> kept at room temperature for<br />

20 min. The reacti<strong>on</strong> was stopped by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Oo4N NaOH,<br />

vortexed <str<strong>on</strong>g>and</str<strong>on</strong>g> kept at room temperature for 5 min .The absorbance was<br />

measured at 520nm in a spectrophotometer. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue <str<strong>on</strong>g>and</str<strong>on</strong>g> serum<br />

ALTwere expressed as units/min/mg protein <str<strong>on</strong>g>and</str<strong>on</strong>g> units/L respectively.<br />

6.2.4 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Aspartate Transaminase (AST) (Mohun <str<strong>on</strong>g>and</str<strong>on</strong>g> Cook,<br />

1957)<br />

Reagents<br />

1. Buffered substrate : (O.lM Phosphate buffer, pH- 704; IM aspartic<br />

acid; 2mM 2-0xoglutarate ). Dissolved 1.5g <str<strong>on</strong>g>of</str<strong>on</strong>g> di potassium hydrogen<br />

phosphate, O.20g <str<strong>on</strong>g>of</str<strong>on</strong>g> potassium di hydrogen phosphate, O.030g <str<strong>on</strong>g>of</str<strong>on</strong>g> 2­<br />

oxoglutarate <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.57g <str<strong>on</strong>g>of</str<strong>on</strong>g> L-aspartate m<strong>on</strong>o sodium salt (or 1.32g L­<br />

aspartic acid) in 70 ml distilled water. Adjusted pH to 704 with O.4N<br />

NaOH <str<strong>on</strong>g>and</str<strong>on</strong>g> diluted to 100ml with distilled water.<br />

2. 2,4- Di nitro phenyl hydrazine (DNPH): ImmollL in 1 N HCL.<br />

3. NaOH: Oo4N<br />

4. Pyruvate st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: Zmmol/L<br />

Procedure<br />

Working st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: lin 20 diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the stock st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard.<br />

The liver, heart, muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney tissue homogenates were prepared<br />

separately in 0.33M sucrose soluti<strong>on</strong> (10%) <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged in a refrigerated<br />

centrifuge for 15 min at 1000g. The supematant obtained was used as the<br />

enzyme source. Pipetted out lml <str<strong>on</strong>g>of</str<strong>on</strong>g> buffered substrate into two test tubes<br />

labeled "test" <str<strong>on</strong>g>and</str<strong>on</strong>g> "c<strong>on</strong>trol ". Added O.2ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme/ serum to the tube<br />

labeled "test" <str<strong>on</strong>g>and</str<strong>on</strong>g> incubated the tubes at 37°C for 60 minutes. After<br />

78


incubati<strong>on</strong>, 0.2ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme I serum was added to the c<strong>on</strong>trol tube. lml<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 2,4 -DNPH reagent was added to both the tubes <str<strong>on</strong>g>and</str<strong>on</strong>g> kept at room<br />

temperature for 20 min. The reacti<strong>on</strong> was stopped by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lOml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

O.4N NaOH, vortexed <str<strong>on</strong>g>and</str<strong>on</strong>g> kept at room temperature for 5 min .The<br />

absorbance was measured at 520nm in a spectrophotometer. The values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tissue <str<strong>on</strong>g>and</str<strong>on</strong>g> serum AST were expressed as units/min/mg protein <str<strong>on</strong>g>and</str<strong>on</strong>g> units/L<br />

respectively.<br />

6.2.5 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Alkaline Phosphatase (Colowick, 1957)<br />

The procedure followed was the same as that <str<strong>on</strong>g>of</str<strong>on</strong>g> acid phosphatase<br />

except that sodium carb<strong>on</strong>ate - bicarb<strong>on</strong>ate buffer (lOOmmol/L) (pH 10) was<br />

used. The values were expressed as mg <str<strong>on</strong>g>of</str<strong>on</strong>g> p-nitro phenol formed /min/mg<br />

protein.<br />

6.2.6 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Free Amino acids (Moore <str<strong>on</strong>g>and</str<strong>on</strong>g> Stein,1954)<br />

Reagents<br />

1. 80% ethanol<br />

2. Ninhydrin reagent: Dissolved 2 g <str<strong>on</strong>g>of</str<strong>on</strong>g> ninhydrin in 25ml <str<strong>on</strong>g>of</str<strong>on</strong>g> methyl<br />

cellosolve. Mixed this with 25ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2M acetate buffer <str<strong>on</strong>g>of</str<strong>on</strong>g> pH 5.5.<br />

Stored in an amber coloured bottle.<br />

3. 50% ethanol<br />

4. Tyrosine st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: Dissolved 500 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> tyrosine III 100rnl <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

distilled water.<br />

Working st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: Diluted 1 to 20 using distilled water.<br />

79


Procedure<br />

Liver, heart muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney homogenates were prepared separately<br />

in 80% ethanol <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged at 15,000g in a refrigerated centrifuge. O.5ml<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> supernatant was taken in different tubes <str<strong>on</strong>g>and</str<strong>on</strong>g> the volume was made up to<br />

4ml in each <str<strong>on</strong>g>of</str<strong>on</strong>g> the tubes. 1.0ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ninhydrin reagent was added <str<strong>on</strong>g>and</str<strong>on</strong>g> the tubes<br />

were kept in a boiling water bath for 15 min. The tubes were then cooled <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

1ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 50% ethanol was added. The colour developed was read in a<br />

spectrophotometer at 550nm.The values were expressed as u moles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tyrosine/g wet wt <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue.<br />

6.2.7 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Proteins ( Lowry et al. 1951 )<br />

Reagents<br />

1. NaOH: 0.1 N<br />

2. Na2C03 (2% ) in 0.1 N NaOH<br />

3. CUS04 (0.5%)<br />

4. Sodium potassium tartrate soluti<strong>on</strong> (1%)<br />

5. Alkaline copper reagent: A mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 ml 2% Na2C03 soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> CUS04 soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sodium potassium tartrate<br />

soluti<strong>on</strong>.<br />

6. Folin's phenol reagent - 1:1 diluti<strong>on</strong> with distilled water<br />

7. St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard protein soluti<strong>on</strong>: 100 mg % in 0.1 NaOH<br />

Procedure<br />

Pipetted out 0.2 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> serum or extract to the test tube <str<strong>on</strong>g>and</str<strong>on</strong>g> added lml<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NaOH soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaline copper reagent. Shaken well <str<strong>on</strong>g>and</str<strong>on</strong>g> kept<br />

80


times. Waited for 10 minutes till a "globulin butt<strong>on</strong>" formed at the interphase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ether saline. Centrifuged for at least 10 minutes to complete the process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

"globulin butt<strong>on</strong> formati<strong>on</strong>" <str<strong>on</strong>g>and</str<strong>on</strong>g> hardening it. After centrifuging, tilted the<br />

tube <str<strong>on</strong>g>and</str<strong>on</strong>g> inserted a pipette into the clear soluti<strong>on</strong> below the globulin layer.<br />

Precipitate should not be disturbed. Pipetted 2 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>and</str<strong>on</strong>g> added to 5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the biuret reagent.<br />

0.2 ml to 1.4 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard was pipetted out into clean dry tubes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

made up to 2 ml with 0.9 % saline. Added 5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Biuret reagent. All the<br />

tubes were shaken well <str<strong>on</strong>g>and</str<strong>on</strong>g> placed in a water bath at 37°C for 10 min.<br />

Allowed to cool to room temperature for 5 minutes <str<strong>on</strong>g>and</str<strong>on</strong>g> then read the<br />

absorbance at 555 nm. The difference between total protein <str<strong>on</strong>g>and</str<strong>on</strong>g> albumin<br />

gives globulin. The values were expressed as g/dl.<br />

6.2.9 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Serum Lactate Dehydrogenase (Spectrophotometric<br />

Reagents<br />

method <str<strong>on</strong>g>of</str<strong>on</strong>g> Wroblewski <str<strong>on</strong>g>and</str<strong>on</strong>g> La Due, 1955)<br />

1. Phosphate buffer (IM) pH 7.4: Dissolved 136g <str<strong>on</strong>g>of</str<strong>on</strong>g> potassium hydrogen<br />

phosphate <str<strong>on</strong>g>and</str<strong>on</strong>g> 33g <str<strong>on</strong>g>of</str<strong>on</strong>g> KOH in lL <str<strong>on</strong>g>of</str<strong>on</strong>g> water <str<strong>on</strong>g>and</str<strong>on</strong>g> adjusted the pH to 7.4.<br />

2. Phosphate buffer for use (O.lM) pH 7.4: Diluted the stock buffer 1 to<br />

lOml.<br />

3. Reduced Nicotinamide adenine dinucleotide: 2.5 mg per ml phosphate<br />

buffer.<br />

4. Sodium pyruvate: Img/ml phosphate buffer<br />

82


8. Glucose oxidase reagent. Added 0.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Fermcozyme to about 80 ml<br />

Procedure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> acetate buffer. To this added 5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the peroxidase soluti<strong>on</strong>, mixed<br />

lA<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> then added 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> o-tolidine. This was then made up to 100 ml<br />

A<br />

with buffer <str<strong>on</strong>g>and</str<strong>on</strong>g> keep in the refrigerator in a dark bottle.<br />

St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard glucose soluti<strong>on</strong>s: Prepared a soluti<strong>on</strong> c<strong>on</strong>taining 100mg<br />

glucose/1OOml saturated benzoic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> diluted with the same to<br />

obtain soluti<strong>on</strong>s c<strong>on</strong>taining 2.5, 5.0, 7.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10 mg / 100ml that are<br />

equivalent to 50, 100, 150 <str<strong>on</strong>g>and</str<strong>on</strong>g> 200 mg glucose/l00ml.<br />

Shortly before use added 0.4 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 % ZnS04.7H20 soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.4<br />

ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.3N NaOH to 1.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.9 % NaCI <str<strong>on</strong>g>and</str<strong>on</strong>g> to this 0.1 ml blood was<br />

added. Mixed well, centrifuged <str<strong>on</strong>g>and</str<strong>on</strong>g> separated the supernatant as so<strong>on</strong> as<br />

possible. Transferred 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> this to a test tube <str<strong>on</strong>g>and</str<strong>on</strong>g> into two other tubes<br />

measured 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> water as blank <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard glucose soluti<strong>on</strong>.<br />

Added 3 ml glucose oxidase reagent to each at half minute intervals, mixed<br />

gently for not more than ten sec<strong>on</strong>ds, <str<strong>on</strong>g>and</str<strong>on</strong>g> read the colour developed exactly<br />

ten min later at 625 nm or using an orange filter. The values were expressed<br />

as mg glucose /dl.<br />

6.2.11 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Alkaline Phosphatase (Kind <str<strong>on</strong>g>and</str<strong>on</strong>g> King,1954)<br />

Reagents<br />

1. Substrate: Di sodium phenol phosphate (10 mmoll1). Dissolved 2.18 g<br />

(2.541 g dihydrate) in water <str<strong>on</strong>g>and</str<strong>on</strong>g> make up to 1 L. It was quickly<br />

brought to boil, cooled, added a little chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm <str<strong>on</strong>g>and</str<strong>on</strong>g> kept in the<br />

refrigerator.<br />

84


2. Buffer: Sodium carb<strong>on</strong>ate- bicarb<strong>on</strong>ate buffer (100 mmol/l). Dissolved<br />

6.36g anhydrous sodium carb<strong>on</strong>ate <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.36g sodium bicarb<strong>on</strong>ate in<br />

water <str<strong>on</strong>g>and</str<strong>on</strong>g> make up to <strong>on</strong>e L.<br />

3. Buffered substrate: Mixed equal volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> buffer. This<br />

had a pH <str<strong>on</strong>g>of</str<strong>on</strong>g> 10.<br />

4. Stock phenol st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: 100 mg% in 0.1 N HCI<br />

5. Working st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Img%. Dilute stock 1-100 using 0.1 N HCI<br />

6. Sodium hydroxide O.5N (20g/L)<br />

7. Sodium bicarb<strong>on</strong>ate: O.5N (42g/L)<br />

8. 4-aminoantipyrine: 6g1 L in water<br />

9. Potassium ferricyanide : 24g1 L in water.<br />

Procedure<br />

Pipetted out 2 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> buffered substrate into each <str<strong>on</strong>g>of</str<strong>on</strong>g> the two tubes<br />

marked "test" <str<strong>on</strong>g>and</str<strong>on</strong>g> "c<strong>on</strong>trol" <str<strong>on</strong>g>and</str<strong>on</strong>g> incubated for a few minutes at 37°C. Then<br />

added 0.1 ml serum to the "test". Again incubated at 37°C for 15 minutes<br />

after which the tubes were removed from the water bath. Added 0.8 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NaOH <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.2 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> NaHC03 to both the tubes. Then added 0.1 ml serum to<br />

the "c<strong>on</strong>trol". This was followed by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 4<br />

arninoantipyrine <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> potassium ferriecyanide to both the tubes. Read<br />

the absorbance at 520 nm. For st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard, pipetted out 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> working<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> buffer. Added NaOH <str<strong>on</strong>g>and</str<strong>on</strong>g> NaHC03, 4-amino<br />

antipyrl ne <str<strong>on</strong>g>and</str<strong>on</strong>g> potassium ferricyanide as in the "test" <str<strong>on</strong>g>and</str<strong>on</strong>g> read. For blank<br />

pipetted out 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.1 ml buffer <str<strong>on</strong>g>and</str<strong>on</strong>g> proceeded as<br />

above. The values were expressed as units/L.<br />

85


6.2.12 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Acid Phosphatase (Kind <str<strong>on</strong>g>and</str<strong>on</strong>g> King,1954)<br />

The technique is the same as that <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaline phosphatase except that<br />

citric acid - sodium citrate buffer (pH 4.9) was used for preparing the<br />

buffered substrate. Incubati<strong>on</strong> was for 1 h <str<strong>on</strong>g>and</str<strong>on</strong>g> in developing the colour with<br />

4- amino antipyrine, it was necessary to add 1.0ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5N NaOH <str<strong>on</strong>g>and</str<strong>on</strong>g>1.0 ml<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5N NaHC03 to bring the pH to 10.2, that required for colour<br />

development. The values were expressed as units/L.<br />

6.2.13 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Serum Creatinine (Alkaline picrate method)<br />

Reagents<br />

1. St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard picric acid soluti<strong>on</strong>: Taken 13 g picric acid in lL <str<strong>on</strong>g>of</str<strong>on</strong>g> water.<br />

Allowed the excess picric acid to remain in c<strong>on</strong>tact with the water<br />

shaking occassi<strong>on</strong>ally. Filtered <str<strong>on</strong>g>and</str<strong>on</strong>g> stored it in a polyethylene bottle.<br />

2. 0.75N NaOH<br />

3. Stock Creatinine st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard (150 mg%): Dissolved 150 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> creatinine<br />

in 100ml HCI (100mmol/L)<br />

Working st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: Diluted stock st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard soluti<strong>on</strong> 10 times before<br />

use.<br />

Procedure<br />

Deprotenizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sample : O.5rnl <str<strong>on</strong>g>of</str<strong>on</strong>g> serum was added to 3ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

picric acid <str<strong>on</strong>g>and</str<strong>on</strong>g> added O.5ml distilled water to make up the volume to 4ml.<br />

Mixed well <str<strong>on</strong>g>and</str<strong>on</strong>g> kept in a boiling water bath for exactly <strong>on</strong>e min. Cooled<br />

immediately under tap water <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged. 2.0ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the supematant was<br />

86


added to O.Sml <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.75N NaOH, mixed well <str<strong>on</strong>g>and</str<strong>on</strong>g> allowed to st<str<strong>on</strong>g>and</str<strong>on</strong>g> at room<br />

temperature for exactly 20 min. Measured the absorbance immediately at<br />

520nm. O.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>and</str<strong>on</strong>g> blank soluti<strong>on</strong> was added to 1.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> picric<br />

acid <str<strong>on</strong>g>and</str<strong>on</strong>g> O.5ml NaOH. The values were expressed as mg/dl.<br />

6.2.14 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SerumCholesterol (Zak's method)<br />

Reagents<br />

1. Stock ferric chloride reagent: 840mg <str<strong>on</strong>g>of</str<strong>on</strong>g> pure dry ferric chloride was<br />

weighed <str<strong>on</strong>g>and</str<strong>on</strong>g> dissolved in lOOml <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial acetic acid.<br />

2. Ferric Chloride precipitating reagent: 10ml <str<strong>on</strong>g>of</str<strong>on</strong>g> stock ferric chloride<br />

reagent was placed in a lOOml st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard flask <str<strong>on</strong>g>and</str<strong>on</strong>g> made up to the mark<br />

with pure glacial acetic acid.<br />

3. Ferric chloride diluting reagent: 8.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the stock ferric chloride was<br />

diluted to lOOml with pure glacial acetic acid in a lOOml st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

flask.<br />

4. St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Cholesterol soluti<strong>on</strong>: 100mg <str<strong>on</strong>g>of</str<strong>on</strong>g> pure dry cholesterol was<br />

placed in a clean dry 100ml st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard flask <str<strong>on</strong>g>and</str<strong>on</strong>g> dissolved in glacial<br />

acetic acid. Made up to the mark with pure glacial acetic acid.<br />

5. Working st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: lOml <str<strong>on</strong>g>of</str<strong>on</strong>g> the stock st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard was placed in a 100ml<br />

Procedure<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard flask c<strong>on</strong>taining 0.85 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ferric chloride stock reagent <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

made up to the mark with pure glacial acetic acid. lml <str<strong>on</strong>g>of</str<strong>on</strong>g> this soluti<strong>on</strong><br />

c<strong>on</strong>tains 100pg <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol.<br />

0.5 - 2.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> working cholesterol soluti<strong>on</strong> was pipetted out into clean<br />

dry test tubes. The total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> each tube was made up to 5 ml with ferric<br />

chloride diluting reagent. To 0.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the serum added 4.9 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ferric<br />

87


chloride precipitating reagent <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed well. Allowed to st<str<strong>on</strong>g>and</str<strong>on</strong>g> for a while<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged. Transferred 2.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the clear supematant into a dry test<br />

tube <str<strong>on</strong>g>and</str<strong>on</strong>g> added 2.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ferric chloride diluting reagent. Mixed well. Tubes<br />

were kept in cold water <str<strong>on</strong>g>and</str<strong>on</strong>g> to each tube added 4 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>e H2S04 drop by<br />

drop. The soluti<strong>on</strong> was mixed well .The tubes were allowed to come to room<br />

temperature. A blank was also simultaneously prepared by taking 5 ml<br />

diluting reagent <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>e H2S04• After 30 min, the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

colour developed was read at 540 nm against the blank. The values were<br />

expressed as mg/dl,<br />

6.2.15 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Triglycerides (method <str<strong>on</strong>g>of</str<strong>on</strong>g> Van H<str<strong>on</strong>g>and</str<strong>on</strong>g>el <str<strong>on</strong>g>and</str<strong>on</strong>g> Zilversmit)<br />

Reagents<br />

1. Chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm<br />

2. Florisil<br />

3. Ethanolic KOH (0.4%) : 2 g KOH dissolved in 100 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol. This<br />

was then diluted 5 times with ethanol<br />

4. H2S04 (0.2 N)<br />

5. Sodium metaperiodate (0.05M)<br />

6. Sodium arsenite (0.5 M)<br />

7. Chromotropic acid: 2 g chromotropic acid (or 2.24g sodium salt) was<br />

dissolved in 200 ml distilled water. 600 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>c.H2S04 was added<br />

slowly to 300ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water which was chilled <strong>on</strong> ice. This<br />

chilled <str<strong>on</strong>g>and</str<strong>on</strong>g> diluted acid was then added to the chromotropic acid<br />

soluti<strong>on</strong> (0.05 mg/ml)<br />

88


Procedure<br />

2g <str<strong>on</strong>g>of</str<strong>on</strong>g> florisil was taken in a glass stoppered tube <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm was added. 0.2 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> serum was layered <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> florisil <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mixed. More chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm was then added to this to a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 ml. It was<br />

then stoppered <str<strong>on</strong>g>and</str<strong>on</strong>g> was shaken intermittently for about 10 minutes. After<br />

filtrati<strong>on</strong>, 1 ml was pipetted out into each <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 tubes. 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the working<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>of</str<strong>on</strong>g> glycerol was pipetted out into each <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 tubes. The solvent was<br />

evaporated at 60-70°C. Then 0.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanolic KOH was added to 2 out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

3 tubes (sap<strong>on</strong>ified sample) <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol was added to the third tube<br />

(unsap<strong>on</strong>eified sample). The tubes were closed <str<strong>on</strong>g>and</str<strong>on</strong>g> kept at 60-70°C for 15<br />

minutes. To each tube, 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2N H2S0 4 was added <str<strong>on</strong>g>and</str<strong>on</strong>g> then placed in a<br />

gently boiling water bath for about 15 minutes to remove alcohol. They were<br />

then cooled to room temperature, 0.1 ml sodium metaperiodate was added to<br />

each tube <str<strong>on</strong>g>and</str<strong>on</strong>g> kept for 10 minutes. 0.1 ml sodium arsenite soluti<strong>on</strong> was then<br />

added. An yellow colour <str<strong>on</strong>g>of</str<strong>on</strong>g> iodine appeared <str<strong>on</strong>g>and</str<strong>on</strong>g> vanished within a few<br />

minutes. To each tube,S ml <str<strong>on</strong>g>of</str<strong>on</strong>g> chromotropic acid was then added <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed.<br />

The tubes were closed <str<strong>on</strong>g>and</str<strong>on</strong>g> heated in a boiling water bath for 30 minutes.<br />

They were then cooled <str<strong>on</strong>g>and</str<strong>on</strong>g> the absorbance was read at 570 nm. The values<br />

are expressed as mg/dl.<br />

6.2.16 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>HDL <str<strong>on</strong>g>and</str<strong>on</strong>g> LDL Cholesterol (Phosphotungstate<br />

.<br />

precipitatpn method)<br />

Reagents<br />

1) Phosphotungstate: Dissolved 4 g <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphotungstic acid in<br />

appropriately 50 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Added 16 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> IN NaOH with stirring<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> made up the volume to 100 ml with water.<br />

89


2) MgCh,( 2M) : Dissolved 40.7 g <str<strong>on</strong>g>of</str<strong>on</strong>g> MgCh.6H20 in water <str<strong>on</strong>g>and</str<strong>on</strong>g> made up<br />

Procedure<br />

to 100 ml.<br />

Added 0.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphotungstate to 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> serum in a centrifuge<br />

tube <str<strong>on</strong>g>and</str<strong>on</strong>g> vortex mixed immediately. Add 0.025 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> MgClz soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

again vortex mixed immediately. Centrifuged at 1500 g for 30 min. The<br />

supematant which c<strong>on</strong>tained HDL was analyzed for cholesterol by the Zak's<br />

method to obtain HDL cholesterol. The difference between total cholesterol<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> HDL cholesterol gave LDL + VLDL cholesterol. The values are<br />

expressed as mg/dl.<br />

6.2.17 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Haemoglobin (Cyanmethaemoglobin method)<br />

Reagents<br />

1) Drabkins diluent soluti<strong>on</strong>: Mixed 19 <str<strong>on</strong>g>of</str<strong>on</strong>g> sodium bicarb<strong>on</strong>ate, 0.05 g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potassium cyanide (carefully) <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.2g <str<strong>on</strong>g>of</str<strong>on</strong>g> potassium ferricyanide in lL<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water. The soluti<strong>on</strong> was preserved in a dark bottle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

preferably under cold storage.<br />

2) Cyanmethaemoglobin st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: 60mg/ml (obtained commercially).<br />

Procedure<br />

0.02ml blood was mixed with 5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Drabkins diluent soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

allowed to st<str<strong>on</strong>g>and</str<strong>on</strong>g> for 5 min for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cyanmethaemoglobin.<br />

Absorbance was measured against a reagent blank which c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

90


diluent soluti<strong>on</strong>. Using a commercial cyanmethaemoglobin st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard, a<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard calibrati<strong>on</strong> curve was prepared from which the values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

haemoglobin could be read directly as g/dl.<br />

6.2.18 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Packed Cell Volume (PCV)- (Microhaematocrit<br />

Procedure<br />

Centrifugati<strong>on</strong> method)<br />

Blood collected in EDTA was allowed to run about 1/2 to 3/4 th the<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> an heparinized even bored capillary tubes <str<strong>on</strong>g>and</str<strong>on</strong>g> the tubes were<br />

sealed <strong>on</strong> the opposite end using sealing wax. The tubes were then<br />

transferred to a high speed microhaematocrit centrifuge <str<strong>on</strong>g>and</str<strong>on</strong>g> placed in the<br />

grooves <str<strong>on</strong>g>of</str<strong>on</strong>g> the capillary head. They were centrifuged for 15 min at 11,000<br />

rpm. PCV was measured directly <strong>on</strong> a microhaematocrit reader associated<br />

with the centrifuge as volume percent.<br />

6.2.19 Red Blood Cell Count<br />

Reagents<br />

Heyem's Soluti<strong>on</strong> (diluting Fluid)<br />

Procedure<br />

The blood was drawn up to 0.5 mark in the RBC pipette <str<strong>on</strong>g>and</str<strong>on</strong>g> al<strong>on</strong>g<br />

with this, the diluting fluid was drawn up to the 101 mark. The pipette was<br />

shaken thoroughly <str<strong>on</strong>g>and</str<strong>on</strong>g> charged the diluted blood into the counting chamber<br />

after discarding <strong>on</strong>e or two drops . The soluti<strong>on</strong> was allowed to settle for a<br />

91


significantly higher values when compared with the other c<strong>on</strong>centrati<strong>on</strong>s. The<br />

values at 42 days were significantly (p


Parameter Treatment<br />

Urea ( J1 moles <str<strong>on</strong>g>of</str<strong>on</strong>g> urea/wet wt tissue)<br />

C<strong>on</strong>trol O.37Sppm 2.5ppm 1 6ppm<br />

Liver 7. ±1.1 11.66±1.8 10.0±0.4 119.18 ±1.99<br />

Heart 5.0±2.43 30.0 ±1.98 25.0±1.65 40.0 ±0.89<br />

Muscle 2.5±0.43 2.08 ±0.89 3.75±1.23 4.17 ±0.21<br />

Kidney 10. ±2.88 12.5 ±3.22 22.9±1.57 15.0 ± 2.45<br />

Free amino acids (Il moles <str<strong>on</strong>g>of</str<strong>on</strong>g> tyrosine/g wet wt tissue)<br />

Liver 27.5±3.4 32.29±4.6 32.03±6.1 82.79 ±2.3<br />

Heart 27.8±5.8 37.09±4.3 52.98±2.9 54.08 ±3.9<br />

Muscle 4.4± 1.1 12.14±3.1 18.76±5.3 45.26 ±4.7<br />

Kidney 4.4±1.4 12.14±4.5 39.73±7.3 54.64 ±4.4<br />

Alkaline phosphatase (mg <str<strong>on</strong>g>of</str<strong>on</strong>g> pnp formed/rnin/mg protein)<br />

Liver 3.48±0.9 6.41±1.5 6.69±2.4 6.71 ±1.4<br />

Heart 4.82±1.5 5.87±2.6 4.95±0.8 7.59 ±2.6<br />

Muscle 0.29±0.02 0.47±0.01 0.35±O.03 0.61:£0.04<br />

Kidney 9.55±2.8 12.11±3.5 19.7±3.5 26.99 ±2.2<br />

Values are the mean ± SD <str<strong>on</strong>g>of</str<strong>on</strong>g> six separate experiments<br />

Pnp - para nitro phenol<br />

Table 6.2 Levels <str<strong>on</strong>g>of</str<strong>on</strong>g>Urea, Free amino acids <str<strong>on</strong>g>and</str<strong>on</strong>g> Alkalinephosphatase in<br />

the aflatoxin exposed groups<br />

98


35<br />

Cl 30<br />

c. .€. 25<br />

c l: l:<br />

Q. '- .-<br />

20<br />

It-E,!<br />

0 ,,0 15<br />

Cl., '"<br />

EEC.<br />

-<br />

10 ...<br />

0 5<br />

0<br />

c<strong>on</strong>trol O.375p pm 2.5ppm 6pprn<br />

Treatment<br />

101<br />

rJ Uver :<br />

• Heart<br />

D Muscle<br />

C Kidney<br />

Fig 6.6 C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Alkali ne phosphatase in the various tissues<br />

exposed to different aflatoxin doses<br />

Two way ANOVA revealed that a significant difference (p


4<br />

3<br />

....<br />

Cl 2<br />

1<br />

o<br />

C<strong>on</strong>trol 0.375ppm 2.5ppm 6ppm<br />

Treatment<br />

13 Total protein<br />

• Albumin<br />

o Globulin<br />

Fig 6.7 C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Total proteins in serum <str<strong>on</strong>g>of</str<strong>on</strong>g> fish exposed to<br />

different aflatoxin doses<br />

One way ANOVA showed significant variati<strong>on</strong> (p


104<br />

by <strong>on</strong>e way ANOVA. LSD values at 5% level were 15.59, 28.58 <str<strong>on</strong>g>and</str<strong>on</strong>g> 32.43.<br />

LSD analysis showed that the different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin differed<br />

significantly from <strong>on</strong>e another in the levels. Both AST <str<strong>on</strong>g>and</str<strong>on</strong>g> LDH differed<br />

significantly between c<strong>on</strong>centrati<strong>on</strong>s.In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> ALT, significant<br />

difference was not noticed between c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.375ppm.<br />

ISource <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong> SS df MS F P-value F crit<br />

Between Groups 664525.6 3 221508.5 1321.461 3.75E-23 3.098393<br />

Within Groups 3352.48 20 167.624<br />

Total 667878.1 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.4 ANOVA for AST<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong> SS df MS- F P-value F crit<br />

Between Groups 569428.5 3 189809.5 337.0383 2.76E-17 3.098393<br />

Within Groups 11263.38 20 563.169<br />

Total 580691.9 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.4a ANOVA for ALT<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong> SS df MS F P-value F crit<br />

Between Groups 1602822 3 534274 736.9002 1.24E-20 3.098393<br />

Within Groups 14500.58 20 725.029<br />

Total 1617323 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.4b ANOVA for LDH


300<br />

250<br />

200<br />

"Cm150<br />

E 100<br />

50<br />

o<br />

C<strong>on</strong>trol O.375ppm 2.5pprn 6ppm<br />

Treatment<br />

105<br />

C Cholesterol I<br />

.Triglyceride<br />

OH DL<br />

O LDL<br />

. VLDL<br />

Fig 6.9 Lipid Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> seru m <str<strong>on</strong>g>of</str<strong>on</strong>g> fish exposed to different aflatoxin<br />

doses<br />

.The <strong>on</strong>e way ANOVA <str<strong>on</strong>g>of</str<strong>on</strong>g> the serum lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile revealed significant<br />

variati<strong>on</strong> (p


106<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g>Variati<strong>on</strong> SS df MS F P-value F crit<br />

Between Groups 122560.5 3 40853.5 256.4505 3.99E-16 3.098393<br />

Within Groups 3186.073 20 159.3037<br />

Total 125746.6 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.5a ANOVA for Serum Triglycerides<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g>Variati<strong>on</strong> SS df MS F P-value F crit<br />

Between Groups 306.05 3 102.0167 308.8567 6.5E-17 3.098393<br />

Within Groups 6.606083 20 0.330304<br />

Total 312.6561 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.5b ANOVA for HDL Cholesterol<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong> SS df MS F P-value F crit<br />

Between Groups 2428.858 3 809.6194 5.01291 0.009411 3.098393<br />

Within Groups 3230.137 20 161.5069<br />

Total 5658.995 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.5c ANOVA for LDL Cholesterol<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong> SS df MS F P-value F crit<br />

Between Groups 4901.04 3 1633.68 254.3453 4.32E-16 3.098393<br />

Within Groups 128.4616 20 6.42308<br />

Total 5029.502 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.5d ANOVA for VLDL


Treatment Parameter P value<br />

Cholesterol NS<br />

Triglyerides P


-_._--------- ---------- - ----- - - - - - - - --,<br />

I<br />

16<br />

,.<br />

12<br />

32. 1O<br />

Cl 8<br />

E 6<br />

• 2<br />

0 .<br />

C<strong>on</strong>trol O.375ppm 2.5ppm 6ppm<br />

Treatment<br />

[JUrea<br />

108<br />

. Creatinine<br />

Fig 6.10 Ure a <str<strong>on</strong>g>and</str<strong>on</strong>g> Creatinine in serum <str<strong>on</strong>g>of</str<strong>on</strong>g> fish exposed to different<br />

anatoxin doses<br />

S ignificant variati<strong>on</strong> (p


I<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong> SS df MS F P-value F crit<br />

Between Groups 92.325 3 30.775 199.8377 4.48E-15 3.098393<br />

Within Groups 3.08 20 0.154<br />

Total 95.405 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.7 ANOVA for Haemoglobin<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g>Variati<strong>on</strong> SS df MS F P-value F crit<br />

110<br />

Between Groups 19.085 3 6.361667 66.97431 1.31E-10 3.098393<br />

Within Groups 1.899733 20 0.094987<br />

Total 20.98473 23<br />

SS:-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

. -<br />

Table 6.7a ANOVA for Red Blood Cell Count<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g>Variati<strong>on</strong> SS df MS F P-value F crit<br />

Between Groups 601.386 3 200.462 0.489016 0.69381 3.098393<br />

Within Groups 8198.583 20 409.9292<br />

Total 8799.969 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.7b ANOVA for Packed Cell Volume


Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong> SS df MS F P-value F crit<br />

Between Groups 2763.003 3 921.0009 48.177 2.46E-09 3.098393<br />

Within Groups 382.3405 20 19.11702<br />

Total 3145.343 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 6.7a ANOVA for MCHC<br />

112<br />

The <strong>on</strong>e way ANOVA <str<strong>on</strong>g>of</str<strong>on</strong>g> the haematological parameters namely<br />

MCV, MCR <str<strong>on</strong>g>and</str<strong>on</strong>g> MCHC revealed significant variati<strong>on</strong> (p


113<br />

type seem to take an active role to act as precursors <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates<br />

metabolism by being fed into the TCA cycle through transaminase reacti<strong>on</strong>.<br />

The levels <str<strong>on</strong>g>of</str<strong>on</strong>g> serum ALT <str<strong>on</strong>g>and</str<strong>on</strong>g> serum AST were found to be increasing with<br />

increasing dosage <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin. Similar reports have been made in Nile tilapia<br />

(Saber N A, 1999), in ducklings (S<strong>on</strong>i et al, 1991)<str<strong>on</strong>g>and</str<strong>on</strong>g> cockerels (Jacob et al,<br />

1994). The observed increase in ALT may be due to the partial necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hepatocytes.<br />

The total free amino acid c<strong>on</strong>tent showed a significant increase in the<br />

tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> fish exposed to aflatoxin. The tissue specific increase in the<br />

different combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin was as follows: Livers-Heart >Kidney ><br />

muscle. The increased free amino acid level suggests tissue damage probably<br />

due to the increased proteolytic activity under aflatoxin stress. However, the<br />

elevated levels <str<strong>on</strong>g>of</str<strong>on</strong>g> free amino acids can be utilized for energy producti<strong>on</strong> by<br />

feeding them into the TCA cycle through amino transferase reacti<strong>on</strong>. The<br />

increase in the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> free amino acids <strong>on</strong> aflatoxin stress may also be<br />

attributed to the synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids in additi<strong>on</strong> to their elevati<strong>on</strong> by<br />

protein hydrolysis. A third possibility for increased free amino acid level<br />

might be their increase due to transaminati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> aminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> keto acids.<br />

The stress felt <strong>on</strong> the liver may be due to its unique status as a centre <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

detoxificati<strong>on</strong>.<br />

An increase in the level <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose in blood was seen with increasing<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the toxin which may indicate breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> glycogen to<br />

glucose <str<strong>on</strong>g>and</str<strong>on</strong>g> its mobilizati<strong>on</strong> to other tissues to meet the energy crisis. The<br />

increase in the glucose level in blood may also be due to decrease in the<br />

glycogen synthesizing potentiality <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular damage as is<br />

evident in the necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> the liver <strong>on</strong> histopathological examinati<strong>on</strong> in this<br />

study.


114<br />

A significant decrease in the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> pyruvate with increasing<br />

aflatoxin c<strong>on</strong>centrati<strong>on</strong> in both liver <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle tissue may be due to the role<br />

played by pyruvate as a precursor for many metabolic products or due to its<br />

c<strong>on</strong>versi<strong>on</strong> to lactate. A c<strong>on</strong>comitant increase in the lactate dehydrogenase<br />

activity in the serum indicates a shift towards anaerobiosis i.e. the pyruvate<br />

to lactate c<strong>on</strong>versi<strong>on</strong> is favoured thereby implying that the envir<strong>on</strong>ment for<br />

pyruvate oxidati<strong>on</strong> through Krebs cycle is not favorable similar results were<br />

obtained in Nile tilapia (Saber,1995).<br />

Serum from the aflatoxin dosed fishes revealed a significant reducti<strong>on</strong><br />

in the total protein, globulin <str<strong>on</strong>g>and</str<strong>on</strong>g> albumin levels with increasing damage. The<br />

decrease in the serum protein level could be correlated with severe damage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hepatocytes as indicated by histopathological studies. Similar observati<strong>on</strong>s<br />

were observed in Nile tilapia by Saber,1995. The total protein levels were<br />

found to be decreased in the aflatoxin fed farm animals <str<strong>on</strong>g>and</str<strong>on</strong>g> cockerels, but<br />

the protein expressi<strong>on</strong>s were elevated (Jacob et al,1994).


C<br />

H<br />

A<br />

P<br />

T<br />

E<br />

R<br />

7<br />

Electrophoretic Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> Stress in<br />

Oreochromis mossamhicus


7.0 Introducti<strong>on</strong><br />

115<br />

Advances in molecular genetics have lead to marked progress in the<br />

underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the genetic basis <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer which is a complex, multistep<br />

process <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trolled by two sets <str<strong>on</strong>g>of</str<strong>on</strong>g> genes : <strong>on</strong>cogenes <str<strong>on</strong>g>and</str<strong>on</strong>g> tumour<br />

suppressor genes. While the focus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>cogene research for the past decade<br />

has been <strong>on</strong> mammalian systems, a recent movement has been made toward<br />

the development <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative model systems for the study <str<strong>on</strong>g>of</str<strong>on</strong>g> both human<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental health. Of particular interest are the aquatic organisms.<br />

These animals are currently being developed as models for better<br />

underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> normal <str<strong>on</strong>g>and</str<strong>on</strong>g> aberrant functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>cogene <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

suppressor gene products. While numerous studies have reported the<br />

chemical inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumours - in fish, very little is known about the<br />

molecular basis <str<strong>on</strong>g>of</str<strong>on</strong>g> carcinogenesis in these animals (Hoover, 1984). It was not<br />

until 1986 that the first <strong>on</strong>cogenes from fish were cl<strong>on</strong>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> sequenced from<br />

the goldfish <str<strong>on</strong>g>and</str<strong>on</strong>g> the rainbow trout (Nemoto et al. 1986 <str<strong>on</strong>g>and</str<strong>on</strong>g> Van Beneden et<br />

al.1986). Since then, however, interest in fish as model systems for<br />

molecular studies has risen exp<strong>on</strong>entially.<br />

While the role <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular <strong>on</strong>cogenes in normal cells is as dominant,<br />

positive regulators <str<strong>on</strong>g>of</str<strong>on</strong>g> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> differentiati<strong>on</strong>, the tumour suppressor<br />

genes (also termed "recessive <strong>on</strong>cogenes") act as negative regulators <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

proliferati<strong>on</strong> (Van Beneden et al, 1994). Tumour suppressor genes enable a<br />

cell to resp<strong>on</strong>d in the proper c<strong>on</strong>text to growth inhibitory signals.<br />

Inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these genes leads to the unregulated growth characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

malignant neoplasm.


116<br />

Am<strong>on</strong>g the many biornarkers the study <str<strong>on</strong>g>of</str<strong>on</strong>g> the altered structure,<br />

functi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tumour suppressor gene p53 <str<strong>on</strong>g>and</str<strong>on</strong>g> its gene<br />

product protein (57KDa) is being ideally used as a molecular level marker to<br />

m<strong>on</strong>itor the carcinogens in human <str<strong>on</strong>g>and</str<strong>on</strong>g> other mammals. In humans <str<strong>on</strong>g>and</str<strong>on</strong>g> other<br />

mammals, the p53 is a 53 KDa phosphoprotein encoded by a gene <str<strong>on</strong>g>of</str<strong>on</strong>g> 20kb<br />

localized <strong>on</strong> the short arm <str<strong>on</strong>g>of</str<strong>on</strong>g> chromosome 17 (Soussi, 1990). This act as a<br />

check point blocking the cell cycle under adverse c<strong>on</strong>diti<strong>on</strong>s like DNA<br />

damage. This does not permit cell divisi<strong>on</strong> till the damaged DNA is repaired.<br />

If the repair is not possible it orders for the destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cell termed<br />

"apoptosis" (Gupta <str<strong>on</strong>g>and</str<strong>on</strong>g> Singh, 1995). When the DNA is damaged by a<br />

carcinogenic agent, the pS3 gene gets activated, transcribing the gene<br />

product viz 53 KDa protein which in turn regulate the cell cycle. Hence the<br />

p53 gene expressi<strong>on</strong> can serve as a genetic biomarker to m<strong>on</strong>itor the abuse<br />

caused by the carcinogen. The p53 has been reported to be actually a 57KDa<br />

protein in trout as against the 53 KDa in human <str<strong>on</strong>g>and</str<strong>on</strong>g> other mammalian<br />

species (Soussi, 1990). Expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> p53 gene has been detected in fish cell<br />

lines EPC (epithelioma papillosum cyprini) <str<strong>on</strong>g>and</str<strong>on</strong>g> CHSE 14 (Chinook head<br />

salm<strong>on</strong> embryo -14) (Smith et al, 1988).<br />

7.a Apoptosis<br />

Apoptosis is a physiological <str<strong>on</strong>g>and</str<strong>on</strong>g> pathological process <str<strong>on</strong>g>of</str<strong>on</strong>g> cell deleti<strong>on</strong><br />

that functi<strong>on</strong>s as an essential mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> normal tissue homeostasis <str<strong>on</strong>g>and</str<strong>on</strong>g> it<br />

may play a critical role in relati<strong>on</strong> to disease status ( Ken, Wyllie <str<strong>on</strong>g>and</str<strong>on</strong>g> Currie,<br />

1972; Columbano, 1995; Wertz <str<strong>on</strong>g>and</str<strong>on</strong>g> Hanley, 1996). The removal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physiologically irrelevant cells by apoptosis is part <str<strong>on</strong>g>of</str<strong>on</strong>g> the normal<br />

development <str<strong>on</strong>g>and</str<strong>on</strong>g> physiological regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multicellular organisms (Ken et<br />

al. 1992).Cells undergoing apoptosis in normal as well as neoplastic cells


117<br />

present a distinctive sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> morphological <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical changes. In<br />

nucleus, these changes include c<strong>on</strong>densati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear c<strong>on</strong>tent into<br />

clumps <str<strong>on</strong>g>of</str<strong>on</strong>g> heterochromatin <str<strong>on</strong>g>and</str<strong>on</strong>g> finally packaging <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear fragments<br />

into multiple membrane enclosed apoptotic bodies. These apoptotic bodies<br />

were phagocytosed from tissue without any inflammatory changes (Babu <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Padikkala, 1996).<br />

7.b Genes C<strong>on</strong>trolling Apoptosis<br />

Apoptosis results from active gene directed processes <str<strong>on</strong>g>and</str<strong>on</strong>g> it <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

requires RNA <str<strong>on</strong>g>and</str<strong>on</strong>g> protein synthesis (Banes et al. 1992). Recently several<br />

genes implicated in apoptosis <str<strong>on</strong>g>of</str<strong>on</strong>g> different cell types have been identified.<br />

These include p53, c-myc, bel2, p35, nur -77 bak <str<strong>on</strong>g>and</str<strong>on</strong>g> rpr.<br />

7.1 Materials-<str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

7.l.1 Study <str<strong>on</strong>g>of</str<strong>on</strong>g>serum protein pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

7.1.1a Collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>blood samples<br />

The sampling was d<strong>on</strong>e from both treated <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol fishes. The<br />

samples were collected every two weeks <str<strong>on</strong>g>and</str<strong>on</strong>g> six weeks. The blood collecti<strong>on</strong><br />

for serum protein analysis was d<strong>on</strong>e using a sterile n<strong>on</strong>-heparinized syringe<br />

(22 gauge needle).<br />

7.l.1b Processing <str<strong>on</strong>g>of</str<strong>on</strong>g> blood for serum protein analysis<br />

Blood collected without the anticoagulant was kept at room<br />

temperature for about an hour. The partially clotted blood was kept inside the


118<br />

refrigerator for some time to ensure the complete shrinkage <str<strong>on</strong>g>of</str<strong>on</strong>g> the blood<br />

cells, which increased the yield <str<strong>on</strong>g>of</str<strong>on</strong>g> serum. Later the samples were subjected<br />

to centrifugati<strong>on</strong> for ten minutes at 4000 rpm. The serum was collected<br />

carefully into small polypropylene tubes <str<strong>on</strong>g>and</str<strong>on</strong>g> stored at -20°C until used for<br />

electrophoretic analysis.<br />

7.1.Ie Study <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleoprotein pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

i) Isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>nncleoproteins from liver nuclei<br />

One gram <str<strong>on</strong>g>of</str<strong>on</strong>g> freshly dissected out liver tissues from fish exposed to<br />

aflatoxin for six week. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> exposed specimens were washed in 0.9%<br />

normal saline <str<strong>on</strong>g>and</str<strong>on</strong>g> blotted dry <strong>on</strong> a filter paper.<br />

ii) Reagents for isolati<strong>on</strong><br />

1. Tissue homogenizing soluti<strong>on</strong><br />

0.25M Sucrose - 8.55g<br />

0.0018M Calcium chloride - 0.02g<br />

The mixture was dissolved in minimum water <str<strong>on</strong>g>and</str<strong>on</strong>g> made up to 100ml.<br />

H. Gradient<br />

O.034M Sucrose<br />

0.000I8M Calcium chloride<br />

- 11.6g<br />

- 0.002g


The mixture was dissolved in minimum water <str<strong>on</strong>g>and</str<strong>on</strong>g> made up to 100 ml.<br />

iii. Nuclear pellet dissolving soluti<strong>on</strong><br />

O.025M Sucrose - 4.275g<br />

O.OOOISM Calcium chloride - O.OOlg<br />

119<br />

The mixture was dissolved in minimum water <str<strong>on</strong>g>and</str<strong>on</strong>g> made up to 50 ml.<br />

The filter-dried liver sample was finely minced in a cavity block <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

transferred to a glass homogenizer. The homogenizati<strong>on</strong> was d<strong>on</strong>e in 10 ml<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tissue homogenizing buffer under ice-cold c<strong>on</strong>diti<strong>on</strong>s. 2.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the cell<br />

free homogenate was carefully layered over 5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> sucrose gradient<br />

soluti<strong>on</strong>. The preparati<strong>on</strong> was centrifuged at 3000 rpm for 10 min at 4°C in a<br />

refrigerated centrifuge, increasing the speed slowly without disturbing the<br />

gradient. The gradient soluti<strong>on</strong> was discarded <str<strong>on</strong>g>and</str<strong>on</strong>g> the pelleted nuclear<br />

fracti<strong>on</strong> was saved.<br />

The nuclear pellet isolated from <strong>on</strong>e gram tissue was dissolved in 1.2<br />

ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 10% SDS prepared in O.OOOISM CaCh soluti<strong>on</strong>. The preparati<strong>on</strong> was<br />

kept for 10 minutes at room temperature for the lysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear<br />

membrane <str<strong>on</strong>g>and</str<strong>on</strong>g> denaturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear proteins. The prepared sample<br />

was stored under refrigerated c<strong>on</strong>diti<strong>on</strong> until used for electrophoretic<br />

analysis.


7.1.2b Reagents for electrophoresis<br />

Stock acrylamide soluti<strong>on</strong> (30%)<br />

Acrylamide 29.1g<br />

I<br />

-Bisacrylamide 0.8g<br />

121<br />

The mixture was dissolved in minimum quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water <str<strong>on</strong>g>and</str<strong>on</strong>g> made up<br />

to lOOm} using distilled water. The mixture was filtered using Whatman<br />

No.1 filter paper <str<strong>on</strong>g>and</str<strong>on</strong>g> stored in amber coloured bottles in a refrigerator.<br />

Gel buffers<br />

a. Separating Gel Buffer<br />

1.5M Tris - 18.17g<br />

SDS GAg<br />

The pH was adjusted to 8.8 using 2M Hel <str<strong>on</strong>g>and</str<strong>on</strong>g> the soluti<strong>on</strong> was made<br />

up to 100 ml using distilled water.<br />

b. Stacking gel buffer<br />

0.5M Tris - 6.05g<br />

SDS - 0.04g<br />

The pH was adjusted to 6.8 using 2M HCI <str<strong>on</strong>g>and</str<strong>on</strong>g> the soluti<strong>on</strong> was made<br />

up to 100 ml using distilled water.


ii. Stacking gel<br />

Acrylamide <str<strong>on</strong>g>and</str<strong>on</strong>g> Bisacrylamide 2ml<br />

Stacking gel buffer 2.5ml<br />

Water SAml<br />

lO%SDS 100ul<br />

TEMED lOul<br />

APS 40ul<br />

123<br />

The separating gel comp<strong>on</strong>ents were mixed gently <str<strong>on</strong>g>and</str<strong>on</strong>g> poured into the<br />

prepared cassette. Few drops <str<strong>on</strong>g>of</str<strong>on</strong>g> butanol were over layered to prevent<br />

meniscus formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the gel was left undisturbed to set for 30 minutes.<br />

After polymerisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the separating gel, the overlaying butanol was­<br />

removed <str<strong>on</strong>g>and</str<strong>on</strong>g> the cassette was washed with double distilled water <str<strong>on</strong>g>and</str<strong>on</strong>g> dried.<br />

The prepared stacking gel mixture was then poured over the separating gel.<br />

The comb was placed in the stacking gel <str<strong>on</strong>g>and</str<strong>on</strong>g> allowed to set for 30 minutes.<br />

After the gel had solidified the comb was removed without distorting<br />

the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the well. The gel was carefully set <strong>on</strong> the electrophoretic<br />

apparatus after removing the clips, bottom spacers etc with the plate having<br />

the "U" shape cut facing the upper tank using the clamps <str<strong>on</strong>g>and</str<strong>on</strong>g> screws<br />

provided. The electrode buffer was added to the tanks <str<strong>on</strong>g>and</str<strong>on</strong>g> care was taken to<br />

prevent entrapment <str<strong>on</strong>g>of</str<strong>on</strong>g> air bubbles at the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the gel. The electrodes<br />

were then c<strong>on</strong>nected to the power pack.


7.1.2c Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples for loading<br />

124<br />

Stocks <str<strong>on</strong>g>of</str<strong>on</strong>g> sample buffer with SDS <str<strong>on</strong>g>and</str<strong>on</strong>g> without SDS (for serum<br />

protein) <str<strong>on</strong>g>and</str<strong>on</strong>g> without SDS (for nuclear proteins) were prepared.<br />

Sample buffer without SDS (tOml)<br />

Glycerol 2ml<br />

(mercaptoethanol Iml<br />

Stacking gel buffer 1.8ml<br />

Bromophenol blue Iml (0.5%)<br />

Sample buffer with SDS (10 ml)<br />

Glycerol 2ml<br />

(mercaptoethanoI Iml<br />

Stacking gel buffer 1.8ml<br />

Bromophenol blue 0.6ml ( 0.5%)<br />

SDS lml (10%)<br />

Serum <str<strong>on</strong>g>and</str<strong>on</strong>g> nuclear proteins isolated <str<strong>on</strong>g>and</str<strong>on</strong>g> stored at -20 D e were brought<br />

to room temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> further processed as follows to load into the gel.<br />

i. Nuclear protein samples<br />

Sixty micro litres <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear protein samples were mixed with<br />

equal volume <str<strong>on</strong>g>of</str<strong>on</strong>g> sample buffer without SDS <str<strong>on</strong>g>and</str<strong>on</strong>g> boiled for three minutes to<br />

ensure complete interacti<strong>on</strong> between proteins <str<strong>on</strong>g>and</str<strong>on</strong>g> SDS, centrifuged at 10,000<br />

rpm for 10 minutes <str<strong>on</strong>g>and</str<strong>on</strong>g> the supematant was used for loading.


Stain(500ml)<br />

Coomassie Brilliant Blue R 250<br />

Methanol<br />

Acetic acid<br />

Distilled water<br />

Destainer (freshly prepared)<br />

Methanol<br />

Acetic acid<br />

Distilled water<br />

7.1.4 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>molecular weights<br />

0.75g<br />

230ml<br />

40ml<br />

230ml<br />

25ml<br />

35ml<br />

440ml<br />

126<br />

Molecular weights <str<strong>on</strong>g>of</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard SDS PAGE molecular markers used<br />

were 97 AkDa, 68kDa, 43kDa, 29kDa <str<strong>on</strong>g>and</str<strong>on</strong>g> 14.3kDa.. Rf values <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard markers were calculated by using the following formula.<br />

Rf = Solute fr<strong>on</strong>t /Dye fr<strong>on</strong>t<br />

Using these Rf values calculated for st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard markers, a graph was<br />

drawn with Rf <str<strong>on</strong>g>and</str<strong>on</strong>g> log 10 <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecular weights <str<strong>on</strong>g>of</str<strong>on</strong>g> the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard proteins <strong>on</strong><br />

a semi-log graph. The Rf values <str<strong>on</strong>g>of</str<strong>on</strong>g> unknown samples were calculated <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

extrapolated <strong>on</strong> a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard graph to determine the molecular weight.


3) 10% SDS<br />

4) 6 M Sodium chloride<br />

5) Ethanol<br />

6) Tris EDTA<br />

7.3 Results<br />

10mM Tris (pH 8.0)<br />

ImMEDTA<br />

7.3.1 Protein pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

128<br />

The pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> serum proteins <str<strong>on</strong>g>and</str<strong>on</strong>g> nuclear proteins as resolved by SDS<br />

page analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> samples from both c<strong>on</strong>trol as well as those- exposed to<br />

different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B1 (AFB 1 ) are presented below. Remarkable<br />

variati<strong>on</strong>s were observed in the expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins in the animals<br />

exposed to AFB1.<br />

a) Serum proteins<br />

Of the 21 serum proteins detected by SDS page, <strong>on</strong>ly a few showed<br />

marked changes in their expressi<strong>on</strong> <strong>on</strong> exposure to aflatoxin B1 .From the<br />

figures it is evident that the general expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all the serum proteins<br />

above the molecular weight 97.4 KDa were weak in all the experimental<br />

groups exposed to 14 days <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in comparis<strong>on</strong> with c<strong>on</strong>trol. Their<br />

expressi<strong>on</strong> was however intensified by the 42 nd day <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin exposure. On<br />

the 42 nd day, proteins <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular weight 25 KDa, 29 KDa <str<strong>on</strong>g>and</str<strong>on</strong>g> 57 KDa<br />

were over expressed in the test groups when compared with c<strong>on</strong>trol.


'1.4 _<br />

.. - I "<br />

n _<br />

,, -<br />

PLATE·15<br />

. 1.4 _<br />

.. -<br />

" -<br />

n _<br />

,, -<br />

PLATE·16<br />

-<br />

SOS PAGE ANALYSIS OF SERUM PROTEINS -14'" DAY<br />

LANE ,- MOLECULAR WEIGHT MARKER; LANE 2· CONTROL;<br />

LANE 3- 0.375 PPM: LANE4· 2.5PPM: LANE 5- 6 PPM<br />

SOS PAGE ANALYSIS OF SERUM PROTEINS· 42"" DAY<br />

LANE 1· MOLECULAR WEIGKT MARKER: LANE 2· CONTROL:<br />

LANE 3- 0.375 pp",: LANE 4 • 2.5pp",: LANE 5 . 6 PPM


) Serum Protein (N<strong>on</strong> SDS Page)<br />

129<br />

A specific protein with medium molecular weight between cathode<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> anode is specifically overexpressed in animals fed with higher doses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the carcinogen.<br />

c) Nuclear Protein<br />

16 different nuclear proteins with molecular weight ranging from 14 to<br />

100 KDa were detected in the c<strong>on</strong>trol animals .Five out <str<strong>on</strong>g>of</str<strong>on</strong>g> the 16 nuclear<br />

proteins detected in the c<strong>on</strong>trol animals showed variati<strong>on</strong> in the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

expressi<strong>on</strong> in the experimental groups namely those receiving 2.5 pprn <str<strong>on</strong>g>and</str<strong>on</strong>g> 6<br />

ppm <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin for 42 days.<br />

d) DNA Integrity<br />

Genomic DNA isolated from the experimental groups when resolved<br />

through agarose gel electrophoresis <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent ethidium bromide<br />

staining revealed that genomic DNA was intact without signs <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis.<br />

7.4 Discussi<strong>on</strong><br />

The initial effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a toxic substance could be at cellular <str<strong>on</strong>g>and</str<strong>on</strong>g> sub­<br />

cellular levels <str<strong>on</strong>g>of</str<strong>on</strong>g> liver, which is the central metabolic organ, where<br />

detoxificati<strong>on</strong> processes occur. The nucleoproteins isolated from the liver<br />

nuclei <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B1 exposed fishes showed remarkable changes, suggesting<br />

that this might be due to the genotoxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin, as most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

nucleoproteins are the translati<strong>on</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear DNA. Since AFB 1


130<br />

is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most potent carcinogens capable <str<strong>on</strong>g>of</str<strong>on</strong>g> inducing DNA damages, the<br />

accompanying changes in translated proteins are to be expected. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin is related to their reacti<strong>on</strong> with nuclear proteins so that<br />

they interfere with protein formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular integrity<br />

(Patters<strong>on</strong>, 1976).<br />

The enhancement in the nucleoprotein <str<strong>on</strong>g>and</str<strong>on</strong>g> serum protein expressi<strong>on</strong> in<br />

the test groups in comparis<strong>on</strong> with the c<strong>on</strong>trol may be due to the activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the genes coding for the nuclear proteins under the insult <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB l for<br />

enhanced rate <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> translati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene products. As most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the nuclear proteins are the translati<strong>on</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g> genomic DNA having a<br />

regulatory role, this type <str<strong>on</strong>g>of</str<strong>on</strong>g> a change in nuclear protein is to be expected.<br />

Since AFB 1 is a potent carcinogen, activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>cogenes <str<strong>on</strong>g>and</str<strong>on</strong>g> /<br />

anti<strong>on</strong>cogenes, elevated levels <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin - DNA adduct formati<strong>on</strong> etc also<br />

can lead to an alterati<strong>on</strong> in nuclear processes (Sato <str<strong>on</strong>g>and</str<strong>on</strong>g> Omura, 1978;<br />

Bendetal,1984). The elevated levels <str<strong>on</strong>g>of</str<strong>on</strong>g> serum proteins were reported in<br />

rainbow trout with hepatocarcinoma (Scarpelli,1969).<br />

The tumour suppressor gene <str<strong>on</strong>g>and</str<strong>on</strong>g> the qualitative changes in its<br />

expressi<strong>on</strong> under the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> AFB l were also investigated by SDS<br />

PAGE analysis. Two prominent tumor suppressor genes in fish are pS3 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

retinoblastoma. Normally the tumour suppressor gene, especially the pS3<br />

gene acts as a molecular guardian, m<strong>on</strong>itoring the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the carcinogens<br />

like AFB l in DNA. Whenever a carcinogenic insult occurs <strong>on</strong> DNA, the pS3<br />

will express itself more str<strong>on</strong>gly <str<strong>on</strong>g>and</str<strong>on</strong>g> will suspend the DNA replicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

allow the system to repair the damage. But if the system fails to repair the<br />

damage <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA, pS3 will mediate for another process namely 'apoptosis' or<br />

'programmed cell death' - which involves the cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA into


fragments <str<strong>on</strong>g>of</str<strong>on</strong>g> similar size. This can be detected by isolating the DNA <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

analyzing it <strong>on</strong> an agarose gel.<br />

131<br />

A 57 KDa protein has been detected by SDS PAGE analysis in<br />

rainbow trout. This was identified as the product <str<strong>on</strong>g>of</str<strong>on</strong>g> trout tumour suppressor<br />

gene (P53) from its ability to bind to SV 40 large T antigen (Soussi et<br />

al.1990).<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear <str<strong>on</strong>g>and</str<strong>on</strong>g> serum protein pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile observed in the<br />

present study in this reported background informati<strong>on</strong>, the 57 KDa protein <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tilapia, showing differential expressi<strong>on</strong> <strong>on</strong> comparis<strong>on</strong> with the c<strong>on</strong>trol can<br />

be c<strong>on</strong>cluded to be the product <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour suppressor gene p53. The elevated<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> this tumour suppressor gene encoded protein 57 KDa, in the treated<br />

sample are also indirect evidence suggesting the possible genetic damage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the genomic DNA by aflatoxin.<br />

The finding <str<strong>on</strong>g>of</str<strong>on</strong>g> the 57 KDa protein <str<strong>on</strong>g>and</str<strong>on</strong>g> assuming this to be the p53<br />

analogue in humans is based <strong>on</strong> earlier reports <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sistent changes<br />

observed. Further immunological characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this protein using<br />

specific m<strong>on</strong>ocl<strong>on</strong>al antibody to p53 is to be performed.<br />

The acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pS3 is to suppress the developing tumours by breaking<br />

down or cleaving the nuclear material, by a process known as programmed<br />

cell death or "apoptosis". Hence by apoptosis the tumour cell DNA will be<br />

cleaved in to different fragments thereby causing cell death. Another positive<br />

indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis noticed in this study is that <str<strong>on</strong>g>of</str<strong>on</strong>g> a hike in the level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the enzymes ALT <str<strong>on</strong>g>and</str<strong>on</strong>g> alkaline phosphatase. This finding was seen in mice<br />

al<strong>on</strong>g with apoptotic body formati<strong>on</strong> by cytotoxic stimuli (Babu <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Padikkala). It is with this idea <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis process that the DNA is isolated


132<br />

to see the ladder like DNA fragmentati<strong>on</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis. But the<br />

pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA obtained by doing agarose gel electrophoresis showed no<br />

sign <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> the other positive indicati<strong>on</strong>s seen above.<br />

Another characteristic feature as detected by histopathology is the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cells with shrunken nucleus but in this study histopathological analysis did<br />

notreveal any cell with apoptosis. But the preneoplastic state <str<strong>on</strong>g>of</str<strong>on</strong>g> the liver as<br />

detected by histopathological evidence in this study lead us to assume that<br />

the pathways mediated by pS3 leading to apoptosis are in acti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> further<br />

c<strong>on</strong>tinuous exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> the toxicant may bring about apoptosis.


C<br />

H<br />

A<br />

P<br />

T<br />

E<br />

R<br />

8<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> <strong>on</strong><br />

Biological Membranes)<br />

Na+K+ ATPase <str<strong>on</strong>g>and</str<strong>on</strong>g> Studies<br />

<strong>on</strong> Muscle Retenti<strong>on</strong>


8.0 Studies <strong>on</strong> the Lysosomal Membrane stability<br />

8A. Introducti<strong>on</strong><br />

Many toxic substances or their metabolites result in cell injury by<br />

reacting primarily with biological membranes. The lysosomal membrane is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten a target <str<strong>on</strong>g>of</str<strong>on</strong>g> injury by xenobiotics (or their metabolites) in additi<strong>on</strong> to its<br />

role in sequestrati<strong>on</strong> (Moore, 1985). One <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental biochemical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomes is the structure linked latency <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

hydrolytic degradative enzymes like acid phosphatase, p-glucur<strong>on</strong>idase etc<br />

which is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the impermeability <str<strong>on</strong>g>of</str<strong>on</strong>g> the lysosomal<br />

membrane to many substrates as well as the internal membrane bound nature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzymes which renders them inactive. However, the<br />

membrane stability or fragility <str<strong>on</strong>g>of</str<strong>on</strong>g> the lysosomes can be altered under certain<br />

physiological <str<strong>on</strong>g>and</str<strong>on</strong>g> pathological c<strong>on</strong>diti<strong>on</strong>s (Bitensky et al, 1973) which<br />

activate <str<strong>on</strong>g>and</str<strong>on</strong>g> in some instances release the previously bound enzymes. The<br />

latency <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomal enzymes (lysosomal stability) has therefore been used<br />

in both vertebrates <str<strong>on</strong>g>and</str<strong>on</strong>g> invertebrates as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

lysosomes in resp<strong>on</strong>se to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> stressors ( Allis<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Mallucci, 1964;<br />

Gahan, 1965; Allis<strong>on</strong>, 1969; Gabrielescu, 1970).<br />

Lysosomes are the subcellular organelles involved in the degradati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> food taken up by endocytosis into the cell <str<strong>on</strong>g>and</str<strong>on</strong>g> principally in the regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> macromolecular half-life (Moore, 1982). Lysosomes have an acid<br />

envir<strong>on</strong>ment, which is maintained by a membrane Mg 2 + ATPase dependant<br />

H+ i<strong>on</strong> prot<strong>on</strong> pump (Okhurna et al, 1982). Release <str<strong>on</strong>g>of</str<strong>on</strong>g> the degradative<br />

hydrolytic enzymes from the lysosomal compartment into the cytosol that<br />

133


may result from destabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lysosomal membrane (Baccino, 1970)<br />

may also involve increased lysosomal fusi<strong>on</strong> with other intracellular<br />

vacuoles leading to the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pathologically enlarged lysosomes. The<br />

c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> these lysosomal changes would be increased autolytic<br />

activity leading to atrophy.<br />

8B Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

The experimental design was the same as that menti<strong>on</strong>ed in chapter<br />

6 .The liver tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxin treated group subjected to a<br />

six week aflatoxin stress was used for the experiment.<br />

i) Fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fish liver<br />

134<br />

Fishes were caught from the tank just before the experiment without<br />

giving them any stress. They were pithed, dissected <str<strong>on</strong>g>and</str<strong>on</strong>g> the liver rapidly<br />

removed <str<strong>on</strong>g>and</str<strong>on</strong>g> washed free <str<strong>on</strong>g>of</str<strong>on</strong>g> blood in ice cold isot<strong>on</strong>ic sucrose (0.33M),<br />

blotted dry <str<strong>on</strong>g>and</str<strong>on</strong>g> weighed. Liver was homogenized in isot<strong>on</strong>ic sucrose in cold<br />

to give a 10% homogenate which was centrifuged at 600 g for 10 min in a<br />

high speed refrigerated centrifuge. The sediment <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei <str<strong>on</strong>g>and</str<strong>on</strong>g> cell debris<br />

(nuclear fracti<strong>on</strong>) was separated .The supematant was again centrifuged in<br />

cold at 15,OOOg for 30 min. The lysosome rich 15,OOOg sediment (lysosomal<br />

fracti<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> the supematant (soluble fracti<strong>on</strong>) as well as the nuclear<br />

fracti<strong>on</strong> were used for the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme activities. The<br />

lysosomal fracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the nuclear fracti<strong>on</strong> were resuspended in citrate<br />

buffer c<strong>on</strong>taining 0.2% Brij-35. The 15,OOOg supematant was diluted with an


equal volume <str<strong>on</strong>g>of</str<strong>on</strong>g> double strength buffer. The acid phosphatase enzyme<br />

activity was determined in all these fracti<strong>on</strong>s (Plummer, 1987)<br />

ii) Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Release <str<strong>on</strong>g>of</str<strong>on</strong>g> Acid Phosphatase from the<br />

Lysosomal fracti<strong>on</strong> - Lysosomal Enzyme Release Assay (in vivo studies)<br />

Liver tissue from the c<strong>on</strong>trol fishes <str<strong>on</strong>g>and</str<strong>on</strong>g> the six-week aflatoxin<br />

exposed groups were homogenized in isot<strong>on</strong>ic sucrose <str<strong>on</strong>g>and</str<strong>on</strong>g> the lysosomal<br />

fracti<strong>on</strong> was obtained as described above. The lysosomal pellet thus obtained<br />

was washed, centrifuged at 15,OOOg for 10 min <str<strong>on</strong>g>and</str<strong>on</strong>g> again resuspended in<br />

sucrose. A definite volume <str<strong>on</strong>g>of</str<strong>on</strong>g> this suspensi<strong>on</strong> was incubated at room<br />

temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> aliquots were withdrawn at various time intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 10,15<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 30 min. Both the c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> test aliquots were centrifuged at 15,OOOg<br />

for 30 min, to separate the unbroken lysosomes <str<strong>on</strong>g>and</str<strong>on</strong>g> the acid phosphatase<br />

activity in the supematant was determined.<br />

Hi) Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme activity (Colowick, 1957 )<br />

Reagents<br />

1) Substrate: 400mg <str<strong>on</strong>g>of</str<strong>on</strong>g> p-nitro phenol phosphate (di sodium salt) was<br />

dissolved in 100ml <str<strong>on</strong>g>of</str<strong>on</strong>g>distilled water to obtain a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about lO.8M.The<br />

degraded product, p-nitro phenol gives a yellow colour in alkaline medium.<br />

The reagent was stored in a plastic bottle below 4°C<br />

135


2) Buffer: Citrate buffer (O.05M) <str<strong>on</strong>g>of</str<strong>on</strong>g> pH 4.8<br />

3) NaOH : O.lN<br />

4) Stock p-nitro phenol st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard: Dissolve lOOmg <str<strong>on</strong>g>of</str<strong>on</strong>g> p-nitro phenol III<br />

100mI <str<strong>on</strong>g>of</str<strong>on</strong>g>distilled water.<br />

Procedure<br />

0.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> buffer were pipetted out into two<br />

tubes marked "test" <str<strong>on</strong>g>and</str<strong>on</strong>g> "c<strong>on</strong>trol" <str<strong>on</strong>g>and</str<strong>on</strong>g> incubated at room temperature for<br />

three minutes. Added O.lml <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme to the "test". Incubated the<br />

mixture for 30 min at room temperature. The blank c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5mI <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

substrate, O.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> citrate buffer <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme added after<br />

incubati<strong>on</strong>. 4 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> O.lN NaOH was added to the tubes to stop the reacti<strong>on</strong><br />

after incubati<strong>on</strong>. The colour developed was read against the blank at 41Onm.<br />

The values were expressed as mg <str<strong>on</strong>g>of</str<strong>on</strong>g> p-nitro phenol formed/minlmg protein.<br />

Protein was estimated by the method <str<strong>on</strong>g>of</str<strong>on</strong>g> Lowry et al (1951).<br />

iv) Statistical analysis<br />

Statistical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>results was d<strong>on</strong>e by ANOVA followed by Least<br />

Significant Difference (LSD) (Zar,1999).<br />

136


One way Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> vanance (ANOVA) revealed an overall<br />

significant change (P


Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong> SS df MS FP-value F crit<br />

Between Groups 224.4354 374.811887.09977961.18£-11 3.098392654<br />

Within Groups 17.17842200.85892<br />

Total 241.613923<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g>freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Groups<br />

Table se ANOVA for Lysosomal Acid Phosphatase<br />

C<strong>on</strong>trol vs 0.375ppm<br />

C<strong>on</strong>trol vs 2.5ppm<br />

C<strong>on</strong>trol vs 6ppm<br />

O.375ppmvs 2.5ppm<br />

O.375ppmvs 6ppm<br />

2.5ppm vs 6ppm<br />

Nuclear<br />

P


<str<strong>on</strong>g>and</str<strong>on</strong>g> also between c<strong>on</strong>centrati<strong>on</strong>s. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear <str<strong>on</strong>g>and</str<strong>on</strong>g> lysosomal acid<br />

phosphatase activity, significant differences (P


Groups Pvalue<br />

C<strong>on</strong>trol vs 0.375ppm NS<br />

C<strong>on</strong>trol vs 2.5ppm NS<br />

C<strong>on</strong>trol vs 6ppm P


(Shank R C, 1981). <str<strong>on</strong>g>Histopathological</str<strong>on</strong>g> examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the liver secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

aflatoxin exposed groups in this study revealed areas <str<strong>on</strong>g>of</str<strong>on</strong>g> massive necrosis.<br />

This could be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the reas<strong>on</strong>s for the labilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lysosomal<br />

membrane leading to release <str<strong>on</strong>g>of</str<strong>on</strong>g> the latent marker enzyme namely acid<br />

phosphatase. This thereby explains the fact that there was a decrease seen in<br />

the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme with increasing damage inflicted <strong>on</strong> the membrane<br />

with increasing c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the toxin due to leakage <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme into<br />

the soluble fracti<strong>on</strong>.<br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomal enzyme release assay, in vivo, indicate a<br />

significant increase in the release <str<strong>on</strong>g>of</str<strong>on</strong>g> this enzyme with increasing time. This<br />

suggests that with increasing time <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure to the toxin, the degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

labilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the membrane also increased. Normally cellular membranes<br />

are selectively permeable; hence allow <strong>on</strong>ly certain solutes to pass through.<br />

The utility is lost due to lipid peroxidati<strong>on</strong> whose products modify the<br />

physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> biological membranes. Incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid<br />

hydroperoxide, changes the physical structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the membrane by<br />

decreasing the fluidity <str<strong>on</strong>g>and</str<strong>on</strong>g> increasing permeability. When free fatty acids get<br />

damaged, membrane c<strong>on</strong>formati<strong>on</strong> is lost <str<strong>on</strong>g>and</str<strong>on</strong>g> may lead to gaps in the<br />

membrane. It can also cause cross-links between two fatty acids, fatty acid<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> proteins etc. This can eventually lead to change in membrane properties<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g>its bound enzymes (Thomas et al, 2002).<br />

From the foregoing results it is evident that aflatoxin causes rupture <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the lysosomal membrane thereby damaging it.<br />

143


8.1 Studies <strong>on</strong> the Erythrocyte Membrane Stability<br />

8.1A Introducti<strong>on</strong><br />

Erythrocytes have been choice objects <str<strong>on</strong>g>of</str<strong>on</strong>g> inquiry in studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

membranes because <str<strong>on</strong>g>of</str<strong>on</strong>g> their ready availability <str<strong>on</strong>g>and</str<strong>on</strong>g> relative simplicity. They<br />

lack organelles <str<strong>on</strong>g>and</str<strong>on</strong>g> thus have <strong>on</strong>ly a single membrane, the plasma<br />

membrane. Nearly all <str<strong>on</strong>g>of</str<strong>on</strong>g> the cytoplasmic c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> these cells can be<br />

released by osmotic haemolysis to give ghosts, which are quite pure plasma<br />

membranes. Earlier reports <strong>on</strong> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin <strong>on</strong> the erythrocyte<br />

membrane are not available <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore this study was envisaged to<br />

elucidate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin <strong>on</strong> the erythrocyte membrane.<br />

8.1B Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods (for RBC membrane stability)<br />

Orechromis mossambicus <str<strong>on</strong>g>of</str<strong>on</strong>g> size 10 ± 3g were used for the experiment.<br />

a) Blood collecti<strong>on</strong> in fish<br />

Blood was drawn from the comm<strong>on</strong> cardinal vein in plastic syringes<br />

c<strong>on</strong>taining citrate as the anticoagulant (Michael et al, 1994). Fresh soluti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> saline - isot<strong>on</strong>ic (0.85%) <str<strong>on</strong>g>and</str<strong>on</strong>g> hypot<strong>on</strong>ic (0.5%) were prepared.<br />

Stock RBC suspensi<strong>on</strong>s were prepared after washing <str<strong>on</strong>g>of</str<strong>on</strong>g> the cells<br />

thrice with isot<strong>on</strong>ic saline. Different volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> the suspensi<strong>on</strong> were then<br />

mixed with distilled water to haemolyse the cells <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged at 100Gg<br />

for 5 min . The absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the supematant was read at 540 nm against<br />

144


distilled water blank. The diluti<strong>on</strong> giving a suitable absorbance for 100%<br />

haemolysis was selected. Also a suitable volume <str<strong>on</strong>g>of</str<strong>on</strong>g> blood giving a suitable<br />

absorbance for 100% haemolysis was noted.<br />

The experiment was carried out with each <str<strong>on</strong>g>of</str<strong>on</strong>g> three c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxin as described below.<br />

1) To 0.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the stock RBC suspensi<strong>on</strong> in a centrifuge tube, 5ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

isot<strong>on</strong>ic saline was added <str<strong>on</strong>g>and</str<strong>on</strong>g> incubated for 30 min at room<br />

temperature. It was then centrifuged at 1000g for 5 min. The<br />

absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the supematant was read at 540 nm. This gave the<br />

absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g>the " blank" (B)<br />

2) To O.lml <str<strong>on</strong>g>of</str<strong>on</strong>g> the stock RBC suspensi<strong>on</strong> in three centrifuge tubes, 4.5<br />

ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water was added <str<strong>on</strong>g>and</str<strong>on</strong>g> incubated for 30 min at room<br />

temperature. To this 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the aflatoxin stock soluti<strong>on</strong> was added<br />

(such that the final c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in each <str<strong>on</strong>g>of</str<strong>on</strong>g>the tubes were<br />

0.375 ppm, 2.5 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 ppm respectively). It was then centrifuged<br />

at 1000g for 5 min <str<strong>on</strong>g>and</str<strong>on</strong>g> the absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the supematant was read at<br />

540 nm. This gave the absorbance corresp<strong>on</strong>ding to 100% haemolysis<br />

(H).<br />

3) To 0.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the stock RBC suspensi<strong>on</strong> in three centrifuge tubes, 4ml<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hypot<strong>on</strong>ic saline <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water was added <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

incubated for 30 min at room temperature. To this 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

aflatoxin stock soluti<strong>on</strong> was added (such that the final c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in each <str<strong>on</strong>g>of</str<strong>on</strong>g> the tubes were 0.375 pm, 2.5 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 ppm<br />

respectively). It was then centrifuged at 1000g for 5 min <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the supematant was read at 540 nm. This gave the<br />

absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol (C).<br />

145


4) To O.lml <str<strong>on</strong>g>of</str<strong>on</strong>g> the stock RBC suspensi<strong>on</strong> in three centrifuge tubes, 4ml<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hypot<strong>on</strong>ic saline <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the aflatoxin stock soluti<strong>on</strong> was<br />

added (such that the final c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in each <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tubes were 0.375ppm, 2.5ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> 6ppm respectively) <str<strong>on</strong>g>and</str<strong>on</strong>g> incubated<br />

for 30 min at room temperature. To this, 0.5ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water was<br />

added <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged at 1000g for 5 min. The absorbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

supematant was read at 540 nm. This gave the absorbance<br />

corresp<strong>on</strong>ding to the "test" (T)<br />

Calculati<strong>on</strong><br />

% Haemolysis in the c<strong>on</strong>trol (X)<br />

% Haemolysis in the test (Y)<br />

% Labilisati<strong>on</strong> by test<br />

S.IC Results<br />

The results are presented in Table 8.IA <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig 8.IA.<br />

=<br />

=<br />

=<br />

C-B/H-B x 100<br />

T-B/H-B x 100<br />

Y-X/X x 100<br />

Treatment Percentage Haemolysis<br />

C<strong>on</strong>trol 0<br />

0.375ppm 14.24± 1.84<br />

2.5ppm 55.20± 3.05<br />

6ppm 94.74± 6.37<br />

Values are the mean SD ± <str<strong>on</strong>g>of</str<strong>on</strong>g> six separate experiments<br />

Table S.IA Percentage Haemolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> RBC membrane<br />

146


Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Variati<strong>on</strong><br />

Between Groups<br />

Within Groups<br />

148<br />

SS df MS FP-value F crit<br />

32535.32 3 10845.11 814.9466 4.56£-21 3.098393<br />

266.155 20 13.30775<br />

Total 32801.47 23<br />

SS-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df-degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS-mean <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Table 8.1B ANOVA for RBC membrane stability<br />

Subsequent LSD analysis (Table 8.1C) revealed that the three<br />

different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin differed significantly (p


8.ID Discussi<strong>on</strong><br />

The results obtained in study indicate that the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to the<br />

erythrocyte membrane is directly proporti<strong>on</strong>al to the increasing<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the possible reas<strong>on</strong>s for the labilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the erythrocyte membrane <strong>on</strong> exposure to aflatoxin is that <str<strong>on</strong>g>of</str<strong>on</strong>g> the role played<br />

by peroxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the membrane lipids, which increase the membrane<br />

permeability thereby decreasing its fluidity. The release <str<strong>on</strong>g>of</str<strong>on</strong>g> haemoglobin has<br />

been used as the criteria for evaluating the haemolytic effect when exposed<br />

,<br />

to aflatoxin.<br />

8.2 Studies <strong>on</strong> Branchial ATPases<br />

8.2A Introducti<strong>on</strong><br />

Generally, ATPase activity is associated with the active transport<br />

system, which is resp<strong>on</strong>sible for the extrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Na+ from animal cells <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K+ within these cells (Schwartz). This enzyme is,<br />

therefore, fundamental to such functi<strong>on</strong> as the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane<br />

potentials <str<strong>on</strong>g>and</str<strong>on</strong>g> the regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>cell volume <str<strong>on</strong>g>and</str<strong>on</strong>g> electrolyte compositi<strong>on</strong>. The<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ATPase (ATP phosphohydrolase, EC 3.6.1.3) was first<br />

dem<strong>on</strong>strated in the crab's myelinated nerves, which are activated by Na+,<br />

Mg 2+ <str<strong>on</strong>g>and</str<strong>on</strong>g> K+ (Skou, 1958). Subsequent studies revealed the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Na+K+ATPase in a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> animal tissues (B<strong>on</strong>ting, 1970).<br />

Na+K+ATPase plays a significant role in both, whole body i<strong>on</strong> regulati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cellular water balance in marine animals (Towle, 1981). Pollutants have<br />

been shown to inhibit Na+K+ATPase activity in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> marine<br />

149


organisms (Haya <str<strong>on</strong>g>and</str<strong>on</strong>g> Waiwood, 1983) by disrupting energy producing<br />

metabolic pathways (Wats<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Beamish,1981;Verma et al,1978). Harris<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Bayliss (1988) reported that potential Na+ pumping capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the gills<br />

was highly correlated with gill Na+K+ATPase specific activities <str<strong>on</strong>g>and</str<strong>on</strong>g> more<br />

closely correlated with enzyme activity than Na+gradient. Most animal cells<br />

have a high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K+ <str<strong>on</strong>g>and</str<strong>on</strong>g> low c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Na+relative to the<br />

external medium. These t<strong>on</strong>ic gradients are generated by a specific transport<br />

system that is called the Na+K+ pump because the movement <str<strong>on</strong>g>of</str<strong>on</strong>g> these i<strong>on</strong>s is<br />

linked., The active transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Na+ <str<strong>on</strong>g>and</str<strong>on</strong>g> K+ is <str<strong>on</strong>g>of</str<strong>on</strong>g> great physiological<br />

significance. Indeed, more that a third <str<strong>on</strong>g>of</str<strong>on</strong>g> the ATP c<strong>on</strong>sumed by a resting<br />

animal is used to pump these i<strong>on</strong>s. The Na+ K+ gradient in animal cells<br />

c<strong>on</strong>trol cell volume, renders nerve <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle cells electrically excitable <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

drives the active transport <str<strong>on</strong>g>of</str<strong>on</strong>g> sugars <str<strong>on</strong>g>and</str<strong>on</strong>g> amino acids.<br />

8.2B Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods (for branchial ATPase determinati<strong>on</strong>)<br />

The experimental design was the same as that menti<strong>on</strong>ed in chapter<br />

6.The gill tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxin treated groups subjected to two<br />

weeks <str<strong>on</strong>g>and</str<strong>on</strong>g> six weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin stress was dissected out, washed with<br />

O.33M sucrose (the pH being adjusted to 7.5 with Tris-HCI buffer) <str<strong>on</strong>g>and</str<strong>on</strong>g> then<br />

cut into small pieces. The following procedure was carried out at 4°C.<br />

150


a) Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme<br />

The gill pieces were homogenized in 10 volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> the above<br />

menti<strong>on</strong>ed 0.33M sucrose. Cell fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the gill homogenate was<br />

d<strong>on</strong>e according to the modified method <str<strong>on</strong>g>of</str<strong>on</strong>g> Davis (1970). Fracti<strong>on</strong>ati<strong>on</strong><br />

procedure by centrifugati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the gill tissue is schematically shown below.<br />

b) Fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gill Na+ K+ ATPase<br />

Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme<br />

Gill tissue<br />

Homogenized in J.33M sucrose (pH 7.5)<br />

3000g; 15 min<br />

Precipitate 1 Supernatant<br />

12,000g; 30 min<br />

Precipitate 2 Supernatant<br />

35,000g; 30min<br />

151<br />

Precipitate 3 Supernatant


The precipitate 3 thus obtained which corresp<strong>on</strong>ds to the heavy<br />

microsomal fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Davis (1970) was suspended in 0.33 M sucrose <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

used as the enzyme soluti<strong>on</strong>.<br />

c) Assay <str<strong>on</strong>g>of</str<strong>on</strong>g> the enzyme activity<br />

Na'K'activated, Mg 2+ dependant ATPase (Total ATPase) was<br />

determined by using the reacti<strong>on</strong> mixture c<strong>on</strong>taining 60 mM NaCI, 20 mM<br />

KCl, 2mM MgCh, 30mM Tris-HCI (pH 7.5) <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.5 mM Tris ATP. The<br />

Mg 2 +ATPase activity was measured by substituting 0.33 M sucrose in place<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NaCl <str<strong>on</strong>g>and</str<strong>on</strong>g> KCl. The reacti<strong>on</strong> mixture was incubated at 37°C for 15 min,<br />

The Na+K+ATPase was calculated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference between<br />

total ATPase <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg 2 +ATPase values. After incubati<strong>on</strong>, 2ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 10%<br />

trichloroacetic acid (TCA) was added to the reacti<strong>on</strong> mixture <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

supematant was separated <str<strong>on</strong>g>of</str<strong>on</strong>g>f by centrifugati<strong>on</strong> at 1300g for 10 min. The<br />

inorganic phosphate (Pi) liberated from ATP was measured by the method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fiske-Subbarow (1925). The specific activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Na+:K+ATPase was defined<br />

as micromoles <str<strong>on</strong>g>of</str<strong>on</strong>g>Pi/mg <str<strong>on</strong>g>of</str<strong>on</strong>g>enzyme protein/h. The protein was determined by<br />

the method <str<strong>on</strong>g>of</str<strong>on</strong>g>Lowry et al (1951) using bovine serum albumin as st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard.<br />

152


Source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Variati<strong>on</strong> SS Df<br />

Rows 169.756 3<br />

Columns 41.93906 1<br />

Error 0.955081 3<br />

Total 212.6502 7<br />

MS FP-value F crit<br />

56.58535177.73990.0007099.276619<br />

41.93906131.7345 0.0014210.12796<br />

0.31836<br />

ss -sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares, df - degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, MS - mean <str<strong>on</strong>g>of</str<strong>on</strong>g>squares<br />

,<br />

Table 8.3b ANOVA for Na+K+ATPase<br />

Two way analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (Table 8.3b) revealed that there was<br />

significant difference (p


<str<strong>on</strong>g>and</str<strong>on</strong>g> from the c<strong>on</strong>trol. Significant difference was not noticed between time<br />

periods. The LSD at 5% level was 1.328.<br />

S.2D Discussi<strong>on</strong><br />

157<br />

In this study, a decrease was noticed in the activities <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

Na+K+ATPase <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg 2+ ATPase. In aflatoxin treated rats also, a fall in the<br />

ATPase activity was noticed. It is possible that this hepatotoxic agent<br />

inhibits the sodium pump by interfering with sodium dependent<br />

phosphokinase step in the reacti<strong>on</strong> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> ATPase as explained for<br />

methanethiol induced hepatic injury by Foster et al (1994). It has been<br />

reported that aflatoxicosis causes accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular calcium,<br />

which is known to cause mitoch<strong>on</strong>drial dysfuncti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce ATP<br />

generati<strong>on</strong> (Verma R J et al, 1994). Reduced aerobic oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ATP<br />

generati<strong>on</strong> could be resp<strong>on</strong>sible for the reducti<strong>on</strong>s in the ATPase activity.<br />

Roy (1968) reported mitoch<strong>on</strong>drial swelling during aflatoxicosis. This has<br />

been reported in testis <str<strong>on</strong>g>of</str<strong>on</strong>g> rat exposed to aflatoxin. Increased calcium can<br />

result in opening <str<strong>on</strong>g>of</str<strong>on</strong>g> the mitoch<strong>on</strong>drial PT (prot<strong>on</strong> translocati<strong>on</strong>) pore<br />

resulting in the collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> the prot<strong>on</strong> gradient across the inner membrane<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequent uncoupling <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidative phosphorylati<strong>on</strong> (Green D R <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Reed J C, 1998). This also results in increase in generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive<br />

oxygen species.


8.3 Studies On Muscle Retenti<strong>on</strong><br />

8.3A Introducti<strong>on</strong><br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> can c<strong>on</strong>taminate animal feeds before <str<strong>on</strong>g>and</str<strong>on</strong>g> during harvest, or<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> improper storage. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin residues or toxic<br />

metabolites in animal tissues can end up in food for human use. Various<br />

studies have proved that aquatic animals are sensitive to carcinogenic stimuli<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> can serve as indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> carcinogenic hazards to man. It has also been<br />

shown that livestock products like meat, milk <str<strong>on</strong>g>and</str<strong>on</strong>g> eggs do c<strong>on</strong>tain aflatoxin<br />

metabolites in the form <str<strong>on</strong>g>of</str<strong>on</strong>g>residues (Rajan, 1995). Therefore, it is certain that<br />

human beings are getting exposed to aflatoxin by c<strong>on</strong>suming cultured fish<br />

that are c<strong>on</strong>taminated by these toxins. The Internati<strong>on</strong>al Agency for<br />

Research in Cancer (IARC) reported in 1976 that liver cancer incidence <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

aflatoxin intake provide circumstantial evidence <strong>on</strong> the role <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in<br />

cancer producti<strong>on</strong>. By 1987, IARC c<strong>on</strong>cluded that aflatoxin is a probable<br />

human carcinogen (Rajan, 1995). Researches have been c<strong>on</strong>ducted to obtain<br />

tissue distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B] in domesticated livestock. Tissue<br />

distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B 1 was first examined in sheep (Allocraft et<br />

al, 1966; Nabney et al, 1967; Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f et al, 1971). It was also observed in the<br />

liver, kidney, blood <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle tissues (1 to 4 ppb AFB 1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> growing pigs<br />

fed with 400ppb AFB 1 diet for 4 weeks (Jacobs<strong>on</strong>, 1978). Reports from<br />

South east Asia prove the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin c<strong>on</strong>taminati<strong>on</strong> in some fish<br />

products too. In a survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Thail<str<strong>on</strong>g>and</str<strong>on</strong>g> foods, aflatoxin was detected in 5<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> dried fish samples at an average c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 166 ug /kg<br />

(FAO, 1979). In Ind<strong>on</strong>esia, samples from salty fish c<strong>on</strong>tained AFB] at an<br />

average level <str<strong>on</strong>g>of</str<strong>on</strong>g> AFBl as 51lglkg (Shank et al, 1972). But in Oreochromis<br />

158


mossambicus, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin <str<strong>on</strong>g>and</str<strong>on</strong>g> its relevance to human health are<br />

not available.<br />

8.3B Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods (for muscle retenti<strong>on</strong> studies)<br />

The experimental set up was the same as that menti<strong>on</strong>ed in secti<strong>on</strong> 6.1<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chapter 6. The muscle tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> the six-week aflatoxin exposed groups<br />

were used for the study. Muscle tissue was chosen as the study material for<br />

aflatoxin retenti<strong>on</strong> studies as this forms the major porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tissues that<br />

end up as food for human use. The muscle tissue was cut up in to small<br />

pieces <str<strong>on</strong>g>and</str<strong>on</strong>g> kept in acet<strong>on</strong>e under refrigerati<strong>on</strong> until extracti<strong>on</strong>. The<br />

extracti<strong>on</strong> protocol was the same as that menti<strong>on</strong>ed in secti<strong>on</strong> 3.3.4 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chapter 3.<br />

a) Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins by HPLC<br />

HPLC can rapidly screen aflatoxins with ultraviolet/visible detecti<strong>on</strong>.<br />

Reverse phase chromatography in c<strong>on</strong>juncti<strong>on</strong> with DVNis detecti<strong>on</strong> at<br />

365nm can m<strong>on</strong>itor aflatoxins.<br />

b) Reverse phase chromatography with DVNis detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxins<br />

Column: Waters Nova-Pak CI8, 3.9mm 15cm<br />

Mobile phase:CH30H/CH3COOHlH20, 20120/60<br />

Flow rate: 1.0mllmin<br />

159


Detecti<strong>on</strong>: Waters 440 Absorbance at 365nm<br />

c) Pre- column derivatizti<strong>on</strong><br />

Pre-column derivatizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fers two major benefits: the ability to<br />

tailor the chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the native analyte so that it can be separated with<br />

different chromatographic c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> the flexibility to be able to choose<br />

between different detecti<strong>on</strong> schemes to either increase sensitivity or<br />

specificity. Pre-column derivatizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins with a str<strong>on</strong>g mineral<br />

acid is a particularly good technique. <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s Bl<str<strong>on</strong>g>and</str<strong>on</strong>g> G I are derivatized to<br />

their hemiacetals, B 2a <str<strong>on</strong>g>and</str<strong>on</strong>g> G 2a , in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> water <str<strong>on</strong>g>and</str<strong>on</strong>g> str<strong>on</strong>g mineral<br />

acid., These derivatives fluoresce more str<strong>on</strong>gly <str<strong>on</strong>g>and</str<strong>on</strong>g> chromatograph<br />

differently than their parent compounds.<br />

d) Pre-column derivatizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards<br />

Trifluoroacetic acid (TFA) is the most comm<strong>on</strong>ly used mineral acid<br />

for this pre-column reacti<strong>on</strong>. The excellent sensitivity can be attributed to<br />

not <strong>on</strong>ly the derivatizati<strong>on</strong> procedure but also a special aflatoxin lamp <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

filter kit for Waters 420 AC fluorescence detector.<br />

e) Pre-column derivatizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l.Oppb aflatoxin st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards<br />

Column : Waters Nova-Pak eIS' 8.0mm IOcm<br />

Radial Pak cartridge<br />

160


Mobile phase : CH30HlCH3CN/5.0 % CH3COOH, 14/14/72<br />

Flow rate<br />

Detecti<strong>on</strong><br />

: 2.5 mlImin<br />

e) Post column derivatizati<strong>on</strong><br />

: Waters 420 AC fluorescence, Excitati<strong>on</strong> 365nm,<br />

Emissi<strong>on</strong> 425nm with aflatoxin lamp<br />

References to post-column derivatizati<strong>on</strong> for increased analytical<br />

sensitivity to aflatoxins have more recently appeared in the literature. Water<br />

saturated with iodine is the post-column reagent most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten cited. This post­<br />

column technique derivatizes the sample <strong>on</strong>-line, which minimizes sample<br />

•<br />

preparati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> is potentially more reproducible.<br />

Although the post-column derivatizati<strong>on</strong> technique for aflatoxin<br />

analysis requires additi<strong>on</strong>al comp<strong>on</strong>ent hardware, its sensitivity is excellent,<br />

it improves reproducibility, <str<strong>on</strong>g>and</str<strong>on</strong>g> it minimizes sample preparati<strong>on</strong>.<br />

f) Statistical analysis<br />

Statistical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> results was d<strong>on</strong>e by ANOVA followed by Least<br />

Significant Difference (LSD) (Zar, 1996).<br />

161


8.3C Results<br />

The results are presented in table 8.3a <str<strong>on</strong>g>and</str<strong>on</strong>g> table 8.3b.<br />

..<br />

C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin (ppm) Retenti<strong>on</strong> values in muscle (ppm)<br />

after a 6 week exposure to<br />

aflatoxin<br />

0.375 0.336<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Variati<strong>on</strong><br />

Between Groups<br />

Within Groups<br />

Total<br />

2.5 0.380<br />

6 0.396<br />

Table 8.3a Retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in muscle tissue<br />

162<br />

SS df MS FP-value F crit<br />

0.012237 2 0.006118 182.4569 2.97E-11 3.682317<br />

0.000503 15 3.35E-05<br />

0.01274 17<br />

Table 8.3b ANOVA for muscle retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin<br />

One way ANOVA revealed that the different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxin differed significantly (p


Discussi<strong>on</strong><br />

Treatment P value<br />

O.375ppm vs 2.5ppm P


9.0 Summary<br />

The present study was undertaken to evaluate the changes induced by<br />

aflatoxin in the teleost, Oreochromis mossambicus through different<br />

approaches like biochemistry, histopathology <str<strong>on</strong>g>and</str<strong>on</strong>g> molecular biology. Diets<br />

supplemented with different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B1 (0.375ppm, 2.5ppm <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

6ppmlkg body weight) were fed to the experimental groups for time periods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>two weeks <str<strong>on</strong>g>and</str<strong>on</strong>g> six weeks. The salient findings are listed below.<br />

• Rice was used as the substrate for aflatoxin producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxin extracted from 1450g <str<strong>on</strong>g>of</str<strong>on</strong>g>rice grain was 2.7mg.<br />

• Fish fed <strong>on</strong> the diet c<strong>on</strong>taining the highest dose <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin namely 6ppm<br />

refused to rake the experimental diet for the first few days but later <strong>on</strong><br />

began to gradually accept the entire feed.<br />

• The biochemical parameters namely alanine transaminase, aspartate<br />

transaminase, alkaline phosphatase <str<strong>on</strong>g>and</str<strong>on</strong>g> free amino acids were found to<br />

increase in the aflatoxin treated groups.<br />

• The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pyruvate in the liver <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle were found to<br />

decrease after a six-week aflatoxin stress.<br />

• The lipid peroxidati<strong>on</strong> products namely c<strong>on</strong>jugated dienes,<br />

hydroperoxide <str<strong>on</strong>g>and</str<strong>on</strong>g> mal<strong>on</strong>dialdehyde recorded an increase in level up to<br />

two weeks after which they registered a decrease in c<strong>on</strong>centrati<strong>on</strong> up to<br />

six weeks.<br />

• The antioxidant enzymes namely catalase, superoxide dismutase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

glutathi<strong>on</strong>e reductase showed an increase in their levels with the durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exposure, the rate being significantly high after six weeks. The<br />

antioxidant, glutathi<strong>on</strong>e recorded the same trend as above.<br />

• The levels <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol, triglycerides, LDL cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g> VLDL were<br />

found to increase in the aflatoxin exposed groups where as the levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

164


HDL cholesterol which recorded an initial increase was found to decrease<br />

in the highest dose namely 6ppm.<br />

• The haemoglobin <str<strong>on</strong>g>and</str<strong>on</strong>g> erythrocyte count values indicated a decrease in<br />

proporti<strong>on</strong> to the aflatoxin exposure. The decrease in the packed cell<br />

volume was not significant.<br />

• <str<strong>on</strong>g>Histopathological</str<strong>on</strong>g> damages to the liver <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney tissues intensified with<br />

increase in c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> durati<strong>on</strong>. The histopathological changes<br />

observed in the liver were extensive to focal necrosis, biliary<br />

proliferati<strong>on</strong>, loss <str<strong>on</strong>g>of</str<strong>on</strong>g> architecture <str<strong>on</strong>g>and</str<strong>on</strong>g> preneoplastic stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the liver<br />

tissue after a six week exposure. Important changes observed in the<br />

• kidney were severe necrosis <str<strong>on</strong>g>of</str<strong>on</strong>g> tubular epithelial cells, thickening <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

bowmans capsule <str<strong>on</strong>g>and</str<strong>on</strong>g> shrinkage <str<strong>on</strong>g>of</str<strong>on</strong>g>the glomeruli.<br />

• Levels <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes in serum namely aspartate transaminase, alanine<br />

transaminase, lactate dehydrogenase, acid phosphatase <str<strong>on</strong>g>and</str<strong>on</strong>g> alkaline<br />

phosphatase; <str<strong>on</strong>g>and</str<strong>on</strong>g> other parameters like blood urea, creatinine <str<strong>on</strong>g>and</str<strong>on</strong>g> glucose<br />

also corroborated the damaging effects <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin to the animal.<br />

• Significant reducti<strong>on</strong> in the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> serum protein, albumin <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

globulin were noticed with increase in c<strong>on</strong>centrati<strong>on</strong> as well as durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>exposure to aflatoxin.<br />

• We str<strong>on</strong>gly suspect the inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>prominent tumour suppressor genes<br />

namely p53 from the expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the gene product viz 57Kda<br />

nucleoprotein analogous to the <strong>on</strong>e reported from rainbow trout.<br />

• Exposure to aflatoxinll, for six weeks did not induce apoptosis.<br />

• Exposure to aflatoxin caused labilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the lysosomal <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

erythrocyte membranes together with an inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Na+K+ATPase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mg 2+ATPase.<br />

165


• <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> residues could be detected in the muscle tissue even with the<br />

lowest level <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin administered.<br />

9.1 C<strong>on</strong>clusi<strong>on</strong><br />

166<br />

While c<strong>on</strong>sidering the results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study from different approaches<br />

like histopathology, biochemical methods <str<strong>on</strong>g>and</str<strong>on</strong>g> molecular biology, it is<br />

evident that the animal is trying its level best to counteract the effect <str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

toxicant. It uses its various detoxifying enzymatic mechanisms to defend<br />

against the xenobiotic entered. This is evident from the elevated level <str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

antioxidant enzymes at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 days <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure. Similarly the<br />

anti<strong>on</strong>cogenes or tumour suppressor genes are also showing their expressi<strong>on</strong><br />

as revealed by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the protein with molecular weight 57KDa.<br />

The 57 KDa proteins are reported to be the analog <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour suppressor<br />

gene p53 in higher animals. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g>this protein is detected in serum<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> nuclear proteins after an exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> 42 days. The same proteins were<br />

not expressed in serum after 14 days <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure. This indicates that the<br />

animal is first attempting to nullify the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the toxicant by the<br />

enzymatic machinery as evident from the hike <str<strong>on</strong>g>of</str<strong>on</strong>g> the antioxidant enzymes<br />

after 14 days <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the preneoplastic stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tissues is detected after a 42-day exposure to the toxin by histopathological<br />

means. It is at this juncture that the tumour suppressor gene p53 is initiating<br />

its acti<strong>on</strong>. This must be the reas<strong>on</strong> for observing the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anti<strong>on</strong>cogene in serum <str<strong>on</strong>g>and</str<strong>on</strong>g> nucleus after 42 days <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous exposure.<br />

Hence we can assume that at 42 days the animal is using its molecular<br />

guardians like p53 to suppress the preneoplastic stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the tissues. The<br />

acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pS3 is to suppress the developing tumours by breaking down or<br />

cleaving the nuclear material by a process known as programmed cell death<br />

or apoptosis. Hence by apoptosis the tumour cell DNA will be cleaved into


different fragments thereby causing cell death. The role <str<strong>on</strong>g>of</str<strong>on</strong>g>p53 is to initiate a<br />

pathway resulting in apoptosis. Another positive indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis<br />

observed in the study is the hike in the level <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes like ALT <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

alkaline phosphatase. Many studies have reported an increase in the level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these enzymes while the pathways <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis are in acti<strong>on</strong>. It is with this<br />

idea <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis process that the DNA is isolated to see the ladder like<br />

DNA fragmentati<strong>on</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g>apoptosis. But the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g>DNA isolated<br />

after separati<strong>on</strong> by agarose gel electrophoresis indicate no sign <str<strong>on</strong>g>of</str<strong>on</strong>g>apoptosis.<br />

Even though there is a positive indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

other factors like the p53 gene expressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hike in the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> ALT <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

alkaline phosphatase, the characteristic pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis is not observed.<br />

Another characteristic feature <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis as detected by histopathology is<br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> shrinkage in the nucleus. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

histopathological secti<strong>on</strong>s in the study did not reveal any signs <str<strong>on</strong>g>of</str<strong>on</strong>g> cells with<br />

apoptosis. Hence both the molecular biology <str<strong>on</strong>g>and</str<strong>on</strong>g> the hisopathological results<br />

are not showing symptoms <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis whereas the biochemical techniques<br />

indicate the initiating process <str<strong>on</strong>g>of</str<strong>on</strong>g>apoptosis. Hence it may be assumed that the<br />

pathways mediated by pS3 leading to apoptosis are in acti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> further<br />

c<strong>on</strong>tinuous exposure to the toxicant will definitely bring about apoptosis.<br />

Another possibility is that always the mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g>tumour suppressor gene<br />

acti<strong>on</strong> may not always be successful in totally eradicating the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

toxicant. This is because <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact that the p53 gene itself can be mutated.<br />

There are several reports <str<strong>on</strong>g>of</str<strong>on</strong>g> pS3 mutati<strong>on</strong>, which will ultimately act as an<br />

<strong>on</strong>cogene deviating from its normal role as anti<strong>on</strong>cogene. Hence the results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>this study indicate the potential threat <str<strong>on</strong>g>of</str<strong>on</strong>g>this toxicant to the fish especially<br />

when subjected to prol<strong>on</strong>ged exposure bey<strong>on</strong>d six weeks.<br />

167


BIBLIOGRAPHY<br />

Abedi A H<str<strong>on</strong>g>and</str<strong>on</strong>g> Scott P M (1969). Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tOXICIty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxins, sterigmatocystin <str<strong>on</strong>g>and</str<strong>on</strong>g> other fungal toxins by lethal<br />

acti<strong>on</strong> <strong>on</strong> zebra fish larvae. Anal.Chem. 52: 963 - 969<br />

Alceste C C (2000). Some fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> tilapia nutriti<strong>on</strong>,<br />

Aquaculture magazine, 74<br />

Allis<strong>on</strong> A C (1969). Lysosomes <str<strong>on</strong>g>and</str<strong>on</strong>g> cancer. In: Lysosomes in biology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

pathology Vol2 edited by J T Dingle <str<strong>on</strong>g>and</str<strong>on</strong>g> H B Fell, Elsevier, North Holl<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

Amsterdam, 178-204<br />

Allis<strong>on</strong> A C <str<strong>on</strong>g>and</str<strong>on</strong>g> Mallucci L (1964). Uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrocarb<strong>on</strong> carcinogens by<br />

lysosomes. Nature ,L<strong>on</strong>d. 209,303-304<br />

Allocraft R, Rogers H, Lewis G, Nabney J <str<strong>on</strong>g>and</str<strong>on</strong>g> Best PE (1966). Metabolism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin in sheep: excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>"The milk toxin2", L<strong>on</strong>d<strong>on</strong>, 209:154<br />

Allocr<str<strong>on</strong>g>of</str<strong>on</strong>g>t R <str<strong>on</strong>g>and</str<strong>on</strong>g> Camaghan R B A (1963a). Toxic products in groundnuts,<br />

biological effects.Chem.Ind.2:50-53<br />

Applebaum R S<str<strong>on</strong>g>and</str<strong>on</strong>g> Marth E H (1981). Biogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> the C20 polyketide,<br />

aflatoxin. Mycopathologia 76: 103<br />

Asao T, Buchi G, Abdel-Kader M M, Chang S B, Wick EL<str<strong>on</strong>g>and</str<strong>on</strong>g> Wogan G N<br />

(1963). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s B 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> G J Am.Chem Soc.85:1706-1707<br />

Ashley L M (1967). Histopathology <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout aflatoxicosis In: Trout<br />

hepatoma research c<strong>on</strong>ference papers, edi. Halver J E <str<strong>on</strong>g>and</str<strong>on</strong>g> Mitchell I A,103<br />

Ashley L M (l967a). Renal neoplasms <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout. Bull. Wildl. Disease<br />

Assoc. 3: 86 (Abstract)<br />

Ashley L M (1970). Pathology <str<strong>on</strong>g>of</str<strong>on</strong>g> fish fed aflatoxins <str<strong>on</strong>g>and</str<strong>on</strong>g> other<br />

antimetabolites. In: S F Sniezko (Editor). A Symposium <strong>on</strong> diseases <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fishes <str<strong>on</strong>g>and</str<strong>on</strong>g> Shell fishes. Am. Fish.Soc.spec.Pub1.5:336-379<br />

Ashley L M, J E Halver <str<strong>on</strong>g>and</str<strong>on</strong>g> G N Wogan (1964). Hepatoma <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxicosis<br />

in trout. Fed. Proc 23: 105<br />

168


Ayres J L, Lee DJ, Wales J H<str<strong>on</strong>g>and</str<strong>on</strong>g> SinnhuberR.O (1971).<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> structure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> hepatocarcinogenicity in rainbow trout.J Natl.Cancer Inst 46 :561-564<br />

Babu T D <str<strong>on</strong>g>and</str<strong>on</strong>g> Padikkala J (1996). Apoptotic inducti<strong>on</strong> <strong>on</strong> crypts <str<strong>on</strong>g>of</str<strong>on</strong>g> mouse<br />

gastrointestinal mucosa by cytotoxic stimuli, Amala research Bulletin,14:92­<br />

95<br />

Baccino F M (1978). Selected patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomal resp<strong>on</strong>se in hepatocytic<br />

injury. In : <str<strong>on</strong>g>Biochemical</str<strong>on</strong>g> Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> Liver Injury (T F Slater ed),<br />

Academic Press, New York L<strong>on</strong>d<strong>on</strong>, 518-557<br />

Bailey G S, Williams D E, Wilcox J S, Lovel<str<strong>on</strong>g>and</str<strong>on</strong>g> P M, Coulombe R A <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Hendricks J D (1988). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B 1 carcinogenesis <str<strong>on</strong>g>and</str<strong>on</strong>g> its relati<strong>on</strong> to DNA<br />

adduct formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> adduct persistence in sensitive <str<strong>on</strong>g>and</str<strong>on</strong>g> resistant salm<strong>on</strong>id<br />

fish. Carcinogenesis (L<strong>on</strong>d) 9:1919<br />

Barres B A (1992). Cell, 70,31<br />

Beauchamp C <str<strong>on</strong>g>and</str<strong>on</strong>g> Fridovich I (1970).The generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>hydroxyl radical by<br />

xanthine oxidase, J BioI Chem.243,4641<br />

Bergmeyer H D (1974). Glutathi<strong>on</strong>e reductase, Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Enzymatic<br />

Analysis, 1:465<br />

Bhaskaran A, May D, R<str<strong>on</strong>g>and</str<strong>on</strong>g>-Weaver M, Tyler C R (1999). Fish p53 as a<br />

possible biomarker for genotoxins in the aquatic envir<strong>on</strong>ment.<br />

Envir<strong>on</strong>.Tol.Mutagen33: 177-184<br />

Bitensky L, Butcher R S <str<strong>on</strong>g>and</str<strong>on</strong>g> Chayen J(1973).Quantitative cytochemistry in<br />

the study <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomal functi<strong>on</strong>. In: Estuarine processes, Vol l,edited by M<br />

Wiley, Academic Press, New York, 414-431<br />

B<strong>on</strong>ting S L (1970). Sodium potassium adenosine triphosphatase <str<strong>on</strong>g>and</str<strong>on</strong>g> cati<strong>on</strong><br />

transport, In: Membranes <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong> transport, vol 1, Wiley Interscience,<br />

L<strong>on</strong>d<strong>on</strong>, 258-263<br />

Bruenger, A (1982). Histological changes <str<strong>on</strong>g>of</str<strong>on</strong>g> liver in salm<strong>on</strong> (coho salm<strong>on</strong>)<br />

induced by aflatoxin B 1 sub (1). Diss (DR troph) Rhein. Friedrich,<br />

Wilhelms, Univ B<strong>on</strong>n (FRG) Inst.anat.Physiol. Dnd Hyg(Abstract)<br />

169


Bruenger, A <str<strong>on</strong>g>and</str<strong>on</strong>g> Greuel, E (1982) Akute, Lebersehacdenbeim Coho-Lachs<br />

durch <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>e (Acute liver damage in coho salm<strong>on</strong> through aflatoxins)<br />

Kraftfutter 65(4), 148-150, Chavez-Sanchez et al, 1994)<br />

Budimir M, Elezovic I, Karan V <str<strong>on</strong>g>and</str<strong>on</strong>g> Neskovic N (1987). Acute <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subacute toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> atrazine to carp, Ecotoxicol Envir<strong>on</strong> Safety, 36<br />

Bullermann L B (1979). Significance <str<strong>on</strong>g>of</str<strong>on</strong>g> mycotoxins to food safety <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

human health. J Food Prot, 42:65<br />

Busby W F <str<strong>on</strong>g>and</str<strong>on</strong>g> Wogan G N (1984). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s : In chemical carcinogens,<br />

Vol 2 ACS M<strong>on</strong>ogr. 182 Searle C E Ed. American Chemical<br />

society.Washingt<strong>on</strong> D C 945<br />

Carlile M J. (1970). The photoresp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> fungi, in Photobiology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microorganism, Halldal, P Ed, John Wiley <str<strong>on</strong>g>and</str<strong>on</strong>g> s<strong>on</strong>s, New York, 310<br />

Cesar C A (2000). Some Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> Tilapia Nutriti<strong>on</strong>, Aquaculture<br />

Magazine, 74<br />

Chang S B, Kader A, Wick E I <str<strong>on</strong>g>and</str<strong>on</strong>g> Wogan G N (1963). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B 2 :<br />

chemical identity <str<strong>on</strong>g>and</str<strong>on</strong>g> biological activity. Sciencel42: 1191-1192<br />

Chang V J, Mathew C, Mangold K, Marien K, Hendricks L <str<strong>on</strong>g>and</str<strong>on</strong>g> Bailey G<br />

(1991). Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ras gene mutati<strong>on</strong> in rainbow trout livers initiated by<br />

aflatoxin B l . Mol. Carcin.4:1l2<br />

Chavez S MC, Martinez CAP, Osorio I M, Palacios C A M <str<strong>on</strong>g>and</str<strong>on</strong>g> Mareno I<br />

0(1994). Pathological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding young Oreochromis niloticus diets<br />

supplemented with different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B l Aquaculture, 127: 1,49­<br />

67<br />

Cheng Y H, Shen T F, Pang V F <str<strong>on</strong>g>and</str<strong>on</strong>g> Chen B J (2001). <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> carotenoids <strong>on</strong> growth performance <str<strong>on</strong>g>and</str<strong>on</strong>g> immune resp<strong>on</strong>se in mule<br />

ducklings, Comp. Biochem. Physiol. Part C, Pharmacology, Toxicology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Endocriology, vol I, 28 (1), 19-26<br />

Cheung K K <str<strong>on</strong>g>and</str<strong>on</strong>g> Sim G A (1964). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> G, :Direct determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

structure by the method <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphous replacement, Nature (L<strong>on</strong>d)<br />

201:1185-1188<br />

170


Clifford J I, Rees K K <str<strong>on</strong>g>and</str<strong>on</strong>g> Steven M EM (1967). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins B., G1<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> G 2 <strong>on</strong> protein <str<strong>on</strong>g>and</str<strong>on</strong>g> nucleic acid synthesis in rat liver. Biochem J. 103:258<br />

Columbano A (1995). Cell death: current difficulties in discriminating<br />

apoptosis from necrosis in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> pathological processes in vivo, J<br />

Cellular Biochem, 58:181-190<br />

Cullen J M <str<strong>on</strong>g>and</str<strong>on</strong>g> Newbeme P M (1994). Acute hepatotoxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins,<br />

In: Eat<strong>on</strong> D L, Groopman J D editors, Toxicol aflatoxins, San Diego,<br />

California, Academic press, 3-26<br />

D'Andrea A D <str<strong>on</strong>g>and</str<strong>on</strong>g> Haseltine W A (1978). Modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA by<br />

aflatoxin creates alkali labile lesi<strong>on</strong>s in DNA at positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> guanine <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

adenine.Proc.Natl.Acad.Sci USA 75:4120<br />

Davies B J (1964). Ann NY Acad Sci, 121:404<br />

Davies N D <str<strong>on</strong>g>and</str<strong>on</strong>g> Dienar U L (1968). Growth <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxin producti<strong>on</strong> by<br />

Aspergillus parasiticus from various carb<strong>on</strong> sources, Appl.Microbiol.16:158<br />

Davis PW (1970). Inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> renal Na+K+ activated ATPase activity by<br />

ethacrynic acid, Biochem. Pharmacol. 19: 1983-1989.<br />

Debommoy K L, Bill <str<strong>on</strong>g>and</str<strong>on</strong>g> Schnabel (1993). DNA isolati<strong>on</strong> by a rapid<br />

method from human blood samples: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> MgCh, EDTA, storage time,<br />

temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> DNA yield <str<strong>on</strong>g>and</str<strong>on</strong>g> quality. Biochem. Genetics,31:321-328<br />

Degen G H <str<strong>on</strong>g>and</str<strong>on</strong>g> Newmann H G (1978). The major metabolite <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B 1<br />

in the rat is the glutathi<strong>on</strong>e c<strong>on</strong>jugate. Chem Biol.Interact. 22:239<br />

Degen G H<str<strong>on</strong>g>and</str<strong>on</strong>g> Newmann H G (1981). Differences in aflatoxin B 1<br />

susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g> rat <str<strong>on</strong>g>and</str<strong>on</strong>g> mouse are correlated with the capability in vitro to<br />

inactive aflatoxin B 1 epoxide.Carcinogenesis (L<strong>on</strong>d), 2:299<br />

Detroy R W, Lillehoj E B, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ciegler A (1971).<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> related<br />

compounds,in Microbial Toxins, Vol 6,Ciegler A, Kadis S<str<strong>on</strong>g>and</str<strong>on</strong>g> Ajl S J, Eds,<br />

Academic Press, New York, 39<br />

Douglas GR<str<strong>on</strong>g>and</str<strong>on</strong>g> Reed J C (1998). Mitoch<strong>on</strong>dria <str<strong>on</strong>g>and</str<strong>on</strong>g> apoptosis, Science,<br />

281, 1309<br />

171


Egm<strong>on</strong>d H P V <str<strong>on</strong>g>and</str<strong>on</strong>g> Wagstaff P J (1989). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B1 in peanut meal<br />

reference materials: Intercomparisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> methods, Food Additives <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

C<strong>on</strong>t,6:307-319<br />

Ellis W 0, Smith J P <str<strong>on</strong>g>and</str<strong>on</strong>g> Simps<strong>on</strong> B K (1991). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s in food:<br />

Occurrence, biosynthesis, effects <strong>on</strong> organisms, detecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> methods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>trol, Critical Reviews in Food Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Nutriti<strong>on</strong>, 30 (3):403-439<br />

Esterbauer H, Cheeseman K H, Dianzani M D, Poli G <str<strong>on</strong>g>and</str<strong>on</strong>g> Slater T F (1982).<br />

Separati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the aldehyde products <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid<br />

peroxidati<strong>on</strong> stimulated By ADP -Fe 2+ in rat liver microsomes. Biochem. J.<br />

208:129-140<br />

Fiske C <str<strong>on</strong>g>and</str<strong>on</strong>g> Subbarow Y (1925). The colorimetric determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phosphorus, J.BioI. Chem. 66,375-400<br />

Flohe L (1989). The selenoprotein glutathi<strong>on</strong>e peroxidase, in Glutathi<strong>on</strong>e:<br />

Chemical <str<strong>on</strong>g>Biochemical</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Medical aspects. Part A eds. D. Dolphin D,<br />

Avramovie 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> Pouls<strong>on</strong> R (John Wiley& S<strong>on</strong>s, New York), 643<br />

Foster K, Abmed L<str<strong>on</strong>g>and</str<strong>on</strong>g> Zieve (1974). Acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> methanethical <strong>on</strong><br />

Na"1(+A'TPase, Implicati<strong>on</strong>s for hepatic coma, Ann New York Acad Sci,<br />

242: 573-576<br />

Franklin T M, Lee J S, Kohler A, Chipman J K (2000). Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mutati<strong>on</strong>s in the p53 tumour suppressor gene <str<strong>on</strong>g>and</str<strong>on</strong>g> ki -<str<strong>on</strong>g>and</str<strong>on</strong>g> Ha -ras-proto<strong>on</strong>cogenes<br />

in hepatic tumours <str<strong>on</strong>g>of</str<strong>on</strong>g> European flounder (Platichthys<br />

flesus)Mar.Envir<strong>on</strong>.Res 50:251-255.<br />

Fujimoto K, Neff WE <str<strong>on</strong>g>and</str<strong>on</strong>g> Frankel E N (1984). The reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA with<br />

lipid oxidati<strong>on</strong> products, metals <str<strong>on</strong>g>and</str<strong>on</strong>g> reducing agents, Biochem.<br />

Biophys.Acta 795: 100-107<br />

Gabrielascu E (1970). The lability <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomes during the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

neur<strong>on</strong>s to stress. Histochem. J. 2:123-130<br />

Gahan P B (1965). Rerversible activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lysosomes in rat liver. J.<br />

Histochem.Cytochem. 13: 334-338<br />

George S Bailey, David E, Williams <str<strong>on</strong>g>and</str<strong>on</strong>g> Jerry D H (1996). Envir<strong>on</strong>mental<br />

Health Perspectives Volume 104, Supplement 1<br />

172


George K C (1997). Comparative study <str<strong>on</strong>g>of</str<strong>on</strong>g> Aflatoxicosis in Ducks <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Fishes, Ph.D thesis submitted to ICAR, New Delhi<br />

Ghittino P (1976). Nutriti<strong>on</strong>al factors in trout hepatoma. Prog. Exp. Tumor<br />

Res. 20: 317-338<br />

Groopman J D, Wang J S, Scholl P (1996). Molecular biomarkers for<br />

aflatoxins : From adducts to mutati<strong>on</strong>s to human liver cancer, Can. J.<br />

Physiol, Pharmacol. 74:203-209<br />

Gupta A <str<strong>on</strong>g>and</str<strong>on</strong>g> Singh J (1995). p53:The molecular guardian <str<strong>on</strong>g>of</str<strong>on</strong>g> cell cycle,<br />

Current Science,68(11):1096-1102<br />

Haller R D <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts R J (1980). Dual neoplasia in a specimen <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sarotherod<strong>on</strong> spiluris spiluris (Gunther)(= Tilapia spiluris). J. Fish. Dis. 3:<br />

63-66<br />

Halliwell B (1996). Mechanisms involved in the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals,<br />

Pathol. BioI. 44:6-13<br />

Halliwel1 B<str<strong>on</strong>g>and</str<strong>on</strong>g> Gutteridge J M C (1985). In : Free radicals in Biology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Medicine, Clarend<strong>on</strong> press, L<strong>on</strong>d<strong>on</strong><br />

Halver J E (1967). Crystalline aflatoxin <str<strong>on</strong>g>and</str<strong>on</strong>g> other vectors for trout<br />

hepatoma, In Trout Hepatoma Research C<strong>on</strong>ference, 78-102<br />

Halver J E (1969). Aflatoxicosis <str<strong>on</strong>g>and</str<strong>on</strong>g> trout hepatoma L A Goldblatt,<br />

<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> : Scientific background, c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> implicati<strong>on</strong>s, Academic Press,<br />

New York,265-306<br />

Halver J E (1969). Aflatoxicosis <str<strong>on</strong>g>and</str<strong>on</strong>g> trout hepatoma, In <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s, L A<br />

Goldblatt (ed) Academic Press ,Inc. N Y, 265-306<br />

Halver J E, Ashley L M <str<strong>on</strong>g>and</str<strong>on</strong>g> Smith R R (1969). Aflatoxicosis in rainbow<br />

trout <str<strong>on</strong>g>and</str<strong>on</strong>g> Coho Salm<strong>on</strong>. Note. Cancer Inst. M<strong>on</strong>ogr. 31: 141-155<br />

Harris R R<str<strong>on</strong>g>and</str<strong>on</strong>g> Bayliss D (1988). Gill Na+K+ATPase in decapod<br />

crustaceans: distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> characteristics in relati<strong>on</strong> to Na+ regulati<strong>on</strong>,<br />

Comp. Biochem. Physiol. 90A, (2), 303-308<br />

Haya K <str<strong>on</strong>g>and</str<strong>on</strong>g> Waiwood B A (1983). In Nriagu, O. (Ed.), Adenylate energy<br />

charge <str<strong>on</strong>g>and</str<strong>on</strong>g> ATPase activity: Potential biochemical indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> sublethal<br />

effects caused by pollutants in aquatic animals, Wiley, New York, 303-333<br />

173


Hendricks J D, Wales J H, Sinnhuber R 0, Nix<strong>on</strong> J E, Lovel<str<strong>on</strong>g>and</str<strong>on</strong>g> P M <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Scanlan R A (1980). Rainbow trout (Salmo gairdneri) embryos: a sensitive<br />

animal model for experimental carcinogenesis. Fed .Proc 39 :3222<br />

Henle E S <str<strong>on</strong>g>and</str<strong>on</strong>g> Li<strong>on</strong> S (1997). Formati<strong>on</strong>, preventi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> repair <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA<br />

damage by ir<strong>on</strong>! hydrogen peroxide, J.BioI. Chem. 31:304<br />

Henry R J, Chiamori N, Golub 0 J <str<strong>on</strong>g>and</str<strong>on</strong>g> Berkman S (1960). Amer. J. din.<br />

Path. 34:381<br />

Hoover K (1984). Use <str<strong>on</strong>g>of</str<strong>on</strong>g> small fish species in carcinogenicity testing, Natl.<br />

Cancer. Inst.M<strong>on</strong>ogr. 65.<br />

Irshad M <str<strong>on</strong>g>and</str<strong>on</strong>g> P S Chaudhuri (2002). Oxidant -antioxidant System: Role<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> significance in human body. Indian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Biology.<br />

Vo140: 1233-1239<br />

Jacobs<strong>on</strong> W C, Harmeyer W C, Jacks<strong>on</strong> J E, Armbricht B <str<strong>on</strong>g>and</str<strong>on</strong>g> Wiseman H G<br />

(1978). Transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B 1 in to the tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> growing pigs, Bull.<br />

Envir<strong>on</strong>. C<strong>on</strong>tam. ToxicoI. 19: 156<br />

Jantrarotai W, Lovell R T <str<strong>on</strong>g>and</str<strong>on</strong>g> Grizzle J M (1990). Acute toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxin B, to channel catfish. 1. Aquat. Animal Health 2: 237-247<br />

J<str<strong>on</strong>g>of</str<strong>on</strong>g>fe A Z <str<strong>on</strong>g>and</str<strong>on</strong>g> Lisker N (1969). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> light, temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> pH value <strong>on</strong><br />

aflatoxin producti<strong>on</strong> in vitro, AppI.Microbiol.18: 517<br />

J<strong>on</strong>es D P (1985). The role <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong> in oxidative<br />

stress:hypoxic <str<strong>on</strong>g>and</str<strong>on</strong>g> hepwroxic models. In: Sies H (Ed) Oxidative stress.<br />

Academic Press, L<strong>on</strong>d<strong>on</strong>, Orl<str<strong>on</strong>g>and</str<strong>on</strong>g>o 151-195<br />

Kakkar P, Das B<str<strong>on</strong>g>and</str<strong>on</strong>g> Vishwanath D N (1984). A modified<br />

spectrophotometric assay <str<strong>on</strong>g>of</str<strong>on</strong>g> superoxide dismutase. Ind. J. biochem. Biophy.<br />

21: 130<br />

Kapila R (1999). <str<strong>on</strong>g>Biochemical</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> cold water fishes, Bulletin No: 3,<br />

Nati<strong>on</strong>al research center <strong>on</strong> cold water fisheries, U.P. (India)<br />

Kappus H (1987). Oxidative Stress in chemical toxicity.Arch.toxicoI60:144­<br />

149<br />

174


Kerr J F R, Wyllie A H<str<strong>on</strong>g>and</str<strong>on</strong>g> Currie A R (1972). Apoptosis: a basic biological<br />

phenomen<strong>on</strong> with wide ranging implicati<strong>on</strong>s in tissue kinetics, Br. J. Cancer,<br />

Cancer Research Campaign, 26:31-43<br />

Kerr J F R, Wyllie A H<str<strong>on</strong>g>and</str<strong>on</strong>g> Currie AR (1992). Br J Cancer, 26:239<br />

Kizaki M, Sakashita A <str<strong>on</strong>g>and</str<strong>on</strong>g> Karmakar A (1997). Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> superoxide<br />

dismutase <str<strong>on</strong>g>and</str<strong>on</strong>g> other antioxidant genes in normal <str<strong>on</strong>g>and</str<strong>on</strong>g> leukaemic<br />

haemopoietic cells <str<strong>on</strong>g>and</str<strong>on</strong>g> their relati<strong>on</strong>ship to cytotoxicity by tumour necrosis<br />

factor, Blood, 82:1142<br />

Knox, Greengard M K, Rhodes L D,Van Beneden, R J (1997).Cl<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

p 53 tumor suppressor gene from the Japanese medaka <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mutati<strong>on</strong>al hotspots in MNNG -exposed fish, Gene, 189:101-106<br />

Kumagai 5, Nakano N<str<strong>on</strong>g>and</str<strong>on</strong>g> Aibara K (1983). Interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B I <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

blood comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> various species in vitro. Interc<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>aflatoxin B I<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxicol in the blood. Toxicol Appl. Pharmacol 67 :292<br />

Laemmli U K (1970). Cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> structural protein during the assembling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the head <str<strong>on</strong>g>of</str<strong>on</strong>g>bacteriophage T4, Nature,227:680-685<br />

Lee W V (1965). Quantitative determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins in groundnut<br />

products. Analyst 90: 305-307<br />

Li Y, Huang T T <str<strong>on</strong>g>and</str<strong>on</strong>g> Carls<strong>on</strong> E J (1995). Dilated cardiomyopathy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ne<strong>on</strong>atal lethality in mutant mice lacking manganese superoxide dismutase,<br />

Nat. Genet. 11:376<br />

Lotlikar P, Thee E C, Insetta 5 M <str<strong>on</strong>g>and</str<strong>on</strong>g> Clearfield M 5 (1984). Modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microsome mediated aflatoxin B I binding to exogenous <str<strong>on</strong>g>and</str<strong>on</strong>g> endogenous<br />

DNA by cytosolic glutathi<strong>on</strong>e 5 transferases in rat <str<strong>on</strong>g>and</str<strong>on</strong>g> hamster livers,<br />

Carcinogensis, (L<strong>on</strong>d),5:269<br />

Lovel<str<strong>on</strong>g>and</str<strong>on</strong>g> P M, Wilcox J 5, Hendricks J D <str<strong>on</strong>g>and</str<strong>on</strong>g> Bailey G 5 (1988).<br />

Comparative metabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> DNA binding <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B., aflatoxin M 1<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxicol MI in hepatocytes from rainbow trout (Salmo gairdneri),<br />

Carcinogenesis (L<strong>on</strong>d) 9:441<br />

Lovell T (1989). N<strong>on</strong>nutrient diet comp<strong>on</strong>ents. In: T.Lovell (Editor),<br />

Nutriti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Feeding <str<strong>on</strong>g>of</str<strong>on</strong>g>Fish. Van Nostr<str<strong>on</strong>g>and</str<strong>on</strong>g> Reinhold, New York, 93-105<br />

175


Lowry 0 H, Rosenbrough N J, Farr A L<str<strong>on</strong>g>and</str<strong>on</strong>g> R<str<strong>on</strong>g>and</str<strong>on</strong>g>all R J (1951). Protein<br />

measurement with Folin -phenol reagent, J. BioI. Chem. 193,265-275<br />

Luthy J, Zweifel U <str<strong>on</strong>g>and</str<strong>on</strong>g> Schlatter C (1980). Metabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> tissue<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> [l4C] aflatoxin B 1 in pigs, Food Cosmet. ToxicoI. 18: 253<br />

Mac Millan-Crow L A, Crow J P <str<strong>on</strong>g>and</str<strong>on</strong>g> Thomps<strong>on</strong> J A (1998). Peroxynitrite<br />

mediated inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> manganese superoxide dismutase involves nitrati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> critical tyrosine residue, Biochemistry, 37:1613<br />

Maehly A C <str<strong>on</strong>g>and</str<strong>on</strong>g> Chance B (1955). Assay <str<strong>on</strong>g>of</str<strong>on</strong>g> catalases <str<strong>on</strong>g>and</str<strong>on</strong>g> peroxidases: In<br />

Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Biochemical</str<strong>on</strong>g>Analysis, vol 2 (Colowick SP <str<strong>on</strong>g>and</str<strong>on</strong>g> Kaplan<br />

NO,eds).Academic Press, New York, 764<br />

Mair RD <str<strong>on</strong>g>and</str<strong>on</strong>g> Hall T (1977). Inorganic peroxides (Swem D E <str<strong>on</strong>g>and</str<strong>on</strong>g> Witky)<br />

(eds) NY Intersciences, 2: 532<br />

Marks V (1959) Clin. Chem. Acta. 4:395<br />

Marvan F, Vemerova E, Samek M, Reisnervov H, Nemec J, Martakova R<br />

(1983). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B 1 residues in the organs <str<strong>on</strong>g>of</str<strong>on</strong>g> young poultry, BioI. Chem.<br />

Vet. (Praha),24:85-92<br />

Me Cord J M (2000). The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidative stress,<br />

Am.J.Med.l08:652<br />

Meier B, Scherk C <str<strong>on</strong>g>and</str<strong>on</strong>g> Schmidt M (1998). pH dependent inhibiti<strong>on</strong> by<br />

azide <str<strong>on</strong>g>and</str<strong>on</strong>g> fluoride <str<strong>on</strong>g>of</str<strong>on</strong>g> the ir<strong>on</strong> superoxide dismutase from propi<strong>on</strong>ibacterium<br />

shennanii, Biochem. J.331:403<br />

Melby <str<strong>on</strong>g>and</str<strong>on</strong>g> Altman (1974). H<str<strong>on</strong>g>and</str<strong>on</strong>g>book <str<strong>on</strong>g>of</str<strong>on</strong>g> laboratory animal Science, Vol II<br />

CRC Press, INC Ohio, 365 -391<br />

Michael R D, Srinivas S D, Sailendri K <str<strong>on</strong>g>and</str<strong>on</strong>g> Muthukkaruppan (1994). A<br />

rapid method for repetitive bleeding in fish, Indian 1. Exp. BioI. 838-839<br />

Mills G C (1960). Glutathi<strong>on</strong>e peroxidase <str<strong>on</strong>g>and</str<strong>on</strong>g> the destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen<br />

peroxide in animal tissues, Arch. Biochem. Biophys. 86: 1<br />

Misra R P, Muench K F <str<strong>on</strong>g>and</str<strong>on</strong>g> Humayun M Z (1983). Covalent <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

n<strong>on</strong>covalent interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin with defined deoxyrib<strong>on</strong>ucleic acid<br />

sequences, Biochemistry 22: 351<br />

176


Mohun AF <str<strong>on</strong>g>and</str<strong>on</strong>g> Cook I J Y (1957), lClin. Pathol. 10: 394<br />

M<strong>on</strong>ey T (1976). Biosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> polyketides, Biosynthesis 4: 1<br />

Moore M N, Pipe R K <str<strong>on</strong>g>and</str<strong>on</strong>g> Farrar S V (l982).Lysosomal <str<strong>on</strong>g>and</str<strong>on</strong>g> microsomal<br />

resp<strong>on</strong>ses to envir<strong>on</strong>mental factors in Littorina littorea from Sullom Voc.<br />

Mar.Pollut. Bull. 13: 340-345<br />

Moore S <str<strong>on</strong>g>and</str<strong>on</strong>g> Stein WH (1954). Modified Ninhydrin reagent for the<br />

photometric determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids <str<strong>on</strong>g>and</str<strong>on</strong>g> related compounds. J. Biol,<br />

Chem. 221: 907<br />

Moreau C <str<strong>on</strong>g>and</str<strong>on</strong>g> Moss M (1979). Eds.Moulds, Toxins <str<strong>on</strong>g>and</str<strong>on</strong>g> Food, John WHey<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>s, Chichester,43<br />

Muench K F, Misra R P <str<strong>on</strong>g>and</str<strong>on</strong>g> Humayun M Z (1983). Sequence specificity in<br />

aflatoxin B) DNA interacti<strong>on</strong>s. Proc. Natl.Acad. Sci. USA, 80:6<br />

Murjani G. Chr<strong>on</strong>ic aflatoxicosis to fish <str<strong>on</strong>g>and</str<strong>on</strong>g> its relevance to human health,<br />

Central institute <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh water aquaculture, Bhubaneswar, Orissa (from<br />

internet)<br />

Nabney J, Burbage M B, Allocraft R <str<strong>on</strong>g>and</str<strong>on</strong>g> Lewis G (1967). Metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aflatoxin in sheep excreti<strong>on</strong> pattern in the lactating ewe, Food Cosmet.<br />

Toxicol. 5:11<br />

Nakae D, K<strong>on</strong>ishi Y <str<strong>on</strong>g>and</str<strong>on</strong>g> Farber J L (1987). Proc Jap Cancer Assoc, 38<br />

Natels<strong>on</strong> S (1957). Microtechniques <str<strong>on</strong>g>of</str<strong>on</strong>g> clinical chemistry for the Routine<br />

Labortary, C C Thomas, Springfield, lllinois, 381<br />

Natels<strong>on</strong>, Scott M L<str<strong>on</strong>g>and</str<strong>on</strong>g> Beffa C (1951). Amer. I. Chem. Patho. 21:275<br />

Nemoto N, Kodama K, Tazawa A, Masahito P <str<strong>on</strong>g>and</str<strong>on</strong>g> Ishikawa T (1986).<br />

Extensive sequence homology <str<strong>on</strong>g>of</str<strong>on</strong>g> the goldfish ras gene to mammalian ras<br />

genes, Differentiati<strong>on</strong>, 32:17<br />

Nesbitt B F, O'Kelly J, Sargeant K <str<strong>on</strong>g>and</str<strong>on</strong>g> Sheridan A (l962).Toxic metabolites<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>Aspergillusjlavus. Nature( L<strong>on</strong>d) 195:1062<br />

177


New M B (1987). Feed <str<strong>on</strong>g>and</str<strong>on</strong>g> feeding <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> shrimps. Aquaculture<br />

development <str<strong>on</strong>g>and</str<strong>on</strong>g> coordinati<strong>on</strong> programme ADCIREP/87126. United Nati<strong>on</strong>s<br />

Development Programme,Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Agriculture Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the United<br />

Nati<strong>on</strong>s, Rome, Italy<br />

Ngethe S, Horbergy T E <str<strong>on</strong>g>and</str<strong>on</strong>g> Ingerbrigtsen K (1992). The depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

super (3) H-aflatoxin B Sub (1) in the rainbow trout ( Oncorhynchus mykiss)<br />

after oral intravenous administrati<strong>on</strong>. Aquaculture, 108, 3-4 : 323- 332<br />

Ngethe S, Horsberg T E <str<strong>on</strong>g>and</str<strong>on</strong>g> Ingebrigtsen K (1992). Species difference in<br />

hepatic c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> orally administered 3H-AFB 1 between rainbow<br />

trout (Oncorhynchus mykiss) <str<strong>on</strong>g>and</str<strong>on</strong>g> tilapia (Oreochromis niloticus),<br />

Aquaculture, 114 (3-4): 356-358<br />

Niehaus WG <str<strong>on</strong>g>and</str<strong>on</strong>g> Samuels<strong>on</strong> B (1968). Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mal<strong>on</strong>dialdehyde from<br />

phospholipid arachid<strong>on</strong>ate during microsomal lipid peroxidati<strong>on</strong>, Eur. J.<br />

Biochem.6: 126<br />

Northolt M D, Van Egm<strong>on</strong>d H P, <str<strong>on</strong>g>and</str<strong>on</strong>g> Paulsch W E (1977). Differences<br />

between Aspergillus flavus strains in growth <str<strong>on</strong>g>and</str<strong>on</strong>g> aflatoxin B 1 producti<strong>on</strong> in<br />

relati<strong>on</strong> to water activity <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature. J. Food Prot. 40,778<br />

Okhuma S, Moriyama Y <str<strong>on</strong>g>and</str<strong>on</strong>g> Takano T (1982). Indicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a prot<strong>on</strong> pump <strong>on</strong> lysosomes by fluorescein<br />

isothiocyanate dextran fluorescence, Proc Natl Acad Sci USA,79,2758-2762.<br />

Ostrowski-Meissner H T, (1982a). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diets with<br />

aflatoxins <strong>on</strong> growing ducks <str<strong>on</strong>g>and</str<strong>on</strong>g> chickens. Trop.Anim Health Prod. 15: 161­<br />

168<br />

Ostrowski-Meissner H T,(l982b). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary aflatoxins <strong>on</strong> protein <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

energy utilizati<strong>on</strong> by two Ind<strong>on</strong>esian breeds <str<strong>on</strong>g>of</str<strong>on</strong>g> ducklings ( Albio <str<strong>on</strong>g>and</str<strong>on</strong>g> Tegal)<br />

.Poult. sci., 62 : 599-607<br />

Papers. Res. Resp 70, J E Halver <str<strong>on</strong>g>and</str<strong>on</strong>g> I a Mitchell (eds) BSFW GPO,<br />

Wash.DC<br />

Patters<strong>on</strong> J W<str<strong>on</strong>g>and</str<strong>on</strong>g> Lazarov A (1955). Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glutathi<strong>on</strong>e. In<br />

Methods in biochemical Analysis, vol 2 (Glick D ed.), Interscience<br />

Publicati<strong>on</strong>s Inc, New York, 259<br />

178


Plummer DT (1987). An introducti<strong>on</strong> to practical biochemistry, 3 rd ed.,<br />

McGraw Hill publishing Co. Ltd., New Delhi, 268-269<br />

P<strong>on</strong>s Jr W A, Lee L S, Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f L(1980).Revised methods for aflatoxins, in<br />

cott<strong>on</strong>seed products <str<strong>on</strong>g>and</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thin layer <str<strong>on</strong>g>and</str<strong>on</strong>g> high performance<br />

liquid chromatography.Determinative steps: Collabarative study. J Assoc<br />

Off Anal.Chem.63: 899-905<br />

P<strong>on</strong>s Jr W A,Cucullu A F,Lee LS ,Franz A 0, Goldblatt L A(1966 a).<br />

Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins in agricultural products: Use <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous<br />

acet<strong>on</strong>e for extracti<strong>on</strong>. J Assoc. Off Anal. Chem 49: 554-562<br />

Post G (1983). Neoplastic diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> fishes.Textbook <str<strong>on</strong>g>of</str<strong>on</strong>g> fish health.241­<br />

247.T F H Publicati<strong>on</strong>s, Inc<br />

Rajan A (1993). Aflatoxic hepatosis . In : Nati<strong>on</strong>al symposium <strong>on</strong> Path <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Biotech in the diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> liver diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> livestock <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry, Bikaner,<br />

8-10<br />

Rana S V S, Tanu Allen <str<strong>on</strong>g>and</str<strong>on</strong>g> Rajul Singh (2002). Inevitable glutathi<strong>on</strong>e, then<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> now. Indian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Biology. Vol 40, 706-716<br />

Rebecca J, Van Beneden <str<strong>on</strong>g>and</str<strong>on</strong>g> Ostr<str<strong>on</strong>g>and</str<strong>on</strong>g>er G K (1994). Expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Oncogenes <str<strong>on</strong>g>and</str<strong>on</strong>g> tumour Suppressor Genes in Teleost Fishes.Aquatic<br />

Toxicology CRC Press INC 295-297<br />

Reinhold JG (1953). Submitted by, to st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard method in clinical chemistry,<br />

editor Reiner M, volume 1, Academic press, New York, 88<br />

Retnagal <str<strong>on</strong>g>and</str<strong>on</strong>g> Ghoshal (1966). Exp. Mol. Pathol. 5:413<br />

Rogers, A.E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Newberne, P M (1969).<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B 1 carcinogenesis in<br />

lipotrope-deficient rats.Cancer Res.29: 165-172.<br />

Roy A K (1968). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin <strong>on</strong> polysomal pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>and</str<strong>on</strong>g> RNA<br />

synthesis in rat liver, Biochem. Biophys. Acta. 169: 206-211<br />

Sabbi<strong>on</strong>i G, Ambs S, Wogan G N <str<strong>on</strong>g>and</str<strong>on</strong>g> Groopman J D (1990). The aflatoxinlysine<br />

quantified by high performance liquid chromatography from human<br />

serum albumin samples, Carcinogenesis (L<strong>on</strong>d<strong>on</strong>), 11:2063<br />

179


Saber N A (1995). Depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein synthesis in tilapia by aflatoxin,<br />

Bull. Nat. Inst. Oceanogr. Egypt, vo121, 2: 431-638<br />

Sahoo P K, Mukherjee S C, Nayak S K <str<strong>on</strong>g>and</str<strong>on</strong>g> Dey S (2001). Acute <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subchr<strong>on</strong>ic toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B} to rohu, Labeo rohita, Ind. J. Exp. BioI.<br />

39: 453-458<br />

Sargeant K, Carnaghan R B A <str<strong>on</strong>g>and</str<strong>on</strong>g> Allocr<str<strong>on</strong>g>of</str<strong>on</strong>g>t R (1963). Toxic products in<br />

groundnuts chemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> origin, Chem. Ind 2:53<br />

Sargeant K, 0' Kelly J, Carnaghan R BA, Allocr<str<strong>on</strong>g>of</str<strong>on</strong>g>t (1961 a). The Assay <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a toxic principle in certain groundnut meals, Vet Record 73: 1219-1223<br />

Sato S, Matsushima N, Tanaka T, Sugimura T <str<strong>on</strong>g>and</str<strong>on</strong>g> Taki (1963). The<br />

colorimetric determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphatase -- Sigma Technical Bulletin,<br />

Sigma Chemicals Co. St Louis, 104<br />

Sato S, Matsushima N, Tanaka T, Sugimura T <str<strong>on</strong>g>and</str<strong>on</strong>g> Takashima F(l973).<br />

Hepatic tumours in the guppy(Lebsites reticulatus) induced by aflatoxin B1<br />

dimethylnitrosamine <str<strong>on</strong>g>and</str<strong>on</strong>g> 2-acetamin<str<strong>on</strong>g>of</str<strong>on</strong>g>luorene.J.Natl.Cancer.Inst.50: 765­<br />

778<br />

Scarpelli D G (1967). Ultrastructural <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical observati<strong>on</strong>s <strong>on</strong> trout<br />

hepatoma, In: trout Hepatoma Research c<strong>on</strong>ference Papers.Res.Rep 70, J E<br />

Halver <str<strong>on</strong>g>and</str<strong>on</strong>g> I A Mitchell (eds) BSFW. GPO.Wash. DC.60-61<br />

Scarpelli D G, Greider M M <str<strong>on</strong>g>and</str<strong>on</strong>g> Frajola W J (1963). Observati<strong>on</strong>s <strong>on</strong><br />

hepatic -cell hyperplasia, adenoma <str<strong>on</strong>g>and</str<strong>on</strong>g> hepatoma <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout (Salmo<br />

gardueril). Cancer Res 23:848<br />

Scarpelli D G (1969). Ultrastructural <str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trout<br />

hepatoma, Trout hepatoma research c<strong>on</strong>ference papers<br />

Searcy R L, Ujihara I, Hayashi S<str<strong>on</strong>g>and</str<strong>on</strong>g> Berk J E (1964). An intrinsic disparity<br />

between amyloclastic <str<strong>on</strong>g>and</str<strong>on</strong>g> saccharogenic estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> human serum<br />

isoamylase activities, Clin.Chem.Acta. 9: 505<br />

Shank R C, Wogan G N, Gibs<strong>on</strong> J B<str<strong>on</strong>g>and</str<strong>on</strong>g> N<strong>on</strong>dasua A (1972). Dietary<br />

aflatoxins <str<strong>on</strong>g>and</str<strong>on</strong>g> human liver cancer IT, aflatoxins in market food <str<strong>on</strong>g>and</str<strong>on</strong>g> food<br />

stuffs <str<strong>on</strong>g>of</str<strong>on</strong>g>Thail<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> H<strong>on</strong>gk<strong>on</strong>g Food Cosmet. Toxicol. 10:61<br />

180


Shantha T (1994). Methods for Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g>s: III A Critical<br />

appraisal. J. Food Sci. Technol. Vo131, 2:91-103<br />

Shen H M, Shi C Y, Lee H P <str<strong>on</strong>g>and</str<strong>on</strong>g> Ong C N (1994).<str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B 1 induced<br />

lipid peroxidati<strong>on</strong> in rat liver, Toxicol. Apl. Phannacol. 127:145-150<br />

Sim<strong>on</strong> R C, Dollar A M <str<strong>on</strong>g>and</str<strong>on</strong>g> Smuckler E A( 1967).Descriptive classificati<strong>on</strong><br />

<strong>on</strong> normal <str<strong>on</strong>g>and</str<strong>on</strong>g> altered histology <str<strong>on</strong>g>of</str<strong>on</strong>g> trout livers In: J E Halver <str<strong>on</strong>g>and</str<strong>on</strong>g> I A<br />

Mitchell (Editors). Trout Hepatoma Research C<strong>on</strong>ference<br />

Papers.D.S.D.H.E.W<str<strong>on</strong>g>and</str<strong>on</strong>g> D.S.D. Int. FishIWildlife Res.Rep.70: 18-28<br />

Singh N<str<strong>on</strong>g>and</str<strong>on</strong>g> Clausen J (1980). Different tissue resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed functi<strong>on</strong><br />

oxidases <str<strong>on</strong>g>and</str<strong>on</strong>g> detoxifying enzymes to aflatoxin B1 administrati<strong>on</strong> in the rat,<br />

Br. J. Exp. Path. 61:611-616<br />

Sinnhuber R 0, Lee D J, Wales J H <str<strong>on</strong>g>and</str<strong>on</strong>g> Ayres J L (1968). Dietary factors<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> hepatoma in rainbow trout Salmo gairdneri II.Cocarcinogenesis by<br />

cyclopropenoids fatty acids <str<strong>on</strong>g>and</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> gossypol <str<strong>on</strong>g>and</str<strong>on</strong>g> altered lipids <strong>on</strong><br />

aflatoxin induced liver cancer. J. Natl. Cancer Inst. 41:1293-1301<br />

Sinnhuber R 0, Lee D J, Wales J H, L<str<strong>on</strong>g>and</str<strong>on</strong>g>ers M K <str<strong>on</strong>g>and</str<strong>on</strong>g> Keyl AC (1974).<br />

Hepatic carcinogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin M I in rainbow trout (Salmo gairdneri)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> its enhancement by cyclopropene fatty acids, J. Natl. Cancer Inst. 53<br />

:1285<br />

Skou J C (1957). The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> some cati<strong>on</strong>s <strong>on</strong> adenosine triphosphatase<br />

from peripheral nerves, Biochim. Biophys. Acta, 23, 394-401<br />

Smith J E (1982). Mycotoxins <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry management. World Poult. Sci. J.<br />

38 : 201-212<br />

Smith J E <str<strong>on</strong>g>and</str<strong>on</strong>g> Moss M ° (1985). Mycotoxins: Formati<strong>on</strong>, analysis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

significance, John WHey <str<strong>on</strong>g>and</str<strong>on</strong>g> S<strong>on</strong>s, New York<br />

Smith CAD <str<strong>on</strong>g>and</str<strong>on</strong>g> Louis M J (1988). A sequence homologous to the<br />

mammalian p53 <strong>on</strong>cogene in fish cell lines. J. Fish.Dis. 11:525<br />

Snieszko SF, Miller J A <str<strong>on</strong>g>and</str<strong>on</strong>g> Athert<strong>on</strong> C R (1966). Selected haematological<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> biochemical tests performed with blood <str<strong>on</strong>g>and</str<strong>on</strong>g> serum <str<strong>on</strong>g>of</str<strong>on</strong>g> adult rainbow<br />

trout ( Salmo gairdneri) with a high incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatoma. Ann.N Y Acad.<br />

Sci 136:191-210<br />

181


S<strong>on</strong>i KB, Rajan A <str<strong>on</strong>g>and</str<strong>on</strong>g> Kuttan R (1992). Reversal <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin induced liver<br />

damage by turmeric <str<strong>on</strong>g>and</str<strong>on</strong>g> curcumin, Cancer Letters, 66: 115-121<br />

Soussi T, Car<strong>on</strong> De Formentel C <str<strong>on</strong>g>and</str<strong>on</strong>g> May P (1990). Structural aspects <str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

p53 protein in relati<strong>on</strong> to gene evoluti<strong>on</strong>, Oncogene,5:945<br />

Souza M F, Tome A R, Rao V S (1999). Inhibiti<strong>on</strong> by the bi<str<strong>on</strong>g>of</str<strong>on</strong>g>lav<strong>on</strong>oid<br />

tematin <strong>on</strong> aflatoxin B} induced lipid peroxidati<strong>on</strong> in rat liver. 1. Pharm.<br />

Pharmcol. 51:125-129<br />

Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f L, Graff A, Rich H (1966). Rapid procedures for aflatoxin analysis<br />

in cott<strong>on</strong>seed products. J. Assoc. Off Anal.Chem. 49:740-743<br />

Stol<str<strong>on</strong>g>of</str<strong>on</strong>g>f R, Roberts B A <str<strong>on</strong>g>and</str<strong>on</strong>g> Lloyd M K (1971). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> excreti<strong>on</strong> in<br />

features, Food Cosmet. Toxicol. 9:839<br />

Svobodova Z, Piskac A, Havlikova J <str<strong>on</strong>g>and</str<strong>on</strong>g> Aroch L (1982). <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> feeds<br />

with different aflatoxin B} c<strong>on</strong>tents <strong>on</strong> the health <str<strong>on</strong>g>of</str<strong>on</strong>g> carp, Zivocisna Vyroba<br />

-UVTIZ.27:811<br />

Swens<strong>on</strong> D H, Lin J K, Miller J A <str<strong>on</strong>g>and</str<strong>on</strong>g> Miller E C (1977). <str<strong>on</strong>g>Aflatoxin</str<strong>on</strong>g> B} 2,3<br />

epoxide as a probable intermediate in the covalent binding <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins B}<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> B2 to rat liver DNA <str<strong>on</strong>g>and</str<strong>on</strong>g> rRNA in vivo. Cancer Res.37: 172<br />

Tac<strong>on</strong> A G J (1997). Review <str<strong>on</strong>g>of</str<strong>on</strong>g> the state <str<strong>on</strong>g>of</str<strong>on</strong>g> world Aquaculture.FAO<br />

Fisheries Circular No 886, Rev I.Rome, Italy, 39-44<br />

Takshashi K, Okomoto N, Maita M, Rohovec J S<str<strong>on</strong>g>and</str<strong>on</strong>g> Ikeda Y (1992b).<br />

Progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inclusi<strong>on</strong> body syndrome in artificially infected coho salm<strong>on</strong>,<br />

Fish Pathol. 27:89-95<br />

Tanaka, T (1997). Critical Rev. in Oncol. / Hemat. 25:338<br />

Tereza V M, Susana G, Freitas M, Cruz E <str<strong>on</strong>g>and</str<strong>on</strong>g> Silva M P (1987). Lipoid<br />

liver degenerati<strong>on</strong> in trout - a diet related c<strong>on</strong>diti<strong>on</strong>. Aquaculture, 67, (1-2):<br />

213<br />

Thomas P A, Devasagayam <str<strong>on</strong>g>and</str<strong>on</strong>g> Jayashree P K (2002). Biological<br />

significance <str<strong>on</strong>g>of</str<strong>on</strong>g> singlet oxygen, Indian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Biology, Vol<br />

40:680-692<br />

182


Toskulkao C <str<strong>on</strong>g>and</str<strong>on</strong>g> Glinsuk<strong>on</strong> T (1988). Hepatic lipid peroxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

intracellular calcium accumulati<strong>on</strong> in ethanol potentiated aflatoxin B 1<br />

toxicity. J. Pharmacobio. Dyn. 11: 191-197<br />

Towle D W (1981). Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Na+K+ATPase in i<strong>on</strong>ic regulati<strong>on</strong> by marine <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

estuarine animals. Mar. BioI. Lett. 2:107-122<br />

Trush M A <str<strong>on</strong>g>and</str<strong>on</strong>g> Kenslar T W (1991). An overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the relati<strong>on</strong>ship<br />

between oxidative stress <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical carcinogenesis, Free radic. BioI.<br />

Medicine, 10:201-209<br />

Ursim F, Maiorino M <str<strong>on</strong>g>and</str<strong>on</strong>g> Brigelius -Flohe R (1995). The diversity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gluathi<strong>on</strong>e peroxidase, Methods in EnzymoI. 252: 38<br />

Van Beneden R J, Wats<strong>on</strong> D K, Chen T T, Lautenberger J A <str<strong>on</strong>g>and</str<strong>on</strong>g> Papas T S<br />

(1986). Cellular myc(c-myc) in fish ( rainbow trout): its relati<strong>on</strong>ship to other<br />

vertebrate myc genes <str<strong>on</strong>g>and</str<strong>on</strong>g> to the transforming genes <str<strong>on</strong>g>of</str<strong>on</strong>g> the MC29 family <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viruses,Proc.NatI.Acad Sci. USA. 83: 3698<br />

Van Beneden R J <str<strong>on</strong>g>and</str<strong>on</strong>g> Ostr<str<strong>on</strong>g>and</str<strong>on</strong>g>er G K (1992). Expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>cogenes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

tumour suppressor genes in teleost fishes, In: Aquatic Toxicology, Lewis<br />

Publishers, 295-325<br />

Van der Merwe K H<str<strong>on</strong>g>and</str<strong>on</strong>g> Fourie L (1963). On the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the aflatoxins.<br />

Chem. Ind. 4: 1660-1661<br />

Van Dorp D A, van der Zijden A S M, Berrthuis R K, Sparreboom S, Ord W<br />

Q, l<strong>on</strong>g K <str<strong>on</strong>g>and</str<strong>on</strong>g> Keuning R (1963). Dihydro-aflatoxin B}, a metabolite <str<strong>on</strong>g>of</str<strong>on</strong>g> A<br />

flavus: remarks <strong>on</strong> the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B. RecI.Trav.chim. 82 :587-592<br />

Van Soest T C <str<strong>on</strong>g>and</str<strong>on</strong>g> Peerdeman,A F(1964). An X-ray study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dihydroaflatoxin Bt. Kl.Ned. Akad.Wet. proc.Ser B 67:469-472.<br />

Varley H (1988). In: Practical Clinical Biochemistry, CBS publishers, New<br />

Delhi,190<br />

Verma R J <str<strong>on</strong>g>and</str<strong>on</strong>g> Nair A (2001). Ameliorative effect <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin E <strong>on</strong> aflatoxin<br />

induced lipid peroxidati<strong>on</strong> in the testis <str<strong>on</strong>g>of</str<strong>on</strong>g>mice, Asian 1. AndroI. 3:217 -221<br />

Verma R J <str<strong>on</strong>g>and</str<strong>on</strong>g> Raval P J (1992). Alterati<strong>on</strong>s in erythrocyte during induced<br />

chr<strong>on</strong>ic aflatoxicosis in rabbits, Bull. Envir<strong>on</strong>. C<strong>on</strong>tam. Toxicol. 49:861-865<br />

183


Verma R J, Kolhe A S<str<strong>on</strong>g>and</str<strong>on</strong>g> Chaudhari S B (1998). Intracellular calcium<br />

accumulati<strong>on</strong> during aflatoxicosis, Med. Sci. Res. 26:339-341<br />

Verma S K <str<strong>on</strong>g>and</str<strong>on</strong>g> P<str<strong>on</strong>g>and</str<strong>on</strong>g>ey S (1987). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin B} <strong>on</strong> the<br />

Haematopoietic tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> air breathing teleost Channa punctatus In : J. Aqua.<br />

5:13-21<br />

Verma S R, Gupta A K, Bansal S K <str<strong>on</strong>g>and</str<strong>on</strong>g> Dalela R C (1978). In vitro<br />

disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP dependent active transport following treatment with aldrin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> its epoxy analog dieldrin in a fresh water teleost Labeo rohita,<br />

Toxicology, 11:193-201<br />

Verma S R, Rani S<str<strong>on</strong>g>and</str<strong>on</strong>g> Dalela R C (1980). <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> phenol <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dinitrophenol <strong>on</strong> acid <str<strong>on</strong>g>and</str<strong>on</strong>g> alkaline phosphatase activities in tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> a fish<br />

Notopterus, Arch. Envir<strong>on</strong>. C<strong>on</strong>taIn. Toxico1.9: 451-459<br />

Wats<strong>on</strong> T A <str<strong>on</strong>g>and</str<strong>on</strong>g> Beamish F W H (1981). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc <strong>on</strong> branchial ATPase<br />

activity in vivo in rainbow trout Salmo gairdneri. Comp. Biochem. Physiol.<br />

68C: 167-173<br />

Wertz I E <str<strong>on</strong>g>and</str<strong>on</strong>g> Hanley M R (1996). Diverse molecular provocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

programmed cell death. Tr. Biochem. Sci. 21: 359-364<br />

Wogan G N, Edwards G S <str<strong>on</strong>g>and</str<strong>on</strong>g> Newberne P M (1971).Structure- activity<br />

relati<strong>on</strong>ships in toxicity <str<strong>on</strong>g>and</str<strong>on</strong>g> carcinogenicity <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxins <str<strong>on</strong>g>and</str<strong>on</strong>g> analogs.<br />

Cancer Res. 31: 1936-1942<br />

W<strong>on</strong>g Z A <str<strong>on</strong>g>and</str<strong>on</strong>g> Hsieh D P H (1978).Aflatoxicol :major aflatoxin B}<br />

metabolite in rat plasma, Science(Washingt<strong>on</strong> DC), 200:325<br />

Wood E M <str<strong>on</strong>g>and</str<strong>on</strong>g> Lars<strong>on</strong> C P (1961). Hepatic carcinoma in rainbow trout.<br />

Arch. Path. 71 :471-479<br />

Woodward H (1959). The clinical significance <str<strong>on</strong>g>of</str<strong>on</strong>g> serum acid phosphatase.<br />

Am. J.Med. 27:902.<br />

Wroblewski F <str<strong>on</strong>g>and</str<strong>on</strong>g> La Due J S (1955). Proc.Soc.Exp.Biol. Med. N.Y. 90:210<br />

Yamakura F, Taka H<str<strong>on</strong>g>and</str<strong>on</strong>g> Fujimura (1998). Inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> manganese<br />

superoxide dismutase by peroxynitrite is caused by exclusive nitrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tyrosine 34 to 3 nitrotyrosine, J. BioI. Chem. 273: 14085<br />

184


Zak B (1957). Amer. 1. Clin. Path. 27: 583<br />

Zar J H (1996). Biostatistical analysis, 3 rd ed.Prentice Hall Internati<strong>on</strong>al Inc.<br />

179-275<br />

185

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!