11.08.2013 Views

JavaPsi - Simulating and Visualizing Quantum Mechanics (english)

JavaPsi - Simulating and Visualizing Quantum Mechanics (english)

JavaPsi - Simulating and Visualizing Quantum Mechanics (english)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3 SOLVING SCHRÖDINGER’S EQUATION 12<br />

Interestingly to note the transmission coefficient D is still greater than<br />

0 if the wave packet hits the wall with a total energy E < V0! I.e. the<br />

probability that a particle with E < V0 is measured after the wall is greater<br />

than 0 — the particle can tunnel the wall.<br />

3.2.5 Harmonic oscillator<br />

Figures 6a until 6c show that a wave packet (3.21) in a harmonic oscillator<br />

potential (c.f. section 3.1.5) oscillates from the left to the right again <strong>and</strong><br />

again. That is the behavior of the particle here is very similar to the classical<br />

description.<br />

3.3 Two-dimensional, time-independent case<br />

Schrödinger equation :<br />

<br />

− 2<br />

2m ∇2 <br />

+ V (x, y) Ψ(x, y) = EΨ(x, y)<br />

Solution: centered space (CS) discretization <strong>and</strong> relaxation yields<br />

ψ(x, y) =<br />

with F (x) from section 3.1.1.<br />

ψ(x + h, y) + ψ(x − h, y) + ψ(x, y + h) + ψ(x, y − h)<br />

4 − h 2 F (x, y)<br />

3.4 Two-dimensional, time-dependent case<br />

Schrödinger equation :<br />

<br />

− 2<br />

2m ∇2 <br />

∂Ψ(x, y, t)<br />

+ V (x, y, t) Ψ(x, y, t) = i<br />

∂t<br />

or<br />

∂ 2 Ψ(x, y, t)<br />

∂x 2<br />

+ ∂2 Ψ(x, y, t)<br />

∂y 2<br />

+i 2m<br />

<br />

∂Ψ(x, y, t)<br />

∂t<br />

− 2m<br />

V (x, y, t)Ψ(x, y, t) = 0<br />

<br />

Solution: forward time, centered space (FTCS) algorithm. Discretization<br />

<strong>and</strong> solving the obtained system yields recursion for Ψ(x, y, t + ∆t) =<br />

Ψr(x, y, t + ∆t) + iΨi(x, y, t + ∆t)<br />

Ψr(x, y, t + ∆t) = c2V (x,y,t)Ψ∂2 r<br />

Ψi(x, y, t + ∆t) = c2V (x,y,t)Ψ∂2 i<br />

Ψ ∂2<br />

(x,y,t)+c1Ψ∂2 i (x,y,t)+c2 1Ψr(x,y,t)−c1c2V (x,y,t)Ψi(x,y,t)<br />

c2 1 +c2 ,<br />

2V (x,y,t)2<br />

(x,y,t)−c1Ψ∂2 r (x,y,t)+c2 1Ψi(x,y,t)−c1c2V (x,y,t)Ψr(x,y,t)<br />

c2 1 +c2 2V (x,y,t)<br />

r (x, y, t) = Ψr(x+∆x,y,t)+Ψr(x−∆x,y,t)+Ψr(x,y+∆y,t)+Ψr(x,y−∆y,t)−4Ψr(x,y,t)<br />

(∆x) 2<br />

Ψ∂2 Ψi(x+∆x,y,t)+Ψi(x−∆x,y,t)+Ψi(x,y+∆y,t)+Ψi(x,y−∆y,t)−4Ψi(x,y,t)<br />

i (x, y, t) = (∆x) 2<br />

with c1 = − 2m<br />

∆t <strong>and</strong> c2 = 2m<br />

2 .<br />

,<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!