11.08.2013 Views

JavaPsi - Simulating and Visualizing Quantum Mechanics (english)

JavaPsi - Simulating and Visualizing Quantum Mechanics (english)

JavaPsi - Simulating and Visualizing Quantum Mechanics (english)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3 SOLVING SCHRÖDINGER’S EQUATION 6<br />

ψ(x ± h) by the Taylor series:<br />

ψ(x + h) = ψ(x) + hψ ′ (x) + h2<br />

2 ψ′′ (x) + h3<br />

6 ψ′′′ (x) + h4<br />

24 ψ′′′′ (x) + · · · ,<br />

ψ(x − h) = ψ(x) − hψ ′ (x) + h2<br />

2 ψ′′ (x) − h3<br />

6 ψ′′′ (x) + h4<br />

24 ψ′′′′ (x) + · · · .<br />

For the sum ψ(x + h) + ψ(x − h) we obtain<br />

<strong>and</strong> hence<br />

ψ(x + h) + ψ(x − h) = 2ψ(x) + h 2 ψ ′′ (x) + h4<br />

12 ψ′′′′ (x) + O(h 6 )<br />

ψ(x + h) = −ψ(x − h) + 2ψ(x) + h 2 ψ ′′ (x) + h4<br />

12 ψ′′′′ (x) + O(h 6 ). (3.3)<br />

Remarkably, the expressions with ψ ′ (x) <strong>and</strong> ψ ′′′ (x) vanish. Since we know<br />

ψ ′′ (x) from equation (3.2), we only need an expression for ψ ′′′′ (x). (3.3)<br />

leads to<br />

ψ ′′ (x) =<br />

Generally<br />

ψ(x + h) − 2ψ(x) + ψ(x − h)<br />

h 2<br />

ψ ′′ (x) =<br />

− h2<br />

12 ψ′′′′ (x) + O(h 4 ). (3.4)<br />

ψ(x + h) − 2ψ(x) + ψ(x − h)<br />

h 2 + O(h 2 ). (3.5)<br />

Since the expression with ψ ′′′′ (x) in equation (3.3) contains the factor h 4 ,<br />

one obtains with equation (3.5), whose error order is h 2 , a total error of<br />

order h 6 what does not worsen the earlier error order. From the equation<br />

(3.2) <strong>and</strong> (3.5) follows<br />

ψ ′′′′ (x) = d2<br />

dx2 <br />

<br />

− F (x)ψ(x)<br />

F (x + h)ψ(x + h) − 2F (x)ψ(x) + F (x − h)ψ(x − h)<br />

= −<br />

h2 + O(h 2 (3.6) ).<br />

Inserting of the obtained results in equation (3.3) yields the desired iteration<br />

ψ(x + h) =<br />

ψ(x)[2 − 5h2<br />

6<br />

h2<br />

F (x)] − ψ(x − h)[1 + 12 F (x − h)]<br />

1 + h2<br />

12 F (x + h)<br />

3.1.2 Numerical evaluation of the energy eigenvalues<br />

(3.7)<br />

So we have found an algorithm for evaluating the wave function ψ(x) for<br />

an arbitrary energy E <strong>and</strong> an arbitrary 5 potential V (x). Yet, the evaluated<br />

wave function ψ(x) satisfies the boundary condition ψ(±xr) = 0 usually<br />

only at one boundary, namely the boundary one used for the initial value<br />

of ψ. At the other boundary either ψ(−xr) or ψ(xr) diverges to ±∞. The<br />

wave function ψ(x) satisfies the boundary condition at both boundaries only<br />

5 Arbitrary except for the boundaries which must be set to infinity.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!