28.08.2013 Views

AN-8027 — FAN480X PFC+PWM Combination Controller Application

AN-8027 — FAN480X PFC+PWM Combination Controller Application

AN-8027 — FAN480X PFC+PWM Combination Controller Application

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>AN</strong>-<strong>8027</strong><br />

60dB<br />

40dB<br />

20dB<br />

0dB<br />

-20dB<br />

-40dB<br />

Control-to-output<br />

Compensation<br />

Closed Loop Gain<br />

10Hz 100Hz 1kHz 10kHz 100kHz<br />

Figure 17. Current Loop Compensation<br />

f IZ<br />

f IC<br />

f IP<br />

1MHz<br />

(Design Example) Setting the crossover frequency<br />

as 7 kHz:<br />

vCS1 RCS1VBOUT <br />

v V 2fL IEA @ f f RAMP IC BOOST<br />

IC<br />

0.1387 0.66<br />

3 6<br />

2.55 2 7 10 524 10<br />

1 1<br />

RIC 17k<br />

6<br />

v 88100.66 CS1<br />

GMI<br />

<br />

v<br />

IEA @ f fIC<br />

1 1<br />

C 4nF<br />

2 / 3 17 10 2 7 10 / 3<br />

IC1<br />

3 3<br />

RICfC <br />

Setting the pole of the compensator at 70kHz,<br />

1 1<br />

C 0.13nF<br />

IC2<br />

3 3<br />

2 fIPRIC270101710 [STEP-9] PFC Voltage Loop Design<br />

Since F<strong>AN</strong>480X employs line feed-forward, the power<br />

stage transfer function becomes independent of the line<br />

voltage. Then, the low-frequency, small-signal, control-tooutput<br />

transfer function is obtained as:<br />

vˆ BOUT<br />

vˆ EA<br />

IBOUT KMAX<br />

1<br />

<br />

5 sCBOUT<br />

(37)<br />

where:<br />

vˆ BOUT<br />

vˆ IBOUT KMAX<br />

1<br />

<br />

5 sC<br />

(38)<br />

EA BOUT<br />

Proportional and integration (PI) control with highfrequency<br />

pole is typically used for compensation. The<br />

compensation zero (fVZ) introduces phase boost, while the<br />

high-frequency compensation pole (fVP) attenuates the<br />

switching ripple, as shown in Figure 18.<br />

© 2009 Fairchild Semiconductor Corporation www.fairchildsemi.com<br />

Rev. 1.0.2 • 6/21/13 10<br />

60dB<br />

40dB<br />

20dB<br />

0dB<br />

-20dB<br />

-40dB<br />

Closed-Loop Gain<br />

Control-to-Output<br />

fc<br />

Compensation<br />

1Hz 10Hz 100Hz 1kHz<br />

Figure 18. Voltage Loop Compensation<br />

10kHz<br />

The transfer function of the compensation network is<br />

obtained as:<br />

s<br />

1<br />

vˆ 2 f 2<br />

f<br />

<br />

vˆ s<br />

OUT s<br />

1 2<br />

f<br />

COMP VI VZ<br />

where:<br />

2.5<br />

fVI <br />

V<br />

GMV<br />

<br />

2 C ,<br />

1<br />

fVZ <br />

2<br />

R C<br />

and<br />

f<br />

VP<br />

VP<br />

BOUT VC1 VC VC1<br />

1<br />

<br />

2<br />

R C<br />

VC VC 2<br />

The procedure to design the feedback loop is as follows:<br />

(39)<br />

(40)<br />

(a) Determine the crossover frequency (fVC) around<br />

1/10~1/5 of the line frequency. Since the control-tooutput<br />

transfer function of power stage has -20 dB/dec<br />

slope and -90 o phase at the crossover frequency, as<br />

shown in Figure 18 as 0dB; it is necessary to place the<br />

zero of the compensation network (fVZ) around the<br />

crossover frequency so that 45 phase margin is<br />

obtained. Then, the capacitor CVC1 is determined as:<br />

GMV IBOUTKMAX2.5 CVC1<br />

2<br />

(41)<br />

5 CBOUT(2 fVC)<br />

VBOUT<br />

To place the compensation zero at the crossover<br />

frequency, the compensation resistor is obtained as:<br />

R<br />

VC<br />

1<br />

<br />

2<br />

f C<br />

VC VC1<br />

(42)<br />

(b) Place compensator high-frequency pole (fVP) at least<br />

a decade higher than fC to ensure that it does not<br />

interfere with the phase margin of the voltage<br />

regulation loop at its crossover frequency. It should<br />

also be sufficiently lower than the switching<br />

frequency of the converter so noise can be effectively<br />

attenuated. Then, the capacitor CVC2 is determined as:<br />

C<br />

VC2<br />

1<br />

<br />

2<br />

f R<br />

VP VC<br />

(43)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!