28.08.2013 Views

AN-8027 — FAN480X PFC+PWM Combination Controller Application

AN-8027 — FAN480X PFC+PWM Combination Controller Application

AN-8027 — FAN480X PFC+PWM Combination Controller Application

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>AN</strong>-<strong>8027</strong><br />

I D, AVG<br />

I D<br />

I D, AVG I BOUT (1 cos(4 fLINE t))<br />

VBOUT<br />

V<br />

BOUT , RIPPLE<br />

IBOUT<br />

<br />

2<br />

f C<br />

Figure 14. PFC Output Voltage Ripple<br />

I BOUT<br />

LINE BOUT<br />

(Design Example) With the ripple specification of<br />

12 VPP, the capacitor should be:<br />

IBOUT<br />

0.9<br />

CBOUT239F 2 f V 25012 LINE BOUT , RIPPLE<br />

Since minimum allowable output voltage during one<br />

cycle line (20 ms) drop-outs is 310 V, the capacitor<br />

should be:<br />

PBOUTtHOLD 3<br />

2 349 2010 2<br />

OUT <br />

2<br />

OUT , MIN<br />

2 2<br />

387 310<br />

CBOUT260F V V<br />

Thus, 270 F capacitor is selected for the PFC output<br />

capacitor.<br />

[STEP-6] PFC Output Sensing Circuit<br />

To improve system efficiency at low line and light load<br />

condition, F<strong>AN</strong>480X provides two-level PFC output<br />

voltage. As shown in Figure 15, F<strong>AN</strong>480X monitors VEA<br />

and VRMS voltages to adjust the PFC output voltage.<br />

The PFC output voltage when 20 µA is enabled is given as:<br />

20μAR<br />

V V -<br />

2.5<br />

FB2<br />

BOUT 2 BOUT (1 )<br />

(25)<br />

It is typical second boost output voltage as 340 V~300 V.<br />

© 2009 Fairchild Semiconductor Corporation www.fairchildsemi.com<br />

Rev. 1.0.2 • 6/21/13 8<br />

RFB1<br />

RFB2<br />

VBOUT<br />

FBPFC<br />

2.5V<br />

VDD<br />

20uA<br />

-<br />

+<br />

1.95/2.45<br />

+<br />

-<br />

1.95/2.45<br />

For F<strong>AN</strong>4801S, VEA threshold is 2.8/3.35V.<br />

Figure 15. Two-Level PFC Output Block<br />

VRMS<br />

VEA<br />

The voltage divider network for the PFC output voltage<br />

sensing should be designed such that FBPFC voltage is<br />

2.5V at nominal PFC output voltage:<br />

R<br />

FB2<br />

VBOUT 2.5V<br />

RFB1RFB2 (Design Example) Assuming the second level of<br />

PFC output voltage is 347 V:<br />

R<br />

V 2.5<br />

(1 ) <br />

20 10<br />

BOUT 2<br />

FB2<br />

VBOUT<br />

<br />

6<br />

347 2.5<br />

(1 ) 12.9k<br />

6<br />

387 2010 13 k is selected for RFB2.<br />

R<br />

V<br />

(<br />

2.5<br />

387<br />

2.5<br />

1) R<br />

BOUT<br />

FB1 FB2<br />

3<br />

( 1) 1310 1999k<br />

2 M is selected for RFB1.<br />

(26)<br />

[STEP-7] PFC Current-Sensing Circuit Design<br />

Figure 16 shows the PFC compensation circuits. The first<br />

step in compensation network design is to select the currentsensing<br />

resistor of PFC converter considering the control<br />

window of voltage loop. Since line feed-forward is used in<br />

F<strong>AN</strong>480X, the output power is proportional to the voltage<br />

control error amplifier voltage as:<br />

V<br />

P ( V ) P <br />

V<br />

MAX EA<br />

BOUT EA BOUT SAT<br />

EA<br />

0.6<br />

0.6<br />

(27)<br />

where VEA SAT is 5.6 V and the maximum power limit of<br />

PFC is:<br />

V GR (28)<br />

2 MAX<br />

MAX LINE. BO M<br />

BOUT<br />

RIACRCS1 P

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!