12.10.2013 Views

Development of a New Electro-thermal Simulation Tool for RF circuits

Development of a New Electro-thermal Simulation Tool for RF circuits

Development of a New Electro-thermal Simulation Tool for RF circuits

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

viii List <strong>of</strong> Figures<br />

3.3 Simulator structure <strong>for</strong> external command-line approach. . . . . . . . . 41<br />

3.4 Translation process during processing <strong>for</strong> external command-line version<br />

<strong>of</strong> the simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3.5 Collector "node-splitting issue" in the external command-line approach. 45<br />

3.6 Library <strong>of</strong> available Verilog-A ETFBs <strong>for</strong> external-command line approach:<br />

5, 10, 15, 20 and 25 transistors in each block. . . . . . . . . . . 47<br />

3.7 Postprocessor output as a result <strong>of</strong> ET simulation <strong>for</strong> 3-emitter finger<br />

HBT device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

3.8 Node-splitting problems appear also when using ADS internal language<br />

AEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

3.9 Thermal circuit <strong>of</strong> the model. All the internal capacitances and resistances<br />

must be deactivated in order to obtain the dissipated power,<br />

which is already calculated within the device compact model. . . . . . . 51<br />

3.10 Model used in ADS and its <strong>thermal</strong> network parameters: <strong>thermal</strong> resistance<br />

Rth, <strong>thermal</strong> capacitance Cth, temperature exponent <strong>for</strong> <strong>thermal</strong><br />

resistance Xth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

3.11 Improved model inside, together with the dissipated power calculation<br />

block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

3.12 Improved model footprint, with additional parameters . . . . . . . . . . 53<br />

3.13 "ELT Design-kit" idea: (1) tab with models, so called "ELT-devices";<br />

(b) "AgilentHBT_NPN_Th_TH" device, available after clicking at the<br />

button indicated by red point; (c) HBTM1 model, attached to the device,<br />

with default <strong>thermal</strong> parameters. . . . . . . . . . . . . . . . . . . . . . 54<br />

3.14 ETFB idea: Circuit in (b) realizes the equations in (a). Circuit schematic<br />

representation in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

3.15 After selecting "ELT-SDD-blocks" tab, the palette <strong>of</strong> available SDD<br />

electro<strong>thermal</strong> feedback blocks is visible on the left side <strong>of</strong> the ADS<br />

schematic window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

3.16 2 nd level SDD <strong>thermal</strong> network. The input in (a) is a dissipated power<br />

(pd ports), translated into voltage by CCVS sources (b). Voltage is<br />

passed as input into "third-level SDD blocks" (c). . . . . . . . . . . . . 58<br />

3.17 3 rd level SDD blocks which execute calculation <strong>of</strong> temperature increase<br />

above ambient. Output current (temperature) is translated into voltage<br />

signal by CCVS sources. . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

3.18 <strong>Simulation</strong> example with SDD <strong>thermal</strong> network <strong>for</strong> two transistors connected<br />

in parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

3.19 Result <strong>of</strong> the SDD example simulation. . . . . . . . . . . . . . . . . . . 61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!