26.10.2013 Views

3 - UPLC_Work_Practical_Considerations

3 - UPLC_Work_Practical_Considerations

3 - UPLC_Work_Practical_Considerations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Introduction to <strong>UPLC</strong> <strong>Work</strong> to<br />

HPLC/<strong>UPLC</strong> users: <strong>Practical</strong><br />

<strong>Considerations</strong><br />

Shula Levin, Waters (TC) Israel<br />

Shula_Levin@waters.com<br />

www.forumsci.co.il/hplc<br />

Migration From HPLC to <strong>UPLC</strong>: Scaling Down<br />

Shula Levin, Waters Israel<br />

1


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

The practice of <strong>UPLC</strong> operation is the same whether it is a Binary or a<br />

Quaternary System<br />

Solvent Management<br />

ACQUITY <strong>UPLC</strong> ACQUITY <strong>UPLC</strong> H-Class<br />

Solvent Manager Design Binary - 2 solvents Quaternary - 4 solvents<br />

Total Number of Solvents Solvents A1 or A2 and B1 or B2<br />

Solvents A, B, C, D<br />

(Solvents D 1-6 via SSV option)<br />

Type of Solvent Mixing High pressure mixing Low pressure mixing<br />

System Volume < 100uL standard configuration < 400uL standard configuration<br />

Column I.D. 1.0 mm to 4.6 mm 2.1 mm to 4.6 mm<br />

Pressure/Flow Performance<br />

15,000 psi up to 1mL/min<br />

9,000 psi up to 2mL/min<br />

Flow Rate Range 0.01 to 2mL/min<br />

Shula Levin, Waters Israel<br />

2


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Peaks are narrower in <strong>UPLC</strong>!<br />

Higher Sensitivity<br />

Separation between closely<br />

related compounds<br />

Higher peak capacity<br />

Shorter run times<br />

HPLC<br />

Typical Peak Width: 10-60 sec<br />

Solvents and cost saving<br />

<strong>UPLC</strong><br />

Typical Peak Width: 2-10 sec<br />

Technology Changes from HPLC to <strong>UPLC</strong><br />

Detector’s Optics<br />

& Fast Electronics<br />

Minimum Volume of Flow Cell<br />

a Mobile Phase<br />

TeflonAF<br />

TeflonAF<br />

Injector’s Low Volumes<br />

Power Switch<br />

LEDs<br />

Solvent Select Valves<br />

Seal Wash<br />

Independent drives for A1, A2, B1, B2<br />

Vent Filter/ Mixer/<br />

Valve Tee Assembly<br />

Shula Levin, Waters Israel<br />

Six<br />

cha<br />

nne<br />

l<br />

deg<br />

ass<br />

er<br />

Leak<br />

Detector<br />

High Pressure Pump<br />

With Low Delay volume<br />

High Speed Gradients<br />

Column-Over: Minimum Extra<br />

Column Band Broadening<br />

Strong & Smooth Tubings<br />

& connections<br />

OH OH OH OH OH H2 C CH 2<br />

OH OH<br />

Si Si Si Si Si Si Si Si Si<br />

O O O O O O O O O O<br />

O O O O O O O<br />

Si<br />

O<br />

O<br />

Si<br />

O<br />

H2 C<br />

CH2<br />

CH<br />

2 O<br />

H<br />

2<br />

C<br />

Si Si Si Si Si Si Si Si Si<br />

O O O O O O O O O<br />

H<br />

2<br />

C CH<br />

2 O O O O O O O O<br />

Column Packing Enduring high<br />

pressures & Temperatures<br />

OH<br />

3


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

םג<br />

ןכו<br />

, HPLC<br />

Running <strong>UPLC</strong><br />

תונולוקב רשאמ הברהב םינטק םה <strong>UPLC</strong> תנולוק ךותב םיקיקלחה<br />

. ןהלש םירטליפה<br />

Typical HPLC conditions:<br />

Flow rate: ~ 1 ml/mn<br />

Column I.D.: ~ 4 mm<br />

Inlet frit pore size: ~ 2 μ m<br />

Typical <strong>UPLC</strong> conditions:<br />

Flow rate: ~ 0.6 ml/mn<br />

Column I.D.: ~ 2 mm<br />

Inlet frit pore size: ~ 0.2 μ m<br />

<strong>UPLC</strong> ב תפטושה הדובעל עירפהל םילולע HPLC -ב<br />

הדובעל תידיימ םיעירפמ אלש םינטק םיקיקלח ןכל<br />

Preparing to Run<br />

Preparing a Dry Instrument<br />

Strong and Weak Wash Solvents<br />

System and Loop Volume<br />

Determination<br />

Instrument Method Parameters<br />

Shula Levin, Waters Israel<br />

4


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

General Operating Practices<br />

• Prepare fresh solvents daily. Do NOT top-up aqueous<br />

solvents – use a fresh reservoir bottle. Bacterial<br />

contamination is a real problem.<br />

• Make up only 500 mL at a time.<br />

• Water obtained from a properly-maintained Milli-Q ®<br />

system does not need to be re-filtered unless buffer<br />

salts are added. Preferably: use a recognized <strong>UPLC</strong> or<br />

LC-MS grade solvent.<br />

• HPLC-Grade ACN or MeOH that has already been<br />

filtered (certified on the bottle) does not need to be<br />

re-filtered. Preferably: Use a recognized <strong>UPLC</strong> or LC-<br />

MS grade solvent<br />

General Operating Practices<br />

• Make sure to cover bottles to protect it from dust!<br />

• Do NOT use Parafilm ® to cover bottles – it dissolves.<br />

•Old solvents and buffers are filtered<br />

•Reservoirs should be fully covered with Teflon stoppers and NOT Parafilm<br />

•Use filters to block dust from the air (Photo)<br />

•Bottles should be made of Type 1 glass<br />

Shula Levin, Waters Israel<br />

5


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

General Operating<br />

Recommendations<br />

• Use only Pyrex (Borosilicate 3.3) bottles. DURAN bottles<br />

dissolve at high pH (>9).<br />

• Use highest quality solvents, water, buffers and additives.<br />

• Flush buffers out of system with water after use (use 10-<br />

20% organic in water for storage).<br />

• Keep all 4 solvent lines primed (use 10-20% organic in<br />

water for unused lines).<br />

• Keep seal wash primed.<br />

• Re-prime solvent lines before starting.<br />

• Use 100 µL mixer for TFA/ACN gradients at low<br />

wavelengths.<br />

CORNING PYREX ® Type 1, Class A, Borosilicate Bottles<br />

SCHOTT DURAN ® Borosilicate Glass 3.3 Bottles<br />

Also: if Biolab solvents: Use ULC/MS grade only!<br />

Shula Levin, Waters Israel<br />

6


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Solvent Filters<br />

Critical Clean<br />

Stainless Steel (7 pack)700003616<br />

Stainless Steel (1/pk) 700003615<br />

Titanium (7 pack) 700003530<br />

Titanium (1 pack) 700003546<br />

Mobile Phase Preparation<br />

Filtration on membrane:<br />

Actions : Solvent degassing and filtration<br />

— Potential of impurities in filtration<br />

o GHP, PTFE, Nylon, or PVDF<br />

— Pores diameter : 0.2 µm.<br />

— Volatile additives may evaporate.<br />

NOTE: Refer to ‘Controlling Contamination in<br />

UltraPerformance LC/MS and HPLC Systems’<br />

715001307D available from Waters Corp.<br />

Solvent filter assembly 289002172<br />

Solvent filter insert 5 µm 700002756<br />

PAT (PEEK Alloyed with Teflon) filter<br />

PSL901292 2 µm<br />

PSL901294 5 µm<br />

Shula Levin, Waters Israel<br />

7


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Bottle Caps<br />

WAT062341 4 L bottle (large neck)<br />

WAT062479 1 L bottle (small neck)<br />

No Parafilm ® or other plastic films to cover solvent reservoirs<br />

Transferring Methods from HPLC to <strong>UPLC</strong><br />

and from Binary to Quaternary <strong>UPLC</strong><br />

Shula Levin, Waters Israel<br />

8


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Method Transfer Tools<br />

• New Columns Calculator<br />

– Now from HPLC to <strong>UPLC</strong> to HPLC<br />

– Localized<br />

– Ability to cut and paste conditions<br />

into Empower Methods Editor<br />

• Pre-injection volume and Gradient<br />

Smart Start<br />

– Useful for accommodating systems<br />

with different dwell volumes<br />

• New Method Transfer Chemistry Kits<br />

Transferring HPLC Methods between HPLC<br />

Systems of Multiple Vendors<br />

• Differences in system volume<br />

– keep the column/system volume ratio constant to ensure a similar ‘isocratic hold’ caused<br />

by the system at the beginning of the gradient.<br />

• An isocratic hold can be added to the gradient table if the system volume of the new<br />

HPLC is smaller<br />

• An injection hold may be added if the system volume of the new HPLC is larger<br />

(setting the pre-column volume to non-zero in the instrument method)<br />

• Differences in column heating<br />

– Column heaters have different heating efficiencies and the differences can impact<br />

absolute retention of the components and selectivity<br />

Shula Levin, Waters Israel<br />

9


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Transferring HPLC Methods between HPLC<br />

Systems of Multiple Vendors<br />

Transfer Methods With Ease<br />

Utilize existing Assets<br />

Transfer from<br />

<strong>UPLC</strong>-to-HPLC<br />

Original HPLC System<br />

Vendor A HPLC System<br />

Vendor B HPLC System<br />

ACQUITY <strong>UPLC</strong> System<br />

ACQUITY H Class System<br />

Future-proof your lab<br />

Run HPLC methods on<br />

ACQUITY <strong>UPLC</strong> H-Class<br />

Shula Levin, Waters Israel<br />

10


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

AU<br />

AU<br />

Transfer between Binary to Quaternary <strong>UPLC</strong><br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

Peak1 - 1.937<br />

Peak2 - 2.301<br />

Auto-Scaled Chromatogram<br />

Peak3 - 5.074<br />

Peak4 - 5.308<br />

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00<br />

Minutes<br />

System Name <strong>UPLC</strong>02; SampleName SST test 2; Acq Method Set DMAD12; Date<br />

Acquired 11/03/2010 09:57:18 IST; Channel Description ACQUITY TUV ChA 254nm<br />

2.20<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

Peak1 - 2.107<br />

Peak2 - 2.362<br />

Peak5 - 5.997<br />

Auto-Scaled Chromatogram<br />

3.865<br />

-0.20<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Minutes<br />

6.00 7.00 8.00 9.00 10.00<br />

System Name H CLASS; SampleName SST PZP passive therm 400 ul-del; Acq<br />

Method Set Tevatest2_passive_Therm_del400; Date Acquired 13/06/2010 12:24:39<br />

IDT; Channel Description PDA Ch1 254nm@4.8nm<br />

Peak3 - 5.126<br />

Peak4 - 5.361<br />

5.668<br />

Peak5 - 5.970<br />

Peak6 - 6.132<br />

Differences in System Volume:<br />

Low vs. High Pressure Mixing<br />

Acquity <strong>UPLC</strong> (Binary-Mixing)<br />

Smaller System Volume = Smaller Dwell volume (~120 mL)<br />

A B C<br />

D<br />

Gradient<br />

Proportioning<br />

Valve<br />

Pump A<br />

Pump B<br />

Mixer<br />

Injector<br />

Shula Levin, Waters Israel<br />

6.640<br />

Column<br />

Detector<br />

H-Class <strong>UPLC</strong> (Quaternary-Mixing)<br />

Larger System Volume = Larger Dwell volume (~400 mL)<br />

Pump<br />

Injector<br />

Column<br />

Detector<br />

11


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Solvent Composition<br />

at Mixer<br />

Solvent Composition<br />

at Column Head<br />

System Delay (Dwell) Volume<br />

Timing Offset<br />

0<br />

Injection<br />

Actual mobile phase<br />

profile on original<br />

system measured at<br />

the column inlet<br />

System volume creates an offset before the solvent<br />

composition change reaches the inlet of column (i.e. an<br />

“isocratic hold” at the beginning of every gradient)<br />

Smaller Volume<br />

System Volume 0.35 mL<br />

{<br />

}<br />

Target System with smaller volume<br />

(less isocratic hold time)<br />

t g<br />

Shula Levin, Waters Israel<br />

x<br />

Time<br />

Different System Volumes<br />

Effect on Separation<br />

Original<br />

Instrument<br />

System Volume 0.0.7 mL<br />

Larger Volume<br />

System Volume 1.4 mL<br />

Target System with larger volume<br />

(longer isocratic hold time)<br />

12


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

<strong>Considerations</strong> in Method Development<br />

ACQUITY <strong>UPLC</strong> ® H-Class:<br />

Options for Method Development<br />

• Column Managers can be “banked” to<br />

support up to 6 columns<br />

• CM-A target is mid 2Q10<br />

• Can have CM-A + CH-A<br />

• Flow through needle injector<br />

• Quaternary multi solvent mixing<br />

• D line solvents 1-6 using internal solvent<br />

selection valve<br />

• SSV target is end 1Q10<br />

Shula Levin, Waters Israel<br />

13


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Automated Method Development<br />

LAN<br />

LAC/E Card<br />

Network<br />

4-Relay<br />

Panel<br />

Shula Levin, Waters Israel<br />

Solvent Valve Assembly<br />

ACQUITY <strong>UPLC</strong> H-Class<br />

Target is end 1Q10<br />

Auto•Blend: Constitute the Mobile Phase on<br />

the Fly.<br />

Water Acetonitrile<br />

Alcohol Concentrated<br />

Modifier<br />

14


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

95%<br />

Water<br />

0%<br />

Isopropanol<br />

100% Water<br />

0% Acetonitrile<br />

0.05% TFA<br />

AU<br />

AU<br />

AU<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

Auto•Blend Gradient<br />

0%<br />

Acetonitrile Water<br />

5%<br />

1%TFA<br />

45%<br />

0%<br />

Isopropanol<br />

50%<br />

Acetonitrile<br />

5%<br />

1%TFA<br />

Peptide Map Development<br />

Varying TFA Concentration - %D<br />

Shula Levin, Waters Israel<br />

50% Water<br />

50% Acetonitrile<br />

0.05% TFA<br />

0.025% TFA – 2.5% D<br />

0.05% TFA – 5% D<br />

0.1% TFA – 10% D<br />

27.00 27.50 28.00 28.50 29.00 29.50 30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 35.00 35.50 36.00 36.50 37.00<br />

Minutes<br />

15


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

AU<br />

AU<br />

AU<br />

AU<br />

AU<br />

AU<br />

AU<br />

0.10<br />

0.05<br />

0.10<br />

0.05<br />

0.10<br />

0.05<br />

0.10<br />

0.05<br />

0.10<br />

0.05<br />

0.10<br />

0.05<br />

0.10<br />

0.05<br />

Stability and Reproducibility<br />

Peptide Mapping<br />

8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00<br />

Minutes<br />

ACQUITY <strong>UPLC</strong> H-Class<br />

Sample Manager -FTN<br />

• Programmable Volume Injection<br />

– Up to 10uL injection standard<br />

– Up to 250uL with extensions<br />

• Needle in flow path design<br />

– Total volume sample injection<br />

– Low carryover performance<br />

• Full range of plates and vials<br />

• Supports load ahead and loop offline<br />

Shula Levin, Waters Israel<br />

Friday Night<br />

Saturday Morning<br />

Saturday Afternoon<br />

Saturday Night<br />

Sunday Morning<br />

Sunday Afternoon<br />

Sunday Night<br />

16


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

SM-FTN Characteristics<br />

• Needle in flow path design<br />

– Injection volumes up to 250uL (with additional needles and/or extension loops)<br />

– Needle flushed with the entire separation gradient<br />

• Low carryover performance<br />

• Supports load ahead and loop offline<br />

ACQUITY <strong>UPLC</strong> H-Class<br />

Sample Manager -FTN<br />

Shula Levin, Waters Israel<br />

17


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Sample Manager –FTN<br />

Sample Loading<br />

Sample Manager –FTN<br />

Sample Injection<br />

Shula Levin, Waters Israel<br />

18


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Injection Performance<br />

2 Orders of Magnitude<br />

No re-configuration necessary across the entire <strong>UPLC</strong> injection volume range<br />

Area<br />

Area<br />

Area<br />

300000<br />

200000<br />

100000<br />

10.0µL @ 2µg/mL<br />

1.0µL @ 20µg/mL<br />

0.1µL @ 200µg/mL<br />

Same peak area<br />

Linearity Test: Injection Volumes<br />

0<br />

Calibration Plot<br />

0.00 2.00 4.00 6.00 8.00 10.00 12.00<br />

Injection Volume uL<br />

Name: acetanilide; Fit Type: Linear (1st<br />

Order); Equation Y = 2.66e+004 X -<br />

8.70e+002; R^2 0.999997<br />

50000.0<br />

40000.0<br />

30000.0<br />

20000.0<br />

10000.0<br />

0.0<br />

Calibration Plot<br />

0.00 2.00 4.00 6.00 8.00 10.00 12.00<br />

Injection Volume uL<br />

Name: propiophenone; Fit Type: Linear<br />

(1st Order); Equation Y = 3.47e+003 X -<br />

1.09e+002; R^2 0.999996<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

0<br />

Calibration Plot<br />

0.00 2.00 4.00 6.00 8.00 10.00 12.00<br />

Injection Volume uL<br />

Name: benzophenone; Fit Type: Linear<br />

(1st Order); Equation Y = 1.85e+004 X -<br />

5.74e+002; R^2 0.999993<br />

Area<br />

Area<br />

Area<br />

100000.0<br />

80000.0<br />

60000.0<br />

40000.0<br />

20000.0<br />

0.0<br />

Calibration Plot<br />

0.00 5.00 10.00<br />

Injection Volume uL<br />

Name: acetophenone; Fit Type: Linear<br />

(1st Order); Equation Y = 7.40e+003 X -<br />

2.47e+002; R^2 0.999998<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

0<br />

Calibration Plot<br />

0.00 2.00 4.00 6.00 8.00 10.00 12.00<br />

Injection Volume uL<br />

Name: butylparaben; Fit Type: Linear (1st<br />

Order); Equation Y = 1.87e+004 X -<br />

6.19e+002; R^2 0.999991<br />

20000.0<br />

15000.0<br />

10000.0<br />

5000.0<br />

0.0<br />

Calibration Plot<br />

0.00 2.00 4.00 6.00 8.00 10.00 12.00<br />

Injection Volume uL<br />

Name: valerophenone; Fit Type: Linear<br />

(1st Order); Equation Y = 1.44e+003 X -<br />

1.29e+000; R^2 0.999964<br />

Shula Levin, Waters Israel<br />

19


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Sample Manager –FTN<br />

Carryover Challenge<br />

Shula Levin, Waters Israel<br />

3.5 AU Full Scale<br />

3.5 AU<br />

Full Scale<br />

Stress Injection @ 2mg/mL<br />

1st Blank Injection<br />

Carryover = 0.0002%<br />

Managing Column Temperature<br />

• Temperature affects separation selectivity,<br />

retention and resolution<br />

• Incoming solvent at room temperature<br />

• Passively heated in “Air Bath”<br />

• Transit time is 15-20 seconds<br />

• Temperature gradients from inlet to outlet and<br />

wall to center<br />

• Pre-heating solvent absolutely necessary for<br />

separation control, reproducibility, and transfer<br />

20


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

ACQUITY <strong>UPLC</strong> H-Class<br />

Active Pre-heating<br />

• Ensures consistent control of temperature<br />

• Eliminates environmental influences on<br />

temperature<br />

• Reduced volume to reduce extra column<br />

bandspreading<br />

• Passive pre-heaters supported for backwards<br />

compatibility<br />

Injection Parameters in Fixed Loop<br />

Autosamplers<br />

Shula Levin, Waters Israel<br />

21


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Injector design examples<br />

Flow-Through variable injector design<br />

0.040<br />

0.030<br />

0.020<br />

AU<br />

0.010<br />

0.000<br />

-0.010<br />

loop<br />

Alliance 2695 and H-Class <strong>UPLC</strong><br />

Mounting of the loop<br />

MUST BE PROPER!!<br />

5.605.705.805.906.006.106.206.306.40<br />

Minutes<br />

Typical problem with bad peek<br />

connections<br />

First blank 0.1 %<br />

Second blank 0.01 %.<br />

.<br />

ACQUITY fixed loop injector design<br />

(Rheodyne)<br />

Shula Levin, Waters Israel<br />

loop<br />

With proper Peek<br />

connections<br />

First blank


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

ACQUITY <strong>UPLC</strong> Sample Manager<br />

Injection Methods<br />

THREE injection methods available:<br />

1. Full Loop Injection Method/Mode as the injection technique using “Pressure Assist”<br />

• Injects 100% of actual loop volume<br />

2. Partial Loop Injection Method/Mode using “Needle Overfill” as the injection technique<br />

• Selectable: Recommended from 10% to 75% of total loop volume<br />

3. Partial Loop Injection Method/Mode using “Pressure Assist” as the injection technique<br />

• Selectable: Recommended from 10% to 50% of total loop volume<br />

Recommendations for ACQUITY <strong>UPLC</strong><br />

Sample Manager Injection Methods<br />

Shula Levin, Waters Israel<br />

23


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

needle<br />

VDD<br />

Sample Syringe<br />

Wash cycle after injection<br />

BSM<br />

to column and<br />

detector<br />

loop<br />

Possible contaminated area<br />

Wash block<br />

VDD<br />

Sample Syringe<br />

BSM<br />

loop<br />

Strong needle wash followed<br />

by weak needle wash<br />

Wash Solvent description<br />

• There are two wash solvents<br />

– Strong Needle Wash<br />

• Tubing flushing<br />

• Elimination of components injected<br />

• Never injected<br />

– Weak Needle Wash<br />

• Strong solvent elimination<br />

• Injected with the sample in partial loop pressure assist mode<br />

Shula Levin, Waters Israel<br />

to column and<br />

detector<br />

24


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Wash Solvent <strong>Considerations</strong><br />

• As a general principle, strong and weak solvents should include the<br />

same organic species<br />

– This may not always be practicable, especially in the case of “sticky”<br />

samples. You may, however use a 100% organic strong wash solvent<br />

• Do not use salt buffers in wash solvents<br />

• Wash volume ratio (weak to strong)<br />

– Should be about 3:1, weak wash to strong<br />

– Sufficient to ensure the weak wash flushes the strong from the needle<br />

and sample loop<br />

• For more details on solvents, see the section titled “Selecting weak<br />

wash and strong wash solvents” in the ACQUITY Operators Guide<br />

Strong Wash Solvent<br />

• Flushes internal and external portion of the needle to prevent<br />

carryover<br />

• Typically stronger than sample and mobile phase to dissolve<br />

sample residue<br />

• Function performed in the wash station<br />

• Strong solvent should be no stronger than the concentration<br />

needed to reduce carryover to an acceptable level<br />

• Strong wash solvent does not contact the sample<br />

Shula Levin, Waters Israel<br />

25


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Strong Wash Solvent<br />

• Choose based on the chemistry application<br />

• 100% organic solvent is acceptable<br />

– Except THF<br />

– Do not add acid or base in 100% organic solvent<br />

• Prime using the needle wash function<br />

• Default value is 200 µL<br />

– 200 µL is a typical value for this function<br />

Weak Wash Solvent<br />

• Purges needle and syringe fluid path<br />

• Must be compatible with sample solvent<br />

• For best results, weak wash solvent should be<br />

equivalent to the following (excluding buffers):<br />

– mobile phase composition (for isocratic separations)<br />

– initial gradient condition (for gradient separations)<br />

– If you dilute the samples, match the weak wash solvent to<br />

the sample diluent<br />

• Degassed for good hydraulic properties<br />

Shula Levin, Waters Israel<br />

26


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Weak Wash Solvent<br />

• Compatible with initial gradient conditions and<br />

sample solubility<br />

• Avoid buffers<br />

– increases the risks of precipitation at re-<br />

equilibration<br />

• Five prime cycles fully replace wash solvents<br />

• Default value is 200 µL<br />

ACQUITY <strong>UPLC</strong> Sample Manager<br />

Injection Methods<br />

THREE injection methods available:<br />

1. Full Loop Injection Method/Mode as the injection technique using “Pressure Assist”<br />

• Injects 100% of actual loop volume<br />

2. Partial Loop Injection Method/Mode using “Needle Overfill” as the injection technique<br />

• Selectable: Recommended from 10% to 75% of total loop volume<br />

3. Partial Loop Injection Method/Mode using “Pressure Assist” as the injection technique<br />

• Selectable: Recommended from 10% to 50% of total loop volume<br />

Shula Levin, Waters Israel<br />

27


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Full Loop Injection<br />

Example of a 20 µL injection with a 4X overfill<br />

20 µL Sample<br />

Weak Wash<br />

Solvent<br />

Air Gap<br />

Sample<br />

Sample<br />

Weak Wash<br />

Solvent<br />

Air Gap<br />

30 µL<br />

sample<br />

volume<br />

Sample Loop<br />

Volume Injected<br />

Overfill Factor 1 to 4<br />

30 µL<br />

sample<br />

volume<br />

Full Loop Injection<br />

Step 1 – Aspirate sample and air gap<br />

Shula Levin, Waters Israel<br />

28


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Full Loop Injection<br />

Step 2 – Pressurize and position sample in valve<br />

Full Loop Injection<br />

Step 3 – Position sample and overfill the loop<br />

Sample Loop contains only sample<br />

No Air Gaps<br />

No weak wash<br />

Shula Levin, Waters Israel<br />

29


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Full Loop Injection<br />

Step 4 – Sample Injection<br />

Summary of Full Loop injection mode<br />

• Best accuracy and precision performance<br />

• Needs multiple loop volumes of additional<br />

sample to be used per injection<br />

• Larger overfill factors are required for smaller<br />

loops<br />

• Need to change injection loops to vary volume<br />

Shula Levin, Waters Israel<br />

30


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Summary of Full Loop<br />

Injection Mode<br />

• BENEFITS<br />

– Best accuracy and precision performance<br />

• TRADEOFF<br />

– Needs multiple loop volumes of additional sample<br />

to be used per injection<br />

• larger overfill factors are required for smaller loops<br />

(buffer zone improvement)<br />

– Need to change injection loops to vary volume<br />

Partial Loop Injection<br />

Weak Wash<br />

Solvent<br />

Sample<br />

Air Gap<br />

Sample Loop<br />

Volume Injected<br />

Weak Wash<br />

Solvent<br />

Shula Levin, Waters Israel<br />

31


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Partial Loop (Pressure Assist)<br />

Loop Volume (µL) Needle Overfill<br />

1 Not Recommended<br />

2 Not Recommended<br />

5 Not Recommended<br />

10 1.0 – 5.0<br />

20 2.0 – 10.0<br />

50 5.0 – 25.0<br />

Pressure Assist Injection Sequence<br />

Step 1 – Aspirate sample and air gap<br />

Shula Levin, Waters Israel<br />

32


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Pressure Assist Injection Sequence<br />

Step 2 – Pressurize and position sample in valve<br />

Pressure Assist Injection Sequence<br />

Step 3 – Position the sample<br />

Shula Levin, Waters Israel<br />

33


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Pressure Assist Injection Sequence<br />

Step 4 – Injection valve injects sample<br />

Sample Loop contains<br />

Sample, air gaps and weak wash<br />

Summary of Partial Loop<br />

using Pressure Assist<br />

• Shorter Cycle Time than PLUNO<br />

• No sample cushion<br />

• Sample volume is conserved<br />

• Recommended for large sample loop injections<br />

• Performance dependency on weak wash solvent matching<br />

to mobile phase<br />

• Air Gaps injected onto Column<br />

• Accuracy is generally lower compared to Needle Overfill<br />

• Has lower injection range, within a given loop for partial<br />

loop injections. Injection range is from 10 – 50% of the<br />

loop volume<br />

• Accuracy and Precision are lower than Full Loop Mode<br />

Shula Levin, Waters Israel<br />

34


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Partial Loop Using Needle Overfill<br />

Summary of Partial Loop<br />

using Pressure Assist<br />

• BENEFITS:<br />

– Short Cycle Time<br />

– Sample volume is conserved<br />

– Recommended for large sample loop injections<br />

• TRADEOFF:<br />

– Accuracy and Precision are lower than Full Loop Mode<br />

– Performance dependency on weak wash solvent matching<br />

to mobile phase<br />

– Accuracy is generally lower compared to Needle Overfill<br />

Shula Levin, Waters Israel<br />

35


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Partial Loop Using Needle Overfill<br />

Partial Loop using Needle Overfill<br />

Step 1– Aspirate Sample and Air Gap<br />

Shula Levin, Waters Israel<br />

36


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Partial Loop using Needle Overfill<br />

Step 2 – Injection Sequence<br />

Partial Loop using Needle Overfill<br />

Step 3 – Injection Sequence<br />

Shula Levin, Waters Israel<br />

37


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Partial Loop using Needle Overfill<br />

Step 4 – Injection Sequence<br />

Partial Loop using Needle Overfill<br />

Step 5 – Injection Sequence<br />

Shula Levin, Waters Israel<br />

38


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Summary of Partial Loop<br />

using Needle Overfill<br />

• No weak wash injected onto column<br />

– mobile phase and sample injected<br />

• Air gap not injected on column<br />

• Sample does not come into contact with weak wash<br />

• Recommended for partial loop injections, especially from<br />

small loops because accuracy is improved compared to<br />

Pressure Assist Partial loop injections<br />

• Has wider linear range, can inject from 10 – 75% of the loop<br />

volume<br />

• Cycle time depending on aspiration rate (with smaller loops<br />

the time increases)<br />

• Needs 15 µL additional sample to be used for cushion<br />

volume per injection irregardless of injection size<br />

• Accuracy and precision lower than full loop mode<br />

Manual settings<br />

(need to be set)<br />

Injection Parameters<br />

Injection Parameters<br />

Automatic settings<br />

(already set in the software<br />

See HELP)<br />

Shula Levin, Waters Israel<br />

39


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Injection Air Gap<br />

• Automatic or manual<br />

• Full loop or partial loop injection<br />

– Critical for partial loop injection<br />

Good Repeatability:<br />

Setting Up the Sample Manager<br />

• Full loop<br />

– Air gap<br />

• 4 µL for 30 µL needle<br />

• 2 µL for 15 µL needle<br />

– Overfill factor depends on loop size<br />

• see Help for Automatic parameters<br />

– Metering device compatible with sample volume<br />

• Partial loop<br />

– Low draw speed for low volume<br />

– Pre and post air gap are essential<br />

– Automatic parameters<br />

• Pre and post air gap of 1 µL<br />

• 100 µL per minute<br />

Shula Levin, Waters Israel<br />

40


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Strong Contaminations<br />

• If the system is contaminated, some spare<br />

parts must be changed<br />

– Why:<br />

• Due to previous bad or not appropriate washing, contamination has been<br />

accumulated and then released since the system is not able to compensate<br />

anymore<br />

• Manual washing is not strong enough to eliminate carry-over<br />

– How: Which spare parts must be changed<br />

• Seal wash of the wash station<br />

• Needle<br />

• VDD (bubble detector)<br />

• Loop<br />

Main Parameters Summary<br />

• Strong Washing<br />

– Strong solvent 200 µL<br />

• Weak Wash<br />

– Weak solvent 600 µL<br />

• Full loop or partial loop injection<br />

– Use automatic settings<br />

• Air gap<br />

– For partial injection<br />

– Automatic<br />

• Draw speed<br />

– Automatic<br />

Shula Levin, Waters Israel<br />

41


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

• Question:<br />

– 1) Should I use air gap?<br />

• Yes or No?<br />

• Which one?<br />

Air Gap<br />

– Pre air, post air or both?<br />

– 2) What volume?<br />

• Question:<br />

– Should I use?<br />

• Full loop<br />

• Partial loop injection<br />

Pre and Post Air Gap Influence: Example<br />

4 4 1 140787 132577 96240 57406 136252 95577 45260 16142<br />

0 0 1 90362 85040 62005 42553 92886 64077 30046 12199<br />

Diffusion effect 55.80% 55.90% 55.21% 34.90% 46.69% 49.16% 50.64% 32.32%<br />

4 4 1 140787 132577 96240 57406 136252 95577 45260 16142<br />

0 4 1 89291 84372 63720 40764 85074 61209 29754 11578<br />

Diffusion effect 57.67% 57.13% 51.04% 40.83% 60.16% 56.15% 52.11% 39.42%<br />

4 4 1 140787 132577 96240 57406 136252 95577 45260 16142<br />

4 0 1 120864 113953 81763 52170 122771 85128 39046 14816<br />

Diffusion effect<br />

16.48% 16.34% 17.71% 10.04% 10.98% 12.27% 15.91% 8.95%<br />

Shula Levin, Waters Israel<br />

42


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Pre air gap Post air gap Peak area Peak height % area<br />

difference<br />

Automatic<br />

(1)<br />

automatic<br />

Automatic<br />

(1)<br />

Air Gap Effects<br />

pre – air gap is more critical than post – air gap<br />

0,0<br />

38889 27156<br />

4 0 38488 26796 98.97<br />

4 4 38179 26592 98.17<br />

0 4 30866 21404 79.37<br />

0 0 30748 21413 79.07<br />

0,4<br />

Air Gap<br />

• Large air gap volume can effect the<br />

chromatogram.<br />

Shula Levin, Waters Israel<br />

4,4<br />

4,0<br />

43


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

• Automatic settings<br />

– Pre and post air gap<br />

– 4 µL each<br />

– 1 µL for PLUNO<br />

• Manual settings<br />

– Lower values:<br />

Air Gap Settings<br />

• Sample diffusion providing peak area and peak height reduction<br />

– Higher values:<br />

• Can effect the chromatogram<br />

– Higher peak height RSD<br />

– Loss of resolution<br />

Chemistry of the Separations<br />

Shula Levin, Waters Israel<br />

44


Running U-HPLC: <strong>Practical</strong> <strong>Considerations</strong><br />

Second Generation Ethylene<br />

Bridged Hybrid Particles<br />

U.S. Patent No. 6,686,035 B2 Bridged Ethanes within a silica matrix<br />

Anal. Chem. 2003, 75, 6781-6788<br />

Shula Levin, Waters Israel<br />

45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!