23.12.2013 Views

Modeling deforestation baselines using GEOMOD - Instituto ...

Modeling deforestation baselines using GEOMOD - Instituto ...

Modeling deforestation baselines using GEOMOD - Instituto ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Finalizing Avoided Deforestation Baselines<br />

Appendix 2. <strong>Modeling</strong> <strong>deforestation</strong> <strong>baselines</strong> <strong>using</strong><br />

<strong>GEOMOD</strong> for the Calakmul and Meseta Purépecha<br />

regions in Mexico<br />

By<br />

Myrna Hall<br />

Geographic <strong>Modeling</strong> Services<br />

4090 Barker Hill Road<br />

Jamesville, NY 13078<br />

(315) 469-7271<br />

geomod@twcny.rr.com<br />

and<br />

Gabriela Guerrero and Omar Masera<br />

UNAM,<br />

Morelia, Michoacan<br />

gguerrer@oikos.unam.mx<br />

omasera@oikos.unam.mx<br />

Winrock International<br />

A- 1


Finalizing Avoided Deforestation Baselines<br />

I. INTRODUCTION<br />

The Spatial <strong>Modeling</strong> Approach<br />

Spatial modeling, as we define it (M. Hall et al. 2000) is the application of a FORTRAN (or other computer<br />

language)-based model that uses spatially distributed data to simulate landscape dynamics. In the case of<br />

land use change modeling it implies that the spatial distribution of various factors, such as topography,<br />

plays an important role in determining where humans exploit the landscape. We apply <strong>GEOMOD</strong>2,<br />

developed by researchers at SUNY College of Environmental Science and Forestry (Hall, et al. 1995a;<br />

1995b with funding from the US Department of Energy, Carbon Dioxide Research Program, Atmospheric<br />

and Climatic Change Division), to estimate the business-as-usual baseline for <strong>deforestation</strong> in two states of<br />

Mexico—the Calakmul region of Campeche and the Meseta Purépecha region of Michoacan.<br />

Based on the “maximum power principle” (Odum 1983), the model assumes and tests whether those<br />

factors which are most likely to impact an individual farmer’s energy return on investment (EROI) are<br />

statistically significant (Hall, Cleveland and Kaufmann, 1986). These factors include topographic position<br />

(elevation and steepness of slope), distance from rivers, roads and already established settlements, and<br />

socio-economic factors such as infrastructure. The model allows for regional stratification to capture<br />

different government policies in different political units that would affect land clearing and land tenure. It<br />

also includes the option to impose, or not, the contiguity rule in simulation. This rule limits land clearing to<br />

cells that are adjacent to cells already cleared. The search window distance used to impose contiguity<br />

around already-developed land can be adjusted to capture the difference between clearing for shifting<br />

cultivation, and clearing for industrialized agriculture. The model is calibrated by assigning weights to<br />

candidate map cells based on the empirical importance of each driver in explaining the spatial pattern of<br />

land use change at one point in time. It then simulates that change between that point in time and a later<br />

time. Change can be from forest to non-forest, from non-forest to forest, from forest to degraded forest,<br />

pasture to urban; in other words any pathway of change can be analyzed by the model. The model then<br />

compares these preliminary simulation results against a validation (real) data set (i.e. a map of time two)<br />

which is not used in weighting the pattern drivers. The test of goodness of fit for each simulated map<br />

produced is based on both the percent of cells simulated correctly and the Kappa Index of Agreement<br />

(Pontius et al. 2001). We use the ‘kappa-for-location’ index, rather than the ‘kappa-for-quantity’ because in<br />

all cases for validation we already know from the satellite imagery the quantity of cells that have been<br />

deforested or degraded between the two time periods.<br />

II. HYPOTHESIS<br />

We test three hypotheses. (1) <strong>GEOMOD</strong> should generate a more accurate estimate of the carbon benefits<br />

derived from a region than a non-spatial approach because the vegetation types, and hence carbon<br />

content, varies across a landscape and <strong>GEOMOD</strong> has the ability to specify WHERE <strong>deforestation</strong> is “most<br />

likely” to occur. (2) We can predict regional or project-specific results in the same model simulations. And<br />

(3) the use of <strong>GEOMOD</strong>, in particular, removes some of the “counterfactual uncertainty” (Moura-Costa,<br />

2001; Kerr, 2001) inherent in other methods and other spatial models used to estimate the baseline<br />

scenarios because <strong>GEOMOD</strong> employs a standardized procedure of assessment of this “counterfactual<br />

uncertainty (‘Kappa-for-location’ statistic, Pontius, 2000).<br />

III. How <strong>GEOMOD</strong> works<br />

III. A. Data Collection and Preparation<br />

The model requires as input the following mapped information:<br />

Winrock International<br />

A- 2


Finalizing Avoided Deforestation Baselines<br />

1) Land use/land cover maps for preferably two points in time, classified to identify areas of human<br />

disturbance, versus areas susceptible to human disturbance.<br />

2) A map of political sub-regions if significantly different patterns of land use are evident due to<br />

different government policies, rules or regulations that effect how people use the land.<br />

3) A map indicating areas to be excluded from analysis, often called the “desert” map.<br />

4) Multiple potential candidate driver maps that may explain where people have selected to clear<br />

forest for agriculture or other human-dominated land use, e.g. elevation, slope of the terrain,<br />

distance from town, markets, roads, rivers, navigable water, etc.<br />

5) A vegetation biomass map for which the carbon content per vegetation type is known.<br />

All digital map data required by the model must be collected, corrected for projection differences, and<br />

converted to multiple row, column grid data layers of the same origin and extents (see <strong>GEOMOD</strong> Step-by-<br />

Step Manual in the Appendix for the specific steps required to prepare data inputs for input to the model).<br />

III. B. Calibration<br />

The best analyses of land use change are accomplished when data are available from at least three points<br />

in time. <strong>GEOMOD</strong> begins by categorizing each potential pattern driver map into categories or classes, of<br />

e.g. slope, elevation, distance from roads, etc. and summing the number of cells of each class that exist in<br />

the entire geographic region being analyzed. The model then sums how many cells of each of these<br />

categories lie in areas deforested between the first and second points in time. Finally <strong>GEOMOD</strong> calculates<br />

the proportion of this sum for each class versus the sum of all cells of that class that exist in the region.<br />

This proportion indicates the degree to which land of that property had been sought out by farmers for<br />

clearing in the past, and is assigned to all forested cells of that class to indicate their ‘risk’ or ‘likelihood’ of<br />

being deforested in the future. All driver ‘risk’ maps are added together to create a final map of cells ranked<br />

according to their likelihood of being cleared. <strong>GEOMOD</strong> uses this map of ranked ‘likelihoods’ or ‘risk’ to<br />

simulate <strong>deforestation</strong> for a third point in time. The results are validated against the actual map of that<br />

same time period to test how well the drivers succeeded in predicting the spatial pattern of <strong>deforestation</strong><br />

(Figure 1). This ‘test’ is called the validation process and is discussed further below.<br />

The standard way that <strong>GEOMOD</strong> creates the risk map is to assign weights based on areas of empirical<br />

<strong>deforestation</strong>. Another possible approach, called heuristic weighting, can also be tested. The user, rather<br />

than the model assigns likelihood monotonically based on e.g. distance from roads or towns, without<br />

consideration of the empirical pattern. The need to turn to heuristic weight assignments is normally done<br />

only when there is a lack of information that would allow the model to clearly sort out the signal evidenced<br />

in the empirical pattern of forest disturbance. This is especially true when we have fewer than three points<br />

in time to analyze, and would like to assess the significance of ‘distance from areas of previous<br />

disturbance.’ Heuristically-based driver weights should be applied only on a case-by-case basis, and are<br />

normally used only in situations where not much data exist.<br />

Winrock International<br />

A- 3


Finalizing Avoided Deforestation Baselines<br />

Driver 4<br />

Driver 3<br />

Driver 2<br />

Driver 1<br />

Calibration<br />

Procedure<br />

Likelihood<br />

map<br />

T1 Landuse<br />

Map<br />

cells deforested = y<br />

Simulated T2<br />

Map<br />

cells deforested = y<br />

T2 Landuse<br />

Map<br />

Validation<br />

Procedure<br />

Kappa for<br />

Location<br />

Figure 1. Flowchart for <strong>GEOMOD</strong> showing how empirical knowledge (maps) is used to weight<br />

drivers and how, through comparison of simulated results versus the actual landscape, we use the<br />

Kappa-for-location measurement of ‘goodness of fit’ to validate which driver set explains most of<br />

the spatial variation of land use change.<br />

III. C. Validation<br />

To validate the results created by <strong>GEOMOD</strong>, the actual land-use map at a known point in time is compared<br />

to the simulated land-use map of that same time period based on analysis and projection of the pattern of<br />

land use from the earlier point in time. It was common in the past to measure ‘goodness of fit’ <strong>using</strong> a<br />

simple percent correct measure or, at best, a multiple-resolution percent correct (Costanza, 1989, Hall et al.<br />

1995) but this provides little assessment of a model’s ability to predict the correct quantity of change versus<br />

its ability to identify the correct location of change. Spatial measures of ‘goodness of fit’ have been<br />

developed that measure the degree to which a simulated map agrees with a reality map with respect to<br />

both location (Kappa-for-location) and quantity of cells correct (Kappa-for-quantity) (Pontius, 2000).<br />

How then do we explicitly measure success? First we determine how many cells did <strong>GEOMOD</strong> get right.<br />

This is the model’s success rate. Then, what is the expected success due to chance alone? This we call<br />

the success rate based on random cell selection and is calculated as:<br />

R = (C2 + (N – C) 2) / N<br />

where:<br />

R = the rate of success expected from random cell selection<br />

C = number of grid cells that change<br />

Winrock International<br />

A- 4


Finalizing Avoided Deforestation Baselines<br />

N = the total number of grid cells<br />

The next question is how much did <strong>GEOMOD</strong> improve upon Chance alone? This is the Kappa Coefficient<br />

or Kappa Index of Agreement, and is calculated as:<br />

K = (model success – random success)<br />

100% - random success<br />

Since we are validating with a known quantity of deforested cells, we are calculating the Kappa for location,<br />

which is calculated the same as the standard Kappa. The highest possible value for the Kappa Index of<br />

Agreement and all of its different variations is 1.0. A value of 0 indicates that simulation results are only as<br />

good as if they had been determined randomly. A 1.0 is perfect classification in all respects. A negative<br />

value would indicate that the simulation was worse than ‘chance alone,’ or that the pattern of land use<br />

change displays no rational pattern, i.e. is completely random. (For details on the use and derivation of this<br />

statistic see Pontius (2000), Pontius, et al. (2000), and Pontius and Schneider (in press)). As the interest of<br />

this research is finding a means to estimate the most precise carbon baseline possible, and because<br />

carbon storage varies across the landscape, we have used the Kappa-for-location, or K location statistic, to<br />

measure ‘goodness of fit.’<br />

With ‘Kappa-for-location,’ we can compare baseline-modeling results for a given year, based on a variety of<br />

driver combinations, against an actual map of land use change for that same year. Then, depending on the<br />

simulated map’s performance, we can select the best driver combination to use to simulate future land use<br />

change beyond the validation period. By doing this, we are not wedded to one model for the duration of the<br />

project but rather are given the option of periodically updating the baseline throughout its lifetime, as has<br />

been suggested by Kerr (2001) and Moura-Costa (2001). We can also use changing rates, and derivatives<br />

of rates, to update our assessments.<br />

Winrock International<br />

A- 5


Finalizing Avoided Deforestation Baselines<br />

III. D. Simulation of the carbon baseline<br />

When we model <strong>deforestation</strong> under a ‘business-as-usual’ scenario (BAU) we allocate the predicted<br />

quantity of <strong>deforestation</strong> to the highest-ranking candidate cells in the risk map. The location of each cell<br />

deforested within the boundary of the climate action project is then referenced to the carbon map to find the<br />

amount of carbon emitted per year. These yearly quantities of carbon emissions, over the course of the<br />

project’s lifetime, are the baseline estimate of carbon released, assuming the absence of a carbon set-aside<br />

project.<br />

IV. The APPLICATION of <strong>GEOMOD</strong> to predict the ‘business-asusual’<br />

carbon baseline for the Calakmul region of the State of<br />

Campeche<br />

IV. A. Project Area Description<br />

We analyzed <strong>deforestation</strong> within the State of Campeche, Mexico located on the Yucatan Peninsula. The<br />

area analyzed (16,662 km 2 ) includes 6,597 km 2 of the Calakmul Biosphere Reserve plus an additional<br />

10,025 km 2 to the west of the reserve, an area that includes both heavily impacted regions and remote<br />

areas of the Mayan Forest (la Selva Maya). Vegetation in the region according to the <strong>Instituto</strong> Nacional de<br />

Estadística Geografía e Informática (INEGI) year 2000 classification consists primarily of selva alta,<br />

mediana, y baja subperrenifolia (tall, medium and low evergreen forest) (Figure 2).<br />

Winrock International<br />

A- 6


Finalizing Avoided Deforestation Baselines<br />

Figure 2. Year 2000 Vegetation Map for the State of Campeche (INEGI 2000). Yellow box illustrates<br />

area of analysis.<br />

IV. B. Data Inputs<br />

The data required to make this analysis possible were contributed by many organizations and individuals<br />

working in the area, such as Ben DeJong, and Miguel-Angel Castillo of El Colegio de la Frontera Sur<br />

(ECOSUR); Daniel Juhn of Conservation International (CI); Kim Batchelder, The Nature Conservancy<br />

(TNC); Gabriela Guerrero UNAM Michoacan; Larry Gorenflo of Argonne National Laboratories; Billy Turner,<br />

Clark University; or purchased from the Mexican government’s <strong>Instituto</strong> Nacional de Estadística Geografía e<br />

Informática (INEGI), or were created through satellite image analysis and digitizing of INEGI paper maps.<br />

Data, data sources, metadata<br />

Data for this analysis was selected to capture those factors, which we assume may influence the rate and<br />

pattern of forest conversion. Biophysical factors include elevation, hydrography, presence of natural water<br />

bodies both seasonal and constant, and wetlands; economic factors are those related to investments in<br />

infrastructure that give people increased access to forested lands or increased access to markets, or make<br />

areas more desirable to live, e.g. railroads, roads, agricultural crop delivery points, ports, towns with<br />

commercial importance, schools, medical clinics. Political factors are incorporated by 1) analyzing<br />

individual political units, in this case ‘municipios,’ and 2) incorporating the ‘ejido’ boundaries as a potential<br />

determinant of the quantity and pattern of change across the landscape. Such political boundaries<br />

delineate different decision-making units, where the policies effected by governing bodies may affect the<br />

Winrock International<br />

A- 7


Finalizing Avoided Deforestation Baselines<br />

pattern and quantity of land conversion within the boundary of that unit. Naturally from a list of ideal factors<br />

to analyze it is not always possible to obtain the desired data, nor to obtain it in a complete coverage of the<br />

region to be analyzed. For this analysis we were able to obtain and employ the following factors:<br />

• Roads (we attempted to separate paved from non-paved) (source INEGI 1:50,000 maps)<br />

• Hydrography – perennial and seasonal streams (INEGI 1:50,000 and 1:250,000 maps)<br />

• All water sources as indicated by the INEGI 1:50,000 map series (we had hoped to identify water<br />

delivery points as well but these are not currently mapped).<br />

• Perennial water bodies (INEGI 1:50,000)<br />

• Wetlands – perennial and seasonal (INEGI 1:50,000)<br />

• Elevation in the form of a digital elevation model (INEGI 1:50,000 contours and the Mexican<br />

Government’s 1:250,000 DEM accessed by the agreement with the United States Geologic Society’s<br />

North American Land Cover program.<br />

• Community locations (INEGI 1:50,000)<br />

• Municipio boundaries<br />

• Ejido boundaries<br />

• Location of arqueological sites (INEGI 1:50,000)<br />

• Agriculture/Pasture Lands in 1970 (Mexican Government 1970’s Forest Inventory or INEGI 1970s<br />

vegetation map (1:250,000 scale).<br />

• Density of Population working in the Forestry/Agriculture Sector (INEGI 1990 and 2000 census)<br />

Daniel Juhn of CI provided a 1995 reclassification mosaic of the Selva Maya. Starting with diverse<br />

classifications from many agencies working in different parts of the Selva Maya he created an aggregated<br />

land use map in which the following categories lie within the region of analysis:<br />

1. Selva Alta (High Evergreen Forest)<br />

2. Selva Baja (Low Evergreen Forest)<br />

3. Areas inundables (lowland flood areas, herb. veg.)<br />

4. Sabana (savannah)<br />

5. Vegetación Secundaria (secondary vegetation)<br />

6. Urbano/Agricultura/Potrero (urban/agriculture/pasture)<br />

These classes were further reduced to 2 classes (forested and deforested) as follows:<br />

1. Forest (types 1, 2, 3,and 5 above)<br />

2. Deforested (types 4 and 6 above)<br />

A second aggregation was done that excluded the herbaceous vegetation and secondary vegetation from<br />

the ‘forest’ class as follows:<br />

1. Forest (types 1 and 2)<br />

2. Deforested (types 3, 4, 5,and 6)<br />

This was done with the intent of comparing the two <strong>deforestation</strong> rates and hopefully the projection results<br />

to see if we could detect “reforestation” through the overlay process. In this document we report the results<br />

of our analysis <strong>using</strong> the first classification only. ‘Savanna is assumed to be predominately pasture<br />

misclassified, as it is seen moving in and out of forest. Furthermore, the INEGI vegetation maps indicate<br />

very little natural savanna in this region. Thirty-three percent of the land that was reforested between 1995<br />

and 2000 (34,462 ha) had been classified as ‘sabana’ in 1995.<br />

Winrock International<br />

A- 8


Finalizing Avoided Deforestation Baselines<br />

Table 1: Mapped vegetation categories for the Selva Maya (Juhn 2000) found in the Campeche<br />

study area and the classes to which they were assigned for modeling the baseline. (1 = forest,<br />

2 = deforested, 0 = not included in the analysis)<br />

Cat_ID-Land Use/Land Cover Model Category Scen. 1 Scen. 2<br />

0 – No data 0 0<br />

1 – Selva Alta (High Evergreen Forest): 1 1<br />

2 – Selva Baja (Low Evergreen Forest): 1 1<br />

4 – Areas inundables (lowland flood areas, herb. veg.): 1 2<br />

8 – Sabana (savannah): 2 2<br />

9 – Vegetación Secundaria (secondary vgetation): 1 2<br />

10 – Urbano/Agricultura/Potrero (urban/agriculture/pasture): 2 2<br />

12 – Cuerpos de água (water): 0 0<br />

Data Preparation<br />

All maps were analyzed for spatial congruence with each other and converted where necessary. One third<br />

of the area analyzed lies within UTM zone 15, while 2/3 lies in zone 16. We projected the Selva Maya map,<br />

which traverses several zones to UTM zone 16, NAD83. Where necessary we resampled all other gridded<br />

land cover/land use data, including the TM 2000 satellite classification, to match the 1995 Selva Maya map<br />

and reprojected all zone 15 and zone 16 data to<br />

the following parameters:<br />

ref. system : Universal Transverse Mercator Zone 16<br />

projection : Transverse Mercator<br />

datum : WGS84<br />

delta WGS84 : 0 0 0<br />

ellipsoid : WGS 84<br />

major s-ax : 6378137.000<br />

minor s-ax : 6356752.314<br />

origin long : -87<br />

origin lat : 0<br />

origin X : 500000<br />

origin Y : 0<br />

scale fac : 0.9996<br />

units : m<br />

parameters : 0<br />

All vector data such as roads, streams, wetlands, etc. were reprojected and gridded in ESRI’s ARCVIEW<br />

3.2 to match the grid extents and resolution of the selected area of analysis. These consist of 3554 columns<br />

and 5209 rows, with a grid cell resolution of 30 by 30 meters and the following UTM zone 16 bounding<br />

coordinates.<br />

min. X : 146615.0000000<br />

max. X : 253235.0000000<br />

min. Y : 1972619.0000000<br />

max. Y : 2128889.0000000<br />

The extent of the area of analysis was determined based on 1) the decision to limit the analysis to the state<br />

of Campeche, 2) to try to capture some of the advancing <strong>deforestation</strong> front coming from the west, 3) the<br />

availability and cost of data and 4) computer memory limitations.<br />

Winrock International<br />

A- 9


Finalizing Avoided Deforestation Baselines<br />

Using IDRISI32 software, we created grids representing ‘distance from’ communities, rivers (perennial and<br />

seasonal), roads, historical sites, 1970 agriculture, and water sources (perennial and seasonal). The final<br />

set of candidate driver maps (Table 2) included seven ‘distance from’ maps, plus presence or absence of<br />

wetlands (seasonal and perennial), density of persons involved in sector 1 economic activity (agriculture<br />

and forestry), ejido boundaries and elevation (Table 2). Due to the high-resolution of the data employed for<br />

this analysis and hence the large number of rows and columns, the computer memory to run the analysis<br />

exceeded 1 Gb RAM. To realize our objective we split the region in half north and south. The northern half<br />

consisted of 2605 rows by 3554 columns, the southern 2604 by 3554. Memory limitations also required use<br />

of <strong>GEOMOD</strong>’s ‘non-neighborhood’ search option only. This greatly decreases model run time but sacrifices<br />

some spatial accuracy. In order to preserve the rationale behind the neighborhood function we created a<br />

“distance from prior disturbance” driver, in this case ‘distance from 1970s agriculture.’ If this factor is found<br />

to be important then each cell could be weighted heuristically (see section III. B.) in order to force the model<br />

to deforest in the neighborhood first. Similarly ‘distance from towns,’ if important, also gives greater weight<br />

to forest lands lying proximate to ‘deforested’ population centers.<br />

Winrock International<br />

A- 10


Finalizing Avoided Deforestation Baselines<br />

Table 2. Category Delineation for Candidate Spatial Pattern Determinants<br />

Driver # Classes Class Width<br />

Dist. From Historic Sites 22 3000 m<br />

Elevation 19 20 m<br />

Dist. From Towns 19 2000 m<br />

Dist. From 1970 Ag. 25 3000 m<br />

Dist. From Perennial Streams 28 1000 m<br />

1990 Dens. Of Ag/For Pop 10 10 pers/km2 .<br />

Dist. From Roads 25 1000 m<br />

Ejidos 115<br />

Dist. From All Water 21 1000 m<br />

Dist. From Perennial Water Source 25 1000 m<br />

All Wetlands 2 Wetl/Non_Wetl<br />

Seasonal Wetlands 2 Wetl/Non_Wetl<br />

Perennial Wetlands 2 Wetl/Non_Wetl<br />

IV. C. Calibration and Validation of Spatial Pattern Drivers<br />

Calibrating the candidate drivers of <strong>deforestation</strong><br />

To understand those factors that explain the spatial distribution of forest clearing for human uses in the<br />

Selva Maya portion of the State of Campeche, we analyzed four regions. These are portions of four<br />

municipios that intersect the selected study area boundary (Figure 3). They include Hopelchen,<br />

Champoton, Calakmul, and a small portion of Escarcega.<br />

Winrock International<br />

A- 11


Finalizing Avoided Deforestation Baselines<br />

Figure 3. Municipalities intersecting the region analyzed. All are located within the State of<br />

Campeche.<br />

<strong>GEOMOD</strong> calculates the portion of each driver class that coincides with deforested cells in 1995 and then<br />

simulates a year 2000 landscape. The 1995 land against which the drivers were analyzed is shown in<br />

Figure 4. Through visual comparison with the mapped drivers (Figure 5) one can often get an intuitive<br />

sense of those factors that appear to be the most important. <strong>GEOMOD</strong>’s SR1.Out file (Table 3) reports the<br />

percent of each driver class that is already deforested in 1995. These percentages are the weights applied<br />

to each remaining forested cell in that driver class. In each calibration run the final weight applied to each<br />

forested cell in the map is a combination of the weights (or percentages) of all the drivers being tested in<br />

that run.<br />

Winrock International<br />

A- 12


Finalizing Avoided Deforestation Baselines<br />

Figure 4. 1995 Land Use. Deforested includes urban, pasture (including savanna), agriculture.<br />

Forested lands include selva alta and baja and secondary vegetation. Percent of each driver class<br />

lying in deforested (yellow) cells signifies the importance of that driver class in explaining the<br />

pattern of <strong>deforestation</strong> in 1995. Lands that reforested between 1995 and 2000 are orange.<br />

Winrock International<br />

A- 13


Finalizing Avoided Deforestation Baselines<br />

Figure 5. Four spatially distributed factors that may explain <strong>deforestation</strong> patterns in Campeche –<br />

Ejido land use history, distance from communities, distance from year-round bodies of water,<br />

elevation.<br />

Winrock International<br />

A- 14


Finalizing Avoided Deforestation Baselines<br />

Table 3. Percent of each class of each driver already deforested in 1995. The set shown here is for<br />

the five drivers used in the analysis of the northern portion and are for the municipio of Champoton<br />

only. Results for each municipio for the final set of drivers used are reported in full in the Appendix<br />

(Table 1 ). A value of 0.0 indicates no cells in that class are deforested. A value of –1.0<br />

indicates that there are no cells of that class.<br />

REGION 2: Champoton<br />

CATEGORY MAP_1 MAP_2 MAP_3 MAP_4 MAP_5<br />

1 1.79 39.13 48.30 35.83 24.38<br />

2 0.71 51.09 20.01 8.68 10.14<br />

3 3.69 10.24 5.93 5.80 5.90<br />

4 3.14 5.23 3.77 3.14 0.19<br />

5 2.66 5.80 3.30 0.65 0.11<br />

6 1.80 1.39 1.75 0.29 0.21<br />

7 4.00 0.41 0.10 0.35 0.83<br />

8 2.66 1.67 0.44 0.44 0.65<br />

9 4.88 0.58 0.69 0.04 1.10<br />

10 9.43 0.11 0.75 0.02 1.60<br />

11 11.95 0.01 0.01 1.92 4.54<br />

12 12.79 0.00 0.00 0.00 5.58<br />

13 14.23 0.00 0.00 0.00 8.70<br />

14 18.66 0.00 0.00 0.00 9.90<br />

15 17.63 0.00 0.00 -1.00 10.21<br />

16 18.77 0.00 0.00 -1.00 7.12<br />

17 24.26 0.00 0.00 -1.00 8.14<br />

18 47.12 -1.00 0.00 -1.00 8.02<br />

19 93.28 -1.00 0.00 -1.00 12.70<br />

20 -1.00 -1.00 -1.00 -1.00 18.94<br />

21 -1.00 -1.00 -1.00 -1.00 27.91<br />

22 -1.00 -1.00 -1.00 -1.00 29.15<br />

23 -1.00 -1.00 -1.00 -1.00 27.34<br />

24 -1.00 -1.00 -1.00 -1.00 38.58<br />

25 -1.00 -1.00 -1.00 -1.00 44.94<br />

26 -1.00 -1.00 -1.00 -1.00 22.72<br />

27 -1.00 -1.00 -1.00 -1.00 3.99<br />

28 -1.00 -1.00 -1.00 -1.00 0.00<br />

0 -1.00 -1.00 -1.00 -1.00 -1.00<br />

Map 1 = Distance from Archeological Sites, Map 2 = Elevation, Map 3 = Distance<br />

from Towns, Map 4 = Distance from 1970’s Agriculture, Map 5 = Distance from<br />

year-round streams<br />

Assessing spatial pattern driver significance<br />

To test statistically how well each candidate driver map (Figure 5) or combination of maps allows us to<br />

match the actual 2000 landscape, we simulated land-use change between 1995 and 2000 <strong>using</strong> one<br />

potential ‘driver’ at time, followed by multiple combinations of driver maps. The success of each driver in<br />

helping <strong>GEOMOD</strong> find the “right” cells in 2000 is measured by the kappa-for-location statistic. Different<br />

pattern drivers exhibit more or less ability to improve on projections depending on the municipio analyzed<br />

(Table 4). The individual most successful driver across all municipios in the north (kappa = 0.2307) was<br />

distance to archeological sites, while in the southern half of the region, ejidos were the most significant<br />

factor (kappa = 0.0927). We did not have complete ejido coverage in the north, but the area missing ejido<br />

Winrock International<br />

A- 15


Finalizing Avoided Deforestation Baselines<br />

boundary information includes the three ejido forest extension zones of Dzibalchen, Hopelchen and<br />

Champoton . In the North the highest agreement between the simulated and the actual maps was achieved<br />

in the municipio of Champoton, which is also the region with the highest <strong>deforestation</strong> rate. Most of the<br />

area of analysis in the southern region lies in the municipio of Calakmul. In both the Calakmul (north and<br />

south) and the small portion of Escarcega intersecting our study area the percent of cells simulated<br />

correctly (see Appendix Table 2), was very high (98.09 – 98.68), but the kappa statistic very low (– 0.0079<br />

to 0.0498). A kappa of 0 indicates the <strong>GEOMOD</strong> with the information provided by that driver map is not<br />

able to forecast the year 2000 landscape any better than if the model had no information, i.e. was operating<br />

on chance alone. A kappa less than 0 indicates that the model is doing worse than it would do with no<br />

information. Normally a low kappa or one less than zero is an indication that the pattern of <strong>deforestation</strong> is<br />

random and not predictable. Frequently this is seen in areas of clandestine <strong>deforestation</strong> or chaotic<br />

settlement patterns, such as those with a high refugee influx.<br />

Table 4. ‘Kappa-for-location’ results for each <strong>deforestation</strong> pattern driver and combination of drivers<br />

tested, for a) northern analysis, b) southern analysis (the cells colored red, blue and yellow indicate<br />

the three drivers, in importance from high to low respectively, giving the highest Kappa.<br />

Total Region Hopelchen Champoton Calakmul Escarcega<br />

DRIVERS Map Name Kappa Kappa Kappa Kappa Kappa<br />

NORTH<br />

1 Dist. Agric_70 0.13 0.10 0.16 0.00 0.01<br />

2 Dist. All Wat. Srcs. 0.04 0.07 0.03 0.00 0.02<br />

3 Elevation 0.17 0.05 0.23 0.00 0.00<br />

4 Ejidos 0.05 0.01 0.05 0.05 0.01<br />

5 Dist. Arq.Sites 0.23 0.09 0.30 0.00 0.02<br />

6 Dist. Roads 0.05 0.03 0.06 0.00 0.04<br />

7 Dens. Sect.1 Pop. 0.07 0.03 0.09 0.00 0.01<br />

8 Dist.Perm. Strms 0.12 0.19 0.12 0.01 -0.01<br />

9 Dist. Towns 0.17 0.16 0.19 0.01 0.02<br />

10 Dist. Perm. Wat. Src. 0.02 0.00 0.03 -0.01 0.01<br />

11 Perm. Wetl. 0.00 0.00 0.00 0.00 0.01<br />

12 Seas. Wetl. 0.02 0.09 0.00 0.00 0.01<br />

13 All Wetl. 0.02 0.09 0.01 0.00 0.01<br />

Combinations<br />

5, 3 2 drivers 0.26 0.04 0.35 0.02 0.02<br />

5, 3, 9 3 drivers 0.25 0.17 0.29 0.03 0.05<br />

5, 3, 9, 1 4 drivers 0.26 0.15 0.32 0.03 0.05<br />

5, 3, 9, 1, 8 5 drivers 0.28 0.17 0.34 0.05 0.03<br />

5, 3, 9, 1, 8, 7 6 drivers 0.27 0.17 0.33 0.06 0.03<br />

5, 3, 9, 1, 8, 7, 6, 4 8 drivers 0.27 0.18 0.33 0.05 0.03<br />

SOUTH Map Name Kappa Kappa Kappa<br />

1 Dist. Agric_70 0.0121 0.0782 0.0098<br />

2 Dist. All Wat. Srcs. 0.0064 0.1257 0.0022<br />

3 Elevation 0.0161 0.0753 0.0140<br />

4 Ejidos 0.0927 0.1043 0.0923<br />

5 Dist. Arq.Sites 0.0229 0.1682 0.0177<br />

6 Dist. Roads 0.0244 0.0301 0.0242<br />

A- 16<br />

Winrock International


Finalizing Avoided Deforestation Baselines<br />

7 Dens. Sect.1 Pop. 0.0222 0.0502 0.0212<br />

8 Perm. Strms 0.0637 0.1257 0.0615<br />

9 Dist. Towns 0.0223 0.0074 0.0228<br />

10 Dist. Perm. Wat. Src. 0.0035 0.1125 -0.0004<br />

12 Seas. Wetl. -0.0039 0.0161 -0.0046<br />

Combinations<br />

4, 8 2 drivers 0.0862 0.1441 0.0841<br />

4, 8, 6 3 drivers 0.0876 0.1420 0.0857<br />

4, 8, 6, 5 4 drivers 0.0984 0.2793 0.0920<br />

4, 8, 6, 9 4 drivers 0.0951<br />

1, 3, 5, 8, 9 5 drivers of north 0.0552<br />

4, 8, 6, 5, 9 5 drivers of south 0.1001 0.2824 0.0936<br />

4, 8, 6, 5, 9, 7 6 drivers 0.0998 0.2824 0.0933<br />

We found improved ability to replicate the actual 2000 landscape with each additional driver, but the<br />

addition of a 6 th driver (density of people employed in sector 1 activities) brought down the kappa in both<br />

the north and south. The best kappa-for-location statistic achieved was 0.2755 in the north <strong>using</strong> distance<br />

to archeological sites, which was overwhelmingly the most significant determinant of <strong>deforestation</strong> pattern,<br />

followed by elevation, distance to towns, distance to 1970s agriculture, and distance to perennial streams.<br />

In the south where settlement is sparse and patterns appear very random we achieved a kappa-for-location<br />

of 0.10 <strong>using</strong> ejidos, distance to perennial streams, distance to roads, distance to archeological sites, and<br />

distance to towns. The percent correct in the south (97.8) with a low kappa indicates that so little change is<br />

happening in the south in the five year time period of the validation run that the model cannot help but get a<br />

high number correct, but due to the random pattern is doing only 10% better than a random simulation<br />

would do selecting the newly deforested cells.<br />

The inability to get a higher kappa in the South may also be caused by the little change that is happening<br />

there compared to areas in the north. This provides a high percent correct in the simulated map, but so few<br />

cells to improve upon that value that the kappa is of necessity low. This low rate of <strong>deforestation</strong> may be<br />

explained by the fact that much of the area is occupied by the Biosphere Reserve. Also over the five years<br />

of analysis, the area reforesting is 1.74 times the area deforesting. This reforesting land may be land that is<br />

cycling in and out of milpa cultivation, and for the time being the pressure on the mature forest is low.<br />

Without a third land use map it is difficult to tell if this reforestation is permanent or cycling. What is clear is<br />

that the type of forest conversion found in this region is very different from that found in the northwest<br />

corner of the study area, the planned agricultural settlement areas of Champoton.<br />

Results of driver assessment – identification of areas most likely to be cleared<br />

The final risk map (Figure 6) created through the iterative process of testing drivers and measuring<br />

‘goodness of fit’ represents those areas that exhibit the greatest likelihood of deforesting in the future,<br />

based on the empirical land-use change pattern. The model selects forested cells during simulation based<br />

on the risk rating of each cell compared to all other cells. Factors have been scaled between 1 and 255.<br />

Class 0 represents land already deforested or non-forested. How fast any cell is converted is determined<br />

by the <strong>deforestation</strong> rate predicted. For ease of interpretation we have reclassified this map into 3 major<br />

categories, high to low risk (Figure 7). A histogram of the map in Figure 7 shows how unevenly the risk<br />

factors are distributed across the 1-255 range. The most vulnerable one third of the cells fall between<br />

values 15 and 255 on the Figure 7 map, the next one-third between 7 and 14, and the lowest between 1<br />

and 6. This indicates a considerable difference in weighting of the cells in this region due to the many<br />

different forces affecting human settlement and use of the forest and forest land. The risk maps for each<br />

driver alone can be viewed in the Appendix (Maps 1 – 11).<br />

Winrock International<br />

A- 17


Finalizing Avoided Deforestation Baselines<br />

Low Risk<br />

High Risk<br />

Figure 6. Map showing relative risk of <strong>deforestation</strong> across the Campeche region based on analysis<br />

of empirical areas of <strong>deforestation</strong> versus 13 spatially explicit candidate driver maps. Black (class<br />

0) represents areas already deforested in 2000, or water.<br />

Winrock International<br />

A- 18


Finalizing Avoided Deforestation Baselines<br />

Figure 7. Risk of <strong>deforestation</strong> (Figure 7) condensed into 3 classes, high, medium and low based<br />

solely on effectiveness of a combination of drivers in predicting the validation landscape. No<br />

<strong>deforestation</strong> rate factor is incorporated in this schematic.<br />

IV.<br />

D. Derivation of land clearing rate<br />

To model land-use change spatially over time there must be empirical evidence of change in a region. We<br />

used imagery for only a 5-year time period (Figure 8) because 1) it was the most spatially congruent data<br />

set available, 2) it is the highest resolution data set available, and 3) we invested in the creation of the year<br />

2000 classification to the same level as the 1995 to have two maps that used the same classes. Both were<br />

based on a training set provided by Ron Eastman, Chair of the Geography Department, Clark University.<br />

To determine the <strong>deforestation</strong>/degradation pathway we created two land use classes (Figure 9).<br />

Agriculture, pasture and urban were already lumped in the 1995 classification. To this we added savanna,<br />

which generally is not found in the region naturally (INEGI 2000). Our own analysis shows land classified<br />

as ‘savanna’ returning to forest in 5 years, indicating it was pasture; it is often difficult to discriminate<br />

savanna from pasture in the classification process. The 1995 and 2000 images show different quantities of<br />

forest degradation depending on whether one includes secondary vegetation in the forested or deforested<br />

category (Figure 9). More than 395,000 ha of selva alta were converted to selva baja between 1995 and<br />

2000, while another 31,000 ha were converted to secondary vegetation (Table 6). Determining the ‘from’<br />

carbon pool and the ‘to’ carbon pool, when only two pools are allowed by the model at a time is complicated<br />

by these factors and the various pathways are illustrated in Figure 9. Including secondary vegetation in the<br />

Winrock International<br />

A- 19


Finalizing Avoided Deforestation Baselines<br />

‘to’ (deforested) pool reveals much greater pressure in this 5-year time step than is evident when it is<br />

considered part of the forest (Figure 9).<br />

1995 2000<br />

Figure 8. 1995 and 2000 Land Use/Land Cover classified from TM satellite imagery.<br />

Figure 8. 1995 and 2000 Land Use/Land Cover classified from TM satellite imagery.<br />

Winrock International<br />

A- 20


Finalizing Avoided Deforestation Baselines<br />

Figure 9. Land use change (with reforesting cells excluded) – top) Class 1, forest, includes<br />

secondary vegetation; bottom) Class 2, deforested, includes secondary vegetation.<br />

Winrock International<br />

A- 21


Finalizing Avoided Deforestation Baselines<br />

Table 6. Cross-tabulation results illustrate 1995 (columns) – 2000 (rows) land use conversion (ha) in<br />

Campeche from one land-use class to another.<br />

Water<br />

or No<br />

Selva Flood<br />

Secondary<br />

Data* Selva Alta Baja Zones* Savannah Vegetation Urban/Agri/Pasture Total<br />

Water or No Data 3879.81 0 0 0 0 0 0 3879.81<br />

Selva Alta 0 723734.37 96455.52 63.9 7194.24 23486.04 7325.82 858259.9<br />

Selva Baja 0 395437.23 251836.3 75.15 3192.03 4466.88 2530.35 657537.9<br />

Flood Zones 0 365.58 605.25 14.31 425.79 33.39 166.14 1610.46<br />

Savannah 0 19153.71 2931.03 151.38 898.83 1198.17 3036.42 27369.54<br />

Sec. Vegetation 0 31076.82 1889.46 79.65 682.47 12346.29 12945.06 59019.75<br />

Urban/Agri/Pasture 0 13741.56 2655.81 468.54 2386.89 5313.96 33906.6 58473.36<br />

Total 3879.81 1183509.27 356373.4 852.93 14780.25 46844.73 59910.39 166615<br />

*Herb/Shrub<br />

* All cells in both maps classed to 0<br />

Table 7. Forest vs. deforested lands 1995 and 2000 for each municipality.<br />

Summary without separation of north and south<br />

Rate does not incorporate reforestation observed between 1995 and 2000<br />

Municipio 1995 Cells 2000 CellsCells Lost per year<br />

Annual %<br />

change<br />

Total Hopelchen 1052971 978906 74065 14813 0.015<br />

Champoton 3838169 3550112 288057 57611 0.016<br />

Calakmul 12675743 12531548 144195 28839 0.002<br />

Escarcega 72898 72391 507 101 0.001<br />

Total 17639781 17132957 506824 101365 0.006<br />

Using the more conservative scenario, in which secondary vegetation is evaluated as part of the forest<br />

class, i.e. a carbon source, we apply a <strong>deforestation</strong> rate of 1.5% annually in the municipio of Hopelchen,<br />

1.6 percent in Champoton. 0.2 % in the Calakmul, and 0.1 % in Escarcega based on the five year rate<br />

observed in the satellite imagery (Table 7).<br />

Winrock International<br />

A- 22


Finalizing Avoided Deforestation Baselines<br />

1,587,580 ha 4,514 ha (2.87%)<br />

34,462 ha 74,690 ha<br />

1,540,736 ha 72,148 ha<br />

48,821 ha 121,535 ha<br />

1,540,736 ha 39,102 ha<br />

20,834 ha 74,691 ha<br />

1,540,736 ha 33,046 ha<br />

27, 986 46,845 ha<br />

46,845 ha 6,512 ha<br />

13,627 ha 74,691 ha<br />

Figure 10. Changes in land cover in Campeche between selva alta and selva baja combined, secondary vegetation and<br />

deforested land 1995 – 2000. Arrows represent standing stocks of one<br />

A-<br />

cover;<br />

23<br />

bracketed number is amount of original<br />

Winrock<br />

converted<br />

International<br />

to other use.


Finalizing Avoided Deforestation Baselines<br />

IV. E. Simulation Results<br />

Quantity of land predicted to be cleared<br />

We used the empirical 1995 to 2000 annual rate found in Table 7 to project into the future. We predict a<br />

loss of 273,685 ha in the region (Table 8). with a total loss 12% more of its forest cover by 2020 and 18 %<br />

more by 2030 (Figure 11). Calakmul, the largest municipio in the region is projected to lose only 5% of its<br />

forest cover by year 2020 (Table 9). The model produced simulated maps of land use change for the years<br />

2000, 2005, 2010, 2015, 2020, 2025, 2030 (Figure 12).<br />

Table 8. Deforestation Projections<br />

Annual Rate<br />

of<br />

<strong>deforestation</strong><br />

Total Ha<br />

Municipio (ha) 1995 2000 2005 2010 2015 2020 2025 2030Deforested<br />

Hopelchen 1333 94767 89925 83259 76593 69927 63262 56596 49930 39995<br />

Champoton 5185 345435 333102 307177 281252 255327 229402 203477 177552 155551<br />

Calakmul 259611408171146751 1133773 1120796 1107818 1094841 1081863 1068885 77865<br />

Escarcega 9 6561 6650 6604 6559 6513 6467 6422 6376 274<br />

Total 912315875801576428 1530814 1485200 1439586 1393971 1348357 1302743 273685<br />

Figure 11. Percent 2000 forest cover from 2000 – 2030.<br />

100<br />

80<br />

%<br />

60<br />

40<br />

Hopelchen<br />

Champoton<br />

Calakmul<br />

Escarcega<br />

Total<br />

20<br />

0<br />

2000 2005 2010 2015 2020 2025 2030<br />

Year<br />

Winrock International<br />

A- 24


Finalizing Avoided Deforestation Baselines<br />

Table 9. Percent 2000 forest cover change.<br />

Municipio 2000 2005 2010 2015 2020 2025 2030<br />

Hopelchen 100 93 85 78 70 63 56<br />

Champoton 100 92 84 77 69 61 53<br />

Calakmul 100 99 98 97 95 94 93<br />

Escarcega 100 99 99 98 97 97 96<br />

Total 100 97 94 91 88 86 83<br />

Figure 12. Spatial simulation results for six five-year time periods from 2000 – 2025.<br />

Winrock International<br />

A- 25


Finalizing Avoided Deforestation Baselines<br />

Carbon benefits<br />

<strong>GEOMOD</strong> predicts a carbon loss of 14.2 million tons C adjusted for reforestation to a net<br />

carbon loss of 8.9 million tons C for the <strong>deforestation</strong> baseline 2000-2030. The carbon<br />

values (DeJong, personal communication) used per vegetation type are summarized in Table<br />

10. Reforestation has not been modeled explicitly, but based on the reforestation rate<br />

observed between 1995 and 2000 (45% of cleared land) we have calculated a reforestation<br />

of 45% of the cells deforested in each previous time period and subtracted an amount equal<br />

to a regrowth rate of 1.9 t C/ha.yr (Brown, personal communication) from each 5-year time<br />

period’s carbon emissions. This reduction occurs only for the five year time period as we<br />

have no knowledge of the long-term trajectory of this land and assume for now that it is<br />

cleared cyclically. Total carbon emissions of 14.2 million tons C are thus reduced by 5.2<br />

million tons, as summarized in Table 11 and Figure 13. Over fifty percent of the carbon loss<br />

to the atmosphere is derived from the tall evergreen forest (Figure 13). No adjustment has<br />

been made for the carbon in the remaining vegetation nor for soil carbon.<br />

Table 10. Carbon values for Calakmul study area vegetation.<br />

VEGETATION TYPE CAT ID Tons C/ha Tons C /30x30 m CELL<br />

Selva Alta 1 66.5 5.985<br />

Selva Baja 2 42.6 3.834<br />

Secondary Vegetation 3 34.35.35 3.092<br />

Table 11. Carbon emissions projected for each 5-year period, by vegetation type.<br />

5-year C<br />

Emissions 2005 2010 2015 2020 2025 2030 Total<br />

Selva Alta 1053439 1262161 1298566 1330328 1634936 1327177 7906607<br />

Selva Baja 829540 828765 901508 890354 745376 964101 5159644<br />

Veg. Sec. 342980 232434 161664 160257 118927 103537 1119800<br />

Total<br />

Emissions 2225959 2323361 2361737 2380940 2499238 2394816 14186051<br />

Reforestation -369808 -573540 -776863 -981044 -1185998 -1390847 -5278100<br />

Net Emissions 1856151 1749821 1584874 1399896 1313240 1003969 8907951<br />

Winrock International<br />

A- 26


Finalizing Avoided Deforestation Baselines<br />

5-year Cumulative Carbon Emissions (+) and Reductions (-)<br />

16<br />

14<br />

Selva Alta<br />

12<br />

10<br />

Selva Baja<br />

Tons C<br />

Millions<br />

8<br />

6<br />

4<br />

Veg. Sec.<br />

Total Emissions<br />

2<br />

0<br />

-2<br />

-4<br />

2005 2010 2015 2020 2025 2030<br />

Reforestation<br />

Reductions<br />

Total Carbon<br />

Sequestered<br />

Year<br />

Figure 13. Cumulative carbon emissions (+) and reductions (-) per vegetation type under a 30-year<br />

<strong>deforestation</strong> baseline scenario for the Calakmul region.<br />

V. APPLICATION of <strong>GEOMOD</strong> to predict the ‘business-asusual’<br />

carbon baseline for Meseta Purépecha region of<br />

the State of Michoacan<br />

V.A. Project Area Description<br />

The Purépecha Region is situated in the western state of Michoacan in Mexico with an area of<br />

approximately 615,000 ha and a population of ca. 732,147, distributed over 927 communities in 19<br />

municipalities (Figure 14). Purépecha is the name of the dominant ethnic group in the region. The region<br />

is mountainous with an elevation range of 621–3,860 m (Figure 15), the product of recent volcanic activity<br />

resulting in Andosols as the dominant soil type. The climate is temperate sub-humid with an average<br />

rainfall between 800 and 1100 mm mainly concentrated in summer, and average temperatures between<br />

11°C and 14°C. However, the rough topography of the region results in a wide variety of microclimates.<br />

The vegetation in the area Purépecha according to INEGI, consists primarily of Pine-Oak forest, Pine<br />

forest, agriculture and permanent crops (Figure 14).<br />

Winrock International<br />

A- 27


Finalizing Avoided Deforestation Baselines<br />

Figure 14. Vegetation map for the state of Michoacan. The region Meseta Purepecha and<br />

corresponding municipalities are outlined in black.<br />

Altitud<br />

0 10km<br />

Figure 15. Schematic of Tancitaro volcano, in the subregion Tancitaro with indication of<br />

elevation.<br />

Winrock International<br />

A- 28


Finalizing Avoided Deforestation Baselines<br />

V.B. Data<br />

The data acquired mostly from INEGI included:<br />

• Roads.<br />

• Hydrography<br />

• Digital coverage of elevation contours<br />

• Soils classified by type<br />

• Community locations, including locations of the main towns in each municipio<br />

• Municipio boundaries<br />

• Protected area locations<br />

• Meteorological data, including mean minimum and mean maximum temperature, and precipitation<br />

measurements for both times (wet and dry season)<br />

Table 12: Legend showing vegetation types found in the Purépecha area and the classes<br />

to which they were assigned for modeling purposes (1 = forest, 2 = deforested, 0 =<br />

outside the study area)<br />

Cat ID Land Use/Land Cover Model Category<br />

1 Agricultura /Agriculture 2<br />

2 Agricultura de temporal/Permanent crops (orchards) 2<br />

3 Area sin vegetacion aparente/ without vegetation 2<br />

4 Area urbana/ Urban areas 2<br />

5 Bosque con vegetacion secundaria/Sec forest 1<br />

6 Bosque de Encino/ Oak forest 1<br />

7 Bosque de Oyamel /Oyamel forest 1<br />

8 Bosque de Pino /Pine forest 1<br />

9 Bosque de Pino-encino/ Pine-oak forest 1<br />

10 Cuerpos de agua/Water bodies 0<br />

11 Matorral/Shrubs 2<br />

12 Pastizal/Pasture 2<br />

13 Plantacion forestal/ Reforestation 1<br />

14 Otros tipos/Another 0<br />

15 Sin Clasificacion/ Without classification 0<br />

V.C. Data preparation<br />

All maps were analyzed for spatial congruence with each other and converted where necessary. All<br />

vector data were gridded in ESRI’s ARCVIEW 3.2 to match the grid proportions and resolution of the<br />

three time periods. These consist of 914 rows by 1245 columns, with a grid cell resolution of 100 meters<br />

by 100 meters.<br />

Elevation values ranged from 621 to 3821 meters. From the grid we calculated a slope and aspect map<br />

of the region. We then reclassified each land use map, the soils map, and the municipio map to<br />

represent land (1) and non-land (0) in order to create a ‘MASK’ that would ensure that information was<br />

available for analysis on all input maps. We did this by overlaying the binary maps until only non-zero<br />

cells coinciding on all maps remained. The final mask, therefore, included only those areas that were<br />

consistently identified as “land” in all maps. Finally the mask excluded two protected areas not included<br />

in the analysis.<br />

We created grid maps in ARCVIEW of the community and municipal seats (sedes) shape files and<br />

calculated distance from communities, municipal seats, rivers, roads and navigable water. Each ‘distance’<br />

Winrock International<br />

A- 29


Finalizing Avoided Deforestation Baselines<br />

map was classified into categories representing different distance intervals from each of these potentially<br />

important physical features (see Table 13).<br />

The final set of candidate driver maps (Table 13) includes the 5 ‘distance from’ maps, soils, slope, aspect,<br />

elevation, watersheds, municipalities, and ‘distance from 1976 deforested land”.<br />

Table 13. Category Delineation for Candidate Spatial Pattern Determinants<br />

# of<br />

Spatial Driver Range of Values Units Intervals<br />

Interval Width<br />

Conservation Areas 1-5 Nominal 5 1<br />

Municipios 1-19 Nominal 19 1<br />

Subregion 1-4 Nominal 4 1<br />

Aspect 0-360 Degrees 10 1 = flat, 2= 0-22.5°, 3-9=45°,<br />

10=22.5°<br />

Slope 52 Degrees 10 1 = 0°, 2-9 = 5°,<br />

10 = 10°<br />

Soil Type 12 Nominal 12 1<br />

Elevation 621.8-3835.7 Alt. (m) 20 200<br />

Water Dist 15368 Meters 32 500<br />

Commun. Dist1990 11475 Meters 29 400<br />

Dist_road 4709.575 Meters 32 150<br />

Dist. Deforest lands 4876.47 Meters 25 200<br />

The final maps had the following dimensions:<br />

columns : 1245<br />

rows : 914<br />

ref. system : Utm13n<br />

ref. units : meters<br />

unit dist. : 1.0000000<br />

min. X : 752795.941193<br />

max. X : 877295.941193<br />

min. Y : 2121635.935176<br />

max. Y : 2213035.935176<br />

cell resol. : 100<br />

All maps were then converted to ASCII format as required by <strong>GEOMOD</strong>.<br />

V.D. Calibration and Validation of Spatial Pattern Drivers<br />

Calibrating the candidate drivers of <strong>deforestation</strong><br />

To understand those factors that explain the spatial distribution of forest clearing for human uses in<br />

Purépecha region, we analyzed four sub-regions. These are groups of municipalities that have biophysical<br />

characteristics in common and conform to the Purépecha region boundary. (Figure 16).<br />

Winrock International<br />

A- 30


Finalizing Avoided Deforestation Baselines<br />

Región Meseta<br />

Región Uruapan<br />

Región Tancitaro<br />

Región<br />

Patzcuaro<br />

Figure 16. Map of the Purépecha region showing the four sub-regions used in the analysis.<br />

<strong>GEOMOD</strong> calculates the portion of each driver class that coincides with deforested cells in 1993 and then<br />

simulates a year 2000 landscape. The 1993 land use/vegetation cover map that was used in the analysis<br />

with the drivers is shown in Figure 17.<br />

Winrock International<br />

A- 31


Finalizing Avoided Deforestation Baselines<br />

Figure 17. Map of deforested (urban, pasture, shrubs, agriculture, other, etc) versus forested<br />

lands in 1993.<br />

<strong>GEOMOD</strong>´s sr1.Out file (Table 14) reports the percent of each driver class that is already deforested in<br />

1993. These percentages are the weights applied to each remaining forest cell in that driver class. In<br />

each calibration run the final weight applied to each forested cell in the map is a combination of the<br />

weights of all the drivers being tested in that run<br />

Winrock International<br />

A- 32


Finalizing Avoided Deforestation Baselines<br />

Table 14. Percent of each class of each driver already deforested in 1993. The set shown here is for<br />

the subregion Purepecha only. Results for each of the other sub-region are reported in full in the<br />

Appendix. A value of 0.0 indicates no cells in that class are deforested. A value of -1.0 indicates that<br />

there are no cells of that class.<br />

CATEGORY Dist_aga Droad_a Aspect Slope<br />

Soils dpob2 elev_a ppmo tmaxmo Regiones<br />

1 75.38 75.66 94.12 87.18 37.9 82.52 92.27 64.59 -1 41.58<br />

2 63.04 67.11 51.11 71.14 50.6 74.24 93.2 69.19 -1 62.48<br />

3 55.71 58.66 50.3 42.85 75.1 63.33 68.16 61.74 0 53.54<br />

4 50.78 51.61 48.02 20.97 71.5 54.84 61.55 44.1 10.98 52.78<br />

5 48.14 45.31 49.07 14.99 98 47.24 47.71 51.39 33.81 -1<br />

6 46.51 39.96 49.06 11.31 26.3 40.85 60.35 49.24 52.69 -1<br />

7 46.79 34.22 51.93 7.8 52.3 38.18 62.69 2.2 58.93 -1<br />

8 45.86 29.5 53.51 6.09 100 35.34 64.17 -1 60.88 -1<br />

9 44.04 25.8 53.96 6.41 66.2 31.29 49.55 -1 86.04 -1<br />

10 43.02 22.88 52.07 13.64 45.3 26.75 33.37 -1 100 -1<br />

11 45.84 20.28 -1 -1 92.3 25.02 34.57 -1 -1 -1<br />

12 45.95 18.03 -1 -1 95.4 24.78 16.92 -1 -1 -1<br />

13 48.15 16.26 -1 -1 -1 23.85 0.62 -1 -1 -1<br />

14 50.8 14.92 -1 -1 -1 25.12 0 -1 -1 -1<br />

15 49.22 14.53 -1 -1 -1 28.14 0 -1 -1 -1<br />

16 46.48 14.23 -1 -1 -1 23.74 -1 -1 -1 -1<br />

17 44.52 14.09 -1 -1 -1 14.9 -1 -1 -1 -1<br />

18 40.37 15.16 -1 -1 -1 16.78 -1 -1 -1 -1<br />

19 30.84 17.03 -1 -1 -1 20 -1 -1 -1 -1<br />

20 26.94 17.16 -1 -1 -1 6.08 -1 -1 -1 -1<br />

21 26.77 17.45 -1 -1 -1 0 -1 -1 -1 -1<br />

22 24.03 18.21 -1 -1 -1 0 -1 -1 -1 -1<br />

23 23.14 19.68 -1 -1 -1 -1 -1 -1 -1 -1<br />

24 22.81 21.47 -1 -1 -1 -1 -1 -1 -1 -1<br />

25 25.15 20 -1 -1 -1 -1 -1 -1 -1 -1<br />

26 30.31 16.12 -1 -1 -1 -1 -1 -1 -1 -1<br />

27 45.17 11.36 -1 -1 -1 -1 -1 -1 -1 -1<br />

28 53.08 9.05 -1 -1 -1 -1 -1 -1 -1 -1<br />

29 49.7 10.06 -1 -1 -1 -1 -1 -1 -1 -1<br />

30 34.66 5.1 -1 -1 -1 -1 -1 -1 -1 -1<br />

31 0.57 0 -1 -1 -1 -1 -1 -1 -1 -1<br />

32 0 0 -1 -1 -1 -1 -1 -1 -1 -1<br />

0 -1 -1 59.17 59.17 -1 -1 -1 -1 -1 -1<br />

Winrock International<br />

A- 33


Finalizing Avoided Deforestation Baselines<br />

Assessing spatial pattern driver significance<br />

To test statistically how well each of a variety of candidate driver maps would allow us to match the actual<br />

2000 landscape, we simulated the 2000 landscape starting in 1993 creating a vulnerability map for each<br />

driver, and then for multiple combinations of driver maps. We have good results with the first<br />

reclassification of each distance driver. (Figure 18).<br />

Figure 18. Candidate spatial drivers maps<br />

As shown in Table 15, not enforcing the ‘neighborhood’ function we received the highest kappa-forlocation<br />

(0.15) <strong>using</strong> all 9 drivers. To see if we could improve our kappa statistic we again tested one<br />

driver at a time but this time enforcing the neighbourhood contiguity requirement. For each driver,<br />

<strong>GEOMOD</strong> calculated the percent correct and the kappa statistic, which were evaluated to see how well<br />

each driver performed by itself in explaining the variation (Table 16). Different pattern drivers exhibit<br />

more or less ability to improve on projections depending on the subregion analyzed (Table 17). The<br />

highest kappa (0.3529) was achieved in the Patzcuaro sub-region <strong>using</strong> slope, distance to roads,<br />

distance to water, soils and elevation.<br />

Winrock International<br />

A- 34


Finalizing Avoided Deforestation Baselines<br />

Table 15. Deforestation driver combinations tested and weights per driver, <strong>using</strong> neighborhood=0.<br />

Neighborhood=0<br />

SPATIAL DRIVER MAPS<br />

%<br />

Correct Kappa<br />

Total #<br />

drivers Slope_a Dist_aga Droad_a Soils_a elev_a dpob2_a tmaxmo_a Aspect_a ppmo_a<br />

94.9237 0.1505 9 1 1 1 1 1 1 1 1 1<br />

94.7996 0.1298 5 0 1 0 1 1 1 1 0 0<br />

94.7522 0.1218 2 0 0 0 0 0 1 1 0 0<br />

94.7243 0.1172 3 0 0 1 1 1 0 0 0 0<br />

94.6775 0.1093 4 0 1 0 0 1 1 1 0 0<br />

94.6354 0.1023<br />

1 0 0 0 0 0 0 1 0 0<br />

Table 16. Deforestation driver combinations tested, weights per driver, % correct and ‘Kappafor-location’<br />

for different sets of spatial pattern drivers tested for their ability to predict<br />

accurately the spatial distribution of <strong>deforestation</strong> in the 2000 land use map<br />

Neighborhood=0<br />

%<br />

Correct Kappa<br />

SPATIAL DRIVER MAPS<br />

Total #<br />

drivers Slope_a Dist_aga Droad_a Soils_a elev_a dpob2_a tmaxmo_a Disd76a** Aspect_a ppmo_a<br />

95.6265 0.2681 2 1 1 0 0 0 0 0 0 0 0<br />

95.6059 0.2647 1 1 0 0 0 0 0 0 0 0 0<br />

95.5866 0.2615 4 1 1 1 1 0 0 0 0 0 0<br />

95.5784 0.2601 3 1 1 1 0 0 0 0 0 0 0<br />

95.5638 0.2576 5 1 1 1 1 1 0 0 0 0 0<br />

95.5412 0.2539 4 1 0 1 0 0 1 0 1 0 0<br />

95.5319 0.2523 3 0 1 1 0 0 1 0 0 0 0<br />

95.5239 0.251 9 1 1 1 1 1 1 1 0 1 1<br />

Winrock International<br />

A- 35


Finalizing Avoided Deforestation Baselines<br />

Table 17. Results for each <strong>deforestation</strong> pattern driver and combinations of drivers tested (the cells<br />

colored red, blue and yellow indicate the three drivers, in importance from high to low respectively,<br />

giving the highest Kappa)<br />

Rank<br />

Driver<br />

REGION URUAPAN TANCITA PATZCUARO MESETA<br />

%<br />

Correct Kappa<br />

%<br />

Correct Kappa<br />

%<br />

Correct<br />

Kappa<br />

%<br />

Correct Kappa<br />

%<br />

Correct Kappa<br />

1 Slope_a 95.6059 0.2647 94.646 0.2428 98.1603 0.1619 93.8732 0.3439 96.1122 0.2109<br />

2 Dist_aga 95.5465 0.2548 94.6017 0.2365 98.0944 0.1319 93.8372 0.3401 96.0307 0.1943<br />

3 Droad_a 95.5329 0.2525 94.4603 0.2165 98.1434 0.1542 93.784 0.3344 96.0982 0.208<br />

4 Soils_a 95.5286 0.2518 94.6599 0.2447 98.0925 0.131 93.6272 0.3176 96.0785 0.204<br />

5 9 drivers 95.5239 0.251 94.4783 0.219 98.23 0.1936 93.9308 0.3501 95.9219 0.1722<br />

6 elev_a 95.4981 0.2466 94.5532 0.2296 98.2243 0.1911 93.9221 0.3492 95.8065 0.1488<br />

7 dpob2_a 95.4884 0.245 94.4284 0.212 98.1076 0.1379 93.8185 0.3381 95.9894 0.1859<br />

8 tmaxmo_a 95.4781 0.2433 94.5448 0.2285 98.2262 0.1919 93.8876 0.3455 95.7775 0.1429<br />

9 Disd76a** 95.4742 0.2426 94.452 0.2153 98.0812 0.1259 93.6113 0.3159 96.0813 0.2046<br />

10 Aspect_a 95.4682 0.2416 94.4228 0.2112 98.0455 0.1096 93.5164 0.3057 96.1638 0.2213<br />

11 ppmo_a 95.4622 0.2406 94.1678 0.1751 98.213 0.1859 93.8416 0.3406 96.0241 0.193<br />

Combinati<br />

ons<br />

Neighborh<br />

ood=1<br />

1,2 2 drivers 95.6265 0.2681 94.7209 0.2534 98.1961 0.1782 93.9164 0.3486 96.0738 0.2031<br />

1,2,3,4 4 drivers 95.5866 0.2615 94.5629 0.231 98.1697 0.1662 93.9005 0.3469 96.0916 0.2067<br />

1,2,3 3 drivers 95.5784 0.2601 94.5476 0.2288 98.1566 0.1602 93.8905 0.3458 96.0916 0.2067<br />

1,2,3,4<br />

,6 5 drivers 95.5638 0.2576 94.5629 0.231 98.2526 0.2039 93.9567 0.3529 95.9491 0.1778<br />

1,3,7,9 4 drivers 95.5412 0.2539 94.409 0.2092 98.1886 0.1748 93.866 0.3432 96.0804 0.2044<br />

2,7,3 3 drivers 95.5319 0.2523 94.4464 0.2145 98.1302 0.1482 93.8444 0.3409 96.0719 0.2027<br />

3,7,6 3 drivers 95.4848 0.2444 94.4062 0.2088 98.1641 0.1636 93.8689 0.3435 95.9331 0.1745<br />

After calculating individual driver weights we began validating our results through the addition of drivers,<br />

one driver at a time. When used neighbourhood =0, the combination of each driver improved the ability to<br />

replicate the actual 2000 landscape. But the best results was obtained with neighbourhood=1, and<br />

combinations of two of the drivers. The best over all regions kappa-for-location statistic achieved was<br />

0.2681 with 95.6% of the cells allocated correctly.<br />

Winrock International<br />

A- 36


Finalizing Avoided Deforestation Baselines<br />

Results of driver assessment – identification of areas most likely to be cleared<br />

<strong>GEOMOD</strong> driver weighting revealed a number of interesting facts about forest clearing in this region<br />

(Figure 19, Appendix).<br />

Figure 19. Map showing relative risk to <strong>deforestation</strong> based on analysis of empirical areas of<br />

<strong>deforestation</strong> versus two spatially explicit candidate drivers.<br />

V.E. Rate estimation<br />

Derivation of land clearing rate<br />

As we see above, <strong>GEOMOD</strong> can evaluate change in two land-use types at a time. Therefore, each map<br />

of land-use change must be reclassified similarly. The most common is to classify all undisturbed forest<br />

as type 1, and all other land-use types, which can be characterized as having undergone some human<br />

intervention such as urban and agricultural areas, as type 2. In addition land that will not be evaluated<br />

such as land that is unlikely to ever used by humans for productive activity , can be excluded from the<br />

analysis. So, a normal map ready to input to <strong>GEOMOD</strong> will usually consist of four possible values as<br />

follows (Fig 20 and 21)<br />

1.Forest<br />

2.No forest<br />

3 Areas to be excluded (unlikely to be deforested)<br />

4 Outside region of interest.<br />

Winrock International<br />

A- 37


Finalizing Avoided Deforestation Baselines<br />

Figure 20. Map showing the<br />

reclassified land use. This map<br />

corresponds to year 1993.<br />

Figure 21. Map corresponds to 2000<br />

Using an area calculation we can determine how many cells of forest existed in each period. Subtraction<br />

of the second from the first tells us how many cells were deforested in the interim period. This number<br />

times the area per cell yields total area deforested. When we divide the area by the number of years we<br />

have our rate per year (Table 17), which for the region totals 2,790 ha/year between 1993 and 2000.<br />

Winrock International<br />

A- 38


Finalizing Avoided Deforestation Baselines<br />

Table 17. Rate of <strong>deforestation</strong> for the Meseta Purepecha region and for each of the four<br />

subregions<br />

Subregión<br />

Forest<br />

cover<br />

1993<br />

Forest<br />

cover<br />

2000<br />

Change<br />

(A1-A2)<br />

Rate<br />

Ha/year<br />

Uruapan 84,274 78,821 5,453 779<br />

Tancitaro 39,854 38,652 1,202 172<br />

Patzcuaro 64,578 57,258 7,320 1,045<br />

Meseta 100,707 95,146 5,561 794<br />

TOTAL 2,790<br />

V.F. Simulation Results.<br />

Quantity of land predicted to be cleared<br />

We used the empirical annual rate to project into the future. We predict a loss of 83,717 ha in the region,<br />

with a total loss of 20% more of its forest cover by 2020 and 32% more by 2030 (Figure 22). The<br />

Patzcuaro region has the highest rate of loss and is projected to lose 54% of its forest cover by year<br />

2030. Tancitaro has a rate of forest loss of about an order of magnitude less than Patzcuaro (Tables 17<br />

and 18).<br />

Table 18. Cumulative percent change in the 2000 forest cover for each time interval<br />

2000 2005 2010 2015 2020 2025 2030<br />

URUAPAN 100.0% 95.1% 90.1% 85.2% 80.2% 75.3% 70.3%<br />

TANCITARO 100.0% 97.8% 95.6% 93.3% 91.1% 88.9% 86.7%<br />

PATZCUARO 100.0% 90.9% 81.8% 72.6% 63.5% 54.4% 45.3%<br />

MESETA 100.0% 95.8% 91.6% 87.5% 83.3% 79.1% 74.9%<br />

Total 100.0% 94.8% 89.7% 84.5% 79.3% 74.1% 69.0%<br />

Winrock International<br />

A- 39


Finalizing Avoided Deforestation Baselines<br />

300000<br />

250000<br />

Ha<br />

200000<br />

150000<br />

100000<br />

50000<br />

URUAPAN<br />

TANCITA<br />

PATZCUARO<br />

MESETA<br />

Total region<br />

0<br />

2000 2005 2010 2015 2020 2025 2030<br />

Year<br />

Figure 22. Rates of <strong>deforestation</strong> for the Meseta Purepecha, including the four subregions,<br />

between 2000 and 2030.<br />

The model produced simulated maps of land use change for the years 2000, 2005, 2010, 2015, 2020,<br />

2025, 2030 (Figure 23)<br />

Winrock International<br />

A- 40


Finalizing Avoided Deforestation Baselines<br />

No data<br />

No bosques<br />

Bosques<br />

Fuera de Análisis<br />

Figure 23. Simulated maps of change in forest cover for six 5-year time periods: 2000, 2010, 2015,<br />

2020,2025, 2030<br />

The spatial pattern of <strong>deforestation</strong> illustrates the higher rates of forest loss in Patzcuaro, with both<br />

outright clearing of smaller forest patches and encroachment into the edges of the remaining forests<br />

(Figure 23).<br />

Winrock International<br />

A- 41


Finalizing Avoided Deforestation Baselines<br />

Changes in carbon stocks<br />

The carbon density estimates used per vegetation type are summarized in Table 19 (from A. Ordoñez,<br />

2003, personal communication).<br />

Table 19. Carbon density estimates for vegetation found in the region Purepecha.<br />

Vegetation Type<br />

T C/ha<br />

Agriculture 4<br />

Pasture 5<br />

Shrubs 7<br />

Forest Plantation 39<br />

Permanent Crops (Orchards) 42<br />

Pine-Oak Forest 77<br />

Pine Forests 84<br />

Oak Forests 95<br />

Oyamel Forest 110<br />

The change in forest cover was then matched with data on carbon stocks of the various vegetation types.<br />

A map of carbon densities is shown in Figure 24.<br />

Figure 24. Biomass carbon density map for the Meseta Purépecha region.<br />

The map of the rate of change in land-use was combined with the carbon density map to generate a<br />

graph of carbon stocks through time (Figure 25). Most of the change in stock occurs in the pine-oak<br />

forest as this forest type is converted to lower stock agriculture or avocado plantations.<br />

Winrock International<br />

A- 42


Finalizing Avoided Deforestation Baselines<br />

Figure 25. Change in carbon stocks in the vegetation of the Meseta Purepecha region in response<br />

to loss in forest cover and conversion to land uses with lower carbon stocks.<br />

Winrock International<br />

A- 43


Finalizing Avoided Deforestation Baselines<br />

Millones de ton de Carbono<br />

5.00<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

Oyamel Forest<br />

Forest Plantation<br />

Oak Forests<br />

Pine Forests<br />

Pine-Oak Forest<br />

0.00<br />

2000 2005 2010 2015 2020 2025 2030<br />

Year<br />

Figure 26. Cumulative carbon emissions from <strong>deforestation</strong> in the Meseta Purepecha. Over the<br />

30-year period, about 4.6 million tons of carbon would be emitted.<br />

Over the 30 year period, 83,717 ha of forest cover was projected to be converted to non-forest uses in the<br />

region, emitting about 4.6 million tons of carbon.<br />

VI.<br />

Conclusions<br />

Spatial modeling tools have allowed us to evaluate the empirical rate of land-use change and<br />

corresponding changes in carbon stocks in the States of Campeche and Michoacan. They<br />

have also provided the means to study the dynamics between land use/land cover types over<br />

time. The results show that a projected baseline for <strong>deforestation</strong> in Meseta Purépecha<br />

would result in about an additional 87,000 ha of loss in forest cover with a corresponding<br />

carbon emissions of 4.6 million t C. The projected baseline for the Calakmul region of<br />

Campeche shows a further loss of 273,000 ha of forest and a corresponding net carbon<br />

emissions of 8.9 million t C.<br />

Without <strong>GEOMOD</strong> we would not have been able to specify the location of projected<br />

<strong>deforestation</strong> in the regions. We hypothesized that <strong>using</strong> <strong>GEOMOD</strong> would allow us to<br />

estimate carbon emissions with greater certainty than can be done with a simple baseline<br />

prediction. <strong>GEOMOD</strong> provides more accurate carbon estimates because of the model’s<br />

spatial specificity, 2) provides the ability to model regional and project-specific ‘withoutproject’<br />

scenarios in one pass, and 3) removes some of the uncertainty inherent in all<br />

modeling, whether spatial or non-spatial, by its strict adherence to the use of the kappa-forlocation<br />

statistic applied to empirical patterns of land use change<br />

Winrock International<br />

A- 44


Finalizing Avoided Deforestation Baselines<br />

Literature Cited<br />

Costanza, R., (1989). “Model goodness of fit: a multiple resolution procedure”. Ecological <strong>Modeling</strong>, 47:<br />

199-215.<br />

Hall, C. A. S., H. Tian, Y. Qi, G. Pontius, J. Cornell and J. Uhlig, (1995a). “Spatially explicit models of<br />

land use change and their application to the tropics”. DOE Research Summary, No. 31. (Ed. By<br />

CDIAC, Oak Ridge National Lab).<br />

Hall, C. A. S., H. Tian, Y. Qi, G. Pontius, J. Cornell and J. Uhlig, (1995b). “<strong>Modeling</strong> spatial and temporal<br />

patterns of tropical land use change”. J. of Biogeography, 22, 753-757.<br />

Hall, Cleveland and Kaufmann (1986). Energy and Resource Quality: The Ecology of the Economic<br />

Process. Wiley-Interscience, New York.<br />

Hall, M.H.P, C.A.S. Hall and M.R. Taylor (2000) Geographical <strong>Modeling</strong>: the synthesis of GIS and<br />

simulation modeling. Chapter. 7, in C. A. S. Hall, (Ed.) Quantifying Sustainable Development: the<br />

Future of Tropical Economies. Academic Press, San Diego, CA.<br />

IBGE, (<strong>Instituto</strong> Brasileiro de Geografia e Estastíca)<br />

http://www.ibge.gov.br/espanhol/estatistica/economia/agropecuaria/censoagro/41/d41_t01.shtm<br />

Kerr, Suzi (2001). “Seeing the Forest and Saving the Trees: Tropical Land Use Change and Global<br />

Climate Policy”. Can Carbon Sinks be Operational? Resources for the Future Workshop<br />

Proceedings, April 30, 2001. RFF web site. http://www.rff.org/disc_papers/PDF_files/0126.pdf<br />

Moura-Costa, Pedro (2001). “Elements of a Certification System for Forestry-Based Greenhouse Gas<br />

Mitigation Projects”. Can Carbon Sinks be Operational? Resources for the Future Workshop<br />

Proceedings, April 30, 2001. Resources For the Future web site.<br />

http://www.rff.org/disc_papers/PDF_files/0126.pdf<br />

Odum, H. T. (1983). Systems Ecology. Wiley Interscience, New York.<br />

Pathfinder Project (1999). http://www.geog.umd.edu/tropical/method.html<br />

Pontius, R. G. Jr. (2000). “Quantification error versus location error in comparison of categorical maps”.<br />

Photogrammetric Engineering & Remote Sensing 66(8) pp. 1011-1016.<br />

Pontius Jr. R.G. and Schneider, L, in press. “Land-use change model validation by an ROC method”.<br />

Agriculture, Ecosystems & Environment.<br />

Pontius, R.G. Jr., L. Claessens, C. Hopkinson Jr., A. Marzouk, E.B. Rastetter, L.C. Schneider, J. Vallino<br />

(2000). “Scenarios of land-use change and nitrogen release in the Ipswich watershed,<br />

Massachusetts, USA”. 4th International Conference on Integrating GIS and Environmental <strong>Modeling</strong><br />

(GIS/EM4): Problems, Prospects and Research Needs. Banff, Alberta, Canada, September 2 - 8,<br />

2000. http://www.colorado.edu/research/cires/banff/upload/6/<br />

Pontius, R.G. Jr., J. Cornell, C. Hall (2001). “<strong>Modeling</strong> the spatial pattern of land-use change with<br />

<strong>GEOMOD</strong>: application and validation for Costa Rica”. Agriculture, Ecosystems & Environment 85(1-<br />

3) p. 191-203.<br />

Winrock International<br />

A- 45


Finalizing Avoided Deforestation Baselines<br />

APPENDIX<br />

Calakmul Region<br />

_____________________________________________________________________________________________________<br />

Table 1. Individual Driver Category Weights (% of class deforested at time of calibration) for drivers used in the<br />

north and the south<br />

_____________________________________________________________________________________________________<br />

DRIVERS RETURNING HIGHEST KAPPA IN THE NORTH<br />

1 Distance from Archeological Sites<br />

2 Elevation<br />

3 Distance from Towns<br />

4 Distance from 1970’s Agriculture<br />

5 Distance from year-round streams<br />

REGION 1: Hopelchen<br />

CATEGORY MAP_1 MAP_2 MAP_3 MAP_4 MAP_5<br />

1 0.00 -1.00 11.65 2.82 0.45<br />

2 0.00 -1.00 6.46 1.81 1.05<br />

3 0.13 -1.00 2.37 1.22 1.32<br />

4 0.40 -1.00 6.64 0.25 1.68<br />

5 0.35 0.00 4.97 0.49 1.52<br />

6 1.25 9.02 0.20 0.69 0.00<br />

7 1.44 3.69 0.48 0.69 0.00<br />

8 0.47 2.68 0.16 2.62 0.16<br />

9 2.27 0.68 0.11 5.95 0.18<br />

10 1.34 0.30 0.33 1.30 0.58<br />

11 4.39 0.19 0.52 16.10 3.72<br />

12 3.37 0.02 1.61 -1.00 5.32<br />

13 4.35 0.00 0.00 -1.00 5.54<br />

14 12.24 0.00 -1.00 -1.00 3.36<br />

15 0.00 0.00 -1.00 -1.00 1.27<br />

16 -1.00 -1.00 -1.00 -1.00 2.89<br />

17 -1.00 -1.00 -1.00 -1.00 6.99<br />

18 -1.00 -1.00 -1.00 -1.00 9.89<br />

19 -1.00 -1.00 -1.00 -1.00 17.45<br />

20 -1.00 -1.00 -1.00 -1.00 6.93<br />

21 -1.00 -1.00 -1.00 -1.00 0.00<br />

22 -1.00 -1.00 -1.00 -1.00 -1.00<br />

23 -1.00 -1.00 -1.00 -1.00 -1.00<br />

24 -1.00 -1.00 -1.00 -1.00 -1.00<br />

Winrock International<br />

A- 46


Finalizing Avoided Deforestation Baselines<br />

25 -1.00 -1.00 -1.00 -1.00 -1.00<br />

26 -1.00 -1.00 -1.00 -1.00 -1.00<br />

27 -1.00 -1.00 -1.00 -1.00 -1.00<br />

28 -1.00 -1.00 -1.00 -1.00 -1.00<br />

0 -1.00 -1.00 -1.00 -1.00 -1.00<br />

REGION 2: Champoton<br />

CATEGORY MAP_1 MAP_2 MAP_3 MAP_4 MAP_5<br />

1 1.79 39.13 48.30 35.83 24.38<br />

2 0.71 51.09 20.01 8.68 10.14<br />

3 3.69 10.24 5.93 5.80 5.90<br />

4 3.14 5.23 3.77 3.14 0.19<br />

5 2.66 5.80 3.30 0.65 0.11<br />

6 1.80 1.39 1.75 0.29 0.21<br />

7 4.00 0.41 0.10 0.35 0.83<br />

8 2.66 1.67 0.44 0.44 0.65<br />

9 4.88 0.58 0.69 0.04 1.10<br />

10 9.43 0.11 0.75 0.02 1.60<br />

11 11.95 0.01 0.01 1.92 4.54<br />

12 12.79 0.00 0.00 0.00 5.58<br />

13 14.23 0.00 0.00 0.00 8.70<br />

14 18.66 0.00 0.00 0.00 9.90<br />

15 17.63 0.00 0.00 -1.00 10.21<br />

16 18.77 0.00 0.00 -1.00 7.12<br />

17 24.26 0.00 0.00 -1.00 8.14<br />

18 47.12 -1.00 0.00 -1.00 8.02<br />

19 93.28 -1.00 0.00 -1.00 12.70<br />

20 -1.00 -1.00 -1.00 -1.00 18.94<br />

21 -1.00 -1.00 -1.00 -1.00 27.91<br />

22 -1.00 -1.00 -1.00 -1.00 29.15<br />

23 -1.00 -1.00 -1.00 -1.00 27.34<br />

24 -1.00 -1.00 -1.00 -1.00 38.58<br />

25 -1.00 -1.00 -1.00 -1.00 44.94<br />

26 -1.00 -1.00 -1.00 -1.00 22.72<br />

27 -1.00 -1.00 -1.00 -1.00 3.99<br />

28 -1.00 -1.00 -1.00 -1.00 0.00<br />

0 -1.00 -1.00 -1.00 -1.00 -1.00<br />

REGION 3: Calakmul<br />

CATEGORY MAP_1 MAP_2 MAP_3 MAP_4 MAP_5<br />

1 0.42 -1.00 2.20 0.33 0.12<br />

2 0.14 -1.00 0.06 0.29 0.22<br />

Winrock International<br />

A- 47


Finalizing Avoided Deforestation Baselines<br />

3 0.09 0.00 0.09 0.35 0.10<br />

4 0.21 0.00 0.01 0.38 0.02<br />

5 0.02 0.00 0.08 0.21 0.00<br />

6 0.34 0.00 0.01 0.00 0.20<br />

7 0.17 0.00 0.00 0.03 0.37<br />

8 0.06 0.06 0.00 0.00 0.75<br />

9 0.27 0.35 0.00 0.00 0.41<br />

10 0.05 0.36 0.00 0.00 0.00<br />

11 0.00 0.18 0.04 0.00 -1.00<br />

12 0.00 0.12 0.06 0.00 -1.00<br />

13 -1.00 0.09 0.00 0.00 -1.00<br />

14 -1.00 0.20 0.00 0.00 -1.00<br />

15 -1.00 0.04 0.00 -1.00 -1.00<br />

16 -1.00 0.00 0.00 -1.00 -1.00<br />

17 -1.00 0.00 0.00 -1.00 -1.00<br />

18 -1.00 -1.00 0.00 -1.00 -1.00<br />

19 -1.00 -1.00 0.00 -1.00 -1.00<br />

20 -1.00 -1.00 -1.00 -1.00 -1.00<br />

21 -1.00 -1.00 -1.00 -1.00 -1.00<br />

22 -1.00 -1.00 -1.00 -1.00 -1.00<br />

23 -1.00 -1.00 -1.00 -1.00 -1.00<br />

24 -1.00 -1.00 -1.00 -1.00 -1.00<br />

25 -1.00 -1.00 -1.00 -1.00 -1.00<br />

26 -1.00 -1.00 -1.00 -1.00 -1.00<br />

27 -1.00 -1.00 -1.00 -1.00 -1.00<br />

28 -1.00 -1.00 -1.00 -1.00 -1.00<br />

0 -1.00 -1.00 -1.00 -1.00 -1.00<br />

REGION 4: Escarcega<br />

CATEGORY MAP_1 MAP_2 MAP_3 MAP_4 MAP_5<br />

1 -1.00 -1.00 -1.00 0.00 -1.00<br />

2 -1.00 -1.00 1.84 1.01 -1.00<br />

3 -1.00 -1.00 0.17 0.00 -1.00<br />

4 -1.00 0.68 0.00 0.00 -1.00<br />

5 0.00 0.15 0.00 -1.00 -1.00<br />

6 1.09 0.00 -1.00 -1.00 -1.00<br />

7 0.00 0.00 -1.00 -1.00 -1.00<br />

8 0.00 0.00 -1.00 -1.00 -1.00<br />

9 -1.00 -1.00 -1.00 -1.00 -1.00<br />

10 -1.00 -1.00 -1.00 -1.00 -1.00<br />

11 -1.00 -1.00 -1.00 -1.00 -1.00<br />

Winrock International<br />

A- 48


Finalizing Avoided Deforestation Baselines<br />

12 -1.00 -1.00 -1.00 -1.00 -1.00<br />

13 -1.00 -1.00 -1.00 -1.00 -1.00<br />

14 -1.00 -1.00 -1.00 -1.00 -1.00<br />

15 -1.00 -1.00 -1.00 -1.00 -1.00<br />

16 -1.00 -1.00 -1.00 -1.00 -1.00<br />

17 -1.00 -1.00 -1.00 -1.00 -1.00<br />

18 -1.00 -1.00 -1.00 -1.00 0.00<br />

19 -1.00 -1.00 -1.00 -1.00 0.06<br />

20 -1.00 -1.00 -1.00 -1.00 0.81<br />

21 -1.00 -1.00 -1.00 -1.00 1.27<br />

22 -1.00 -1.00 -1.00 -1.00 0.10<br />

23 -1.00 -1.00 -1.00 -1.00 0.00<br />

24 -1.00 -1.00 -1.00 -1.00 0.00<br />

25 -1.00 -1.00 -1.00 -1.00 0.00<br />

26 -1.00 -1.00 -1.00 -1.00 0.00<br />

27 -1.00 -1.00 -1.00 -1.00 0.00<br />

28 -1.00 -1.00 -1.00 -1.00 -1.00<br />

0 -1.00 -1.00 -1.00 -1.00 -1.00<br />

DRIVERS RETURNING HIGHEST KAPPA IN THE SOUTH<br />

Map 1 = EJIDOS<br />

Map 2 = Distance from Year-round STREAMS<br />

Map 3 = Distance from ROADS<br />

Map 4 = Distance from Arqueological Sites<br />

Map 5 = Distance from TOWNS<br />

REGION 1: Champoton<br />

CATEGORY MAP_1 MAP_2 MAP_3 MAP_4 MAP_5<br />

1 0.93 0.13 4.88 -1.00 8.52<br />

2 -1.00 0.22 4.69 -1.00 2.92<br />

3 -1.00 0.57 0.07 -1.00 8.18<br />

4 -1.00 0.46 0.00 -1.00 0.63<br />

5 -1.00 0.45 0.00 -1.00 0.00<br />

6 -1.00 0.01 0.00 -1.00 0.00<br />

7 -1.00 1.49 0.58 -1.00 0.36<br />

8 -1.00 0.32 1.22 -1.00 0.00<br />

9 -1.00 16.31 0.34 0.19 0.00<br />

10 -1.00 22.69 0.00 1.13 0.00<br />

11 -1.00 13.92 0.00 15.25 0.00<br />

12 -1.00 22.72 0.00 24.88 0.00<br />

Winrock International<br />

A- 49


Finalizing Avoided Deforestation Baselines<br />

13 -1.00 1.14 11.14 0.00 0.00<br />

14 -1.00 -1.00 0.00 0.00 -1.00<br />

15 -1.00 -1.00 0.00 0.00 -1.00<br />

16 -1.00 -1.00 0.00 0.00 -1.00<br />

17 -1.00 -1.00 7.99 0.00 -1.00<br />

18 0.00 -1.00 0.00 0.00 -1.00<br />

19 2.57 -1.00 0.00 0.26 -1.00<br />

20 0.68 -1.00 0.00 2.31 -1.00<br />

21 -1.00 -1.00 17.25 5.08 -1.00<br />

22 -1.00 -1.00 0.30 0.00 -1.00<br />

23 -1.00 -1.00 0.00 -1.00 -1.00<br />

24 -1.00 -1.00 0.00 -1.00 -1.00<br />

25 -1.00 -1.00 0.00 -1.00 -1.00<br />

26 -1.00 -1.00 -1.00 -1.00 -1.00<br />

27 -1.00 -1.00 -1.00 -1.00 -1.00<br />

28 -1.00 -1.00 -1.00 -1.00 -1.00<br />

29 -1.00 -1.00 -1.00 -1.00 -1.00<br />

30 -1.00 -1.00 -1.00 -1.00 -1.00<br />

31 -1.00 -1.00 -1.00 -1.00 -1.00<br />

32 -1.00 -1.00 -1.00 -1.00 -1.00<br />

33 0.00 -1.00 -1.00 -1.00 -1.00<br />

34 -1.00 -1.00 -1.00 -1.00 -1.00<br />

35 -1.00 -1.00 -1.00 -1.00 -1.00<br />

36 -1.00 -1.00 -1.00 -1.00 -1.00<br />

37 -1.00 -1.00 -1.00 -1.00 -1.00<br />

38 -1.00 -1.00 -1.00 -1.00 -1.00<br />

39 -1.00 -1.00 -1.00 -1.00 -1.00<br />

40 -1.00 -1.00 -1.00 -1.00 -1.00<br />

41 -1.00 -1.00 -1.00 -1.00 -1.00<br />

42 -1.00 -1.00 -1.00 -1.00 -1.00<br />

43 -1.00 -1.00 -1.00 -1.00 -1.00<br />

44 -1.00 -1.00 -1.00 -1.00 -1.00<br />

45 -1.00 -1.00 -1.00 -1.00 -1.00<br />

46 -1.00 -1.00 -1.00 -1.00 -1.00<br />

47 -1.00 -1.00 -1.00 -1.00 -1.00<br />

48 -1.00 -1.00 -1.00 -1.00 -1.00<br />

49 22.57 -1.00 -1.00 -1.00 -1.00<br />

50 0.00 -1.00 -1.00 -1.00 -1.00<br />

51 0.00 -1.00 -1.00 -1.00 -1.00<br />

52 -1.00 -1.00 -1.00 -1.00 -1.00<br />

Winrock International<br />

A- 50


Finalizing Avoided Deforestation Baselines<br />

53 -1.00 -1.00 -1.00 -1.00 -1.00<br />

54 -1.00 -1.00 -1.00 -1.00 -1.00<br />

55 -1.00 -1.00 -1.00 -1.00 -1.00<br />

56 -1.00 -1.00 -1.00 -1.00 -1.00<br />

57 -1.00 -1.00 -1.00 -1.00 -1.00<br />

58 -1.00 -1.00 -1.00 -1.00 -1.00<br />

59 -1.00 -1.00 -1.00 -1.00 -1.00<br />

60 -1.00 -1.00 -1.00 -1.00 -1.00<br />

61 -1.00 -1.00 -1.00 -1.00 -1.00<br />

62 -1.00 -1.00 -1.00 -1.00 -1.00<br />

63 -1.00 -1.00 -1.00 -1.00 -1.00<br />

64 -1.00 -1.00 -1.00 -1.00 -1.00<br />

65 -1.00 -1.00 -1.00 -1.00 -1.00<br />

66 -1.00 -1.00 -1.00 -1.00 -1.00<br />

67 -1.00 -1.00 -1.00 -1.00 -1.00<br />

68 -1.00 -1.00 -1.00 -1.00 -1.00<br />

69 -1.00 -1.00 -1.00 -1.00 -1.00<br />

70 -1.00 -1.00 -1.00 -1.00 -1.00<br />

71 -1.00 -1.00 -1.00 -1.00 -1.00<br />

72 -1.00 -1.00 -1.00 -1.00 -1.00<br />

73 -1.00 -1.00 -1.00 -1.00 -1.00<br />

74 -1.00 -1.00 -1.00 -1.00 -1.00<br />

75 -1.00 -1.00 -1.00 -1.00 -1.00<br />

76 -1.00 -1.00 -1.00 -1.00 -1.00<br />

77 -1.00 -1.00 -1.00 -1.00 -1.00<br />

78 -1.00 -1.00 -1.00 -1.00 -1.00<br />

79 -1.00 -1.00 -1.00 -1.00 -1.00<br />

80 -1.00 -1.00 -1.00 -1.00 -1.00<br />

81 -1.00 -1.00 -1.00 -1.00 -1.00<br />

82 -1.00 -1.00 -1.00 -1.00 -1.00<br />

83 -1.00 -1.00 -1.00 -1.00 -1.00<br />

84 -1.00 -1.00 -1.00 -1.00 -1.00<br />

85 -1.00 -1.00 -1.00 -1.00 -1.00<br />

86 -1.00 -1.00 -1.00 -1.00 -1.00<br />

87 -1.00 -1.00 -1.00 -1.00 -1.00<br />

88 -1.00 -1.00 -1.00 -1.00 -1.00<br />

89 -1.00 -1.00 -1.00 -1.00 -1.00<br />

90 -1.00 -1.00 -1.00 -1.00 -1.00<br />

91 -1.00 -1.00 -1.00 -1.00 -1.00<br />

92 -1.00 -1.00 -1.00 -1.00 -1.00<br />

Winrock International<br />

A- 51


Finalizing Avoided Deforestation Baselines<br />

93 -1.00 -1.00 -1.00 -1.00 -1.00<br />

94 -1.00 -1.00 -1.00 -1.00 -1.00<br />

95 -1.00 -1.00 -1.00 -1.00 -1.00<br />

96 -1.00 -1.00 -1.00 -1.00 -1.00<br />

97 -1.00 -1.00 -1.00 -1.00 -1.00<br />

98 -1.00 -1.00 -1.00 -1.00 -1.00<br />

99 -1.00 -1.00 -1.00 -1.00 -1.00<br />

100 -1.00 -1.00 -1.00 -1.00 -1.00<br />

101 -1.00 -1.00 -1.00 -1.00 -1.00<br />

102 -1.00 -1.00 -1.00 -1.00 -1.00<br />

103 -1.00 -1.00 -1.00 -1.00 -1.00<br />

104 -1.00 -1.00 -1.00 -1.00 -1.00<br />

105 -1.00 -1.00 -1.00 -1.00 -1.00<br />

106 -1.00 -1.00 -1.00 -1.00 -1.00<br />

107 -1.00 -1.00 -1.00 -1.00 -1.00<br />

108 -1.00 -1.00 -1.00 -1.00 -1.00<br />

109 -1.00 -1.00 -1.00 -1.00 -1.00<br />

110 -1.00 -1.00 -1.00 -1.00 -1.00<br />

111 -1.00 -1.00 -1.00 -1.00 -1.00<br />

112 -1.00 -1.00 -1.00 -1.00 -1.00<br />

113 -1.00 -1.00 -1.00 -1.00 -1.00<br />

114 -1.00 -1.00 -1.00 -1.00 -1.00<br />

115 -1.00 -1.00 -1.00 -1.00 -1.00<br />

0 -1.00 -1.00 -1.00 -1.00 -1.00<br />

REGION 2: Calakmul<br />

CATEGORY MAP_1 MAP_2 MAP_3 MAP_4 MAP_5<br />

1 0.63 0.25 0.67 2.13 2.97<br />

2 -1.00 0.39 0.32 0.38 0.78<br />

3 0.56 0.62 0.25 0.54 0.36<br />

4 -1.00 0.80 0.29 0.40 0.30<br />

5 -1.00 2.18 0.72 0.19 0.22<br />

6 -1.00 2.24 0.26 0.50 0.10<br />

7 -1.00 4.93 0.45 0.69 0.00<br />

8 -1.00 13.24 0.21 0.26 0.05<br />

9 -1.00 31.43 0.01 0.07 0.00<br />

10 -1.00 24.16 0.05 0.08 0.00<br />

11 13.67 1.18 0.35 1.11 0.00<br />

12 16.93 -1.00 0.15 1.23 0.02<br />

13 8.81 -1.00 1.63 1.26 0.01<br />

14 1.24 -1.00 0.61 0.18 0.00<br />

Winrock International<br />

A- 52


Finalizing Avoided Deforestation Baselines<br />

15 -1.00 -1.00 2.08 0.41 0.00<br />

16 -1.00 -1.00 1.32 0.30 0.00<br />

17 -1.00 -1.00 1.19 0.09 -1.00<br />

18 0.02 -1.00 2.52 0.15 -1.00<br />

19 18.12 -1.00 0.19 1.24 -1.00<br />

20 -1.00 -1.00 0.47 2.26 -1.00<br />

21 -1.00 -1.00 2.58 1.22 -1.00<br />

22 1.99 -1.00 0.00 0.00 -1.00<br />

23 -1.00 -1.00 0.00 -1.00 -1.00<br />

24 -1.00 -1.00 0.00 -1.00 -1.00<br />

25 -1.00 -1.00 0.00 -1.00 -1.00<br />

26 -1.00 -1.00 -1.00 -1.00 -1.00<br />

27 -1.00 -1.00 -1.00 -1.00 -1.00<br />

28 0.71 -1.00 -1.00 -1.00 -1.00<br />

29 0.00 -1.00 -1.00 -1.00 -1.00<br />

30 0.38 -1.00 -1.00 -1.00 -1.00<br />

31 0.00 -1.00 -1.00 -1.00 -1.00<br />

32 -1.00 -1.00 -1.00 -1.00 -1.00<br />

33 0.71 -1.00 -1.00 -1.00 -1.00<br />

34 0.07 -1.00 -1.00 -1.00 -1.00<br />

35 0.00 -1.00 -1.00 -1.00 -1.00<br />

36 0.00 -1.00 -1.00 -1.00 -1.00<br />

37 0.00 -1.00 -1.00 -1.00 -1.00<br />

38 0.04 -1.00 -1.00 -1.00 -1.00<br />

39 0.00 -1.00 -1.00 -1.00 -1.00<br />

40 0.00 -1.00 -1.00 -1.00 -1.00<br />

41 0.00 -1.00 -1.00 -1.00 -1.00<br />

42 0.00 -1.00 -1.00 -1.00 -1.00<br />

43 0.02 -1.00 -1.00 -1.00 -1.00<br />

44 0.00 -1.00 -1.00 -1.00 -1.00<br />

45 0.00 -1.00 -1.00 -1.00 -1.00<br />

46 0.00 -1.00 -1.00 -1.00 -1.00<br />

47 0.08 -1.00 -1.00 -1.00 -1.00<br />

48 0.09 -1.00 -1.00 -1.00 -1.00<br />

49 20.49 -1.00 -1.00 -1.00 -1.00<br />

50 0.00 -1.00 -1.00 -1.00 -1.00<br />

51 0.00 -1.00 -1.00 -1.00 -1.00<br />

52 -1.00 -1.00 -1.00 -1.00 -1.00<br />

53 -1.00 -1.00 -1.00 -1.00 -1.00<br />

54 -1.00 -1.00 -1.00 -1.00 -1.00<br />

Winrock International<br />

A- 53


Finalizing Avoided Deforestation Baselines<br />

55 -1.00 -1.00 -1.00 -1.00 -1.00<br />

56 -1.00 -1.00 -1.00 -1.00 -1.00<br />

57 -1.00 -1.00 -1.00 -1.00 -1.00<br />

58 -1.00 -1.00 -1.00 -1.00 -1.00<br />

59 0.00 -1.00 -1.00 -1.00 -1.00<br />

60 3.47 -1.00 -1.00 -1.00 -1.00<br />

61 14.44 -1.00 -1.00 -1.00 -1.00<br />

62 28.87 -1.00 -1.00 -1.00 -1.00<br />

63 4.11 -1.00 -1.00 -1.00 -1.00<br />

64 1.35 -1.00 -1.00 -1.00 -1.00<br />

65 1.94 -1.00 -1.00 -1.00 -1.00<br />

66 0.67 -1.00 -1.00 -1.00 -1.00<br />

67 0.03 -1.00 -1.00 -1.00 -1.00<br />

68 2.69 -1.00 -1.00 -1.00 -1.00<br />

69 4.49 -1.00 -1.00 -1.00 -1.00<br />

70 1.20 -1.00 -1.00 -1.00 -1.00<br />

71 0.11 -1.00 -1.00 -1.00 -1.00<br />

72 0.59 -1.00 -1.00 -1.00 -1.00<br />

73 1.82 -1.00 -1.00 -1.00 -1.00<br />

74 0.00 -1.00 -1.00 -1.00 -1.00<br />

75 0.35 -1.00 -1.00 -1.00 -1.00<br />

76 1.15 -1.00 -1.00 -1.00 -1.00<br />

77 -1.00 -1.00 -1.00 -1.00 -1.00<br />

78 -1.00 -1.00 -1.00 -1.00 -1.00<br />

79 -1.00 -1.00 -1.00 -1.00 -1.00<br />

80 0.00 -1.00 -1.00 -1.00 -1.00<br />

81 0.52 -1.00 -1.00 -1.00 -1.00<br />

82 0.00 -1.00 -1.00 -1.00 -1.00<br />

83 2.76 -1.00 -1.00 -1.00 -1.00<br />

84 1.45 -1.00 -1.00 -1.00 -1.00<br />

85 4.90 -1.00 -1.00 -1.00 -1.00<br />

86 1.17 -1.00 -1.00 -1.00 -1.00<br />

87 0.79 -1.00 -1.00 -1.00 -1.00<br />

88 0.20 -1.00 -1.00 -1.00 -1.00<br />

89 0.68 -1.00 -1.00 -1.00 -1.00<br />

90 0.85 -1.00 -1.00 -1.00 -1.00<br />

91 0.56 -1.00 -1.00 -1.00 -1.00<br />

92 0.65 -1.00 -1.00 -1.00 -1.00<br />

93 0.00 -1.00 -1.00 -1.00 -1.00<br />

94 0.00 -1.00 -1.00 -1.00 -1.00<br />

Winrock International<br />

A- 54


Finalizing Avoided Deforestation Baselines<br />

95 0.20 -1.00 -1.00 -1.00 -1.00<br />

96 0.00 -1.00 -1.00 -1.00 -1.00<br />

97 0.04 -1.00 -1.00 -1.00 -1.00<br />

98 0.30 -1.00 -1.00 -1.00 -1.00<br />

99 0.23 -1.00 -1.00 -1.00 -1.00<br />

100 0.14 -1.00 -1.00 -1.00 -1.00<br />

101 0.59 -1.00 -1.00 -1.00 -1.00<br />

102 0.77 -1.00 -1.00 -1.00 -1.00<br />

103 0.74 -1.00 -1.00 -1.00 -1.00<br />

104 0.21 -1.00 -1.00 -1.00 -1.00<br />

105 -1.00 -1.00 -1.00 -1.00 -1.00<br />

106 -1.00 -1.00 -1.00 -1.00 -1.00<br />

107 36.20 -1.00 -1.00 -1.00 -1.00<br />

108 0.01 -1.00 -1.00 -1.00 -1.00<br />

109 0.00 -1.00 -1.00 -1.00 -1.00<br />

110 0.03 -1.00 -1.00 -1.00 -1.00<br />

111 0.13 -1.00 -1.00 -1.00 -1.00<br />

112 0.00 -1.00 -1.00 -1.00 -1.00<br />

113 0.08 -1.00 -1.00 -1.00 -1.00<br />

114 0.00 -1.00 -1.00 -1.00 -1.00<br />

115 0.26 -1.00 -1.00 -1.00 -1.00<br />

0 -1.00 -1.00 -1.00 -1.00 -1.00<br />

Table 2. “Success” of drivers by municipality<br />

Total Region Hopelchen Champoton Calakmul Escarcega<br />

DRIVERS Map Name #Classes %Correct Kappa %Correct Kappa %Correct Kappa %Correct Kappa %Correct Kappa<br />

NORTH<br />

1 Ag70n_a.rst 14 92.9321 0.1314 88.3934 0.0957 89.1697 0.1588 98.1093 0.0017 98.6332 0.0069<br />

2 Allwtn_a.rst 21 92.1627 0.0368 88.0718 0.0707 87.5456 0.0327 98.1104 0.0023 98.6578 0.0248<br />

3 Demn_a.rst 17 93.2479 0.1702 87.7421 0.0450 90.0365 0.2261 98.1153 0.0049 98.6223 -0.0010<br />

4 Ejidno_a.rst 107 92.2363 0.0459 87.3146 0.0117 87.8245 0.0543 98.2003 0.0498 98.6359 0.0089<br />

5 Hststn_a.rst 19 93.7404 0.2307 88.3283 0.0907 90.9781 0.2993 98.1115 0.0029 98.6469 0.0168<br />

6 Rdsn_a.rst 18 92.2503 0.0476 87.5072 0.0267 87.8918 0.0596 98.1067 0.0004 98.6851 0.0446<br />

7 Sect1n_a.rst 10 92.4209 0.0685 87.5555 0.0305 88.2604 0.0882 98.1046 -0.0007 98.6359 0.0089<br />

8 Strmpn_a.rst 28 92.8640 0.1230 89.6282 0.1919 88.6867 0.1213 98.1170 0.0058 98.6141 -0.0070<br />

9 Townsn_a.rst 19 93.2351 0.1686 89.2283 0.1608 89.6001 0.1922 98.1325 0.0140 98.6578 0.0248<br />

10 Watpn_a.rst 25 92.0514 0.0231 87.2045 0.0031 87.5455 0.0327 98.0910 -0.0079 98.6441 0.0148<br />

Winrock International<br />

A- 55


Finalizing Avoided Deforestation Baselines<br />

11 Wetlpn_a.rst 2 91.8928 0.0036 87.1700 0.0004 87.1884 0.0049 98.1064 0.0002 98.6359 0.0089<br />

12 Wetlsn_a.rst 2 92.0056 0.0175 88.3638 0.0934 87.1248 0.0000 98.1059 0.0000 98.6359 0.0089<br />

13 Wetltn_a.rst 2 92.0498 0.0229 88.3638 0.0934 87.2242 0.0077 98.1046 -0.0007 98.6359 0.0089<br />

Combinations<br />

5, 3 19 93.9568 0.2573 87.6867 0.0407 91.5956 0.3472 98.1452 0.0207 98.6551 0.0228<br />

5, 3, 9 19 93.8638 0.2459 89.3918 0.1735 90.9194 0.2947 98.1667 0.0321 98.6933 0.0506<br />

5, 3, 9, 1 19 93.9740 0.2594 89.0746 0.1488 91.2494 0.3203 98.1646 0.0309 98.6933 0.0506<br />

5, 3, 9, 1, 8 28 94.1046 0.2755 89.3016 0.1665 91.4386 0.3350 98.2088 0.0543 98.6605 0.0268<br />

5, 3, 9, 1, 8, 7 28 94.0547 0.2693 89.3147 0.1675 91.3130 0.3253 98.2209 0.0607 98.6605 0.0268<br />

5, 3, 9, 1, 8, 7, 6, 4 107 94.0738 0.2717 89.5191 0.1834 91.3136 0.3253 98.2080 0.0539 98.6633 0.0288<br />

Total Region 0.0923<br />

0.0615<br />

0.0242<br />

0.0177<br />

0.0228<br />

0.0212<br />

0.0140<br />

0.0098<br />

0.0022<br />

-0.0004<br />

-0.0046<br />

0.0920<br />

0.0857<br />

0.0841<br />

0.0936<br />

0.0933<br />

Champoton Calakmul<br />

SOUTH Map Name #Classes %Correct Kappa %Correct Kappa %Correct Kappa<br />

1 Ejidso_a.rst 115 97.7901 0.0927 95.0882 0.1043 97.8321 2 Strmps_a.rst 13 97.7195 0.0637 95.2055 0.1257 97.7585 3 Rdss_a.rst 25 97.6239 0.0244 94.6816 0.0301 97.6695 4 Hststs_a.rst 22 97.6201 0.0229 95.4385 0.1682 97.6539 5 Townss_a.rst 16 97.6187 0.0223 94.5571 0.0074 97.6662 6 Sect1s_a.rst 10 97.6184 0.0222 94.7916 0.0502 97.6622 7 Demn_a.rst 19 97.6036 0.0161 94.9291 0.0753 97.6451 8 Ag70s_a.rst 25 97.5940 0.0121 94.9450 0.0782 97.6351 9 Allwts_a.rst 8 97.5800 0.0064 95.2055 0.1257 97.6168 10 Watps_a.rst 19 97.5729 0.0035 95.1331 0.1125 97.6108 11 Wetlss_a.rst 2 97.5548 -0.0039 94.6049 0.0161 97.6006 Combinations<br />

1, 3, 5, 8, 9 5 drivers of north 97.6988 0.0552<br />

4, 8, 6, 9 4 drivers 97.7960 0.0951<br />

4, 8, 6, 5 5 drivers 97.8041 0.0984 96.0477 0.2793 97.8313 4, 8, 6 3 drivers 97.7778 0.0876 95.2952 0.1420 97.8163 4, 8 2 drivers 97.7743 0.0862 95.3068 0.1441 97.8126 4, 8, 6, 5, 9 5 drivers of south 97.8082 0.1001 96.0651 0.2824 97.8353 4, 8, 6, 5, 9, 7 6 drivers 97.8074 0.0998 96.0651 0.2824 97.8344 Winrock International<br />

A- 56


Finalizing Avoided Deforestation Baselines<br />

Figure 1. Individual Deforestation Driver Risk Maps 1-11<br />

Winrock International<br />

A- 57


Finalizing Avoided Deforestation Baselines<br />

Winrock International<br />

A- 58


Finalizing Avoided Deforestation Baselines<br />

Meseta Purepecha Region<br />

_____________________________________________________________________________<br />

________________________<br />

Table 1. Individual Driver Category Weights (% of class deforested at time<br />

of calibration) for each sub-region of Meseta Purepecha<br />

________________________________________________________________________<br />

URUAPAN<br />

CATEGORY Dist_aga Droad_a Aspect Slope Soils dpob2 elev_a ppmo tmaxmo<br />

1 59.46 66.38 90.32 77.43 14.79 73.88 98.7 0 -1<br />

2 45.29 55.16 39.92 58.39 45 63.93 92.55 48.09 -1<br />

3 38.03 45.44 37.38 33.08 70.17 48.45 50.28 74.04 -1<br />

4 33.58 38.45 40.14 17.35 39.17 39.34 31.81 34.72 0.64<br />

5 35.07 31.37 42.74 10.1 -1 36.74 37.71 37.44 18.22<br />

6 30.82 27.44 38.31 8.41 27.9 30.71 40.55 48.41 45.51<br />

7 32.54 23.33 41.88 7.28 42.07 29.24 47.4 0 47.48<br />

8 36.08 20.38 40.89 5.13 -1 28.5 45.09 -1 25.66<br />

9 34.57 18.09 44.56 0 -1 29.44 46.18 -1 83.13<br />

10 35.22 17.79 44.08 0 35.78 23.79 22.81 -1 100<br />

11 44.13 18.26 -1 -1 77.52 13.12 19.87 -1 -1<br />

12 43.53 19.82 -1 -1 93.97 12.56 4.87 -1 -1<br />

13 44.37 21.27 -1 -1 -1 9.31 0 -1 -1<br />

14 42.69 20.87 -1 -1 -1 12.81 0 -1 -1<br />

15 38.08 20.98 -1 -1 -1 5.14 -1 -1 -1<br />

16 36.56 21.05 -1 -1 -1 0 -1 -1 -1<br />

17 38.32 21.63 -1 -1 -1 0 -1 -1 -1<br />

18 35.63 22.07 -1 -1 -1 -1 -1 -1 -1<br />

19 34.38 23.68 -1 -1 -1 -1 -1 -1 -1<br />

20 30.88 21.84 -1 -1 -1 -1 -1 -1 -1<br />

21 26.43 20.37 -1 -1 -1 -1 -1 -1 -1<br />

22 20.83 20.97 -1 -1 -1 -1 -1 -1 -1<br />

23 24.57 25.21 -1 -1 -1 -1 -1 -1 -1<br />

24 28.91 27.11 -1 -1 -1 -1 -1 -1 -1<br />

25 24.94 18.3 -1 -1 -1 -1 -1 -1 -1<br />

26 8.11 2.06 -1 -1 -1 -1 -1 -1 -1<br />

27 -1 0 -1 -1 -1 -1 -1 -1 -1<br />

28 -1 0 -1 -1 -1 -1 -1 -1 -1<br />

29 -1 0 -1 -1 -1 -1 -1 -1 -1<br />

30 -1 -1 -1 -1 -1 -1 -1 -1 -1<br />

31 -1 -1 -1 -1 -1 -1 -1 -1 -1<br />

32 -1 -1 -1 -1 -1 -1 -1 -1 -1<br />

0 -1 -1 66.67 66.67 -1 -1 -1 -1 -1<br />

TANCITARO<br />

CATEGORY Dist_aga Droad_a Aspect Slope Soils dpob2 elev_a ppmo tmaxmo<br />

1 75.1 77.84 93.99 88.83 53.17 82.03 86.36 100 -1<br />

2 67.76 72.03 71.65 78.99 60.24 73.69 97.03 95.67 -1<br />

3 65.3 64.99 56.3 58.95 84.57 64.31 80.07 80.86 -1<br />

Winrock International<br />

A- 59


Finalizing Avoided Deforestation Baselines<br />

4 62.49 59.09 46.94 38.56 97.06 57.83 79.23 58.04 13<br />

5 60.72 54.15 50.13 31.78 -1 53.13 58.57 61.8 32.38<br />

6 57.76 48.6 60.08 29.52 54.98 44.09 56.67 52.22 63.16<br />

7 57.09 42.52 64.03 25.88 58.02 38.98 66.59 2.67 57.83<br />

8 50.61 37.27 69.26 21.94 -1 35.95 61.81 -1 69.56<br />

9 38.56 33.06 74.17 32.26 -1 26.96 45.42 -1 95.71<br />

10 35.57 27.29 73.27 100 52.28 24.88 33.01 -1 -1<br />

11 46.37 24.47 -1 -1 96.64 38.19 26.19 -1 -1<br />

12 55.79 21.64 -1 -1 -1 31.79 15.91 -1 -1<br />

13 63.88 22.9 -1 -1 -1 40.09 0 -1 -1<br />

14 67.82 27.18 -1 -1 -1 61.67 -1 -1 -1<br />

15 72.73 30.87 -1 -1 -1 71.52 -1 -1 -1<br />

16 71.77 38.82 -1 -1 -1 78.48 -1 -1 -1<br />

17 89.56 50.24 -1 -1 -1 -1 -1 -1 -1<br />

18 98.53 72.54 -1 -1 -1 -1 -1 -1 -1<br />

19 100 79.07 -1 -1 -1 -1 -1 -1 -1<br />

20 -1 83.96 -1 -1 -1 -1 -1 -1 -1<br />

21 -1 80 -1 -1 -1 -1 -1 -1 -1<br />

22 -1 81.61 -1 -1 -1 -1 -1 -1 -1<br />

23 -1 80.21 -1 -1 -1 -1 -1 -1 -1<br />

24 -1 85.06 -1 -1 -1 -1 -1 -1 -1<br />

25 -1 84.54 -1 -1 -1 -1 -1 -1 -1<br />

26 -1 83.75 -1 -1 -1 -1 -1 -1 -1<br />

27 -1 73.47 -1 -1 -1 -1 -1 -1 -1<br />

28 -1 64.52 -1 -1 -1 -1 -1 -1 -1<br />

29 -1 72.73 -1 -1 -1 -1 -1 -1 -1<br />

30 -1 62.5 -1 -1 -1 -1 -1 -1 -1<br />

31 -1 -1 -1 -1 -1 -1 -1 -1 -1<br />

32 -1 -1 -1 -1 -1 -1 -1 -1 -1<br />

0 -1 -1 84.21 84.21 -1 -1 -1 -1 -1<br />

PATZCUARO<br />

CATEGORY Dist_aga Droad_a Aspect Slope Soils dpob2 elev_a ppmo tmaxmo<br />

1 87.35 75.4 93.36 88.34 49.17 86.16 32.93 -1 -1<br />

2 75.87 68.3 54.94 72.82 58.33 78.95 -1 27.37 -1<br />

3 64.44 61.29 51.89 40.1 42.45 68.05 -1 55.3 -1<br />

4 52.69 54.22 48.28 15.32 73.46 55.62 93.27 55.77 11.13<br />

5 44.26 47.19 51.73 8.68 97.99 41.69 50.17 44.37 41.46<br />

6 41.96 42.22 51.83 3.94 18.18 31.88 60.31 -1 51.6<br />

7 40 36.24 52.99 0.39 57.24 29.5 61.91 -1 74.46<br />

8 35.33 31.45 54.32 0 100 26.25 72.47 -1 75.12<br />

9 36.51 26.34 54.12 0 66.23 23.91 48.4 -1 -1<br />

10 33.08 21.74 52.35 0 -1 21.81 40.93 -1 -1<br />

11 32.48 17.22 -1 -1 63.17 26.69 41.05 -1 -1<br />

12 32.16 12.69 -1 -1 93.25 30.4 13.53 -1 -1<br />

13 36.2 8.43 -1 -1 -1 28.7 0 -1 -1<br />

14 51.36 6.69 -1 -1 -1 15.8 0 -1 -1<br />

15 54.26 6.4 -1 -1 -1 13.69 -1 -1 -1<br />

Winrock International<br />

A- 60


Finalizing Avoided Deforestation Baselines<br />

16 50.23 6.27 -1 -1 -1 19.28 -1 -1 -1<br />

17 51.26 7.15 -1 -1 -1 9.41 -1 -1 -1<br />

18 53.6 9.58 -1 -1 -1 0 -1 -1 -1<br />

19 35.97 15.82 -1 -1 -1 0 -1 -1 -1<br />

20 24.79 18.18 -1 -1 -1 -1 -1 -1 -1<br />

21 20.51 19.36 -1 -1 -1 -1 -1 -1 -1<br />

22 9.07 17.93 -1 -1 -1 -1 -1 -1 -1<br />

23 5.99 18.13 -1 -1 -1 -1 -1 -1 -1<br />

24 4.33 19.49 -1 -1 -1 -1 -1 -1 -1<br />

25 29.09 10.13 -1 -1 -1 -1 -1 -1 -1<br />

26 94.44 0 -1 -1 -1 -1 -1 -1 -1<br />

27 100 0 -1 -1 -1 -1 -1 -1 -1<br />

28 -1 0 -1 -1 -1 -1 -1 -1 -1<br />

29 -1 0 -1 -1 -1 -1 -1 -1 -1<br />

30 -1 0 -1 -1 -1 -1 -1 -1 -1<br />

31 -1 0 -1 -1 -1 -1 -1 -1 -1<br />

32 -1 0 -1 -1 -1 -1 -1 -1 -1<br />

0 -1 -1 32.93 32.93 -1 -1 -1 -1 -1<br />

MESETA<br />

CATEGORY Dist_aga Droad_a Aspect Slope Soils dpob2 elev_a ppmo tmaxmo<br />

1 85.11 81.18 95.62 90.46 27.63 90.89 66.27 67.83 -1<br />

2 66.79 71.08 47.37 74.97 44.88 81.63 98.46 73.62 -1<br />

3 52.79 61.64 53.98 41.92 86.42 71.6 96.45 60.62 0<br />

4 49.5 53.97 55.08 18.23 72.22 64.11 93.13 34.77 13.05<br />

5 48.93 48.24 53.43 13.32 -1 54.9 46.91 56.51 34.22<br />

6 51.29 42.39 51.65 7.1 28.9 49.97 79.43 41.18 53.59<br />

7 54.66 36.63 53.19 4.13 52.43 45.67 69.9 6.87 59.23<br />

8 58.65 31.46 50.86 2.29 -1 41.24 62.17 -1 90.5<br />

9 57.36 28.25 47.23 0 -1 34.97 52.34 -1 93.16<br />

10 55.09 25.47 47.5 0 17.89 29.86 32.69 -1 -1<br />

11 53.6 22.09 -1 -1 97.64 29.2 34.98 -1 -1<br />

12 50.82 18.75 -1 -1 100 29.53 20.56 -1 -1<br />

13 50.17 15.19 -1 -1 -1 29.91 0.93 -1 -1<br />

14 53.06 12.56 -1 -1 -1 31.85 0 -1 -1<br />

15 52.47 11.52 -1 -1 -1 43.92 0 -1 -1<br />

16 49.44 10.14 -1 -1 -1 37.1 -1 -1 -1<br />

17 45.12 8.06 -1 -1 -1 20.88 -1 -1 -1<br />

18 40.7 6.74 -1 -1 -1 22.62 -1 -1 -1<br />

19 28.28 5.04 -1 -1 -1 21.01 -1 -1 -1<br />

20 24.82 4.13 -1 -1 -1 6.08 -1 -1 -1<br />

21 27.65 4.62 -1 -1 -1 0 -1 -1 -1<br />

22 27.71 6.32 -1 -1 -1 0 -1 -1 -1<br />

23 24.57 4.59 -1 -1 -1 -1 -1 -1 -1<br />

24 21.86 0 -1 -1 -1 -1 -1 -1 -1<br />

25 24.83 0 -1 -1 -1 -1 -1 -1 -1<br />

26 26.54 0 -1 -1 -1 -1 -1 -1 -1<br />

27 43.19 0 -1 -1 -1 -1 -1 -1 -1<br />

28 53.08 0 -1 -1 -1 -1 -1 -1 -1<br />

Winrock International<br />

A- 61


Finalizing Avoided Deforestation Baselines<br />

29 49.7 0 -1 -1 -1 -1 -1 -1 -1<br />

30 34.66 0 -1 -1 -1 -1 -1 -1 -1<br />

31 0.57 0 -1 -1 -1 -1 -1 -1 -1<br />

32 0 0 -1 -1 -1 -1 -1 -1 -1<br />

0 -1 -1 66.27 66.27 -1 -1 -1 -1 -1<br />

Winrock International<br />

A- 62


Finalizing Avoided Deforestation Baselines<br />

Table 2. “success” of drivers by region.<br />

Neighborhood=0<br />

Rank Driver % Correct Kappa<br />

REGION URUAPAN TANCITA PATZCUAR MESETA<br />

%<br />

%<br />

%<br />

Correct Kappa Correct Kappa Correct Kappa % Correct Kappa RANK<br />

1 All drivers 94.9237 0.1505 93.6216 0.0979 98.1396 0.1525 93.3538 0.2883 95.2261 0.0310 1<br />

2 tmaxmo_a 94.6354 0.1023 93.5398 0.0863 97.9381 0.0607 92.7581 0.2245 94.9551 -0.024 2<br />

3 dpob2_a 94.5743 0.0921 93.0989 0.024 97.8402 0.0161 92.43 0.1894 95.3433 0.0548 3<br />

4 elev_a 94.3865 0.0606 93.4233 0.0698 98.004 0.0907 91.8228 0.1244 94.9073 -0.0337 4<br />

5 Dist_aga 94.3736 0.0585 93.1655 0.0334 97.8007 -0.0019 92.1221 0.1564 94.9514 -0.0248 5<br />

6 Soils_a 94.3706 0.0580 93.3249 0.0559 97.8214 0.0075 91.6041 0.1010 95.1623 0.0181 6<br />

7 Droad_a 94.3513 0.0548 93.0157 0.0122 97.8440 0.0178 91.6228 0.1030 95.2936 0.0447 7<br />

8 Slope_a 94.2697 0.0411 92.9589 0.0041 97.8289 0.0109 91.4933 0.0891 95.1933 0.0243 8<br />

9 ppmo_a<br />

93.9661 -0.0097<br />

92.5749<br />

10 Aspect_a 93.9449 -0.0133 92.7135<br />

-<br />

0.0502 98.0417 0.1079 90.7206 0.0064 94.9926 -0.0164 9<br />

-<br />

0.0306 97.7969 -0.0036 90.5451 -0.0124 95.0751 0.0004 10<br />

Combinations Neighborhood=0<br />

REGION URUAPAN TANCITA PATZCUAR MESETA<br />

Neighborhood=0 % Correct Kappa<br />

%<br />

Correct Kappa<br />

%<br />

Correct Kappa<br />

%<br />

Correct Kappa % Correct Kappa<br />

2,3,4,5,6 0.0122<br />

0.0247<br />

0.0386<br />

0.0472<br />

-0.0061<br />

-0.0177<br />

94.7996 0.1298 93.5453 0.0871 97.9683 0.0744 93.1682 0.2684 95.1333 2,3 94.7522 0.1218 93.5079 0.0818 97.9777 0.0787 92.8991 0.2396 95.1952 4,6,7 94.7243 0.1172 93.4746 0.0771 97.876 0.0324 92.7854 0.2275 95.2636 3,7,4 94.7047 0.1139 93.207 0.0392 97.9306 0.0573 92.8717 0.2367 95.3058 2,3,4 94.7004 0.1132 93.4566 0.0745 98.1208 0.1439 92.8516 0.2345 95.0433 2,3,4,5 94.6775 0.1093 93.5134 0.0826 98.0869 0.1285 92.807 0.2298 94.9861 Neighborhood=1<br />

REGION URUAPAN TANCITA PATZCUAR MESETA<br />

Winrock International<br />

A- 63


Finalizing Avoided Deforestation Baselines<br />

Rank Driver % Correct Kappa<br />

%<br />

Correct Kappa<br />

%<br />

Correct Kappa<br />

%<br />

Correct Kappa % Correct Kappa<br />

1 Slope_a 0.2109<br />

0.1943<br />

0.208<br />

0.204<br />

0.1722<br />

0.1488<br />

0.1859<br />

0.1429<br />

0.2046<br />

0.2213<br />

0.193<br />

0.2031<br />

0.2067<br />

0.2067<br />

0.1778<br />

0.2044<br />

0.2027<br />

95.6059 0.2647 94.646 0.2428 98.1603 0.1619 93.8732 0.3439 96.1122 2 Dist_aga 95.5465 0.2548 94.6017 0.2365 98.0944 0.1319 93.8372 0.3401 96.0307 3 Droad_a 95.5329 0.2525 94.4603 0.2165 98.1434 0.1542 93.784 0.3344 96.0982 4 Soils_a 95.5286 0.2518 94.6599 0.2447 98.0925 0.131 93.6272 0.3176 96.0785 5 9 drivers 95.5239 0.251 94.4783 0.219 98.23 0.1936 93.9308 0.3501 95.9219 6 elev_a 95.4981 0.2466 94.5532 0.2296 98.2243 0.1911 93.9221 0.3492 95.8065 7 dpob2_a 95.4884 0.245 94.4284 0.212 98.1076 0.1379 93.8185 0.3381 95.9894 8 tmaxmo_a 95.4781 0.2433 94.5448 0.2285 98.2262 0.1919 93.8876 0.3455 95.7775 9 Disd76a** 95.4742 0.2426 94.452 0.2153 98.0812 0.1259 93.6113 0.3159 96.0813 10 Aspect_a 95.4682 0.2416 94.4228 0.2112 98.0455 0.1096 93.5164 0.3057 96.1638 11 ppmo_a 95.4622 0.2406 94.1678 0.1751 98.213 0.1859 93.8416 0.3406 96.0241 Combinations Neighborhood=1<br />

1,2 95.6265 0.2681 94.7209 0.2534 98.1961 0.1782 93.9164 0.3486 96.0738 1,2,3,4 95.5866 0.2615 94.5629 0.231 98.1697 0.1662 93.9005 0.3469 96.0916 1,2,3 95.5784 0.2601 94.5476 0.2288 98.1566 0.1602 93.8905 0.3458 96.0916 1,2,3,4,6 95.5638 0.2576 94.5629 0.231 98.2526 0.2039 93.9567 0.3529 95.9491 1,3,7,9 95.5412 0.2539 94.409 0.2092 98.1886 0.1748 93.866 0.3432 96.0804 2,7,3 95.5319 0.2523 94.4464 0.2145 98.1302 0.1482 93.8444 0.3409 96.0719 3,7,6 95.4848 0.2444 94.4062 0.2088 98.1641 0.1636 93.8689 0.3435 95.9331 0.1745<br />

Winrock International<br />

A- 64


Finalizing Avoided Deforestation Baselines<br />

Winrock International<br />

A- 65


Finalizing Avoided Deforestation Baselines<br />

Figure 1 A-Individual driver risk maps.<br />

Winrock International<br />

A- 66

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!