31.12.2013 Views

Numerical Methods in Quantum Mechanics - Dipartimento di Fisica

Numerical Methods in Quantum Mechanics - Dipartimento di Fisica

Numerical Methods in Quantum Mechanics - Dipartimento di Fisica

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

an equation <strong>in</strong>volv<strong>in</strong>g f<strong>in</strong>ite <strong>di</strong>fferences), we expand y(x) <strong>in</strong>to a Taylor series<br />

around a po<strong>in</strong>t x n , up to fifth order:<br />

y n−1 =<br />

y n+1 =<br />

y n − y n∆x ′ + 1 2 y′′ n(∆x) 2 − 1 6 y′′′ n (∆x) 3 + 1<br />

+O[(∆x) 6 ]<br />

y n + y n∆x ′ + 1 2 y′′ n(∆x) 2 + 1 6 y′′′ n (∆x) 3 + 1<br />

+O[(∆x) 6 ].<br />

If we sum the two equations, we obta<strong>in</strong>:<br />

24 y′′′′<br />

24 y′′′′<br />

n (∆x) 4 − 1<br />

n (∆x) 4 + 1<br />

120 y′′′′′<br />

120 y′′′′′<br />

n (∆x) 5<br />

n (∆x) 5<br />

(1.24)<br />

y n+1 + y n−1 = 2y n + y ′′<br />

n(∆x) 2 + 1<br />

12 y′′′′ n (∆x) 4 + O[(∆x) 6 ]. (1.25)<br />

Eq.(1.21) tells us that<br />

y n ′′ = −g n y n + s n ≡ z n . (1.26)<br />

The quantity z n above is <strong>in</strong>troduced to simplify the notations. The follow<strong>in</strong>g<br />

relation holds:<br />

z n+1 + z n−1 = 2z n + z ′′<br />

n(∆x) 2 + O[(∆x) 4 ] (1.27)<br />

(this is the simple formula for <strong>di</strong>scretized second derivative, that can be obta<strong>in</strong>ed<br />

<strong>in</strong> a straightforward way by Taylor expansion up to third order) and thus<br />

y ′′′′<br />

n ≡ z ′′<br />

n = z n+1 + z n−1 − 2z n<br />

(∆x) 2 + O[(∆x) 2 ]. (1.28)<br />

By <strong>in</strong>sert<strong>in</strong>g back these results <strong>in</strong>to Eq.(1.25) one f<strong>in</strong>ds<br />

y n+1 = 2y n − y n−1 + (−g n y n + s n )(∆x) 2<br />

+ 1<br />

12 (−g n+1y n+1 + s n+1 − g n−1 y n−1 + s n−1 + 2g n y n − 2s n )(∆x) 2<br />

+O[(∆x) 6 ]<br />

(1.29)<br />

and f<strong>in</strong>ally the Numerov’s formula<br />

[<br />

] [<br />

] ]<br />

(∆x)<br />

y n+1 1 + g 2<br />

(∆x)<br />

n+1 = 2y n 1 − 5g 2<br />

(∆x)<br />

n − y n−1<br />

[1 + g 2<br />

n−1<br />

12<br />

12<br />

+(s n+1 + 10s n + s n−1 ) (∆x)2<br />

12<br />

+ O[(∆x) 6 ]<br />

12<br />

(1.30)<br />

that allows to obta<strong>in</strong> y n+1 start<strong>in</strong>g from y n and y n−1 , and recursively the function<br />

<strong>in</strong> the entire box, as long as the value of the function is known <strong>in</strong> the first<br />

two po<strong>in</strong>ts (note the <strong>di</strong>fference with “tra<strong>di</strong>tional” <strong>in</strong>itial con<strong>di</strong>tions, Eq.(1.22),<br />

<strong>in</strong> which the value at one po<strong>in</strong>t and the derivative <strong>in</strong> the same po<strong>in</strong>t is specified).<br />

It is of course possible to <strong>in</strong>tegrate both <strong>in</strong> the <strong>di</strong>rection of positive x and<br />

<strong>in</strong> the <strong>di</strong>rection of negative x. In the presence of <strong>in</strong>version symmetry, it will be<br />

sufficient to <strong>in</strong>tegrate <strong>in</strong> just one <strong>di</strong>rection.<br />

In our case—Schröd<strong>in</strong>ger equation—the s n terms are absent. It is convenient<br />

to <strong>in</strong>troduce an auxiliary array f n , def<strong>in</strong>ed as<br />

(∆x) 2<br />

f n ≡ 1 + g n<br />

12 , where g n = 2m<br />

¯h 2 [E − V (x n)]. (1.31)<br />

With<strong>in</strong> such assumption Numerov’s formula can be written as<br />

y n+1 = (12 − 10f n)y n − f n−1 y n−1<br />

f n+1<br />

. (1.32)<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!