31.12.2013 Views

Numerical Methods in Quantum Mechanics - Dipartimento di Fisica

Numerical Methods in Quantum Mechanics - Dipartimento di Fisica

Numerical Methods in Quantum Mechanics - Dipartimento di Fisica

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where<br />

K ij = exp<br />

[<br />

− α iα j<br />

α i + α j<br />

|R i − R j | 2 ]<br />

, R ij = α iR i + α j R j<br />

α i + α j<br />

(8.14)<br />

allows to calculate the superposition <strong>in</strong>tegrals as follows:<br />

∫<br />

S ij =<br />

b i (r)b j (r)d 3 r =<br />

(<br />

π<br />

α i + α j<br />

) 3/2<br />

K ij . (8.15)<br />

The k<strong>in</strong>etic contribution can be calculated us<strong>in</strong>g the Green’s theorem:<br />

∫<br />

∫<br />

T ij = − b i (r)∇ 2 b j (r)d 3 r = ∇b i (r)∇b j (r)d 3 r (8.16)<br />

and f<strong>in</strong>ally<br />

T ij =<br />

α [<br />

iα j<br />

6 − 4 α ]<br />

iα j<br />

|R i − R j | 2 S ij . (8.17)<br />

α i + α j α i + α j<br />

The calculation of the Coulomb <strong>in</strong>teraction term with a nucleus <strong>in</strong> R ′ ≠ R is<br />

more complex and requires to go through Fourier transforms. At the end one<br />

gets the follow<strong>in</strong>g expression:<br />

∫<br />

1<br />

V ij = − b i (r)<br />

|r − R ′ | b j(r)d 3 1<br />

r = −S ij<br />

|R ij − R ′ | erf (√ α i + α j |R ij − R ′ | ) .<br />

(8.18)<br />

In the case R ij − R ′ = 0 we use the limit erf(x) → 2x/ √ π to get the already<br />

known result: V ij = −2π/(α i + α j ). The bi-electronic <strong>in</strong>tegrals <strong>in</strong>troduced <strong>in</strong><br />

the previous chapter, Eq.(7.26), can be calculated us<strong>in</strong>g a similar technique:<br />

g iljm =<br />

∫<br />

1<br />

b i (r)b j (r)<br />

|r − r ′ | b l(r ′ )b m (r ′ )d 3 rd 3 r ′ (8.19)<br />

= S ij S lm<br />

1<br />

|R ij − R lm | erf (√<br />

(αi + α j )(α l + α m )<br />

α i + α j + α l + α m<br />

|R ij − R lm |<br />

(beware <strong>in</strong><strong>di</strong>ces!).<br />

Although symmetry is not used <strong>in</strong> the code, it can be used to reduce by a<br />

sizable amount the number of bi-electronic <strong>in</strong>tegrals g iljm . They are obviously<br />

<strong>in</strong>variant under exchange of i, j and l, m <strong>in</strong><strong>di</strong>ces. This means that if we have<br />

N basis set functions, the number of <strong>in</strong>dependent matrix elements is not N 4<br />

but M 2 , where M = N(N + 1)/2 is the number of pairs of (i, j) and (l, m)<br />

<strong>in</strong><strong>di</strong>ces. The symmetry of the <strong>in</strong>tegral under exchange of r and r ′ leads to<br />

another symmetry: g iljm is <strong>in</strong>variant under exchange of the (i, j) and (l, m)<br />

pairs. This further reduces the <strong>in</strong>dependent number of matrix elements by a<br />

factor 2, to M(M + 1)/2 ∼ N 4 /8.<br />

8.4.2 Laboratory<br />

• Chosen a basis set that yields a good description of isolated atoms, f<strong>in</strong>d the<br />

equilibrium <strong>di</strong>stance by m<strong>in</strong>imiz<strong>in</strong>g the (electronic plus nuclear) energy.<br />

)<br />

64

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!