31.12.2013 Views

Numerical Methods in Quantum Mechanics - Dipartimento di Fisica

Numerical Methods in Quantum Mechanics - Dipartimento di Fisica

Numerical Methods in Quantum Mechanics - Dipartimento di Fisica

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where the “<strong>in</strong>tegral” on dv 1 means as usual “<strong>in</strong>tegration on coord<strong>in</strong>ates, sum<br />

over sp<strong>in</strong> components” . We follow the same path of Sec. (6.2) used to derive<br />

Hartree equations, Eq.(6.13). S<strong>in</strong>ce a determ<strong>in</strong>ant for N electrons has N! terms,<br />

we need a way to write matrix elements between determ<strong>in</strong>ants on a f<strong>in</strong>ite paper<br />

surface. The follow<strong>in</strong>g property, valid for any (symmetric) operator F and<br />

determ<strong>in</strong>antal functions ψ and ψ ′ , is very useful:<br />

〈ψ|F |ψ ′ 〉 = 1 ∫ ∣ ∣∣∣∣∣ φ ∗ 1 (1) . φ∗ 1 (N)<br />

∣ ∣∣∣∣∣∣ . . . F<br />

N!<br />

φ ∗ N (1) . φ∗ N (N) ∣<br />

∫<br />

= φ ∗ 1(1) . . . φ ∗ N(N)F<br />

∣<br />

φ ′ 1 (1) . φ′ 1 (N)<br />

. . .<br />

φ ′ N (1) . φ′ N (N) ∣ ∣∣∣∣∣∣<br />

dv 1 . . . dv N<br />

φ ′ 1 (1) . φ′ 1 (N)<br />

. . .<br />

φ ′ N (1) . φ′ N (N) ∣ ∣∣∣∣∣∣<br />

dv 1 . . . dv N (7.4)<br />

(by expand<strong>in</strong>g the first determ<strong>in</strong>ant, one gets N! terms that, once <strong>in</strong>tegrated,<br />

are identical). From the above property it is imme<strong>di</strong>ate (and bor<strong>in</strong>g) to obta<strong>in</strong><br />

the matrix elements for one- and two-electron operators:<br />

〈ψ| ∑ f i |ψ〉 = ∑ ∫<br />

φ ∗ i (1)f 1 φ i (1) dv 1 (7.5)<br />

i<br />

i<br />

(as <strong>in</strong> the Hartree approximation), and<br />

〈ψ| ∑ g ij |ψ〉 = ∑ ∫<br />

φ ∗ i (1)φ ∗ j(2)g 12 [φ i (1)φ j (2) − φ j (1)φ i (2)] dv 1 dv 2 (7.6)<br />

〈ij〉<br />

〈ij〉<br />

The <strong>in</strong>tegrals implicitly <strong>in</strong>clude summation over sp<strong>in</strong> components. If we assume<br />

that g 12 depends only upon coord<strong>in</strong>ates (as <strong>in</strong> Coulomb <strong>in</strong>teraction) and not<br />

upon sp<strong>in</strong>, the second term:<br />

∫<br />

φ ∗ i (1)φ ∗ j(2)g 12 φ j (1)φ i (2) dv 1 dv 2 (7.7)<br />

is zero is i and j states are <strong>di</strong>fferent (the sp<strong>in</strong> parts are not affected by g 12 and<br />

they are orthogonal if relative to <strong>di</strong>fferent sp<strong>in</strong>s).<br />

It is convenient to move to a scheme <strong>in</strong> which the sp<strong>in</strong> variables are not<br />

explicitly <strong>in</strong>cluded <strong>in</strong> the orbital <strong>in</strong>dex. Eq.(7.6) can then be written as<br />

〈ψ| ∑ g ij |ψ〉 = ∑ ∫<br />

φ ∗ i (1)φ ∗ j(2)g 12 [φ i (1)φ j (2) − δ(σ i , σ j )φ j (1)φ i (2)] dv 1 dv 2<br />

〈ij〉<br />

〈ij〉<br />

where σ i is the sp<strong>in</strong> of electron i, and:<br />

(7.8)<br />

δ(σ i , σ j ) = 0 if σ i ≠ σ j<br />

= 1 if σ i = σ j<br />

In summary:<br />

〈ψ|H|ψ〉 = ∑ ∫<br />

i<br />

+ ∑ ∫<br />

〈ij〉<br />

φ ∗ i (1)f 1 φ i (1) dv 1 (7.9)<br />

φ ∗ i (1)φ ∗ j(2)g 12 [φ i (1)φ j (2) − δ(σ i , σ j )φ j (1)φ i (2)] dv 1 dv 2<br />

54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!