05.03.2014 Views

addressing uncertainty in oil and natural gas industry greenhouse

addressing uncertainty in oil and natural gas industry greenhouse

addressing uncertainty in oil and natural gas industry greenhouse

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Prepared by the LEVON Group, LLC <strong>and</strong> URS Corporation<br />

ADDRESSING UNCERTAINT Y IN<br />

OIL AND NATURAL GAS INDUSTRY<br />

GREENHOUSE GAS INVENTORIES<br />

TECHNICAL CONSIDERATIONS<br />

AND CALCUL ATION METHODS<br />

S E P T E M B E R 2 0 0 9<br />

P I L O T T E S T V E R S I O N<br />

INTERNATIONAL PETROLEUM INDUSTRY<br />

ENVIRONMENTAL CONSERVATION ASSOCIATION


INTERNATIONAL PETROLEUM INDUSTRY ENVIRONMENTAL CONSERVATION ASSOCIATION<br />

The International Petroleum Industry Environmental Conservation Association (IPIECA)<br />

was founded <strong>in</strong> 1974 follow<strong>in</strong>g the establishment of the United Nations Environment<br />

Programme (UNEP). IPIECA provides one of the <strong>in</strong>dustry’s pr<strong>in</strong>cipal channels of<br />

communication with the United Nations.<br />

IPIECA is the s<strong>in</strong>gle global association represent<strong>in</strong>g both the upstream <strong>and</strong> downstream<br />

<strong>oil</strong> <strong>and</strong> <strong>gas</strong> <strong>in</strong>dustry on key global environmental <strong>and</strong> social issues. IPIECA’s programme<br />

takes full account of <strong>in</strong>ternational developments <strong>in</strong> these issues, serv<strong>in</strong>g as a forum<br />

for discussion <strong>and</strong> cooperation <strong>in</strong>volv<strong>in</strong>g <strong>in</strong>dustry <strong>and</strong> <strong>in</strong>ternational organizations.<br />

IPIECA’s aims are to develop <strong>and</strong> promote scientifically-sound, cost-effective, practical,<br />

socially <strong>and</strong> economically acceptable solutions to global environmental <strong>and</strong> social issues<br />

perta<strong>in</strong><strong>in</strong>g to the <strong>oil</strong> <strong>and</strong> <strong>gas</strong> <strong>in</strong>dustry. IPIECA is not a lobby<strong>in</strong>g organization, but provides<br />

a forum for encourag<strong>in</strong>g cont<strong>in</strong>uous improvement of <strong>in</strong>dustry performance.<br />

5th Floor, 209–215 Blackfriars Road, London SE1 8NL, United K<strong>in</strong>gdom<br />

Telephone: +44 (0)20-7633-2388<br />

Fax: +44 (0)20-7633-2389<br />

Email: <strong>in</strong>fo@ipieca.org<br />

Website: www.ipieca.org<br />

The American Petroleum Institute is the primary trade association <strong>in</strong> the United States<br />

represent<strong>in</strong>g the <strong>oil</strong> <strong>and</strong> <strong>natural</strong> <strong>gas</strong> <strong>in</strong>dustry, <strong>and</strong> the only one represent<strong>in</strong>g all segments<br />

of the <strong>in</strong>dustry. Represent<strong>in</strong>g one of the most technologically advanced <strong>in</strong>dustries <strong>in</strong> the<br />

world, API’s membership <strong>in</strong>cludes more than 400 corporations <strong>in</strong>volved <strong>in</strong> all aspects<br />

of the <strong>oil</strong> <strong>and</strong> <strong>gas</strong> <strong>in</strong>dustry, <strong>in</strong>clud<strong>in</strong>g exploration <strong>and</strong> production, ref<strong>in</strong><strong>in</strong>g <strong>and</strong> market<strong>in</strong>g,<br />

mar<strong>in</strong>e <strong>and</strong> pipel<strong>in</strong>e transportation <strong>and</strong> service <strong>and</strong> supply companies to the <strong>oil</strong> <strong>and</strong><br />

<strong>natural</strong> <strong>gas</strong> <strong>in</strong>dustry.<br />

API is headquartered <strong>in</strong> Wash<strong>in</strong>gton, D.C. <strong>and</strong> has offices <strong>in</strong> 27 state capitals <strong>and</strong> provides<br />

its members with representation on state issues <strong>in</strong> 33 states. API provides a forum for<br />

all segments of the <strong>oil</strong> <strong>and</strong> <strong>natural</strong> <strong>gas</strong> <strong>in</strong>dustry to pursue public policy objectives <strong>and</strong><br />

advance the <strong>in</strong>terests of the <strong>in</strong>dustry. API undertakes <strong>in</strong>-depth scientific, technical <strong>and</strong><br />

economic research to assist <strong>in</strong> the development of its positions, <strong>and</strong> develops st<strong>and</strong>ards<br />

<strong>and</strong> quality certification programs used throughout the world. As a major research <strong>in</strong>stitute,<br />

API supports these public policy positions with scientific, technical <strong>and</strong> economic research.<br />

For more <strong>in</strong>formation, please visit www.api.org.<br />

1220 L Street NW, Wash<strong>in</strong>gton DC, 20005-4070 USA<br />

Telephone: +1-202-682-8000<br />

Website: www.api.org<br />

The Oil Companies' European Association for Environment, Health <strong>and</strong> Safety<br />

<strong>in</strong> Ref<strong>in</strong><strong>in</strong>g <strong>and</strong> Distribution<br />

Founded <strong>in</strong> 1963, CONCAWE engages <strong>in</strong> research on environmental, health <strong>and</strong> safety<br />

issues related to the downstream <strong>oil</strong> <strong>in</strong>dustry with a view to improve the underst<strong>and</strong><strong>in</strong>g<br />

of these issues by the Industry, Authorities <strong>and</strong> Consumers, while uphold<strong>in</strong>g the three<br />

pr<strong>in</strong>ciples of Sound Science, Transparency <strong>and</strong> Cost-Effectiveness. CONCAWE represents<br />

nearly 100% of m<strong>in</strong>eral <strong>oil</strong> ref<strong>in</strong>ers <strong>in</strong> the European Union, Norway <strong>and</strong> Switzerl<strong>and</strong> <strong>and</strong><br />

is wholly funded by its members. It is based <strong>in</strong> Brussels <strong>and</strong> registered as a non-profit<br />

Association under Belgian Law.<br />

Bld du Souvera<strong>in</strong> 165<br />

B-1160-Brussels<br />

Telephone: +32-2566-9160<br />

Website: www.concawe.org<br />

© IPIECA 2009. All rights reserved. No part of this publication may be reproduced, stored<br />

<strong>in</strong> a retrieval system, or transmitted <strong>in</strong> any form or by any means, electronic, mechanical,<br />

photocopy<strong>in</strong>g, record<strong>in</strong>g or otherwise, without the prior consent of IPIECA.


Table of Contents<br />

SECTION<br />

Page<br />

FOREWORD<br />

vi<br />

DOCUMENT AT A GLANCE<br />

viii<br />

1.0 INTRODUCTION 1-1<br />

1.1 Importance of Accurate <strong>and</strong> Reliable GHG Account<strong>in</strong>g 1-1<br />

1.2 Overview of Uncerta<strong>in</strong>ty Term<strong>in</strong>ology 1-2<br />

1.3 Types of Errors 1-3<br />

1.4 Determ<strong>in</strong>ation of Uncerta<strong>in</strong>ty Intervals 1-3<br />

2.0 SOURCES OF UNCERTAINTY 2-1<br />

2.1 Overview of Emissions Inventory Uncerta<strong>in</strong>ty 2-1<br />

2.2 Emissions Inventory Uncerta<strong>in</strong>ty <strong>in</strong> the O&G Industry 2-3<br />

2.3 Sources of Measurement Uncerta<strong>in</strong>ty 2-5<br />

2.4 Emission Estimation Approaches 2-7<br />

2.5 Inventory Steps <strong>and</strong> Data Aggregation 2-9<br />

3.0 OVERVIEW OF MEASUREMENT PRACTICES 3-1<br />

3.1 Flow Measurement Practices<br />

3.1.1 Measurements by Orifice Meters<br />

3.1.2 Measurement of Flow to Flares<br />

3.1.3 Example: “Custody Transfer” Measurements<br />

3.2 Uncerta<strong>in</strong>ties of Flow Measurements for GHG Inventories 3-9<br />

3.3 Uncerta<strong>in</strong>ties of Sampl<strong>in</strong>g <strong>and</strong> Analysis for GHG Estimation<br />

3.3.1 Gaseous Samples Collection <strong>and</strong> H<strong>and</strong>l<strong>in</strong>g<br />

3.3.2 Quantify<strong>in</strong>g Sampl<strong>in</strong>g Precision<br />

3.4 Carbon Content Measurement Practices<br />

3.4.1 Laboratory Based Measurements<br />

3.4.2 On-l<strong>in</strong>e Measurements<br />

3-3<br />

3-3<br />

3-5<br />

3-7<br />

3-13<br />

3-13<br />

3-15<br />

3-15<br />

3-16<br />

3-18<br />

3.5 Heat Content Determ<strong>in</strong>ation 3-19<br />

3.5.1 Direct Measurements<br />

3.5.2 Computational Methods<br />

3.6 Laboratory Management System 3-22<br />

4.0 STATISTICAL CONCEPTS AND CALULATION METHODS 4-1<br />

4.1 Measurement Uncerta<strong>in</strong>ty<br />

4.1.1 Precision <strong>and</strong> Bias<br />

4.1.2 Confidence Intervals<br />

4.2 Overview of Uncerta<strong>in</strong>ty Propagation<br />

4.2.1 Propagation Equations<br />

4.2.2 Correlation Coefficient<br />

3-19<br />

3-21<br />

4-1<br />

4-1<br />

4-3<br />

4-4<br />

4-6<br />

4-7<br />

Pilot Version, September 2009<br />

ii


SECTION<br />

Table of Contents, cont<strong>in</strong>ued<br />

4.3 Quantify<strong>in</strong>g Emission Estimation Uncerta<strong>in</strong>ty<br />

4.3.1 Simple Emission Estimation: EF x AF<br />

4.3.2 Fugitive Emission Estimation<br />

4.3.3 Emission Factor Uncerta<strong>in</strong>ty<br />

4.4 Quantify<strong>in</strong>g Measurement Uncerta<strong>in</strong>ty<br />

4.4.1 Measurement Uncerta<strong>in</strong>ty – Multiple Measurements<br />

4.5 Aggregat<strong>in</strong>g Uncerta<strong>in</strong>ty<br />

4.5.1 Round<strong>in</strong>g off of Statistical Estimate<br />

4.6 Assess<strong>in</strong>g Data Correlations<br />

4.6.1 Monte Carlo Simulation<br />

4.6.2 Comparison of Error Propagation <strong>and</strong> Monte Carlo 4-35<br />

5.0 UNCERTAINTY CALCULATION EXAMPLES 5-1<br />

5.1 Introduction 5-1<br />

5.2 Example 1: Onshore Oil Field with High CO 2 Content<br />

5.2.1 Background<br />

5.2.2 Assign<strong>in</strong>g Uncerta<strong>in</strong>ties to Activity Factors<br />

5.2.3 Propagat<strong>in</strong>g Uncerta<strong>in</strong>ty <strong>in</strong> Calculated Activity Factors<br />

5.2.4 Propagat<strong>in</strong>g Asymmetric Uncerta<strong>in</strong>ty Distribution<br />

5.3 Example 2: Ref<strong>in</strong>ery<br />

5.3.1 Background<br />

5.3.2 Uncerta<strong>in</strong>ty Comparison for FCCU Emission<br />

Estimation Methods<br />

5.3.3 Uncerta<strong>in</strong>ty Comparison for Hydrogen Plant Emission<br />

Estimation Methods<br />

5.4 Strategic Reduction of Uncerta<strong>in</strong>ty<br />

5.4.1 Opportunities to Improve the Uncerta<strong>in</strong>ty Estimation for<br />

the Onshore Oil Field<br />

5-20<br />

6.0 REFERENCES 6-1<br />

Appendices<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Glossary of Statistical <strong>and</strong> GHG Inventory Terms<br />

List of Industry Measurement St<strong>and</strong>ards<br />

Operat<strong>in</strong>g Conditions, Inspection, Calibration <strong>and</strong> Expected<br />

Uncerta<strong>in</strong>ties for Common Flow Meters<br />

Select Measurement Methods Summaries<br />

Units Conversion<br />

Uncerta<strong>in</strong>ty Estimation Details for an Example Inventory<br />

4-8<br />

4-8<br />

Page<br />

4-10<br />

4-13<br />

4-16<br />

4-21<br />

4-29<br />

4-33<br />

4-33<br />

4-34<br />

5-1<br />

5-1<br />

5-5<br />

5-7<br />

5-10<br />

5-10<br />

5-10<br />

5-10<br />

5-15<br />

5-18<br />

Pilot Version, September 2009<br />

iii


List of Tables<br />

SECTION<br />

Page<br />

2-1 Overview of Methods Used to Estimate Emissions Uncerta<strong>in</strong>ty 2-2<br />

3-1 Example of FFMS Comb<strong>in</strong>ed Uncerta<strong>in</strong>ty 3-7<br />

3-2 Summary of Alberta ERCB Accuracy Requirements 3-8<br />

3-3 Compilation of Specifications for Common Flow Meters 3-10<br />

3-4 Summary of Selected Carbon Content Measurement Methods 3-17<br />

3-5 Summary of Selected Heat<strong>in</strong>g Value Measurement Methods 3-20<br />

4-1 Component Counts <strong>and</strong> Uncerta<strong>in</strong>ties 4-11<br />

4-2 Emission Factors <strong>and</strong> Uncerta<strong>in</strong>ties 4-11<br />

4-3 Methane Weight Fractions for Production Operations by Service 4-12<br />

4-4 Estimate Fugitive CH 4 Emission 4-13<br />

4-5 Uncerta<strong>in</strong>ty <strong>in</strong> a S<strong>in</strong>gle Measurement 4-19<br />

4-6 Flow Measurements (<strong>in</strong> Mscf/day) 4-20<br />

4-7 Uncerta<strong>in</strong>ty <strong>in</strong> Summation of Flow Measurements – Annual 4-21<br />

4-8 Uncerta<strong>in</strong>ty <strong>in</strong> Summation of Flow Measurements – Monthly 4-21<br />

4-9 Measured Composition Data 4-25<br />

4-10 Average Composition Calculations 4-25<br />

4-11 Measured Monthly Composition Data 4-27<br />

4-12 Measured Monthly Emission Factors 4-29<br />

4-13 Comparison of Annual Emission Estimates 4-32<br />

5-1 Onshore Oil Field (High CO 2 Content) Emission Sources 5-2<br />

5-2 Onshore Oil Field (High CO 2 Content) Fugitive Emission Sources 5-4<br />

5-3 Gas Composition for Onshore Oil Field (High CO 2 Content) 5-4<br />

5-4 Onshore Oil Field (High CO 2 Content) Emissions 5-8<br />

5-5 Uncerta<strong>in</strong>ty Comparison for FCCU Estimation Methods 5-14<br />

5-6 Composition Data 5-15<br />

5-7 Hydrogen <strong>and</strong> Carbon Composition Data 5-17<br />

5-8 Emission Uncerta<strong>in</strong>ty Rank<strong>in</strong>g for Onshore Oil Production Example 5-19<br />

D-1 Natural Gas Components <strong>and</strong> Range of Composition Covered D-1<br />

D-2 ASTM D1945-03 Precision for Natural Gas Samples D-2<br />

D-3 ASTM D1945-03 Precision for Reformed Gas Samples D-2<br />

D-4 ASTM D4891-89 Range of Composition for Natural Gas<br />

D-5<br />

Components<br />

F-1 Gas Composition for Onshore Production Platform F-1<br />

F-2 Operat<strong>in</strong>g Parameters for B<strong>oil</strong>ers, Heaters <strong>and</strong> Reb<strong>oil</strong>ers F-2<br />

F-3 Operat<strong>in</strong>g Parameters for Turb<strong>in</strong>es F-3<br />

F-4 Natural Gas Composition F-4<br />

F-5 Operat<strong>in</strong>g Parameters for Diesel Eng<strong>in</strong>es F-6<br />

F-6 Operat<strong>in</strong>g Parameters for Flares F-13<br />

Pilot Version, September 2009<br />

iv


List of Tables, cont<strong>in</strong>ued<br />

SECTION<br />

Page<br />

F-7 Operat<strong>in</strong>g Parameters for Fleet Vehicles F-16<br />

F-8 Operat<strong>in</strong>g Parameters for Dehydration F-19<br />

F-9 Operat<strong>in</strong>g Parameters for Storage Tanks F-21<br />

F-10 Operat<strong>in</strong>g Parameters for Acid Gas Removal F-23<br />

F-11 Operat<strong>in</strong>g Parameters for Pneumatic Devices <strong>and</strong> Chemical F-25<br />

Injection Pumps<br />

F-12 Operat<strong>in</strong>g Parameters for Ma<strong>in</strong>tenance/Turnaround Emissions <strong>and</strong><br />

PRVs<br />

F-13 Onshore Oil Field (High CO 2 Content) Fugitive Emission Factors F-33<br />

F-14 Fugitive Emission <strong>and</strong> <strong>uncerta<strong>in</strong>ty</strong> Estimates F-35<br />

F-15 Onshore Oil Field (High CO 2 Content) Emissions F-38<br />

List of Figures<br />

SECTION<br />

Page<br />

4-1 Measurement Error Over Time of an Unbiased Estimate 4-2<br />

4-2 Measurement Error Over Time of a Biased Estimate 4-3<br />

4-3 Decision Diagram for Emission Factor Uncerta<strong>in</strong>ty 4-15<br />

4-4 Decision Diagram for Measurement Uncerta<strong>in</strong>ty 4-17<br />

4-5 Step C – Decision Diagram for Uncerta<strong>in</strong>ty Aggregation 4-31<br />

5-1 Onshore Oil Field: Summary of Emissions 5-20<br />

5-2 Onshore Oil Field: Summary of CO 2 Equivalent Emissions <strong>and</strong><br />

Uncerta<strong>in</strong>ties<br />

5-21<br />

F-28<br />

Pilot Version, September 2009<br />

v


FOREWORD<br />

The global <strong>oil</strong> <strong>and</strong> <strong>natural</strong> Gas (O&G) <strong>in</strong>dustry has been active <strong>in</strong> promot<strong>in</strong>g consistency <strong>and</strong><br />

harmonization for <strong>in</strong>dustry <strong>greenhouse</strong> <strong>gas</strong> (GHG) emission <strong>in</strong>ventories. Industry associations <strong>and</strong> their<br />

members have been contribut<strong>in</strong>g to the development of guidance for account<strong>in</strong>g <strong>and</strong> report<strong>in</strong>g of GHG<br />

emissions (API/IPIECA/OGP, 2003), <strong>and</strong> compil<strong>in</strong>g methodologies that are appropriate for estimat<strong>in</strong>g<br />

GHG emissions from <strong>in</strong>dustry operations (API, 2009). This guidance has been recently augmented with<br />

guidel<strong>in</strong>es to account for reductions associated with GHG projects (API/IPIECA, 2007).<br />

The uncerta<strong>in</strong>ties <strong>in</strong>herent <strong>in</strong> the data used for emission <strong>in</strong>ventories help <strong>in</strong>form <strong>and</strong> improve<br />

underst<strong>and</strong><strong>in</strong>g for the data’s use. The <strong>uncerta<strong>in</strong>ty</strong> of an O&G company’s GHG emission <strong>in</strong>ventory, or of<br />

its quantified emission reductions, is determ<strong>in</strong>ed largely by the uncerta<strong>in</strong>ties <strong>in</strong> the estimates of its key<br />

(largest) contribut<strong>in</strong>g sources. In turn, each of these uncerta<strong>in</strong>ties depends on the quality <strong>and</strong> availability<br />

of sufficient data to estimate emissions. Our measured data robustness is receiv<strong>in</strong>g <strong>in</strong>creased attention to<br />

underst<strong>and</strong><strong>in</strong>g determ<strong>in</strong>ations of GHG emissions <strong>and</strong> emission reductions.<br />

The American Petroleum Institute (API), the <strong>oil</strong> companies’ association for the Conservation of Clean Air<br />

<strong>and</strong> Water <strong>in</strong> Europe (CONCAWE) <strong>and</strong> the International Petroleum Industry Environmental Conservation<br />

Association (IPIECA) convened an <strong>in</strong>ternational workshop on the topic on January 16, 2007, <strong>in</strong> Brussels,<br />

Belgium. The goals of this workshop were to:<br />

• Develop an underst<strong>and</strong><strong>in</strong>g of the relative importance of the key factors that contribute to<br />

<strong>uncerta<strong>in</strong>ty</strong>;<br />

• Review <strong>and</strong> discuss emerg<strong>in</strong>g techniques for quantitative assessment of the <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong><br />

accuracy of GHG emissions estimates;<br />

• Identify emission sources <strong>and</strong> methods where O&G <strong>in</strong>dustry efforts are needed to improve<br />

accuracy <strong>and</strong> reduce <strong>uncerta<strong>in</strong>ty</strong> to acceptable levels; <strong>and</strong><br />

• Create a prioritized list of topics to be addressed by the O&G <strong>in</strong>dustry to m<strong>in</strong>imize emissions<br />

estimation <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong> improve data accuracy.<br />

A summary report, as well as all the workshop presentations, is posted on the IPIECA website<br />

(API/IPIECA, 2007).<br />

The workshop served as the first step <strong>in</strong> the process of <strong>address<strong>in</strong>g</strong> <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong> accuracy issues <strong>and</strong> <strong>in</strong><br />

the ensu<strong>in</strong>g <strong>in</strong>dustry discussion, a list of priority issues was prepared. This list is comprised of items that<br />

<strong>in</strong>dustry experts ought to address <strong>in</strong> a systematic fashion. As presented <strong>in</strong> the workshop summary report,<br />

the issues listed by <strong>in</strong>dustry members fall <strong>in</strong>to three thematic areas:<br />

1. Measurement methods;<br />

Pilot Version, September 2009<br />

vi


2. Computational methods; <strong>and</strong><br />

3. External communications.<br />

Industry recognizes the need for meet<strong>in</strong>g regulatory m<strong>and</strong>ates <strong>and</strong> stakeholders’ expectations, <strong>and</strong> followup<br />

activities will be designed to provide opportunities for cont<strong>in</strong>ued dialogue <strong>and</strong> collaborative activities<br />

with stakeholders.<br />

The goal of these guidel<strong>in</strong>es is to augment exist<strong>in</strong>g <strong>in</strong>dustry guidance <strong>and</strong> provide technically valid<br />

approaches that would be applicable for use by the global O&G <strong>in</strong>dustry to improve GHG emissions<br />

estimation robustness <strong>and</strong> data quality. The aim is to summarize <strong>in</strong> a s<strong>in</strong>gle document overarch<strong>in</strong>g<br />

guidance for meet<strong>in</strong>g data needs of a range of <strong>in</strong>itiatives as well as the requirements of diverse GHG<br />

regimes.<br />

These technical considerations <strong>and</strong> statistical calculation guidance are not designed to be an <strong>in</strong>dustry<br />

st<strong>and</strong>ard. They will merely provide a brief summary <strong>and</strong> an overarch<strong>in</strong>g discussion of possible<br />

approaches for <strong>address<strong>in</strong>g</strong> each of the topics covered. These <strong>in</strong>clude: clarification of the sources of<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> entity GHG <strong>in</strong>ventories; <strong>in</strong>formation on measurement practices <strong>and</strong> their associated<br />

uncerta<strong>in</strong>ties; <strong>and</strong> explanation of statistical procedures that can be used to quantify uncerta<strong>in</strong>ties. This<br />

document also conta<strong>in</strong>s several case studies that illustrate how to implement the recommended<br />

approaches.<br />

Pilot Version, September 2009<br />

vii


DOCUMENT AT A GLANCE<br />

This document is designed to provide a summary of technical considerations that are important for<br />

underst<strong>and</strong><strong>in</strong>g <strong>and</strong> calculat<strong>in</strong>g GHG emission <strong>in</strong>ventory <strong>uncerta<strong>in</strong>ty</strong>. The document will provide needed<br />

technical background <strong>and</strong> specific calculation methods to determ<strong>in</strong>e uncerta<strong>in</strong>ties with targeted<br />

measurements <strong>and</strong> emission factors <strong>and</strong> determ<strong>in</strong>e how to aggregate these <strong>in</strong>dividual terms to derive<br />

<strong>uncerta<strong>in</strong>ty</strong> ranges (at a pre-designated probability level) for entire GHG <strong>in</strong>ventories, at any given level.<br />

These emission <strong>in</strong>ventories of typical <strong>oil</strong> <strong>and</strong> <strong>natural</strong> <strong>gas</strong> (O&G) operations are quite complex; they are<br />

based on a comb<strong>in</strong>ation of measured <strong>and</strong> estimated emissions data, accord<strong>in</strong>g to local requirements <strong>and</strong><br />

available <strong>in</strong>formation. The overall range of <strong>uncerta<strong>in</strong>ty</strong> associated with an entity GHG <strong>in</strong>ventory is<br />

determ<strong>in</strong>ed primarily by the <strong>uncerta<strong>in</strong>ty</strong> associated with the largest (“key”) sources of emissions. In turn,<br />

the confidence <strong>in</strong>terval associated with each <strong>in</strong>dividual source depends on the availability of sufficient<br />

data to estimate emissions, or on the quality of that data, <strong>in</strong> order to properly account for emission<br />

variability.<br />

Uncerta<strong>in</strong>ty analysis is a potential tool to not only assess confidence <strong>in</strong>tervals, but more importantly, to<br />

allow the target<strong>in</strong>g of specific areas for enhanced data collection. Such an analysis will enable a user to<br />

rank order the importance of different emission sources <strong>in</strong> terms of their overall contribution to the<br />

emissions <strong>in</strong>ventory <strong>and</strong> its overall <strong>uncerta<strong>in</strong>ty</strong> range.<br />

This document is a companion to the API Compendium of Greenhouse Gas Emission Methodologies for<br />

the Oil & Gas Industry (2009 API Compendium). It provides a range of background <strong>in</strong>formation on<br />

<strong>in</strong>dustry practices <strong>and</strong> specific calculation methods that would enable <strong>in</strong>ventory developers to quantify<br />

<strong>and</strong> better underst<strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> associated with the resultant GHG emissions.<br />

Section 1.0 <strong>in</strong>troduces some basic concepts <strong>and</strong> terms that provide a foundation for underst<strong>and</strong><strong>in</strong>g GHG<br />

emissions <strong>in</strong>ventory <strong>uncerta<strong>in</strong>ty</strong>. This term<strong>in</strong>ology is used throughout the document. This section covers:<br />

the importance of reliable GHG account<strong>in</strong>g; a term<strong>in</strong>ology overview; def<strong>in</strong>ition of error types; <strong>and</strong> a<br />

description of the determ<strong>in</strong>ation of <strong>uncerta<strong>in</strong>ty</strong> ranges (also known as confidence <strong>in</strong>tervals).<br />

Section 2.0 discusses the major sources of <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> GHG <strong>in</strong>ventories. It moves from general<br />

concepts to issues that are germane to GHG <strong>in</strong>ventories <strong>in</strong> the O&G <strong>in</strong>dustry. It also describes factors<br />

that could <strong>in</strong>troduce errors <strong>in</strong>to the emission measurements process <strong>and</strong> contribute to the range of<br />

uncerta<strong>in</strong>ties of estimated emissions. It <strong>in</strong>troduces the categories of emission estimation approaches <strong>and</strong><br />

their <strong>uncerta<strong>in</strong>ty</strong> implications, <strong>and</strong> concludes with a short description of emission <strong>in</strong>ventory steps <strong>and</strong> data<br />

aggregation.<br />

Section 3.0 provides an overview of measurement practices, focus<strong>in</strong>g on <strong>gas</strong> flow measurements <strong>and</strong> the<br />

determ<strong>in</strong>ations of carbon content <strong>and</strong> heat<strong>in</strong>g values of combusted fuels. The section recognizes <strong>in</strong>dustry<br />

recommended practices <strong>and</strong> st<strong>and</strong>ards that have traditionally applied to “custody transfer”. This section<br />

Pilot Version, September 2009<br />

viii


goes on to discuss data considerations when collect<strong>in</strong>g <strong>in</strong>formation on activity levels <strong>and</strong> applicable GHG<br />

emissions. It <strong>in</strong>cludes an overview of measurement practices that would result <strong>in</strong> high quality data when<br />

properly implemented, while focus<strong>in</strong>g on measurements that are applicable to the key contribut<strong>in</strong>g<br />

sources, i.e. carbon dioxide (CO 2 ) emissions from combustion devices. Topics discussed <strong>in</strong>clude: flow<br />

measurement practices; uncerta<strong>in</strong>ties of flow measurements for GHG <strong>in</strong>ventories; <strong>uncerta<strong>in</strong>ty</strong> of sampl<strong>in</strong>g<br />

<strong>and</strong> analysis for GHG estimation; <strong>and</strong> laboratory management systems.<br />

Section 4.0 provides calculation methods for quantify<strong>in</strong>g GHG <strong>in</strong>ventory <strong>uncerta<strong>in</strong>ty</strong>. It addresses the<br />

statistical characterization of measurement <strong>uncerta<strong>in</strong>ty</strong>, <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> associated with published<br />

emission factors, <strong>and</strong> concludes by provid<strong>in</strong>g specific statistical methods <strong>and</strong> <strong>in</strong>dustry relevant examples<br />

for the propagation of <strong>uncerta<strong>in</strong>ty</strong>. This section l<strong>in</strong>ks the statistical concepts <strong>in</strong>troduced <strong>in</strong> earlier sections<br />

to their application for measurement <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong> error propagation. Decision trees are provided to<br />

guide the user through the steps needed to quantify <strong>uncerta<strong>in</strong>ty</strong> for each part of a GHG <strong>in</strong>ventory.<br />

Section 5.0 takes the guidel<strong>in</strong>es, procedures, <strong>and</strong> equations for calculation of <strong>uncerta<strong>in</strong>ty</strong> that were<br />

outl<strong>in</strong>ed <strong>in</strong> Section 4 <strong>and</strong> applies them to a hypothetical facility to demonstrate how to calculate total<br />

<strong>uncerta<strong>in</strong>ty</strong> for a facility-level GHG <strong>in</strong>ventory. The statistical approaches discussed previously are also<br />

applied to two select ref<strong>in</strong>ery operations to exam<strong>in</strong>e <strong>and</strong> compare <strong>uncerta<strong>in</strong>ty</strong> estimates for different<br />

emission estimation methods. The hypothetical example facilities <strong>and</strong> operations are taken directly from<br />

the 2009 API Compendium conta<strong>in</strong><strong>in</strong>g details of how the <strong>in</strong>ventory was generated or calculated. This<br />

section also provides a detailed analysis of the result<strong>in</strong>g <strong>in</strong>ventory data <strong>and</strong> its <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the context<br />

of improv<strong>in</strong>g GHG data quality <strong>and</strong> reduc<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong>.<br />

Detailed technical <strong>in</strong>formation is organized <strong>in</strong> six appendices, as follows:<br />

Appendix A – Glossary of statistical <strong>and</strong> GHG <strong>in</strong>ventory terms;<br />

Appendix B – A comprehensive list of applicable <strong>in</strong>dustry measurement st<strong>and</strong>ards;<br />

Appendix C - Operat<strong>in</strong>g conditions, <strong>in</strong>spection, calibration <strong>and</strong> manufacturers’ reported measurement<br />

errors for common flow meters;<br />

Appendix D – Measurement method summaries for carbon content measurement methods, <strong>and</strong> heat<strong>in</strong>g<br />

value measurement methods;<br />

Appendix E – Unit conversions <strong>in</strong>clud<strong>in</strong>g energy units, common units of measure for fossil fuel heat<strong>in</strong>g<br />

content values, <strong>and</strong> carbon content of selected fuels; <strong>and</strong><br />

Appendix F – Calculation details for <strong>uncerta<strong>in</strong>ty</strong> estimation for an example GHG <strong>in</strong>ventory.<br />

Pilot Version, September 2009<br />

ix


1.0 INTRODUCTION<br />

Policymakers use entity GHG <strong>in</strong>ventories <strong>and</strong> reported facilitylevel<br />

GHG emissions to develop strategies <strong>and</strong> policies for<br />

emission reductions <strong>and</strong> to track the progress of these policies.<br />

Both regulatory agencies <strong>and</strong> corporations rely on <strong>in</strong>ventories to<br />

better underst<strong>and</strong> emission sources <strong>and</strong> trends. GHG <strong>in</strong>ventory<br />

data are associated with vary<strong>in</strong>g degrees of <strong>uncerta<strong>in</strong>ty</strong>, <strong>and</strong> such<br />

actual uncerta<strong>in</strong>ties have both technical <strong>and</strong> policy implications.<br />

“Uncerta<strong>in</strong>ty analysis” has been <strong>in</strong>creas<strong>in</strong>gly recognized as an<br />

important tool for improv<strong>in</strong>g national, sectoral, <strong>and</strong> corporate<br />

<strong>in</strong>ventories of GHG emissions <strong>and</strong> removals (IPCC, 2000). This<br />

<strong>in</strong>creased attention to accurate <strong>in</strong>ventories leads to the need to<br />

provide guidance to <strong>in</strong>dustry on the technical considerations <strong>and</strong><br />

calculation methods for consistent estimation of GHG <strong>in</strong>ventory<br />

<strong>uncerta<strong>in</strong>ty</strong>. This would typically consist of:<br />

Section Focus<br />

This is an <strong>in</strong>troductory section that<br />

<strong>in</strong>troduces some basic concepts <strong>and</strong> terms<br />

that are the foundation for technical<br />

considerations related to underst<strong>and</strong><strong>in</strong>g<br />

GHG emissions <strong>in</strong>ventory <strong>uncerta<strong>in</strong>ty</strong>.<br />

This term<strong>in</strong>ology will be further exp<strong>and</strong>ed<br />

throughout the next sections of the<br />

document. The subsections <strong>in</strong>clude:<br />

• Importance of accurate <strong>and</strong> reliable<br />

GHG account<strong>in</strong>g;<br />

• Overview of <strong>uncerta<strong>in</strong>ty</strong> term<strong>in</strong>ology;<br />

• Types of errors; <strong>and</strong><br />

• Determ<strong>in</strong>ation of <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong>tervals.<br />

• Determ<strong>in</strong>ation of the uncerta<strong>in</strong>ties associated with the <strong>in</strong>dividual measurements <strong>and</strong> factors used<br />

<strong>in</strong> construct<strong>in</strong>g the emissions <strong>in</strong>ventory, <strong>and</strong><br />

• Propagation <strong>and</strong> aggregation of these <strong>in</strong>dividual terms to derive <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong>tervals (at a predesignated<br />

probability level) for the whole <strong>in</strong>ventory.<br />

Clearly, the extent <strong>and</strong> scope of such analysis will depend on the likely uses of this <strong>in</strong>formation. For<br />

example, the <strong>uncerta<strong>in</strong>ty</strong> analysis required for data that are merely used for relative rank<strong>in</strong>g or comparison<br />

of trends would be different than that required to demonstrate atta<strong>in</strong>ment of GHG emission limits, or<br />

progress made towards meet<strong>in</strong>g GHG emission reduction targets.<br />

1.1 Importance of Accurate <strong>and</strong> Reliable GHG Account<strong>in</strong>g<br />

Key areas that benefit from reliable GHG account<strong>in</strong>g <strong>in</strong>clude:<br />

• Focused GHG emissions management;<br />

• Reduced bus<strong>in</strong>ess risk <strong>and</strong> reputation management; <strong>and</strong><br />

• Participation <strong>in</strong> GHG emissions mitigation programs.<br />

Pilot Version, September 2009 1-1


S<strong>in</strong>ce an underst<strong>and</strong><strong>in</strong>g of the magnitude <strong>and</strong> sources of GHG emissions is critical to properly manag<strong>in</strong>g<br />

these emissions, employ<strong>in</strong>g a consistent approach can significantly improve <strong>in</strong>dustry-wide, comparable<br />

estimates of emissions, <strong>and</strong> emission reductions.<br />

Higher quality GHG data leads to higher certa<strong>in</strong>ty of emission assessments, <strong>and</strong> improved confidence <strong>in</strong><br />

the data reported. This is true for national <strong>and</strong> government assessments, <strong>and</strong> is also important at the<br />

entity, or facility level. To ensure that a company’s strategies <strong>and</strong> forward-look<strong>in</strong>g actions are based on<br />

the most robust data set <strong>and</strong> most appropriate computational methods, it is important that this data set <strong>and</strong><br />

method be based on four key factors (“The Four C’s”).<br />

Comparability, Consistency, Certa<strong>in</strong>ty, Confidence<br />

1.2 Overview of Uncerta<strong>in</strong>ty Term<strong>in</strong>ology<br />

The API <strong>in</strong> Chapter 13 of its Manual of Petroleum Measurement St<strong>and</strong>ards (MPMS), provides detailed<br />

guidance on statistical concepts <strong>and</strong> procedures for <strong>address<strong>in</strong>g</strong> the statistical procedures that should be<br />

followed when estimat<strong>in</strong>g a true quantity from measurements–or models–<strong>and</strong> when deriv<strong>in</strong>g the<br />

confidence <strong>in</strong>terval of the results (API, 1985). That chapter also exam<strong>in</strong>es sources of error <strong>and</strong><br />

recommends how to develop a statement of the overall range of <strong>uncerta<strong>in</strong>ty</strong> of the results obta<strong>in</strong>ed. Some<br />

of the key terms used <strong>in</strong> the API MPMS are presented <strong>in</strong> Exhibit 1-1.<br />

EXHIBIT 1-1: SELECTED TERMINOLOGY<br />

• Accuracy – Ability to <strong>in</strong>dicate values that closely approximate the true value of the measured variable.<br />

• Bias – Any <strong>in</strong>fluence on a result that produces an <strong>in</strong>correct approximation of the true value of the variable be<strong>in</strong>g<br />

measured. Bias is the result of a predictable systematic error.<br />

• Confidence <strong>in</strong>terval (or range of <strong>uncerta<strong>in</strong>ty</strong>) – The range or <strong>in</strong>terval with<strong>in</strong> which the true value is expected<br />

to lie with a stated degree of confidence.<br />

• Confidence level – The degree of confidence that may be placed on an estimated range of <strong>uncerta<strong>in</strong>ty</strong>.<br />

• Error – The difference between true <strong>and</strong> observed values.<br />

• Precision – The degree to which data with<strong>in</strong> a set cluster together.<br />

• R<strong>and</strong>om error – An error that varies <strong>in</strong> an unpredictable manner when a large number of measurements of the<br />

same variable are made under effectively identical conditions.<br />

• Spurious error – A gross error <strong>in</strong> procedure (for example, human errors or mach<strong>in</strong>e malfunctions).<br />

• Systematic error – An error that, <strong>in</strong> the course of a number of measurements made under the same conditions<br />

on material hav<strong>in</strong>g the same true value of a variable, either rema<strong>in</strong>s constant <strong>in</strong> absolute value <strong>and</strong> sign, or<br />

varies <strong>in</strong> a predictable manner. Systematic errors result <strong>in</strong> a bias.<br />

• Variance – The measure of the dispersion or scatter of the values of the r<strong>and</strong>om variable about the mean.<br />

Source: API MPMS Chapter 13.1<br />

Pilot Version, September 2009 1-2


The Intergovernmental Panel on Climate Change (IPCC) provided a conceptual basis for <strong>uncerta<strong>in</strong>ty</strong><br />

analysis as part of their “Good Practices Guidel<strong>in</strong>es” for manag<strong>in</strong>g <strong>and</strong> estimat<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> national<br />

emission <strong>in</strong>ventories (IPCC, 2000). The IPCC has <strong>in</strong>troduced a structured approach to estimat<strong>in</strong>g GHG<br />

<strong>in</strong>ventory <strong>uncerta<strong>in</strong>ty</strong> by <strong>in</strong>corporat<strong>in</strong>g methods used to determ<strong>in</strong>e uncerta<strong>in</strong>ties of <strong>in</strong>dividual terms <strong>and</strong><br />

aggregat<strong>in</strong>g them to the total <strong>in</strong>ventory. The IPCC also recognize that other uncerta<strong>in</strong>ties may exist, such<br />

as those aris<strong>in</strong>g from <strong>in</strong>accurate def<strong>in</strong>itions or procedures, which cannot be addressed by statistical means.<br />

Appendix A presents an exp<strong>and</strong>ed glossary of statistical terms with comments on how these terms are<br />

used <strong>in</strong> the context of GHG emission <strong>in</strong>ventories.<br />

1.3 Types of Errors<br />

The difference between the observed value of a variable <strong>and</strong> its true value <strong>in</strong>cludes all errors associated<br />

with a given measurement or estimation process. Such errors are comprised of <strong>in</strong>strumentation errors,<br />

errors result<strong>in</strong>g from faulty sampl<strong>in</strong>g procedures, changes <strong>in</strong> conditions dur<strong>in</strong>g the measurement period,<br />

or use of improper methods. Three basic types of errors should be considered:<br />

−<br />

−<br />

−<br />

Spurious errors;<br />

Systematic errors; <strong>and</strong><br />

R<strong>and</strong>om errors.<br />

One or all of these errors could be associated with <strong>in</strong>dividual measurements or <strong>in</strong>put variables used for<br />

deriv<strong>in</strong>g an emissions <strong>in</strong>ventory. However, such <strong>in</strong>dividual error determ<strong>in</strong>ations should not be confused<br />

with the overall <strong>in</strong>ventory <strong>uncerta<strong>in</strong>ty</strong>.<br />

Indicators such as the range, confidence <strong>in</strong>terval, or other error bounds typically are used to quantify an<br />

emission estimate <strong>uncerta<strong>in</strong>ty</strong>. Errors may be due to the <strong>in</strong>herent variability of the emission processes <strong>and</strong><br />

the bias–or imprecision–<strong>in</strong> the terms typically used to def<strong>in</strong>e them. Bias is the result of a systematic error<br />

<strong>in</strong> some aspect of the emissions <strong>in</strong>ventory process. In contrast, imprecision is due to r<strong>and</strong>om errors or<br />

fluctuations <strong>in</strong> the measurement process.<br />

1.4 Determ<strong>in</strong>ation of Uncerta<strong>in</strong>ty Intervals<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong>tervals associated with measured emission rates, activity data, or emission factors are<br />

characterized by the dispersion of the respective values that are used <strong>in</strong> their derivation. Mathematically<br />

these <strong>in</strong>tervals are def<strong>in</strong>ed as either the st<strong>and</strong>ard deviation of the sample populations or the st<strong>and</strong>ard<br />

deviation of the sample means. The st<strong>and</strong>ard deviation of the mean, known also as the st<strong>and</strong>ard error of<br />

the mean, is the st<strong>and</strong>ard deviation of the sample data set divided by the square root of the number of data<br />

po<strong>in</strong>ts. While the st<strong>and</strong>ard deviation <strong>and</strong> variance of the data set do not change systematically with the<br />

Pilot Version, September 2009 1-3


number of observations, the st<strong>and</strong>ard deviation of the mean decreases as the number of observations<br />

<strong>in</strong>creases.<br />

Estimat<strong>in</strong>g uncerta<strong>in</strong>ties <strong>in</strong> emission <strong>in</strong>ventories is based on the characteristics of the variable(s) of<br />

<strong>in</strong>terest (<strong>in</strong>put quantities) as estimated from the correspond<strong>in</strong>g data set. The statistical computations<br />

could entail the determ<strong>in</strong>ation of:<br />

−<br />

−<br />

−<br />

−<br />

−<br />

The arithmetic mean (mean) of the data set;<br />

The st<strong>and</strong>ard deviation of the data set (the st<strong>and</strong>ard error, the square root of the variance);<br />

The st<strong>and</strong>ard deviation of the mean (the st<strong>and</strong>ard error of the mean);<br />

The probability distribution of the data; <strong>and</strong><br />

Covariances of the <strong>in</strong>put quantity with other <strong>in</strong>put quantities used <strong>in</strong> the <strong>in</strong>ventory calculations.<br />

The limits of the confidence <strong>in</strong>terval associated with GHG emissions from a source are directly dependent<br />

on the probability distribution, or the probability function, used to represent that data set. For some<br />

probability distributions, there are analytical relationships that relate the st<strong>and</strong>ard deviation to the required<br />

confidence <strong>in</strong>tervals. For example, when a normal distribution is assumed for the variable under<br />

consideration, the confidence limits would be symmetric about the mean, <strong>and</strong> for a 95% confidence<br />

<strong>in</strong>terval the confidence limits are approximately 2 st<strong>and</strong>ard deviations above <strong>and</strong> below the mean.<br />

Hence, the quantification of <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong>tervals for calculated GHG emissions will depend both on the<br />

accuracy <strong>and</strong> representativeness of measurement data used <strong>and</strong> the assumed distributions of other key<br />

parameters used <strong>in</strong> the computations. The uncerta<strong>in</strong>ties associated with both emission factors <strong>and</strong> activity<br />

data could be best described by probability density functions that are constructed from available data.<br />

The applicable shapes of these probability density functions could be either determ<strong>in</strong>ed empirically or by<br />

expert judgment, follow<strong>in</strong>g procedures described <strong>in</strong> many guidel<strong>in</strong>e documents <strong>and</strong> st<strong>and</strong>ards (ISO, 2005;<br />

IPCC, 2000).<br />

This section has <strong>in</strong>troduced the basic concepts that are germane to estimat<strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> range of<br />

GHG emissions. The applicable statistical calculation procedures are presented <strong>in</strong> greater detail <strong>in</strong><br />

Section 4.0.<br />

Pilot Version, September 2009 1-4


2.0 SOURCES OF UNCERTAINTY<br />

There are a myriad of sources that contribute to the<br />

<strong>uncerta<strong>in</strong>ty</strong> of an emission <strong>in</strong>ventory. Whether at the national,<br />

entity, or facility level, the ability to quantify emissions <strong>and</strong><br />

underst<strong>and</strong> their associated <strong>uncerta<strong>in</strong>ty</strong> h<strong>in</strong>ges on two ma<strong>in</strong><br />

factors:<br />

Section Focus<br />

This section discusses the major sources<br />

affect<strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> of GHG <strong>in</strong>ventories.<br />

It moves from general concepts to issues that<br />

are germane to GHG <strong>in</strong>ventories <strong>in</strong> the O&G<br />

<strong>in</strong>dustry. It also describes factors that could<br />

− Readily available data for emission quantification; <strong>and</strong><br />

<strong>in</strong>troduce errors <strong>in</strong>to the emission<br />

measurements process <strong>and</strong> contribute to the<br />

−<br />

range of uncerta<strong>in</strong>ties of estimated emissions.<br />

Knowledge of <strong>in</strong>put parameters for statistical<br />

The subsections address:<br />

calculation of <strong>uncerta<strong>in</strong>ty</strong>.<br />

• Overview of emissions <strong>in</strong>ventory<br />

<strong>uncerta<strong>in</strong>ty</strong>;<br />

The overall range of <strong>uncerta<strong>in</strong>ty</strong> associated with an entity<br />

GHG <strong>in</strong>ventory usually is determ<strong>in</strong>ed primarily by the<br />

• Emission <strong>in</strong>ventories uncerta<strong>in</strong>ties <strong>in</strong> the<br />

O&G <strong>in</strong>dustry;<br />

<strong>uncerta<strong>in</strong>ty</strong> associated with the largest (“key”) sources of • Sources of measurements <strong>uncerta<strong>in</strong>ty</strong>;<br />

emissions. Although very large confidence <strong>in</strong>tervals may be • Emission estimation approaches; <strong>and</strong><br />

associated with the data used to characterize some small • Inventory steps <strong>and</strong> data aggregation.<br />

sources, the overall impact on the range of <strong>uncerta<strong>in</strong>ty</strong> at the<br />

entity, or <strong>in</strong>stallation level, may often be very small. In turn, the confidence <strong>in</strong>terval associated with each<br />

<strong>in</strong>dividual source depends on the availability of sufficient data to estimate emissions, or on the quality of<br />

the data <strong>in</strong> order to properly account for emission variability.<br />

2.1 Overview of Emissions Inventory Uncerta<strong>in</strong>ty<br />

Uncerta<strong>in</strong>ties <strong>in</strong> <strong>in</strong>ventories are the result of three error categories:<br />

−<br />

−<br />

−<br />

Spurious errors, which may be due to <strong>in</strong>complete, unclear, or faulty def<strong>in</strong>itions of emission<br />

sources that result from human error or mach<strong>in</strong>e malfunction;<br />

Systematic errors, which may be due to the methods (or models) used to quantify emissions for<br />

the process under consideration; <strong>and</strong><br />

R<strong>and</strong>om errors, which may be due to <strong>natural</strong> variability of the process that produces the<br />

emissions.<br />

When assess<strong>in</strong>g the process or quantity under consideration, uncerta<strong>in</strong>ties might be associated with one or<br />

more factors such as: sampl<strong>in</strong>g, measur<strong>in</strong>g, <strong>in</strong>complete reference data, or <strong>in</strong>conclusive expert judgment.<br />

Uncerta<strong>in</strong>ties due to models or equations are related to the proper application of estimation methodologies<br />

to the respective source categories. These errors are typically elim<strong>in</strong>ated as far as possible <strong>in</strong> advance,<br />

Pilot Version, September 2009 2-1


when plann<strong>in</strong>g the compilation of an emissions <strong>in</strong>ventory <strong>and</strong> could address as part of emission <strong>in</strong>ventory<br />

assurance processes (API/IPIECA, OGP, 2003).<br />

Adher<strong>in</strong>g to appropriate sampl<strong>in</strong>g, measurement, <strong>and</strong> estimation procedures – with applicable quality<br />

control <strong>and</strong> quality assurance measures – can help m<strong>in</strong>imize uncerta<strong>in</strong>ties. Nonetheless, it is the nature of<br />

the measurement process that makes it impossible to measure a physical quantity without error.<br />

It is this collection of measurement errors <strong>and</strong> approximations that contribute largely to overall emission<br />

<strong>in</strong>ventory range of <strong>uncerta<strong>in</strong>ty</strong>. Emission <strong>in</strong>ventory development <strong>and</strong> <strong>uncerta<strong>in</strong>ty</strong> analysis could be<br />

viewed as components of a quality improved management process. Once estimates of <strong>uncerta<strong>in</strong>ty</strong> are<br />

developed, the <strong>in</strong>ventory preparer could review the <strong>in</strong>ventory <strong>and</strong> target the most significant sources –<br />

those exhibit<strong>in</strong>g the largest range of <strong>uncerta<strong>in</strong>ty</strong> – for more research <strong>and</strong> ref<strong>in</strong>ement. Table 2-1 provides<br />

an overview of selected methods recommended by the U.S. Environmental Protection Agency (EPA) for<br />

qualitative <strong>and</strong> quantitative estimation of emissions ranges of <strong>uncerta<strong>in</strong>ty</strong>. The uncerta<strong>in</strong>ties associated<br />

with <strong>natural</strong> variability <strong>in</strong>herent to the emission process <strong>and</strong> its underly<strong>in</strong>g data can be assessed by<br />

statistical analysis methods. Further discussion <strong>and</strong> specific procedures for statistical quantification of<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong>tervals are provided <strong>in</strong> Section 4.0.<br />

Table 2-1. Overview of Methods Used to Estimate Emissions Uncerta<strong>in</strong>ty a<br />

METHODOLOGY<br />

Qualitative<br />

Discussion<br />

−<br />

−<br />

DESCRIPTION OF METHOD<br />

Sources of <strong>uncerta<strong>in</strong>ty</strong> are listed <strong>and</strong> discussed.<br />

General direction of bias <strong>and</strong> relative magnitude of imprecision are given<br />

if known.<br />

LEVEL OF<br />

EFFORT<br />

Low<br />

Subjective Data<br />

Quality Rat<strong>in</strong>gs<br />

−<br />

Subjective rank<strong>in</strong>gs based on professional judgment are assigned to each<br />

emission factor or parameter.<br />

Low<br />

Data Attribute<br />

Rat<strong>in</strong>g System<br />

(DARS)<br />

−<br />

Numerical values represent<strong>in</strong>g relative <strong>uncerta<strong>in</strong>ty</strong> are assigned through<br />

objective methods.<br />

Medium<br />

Expert<br />

Estimation<br />

Method<br />

−<br />

−<br />

−<br />

Experts estimate emission distribution parameters (i.e., mean, st<strong>and</strong>ard<br />

deviation, <strong>and</strong> distribution type).<br />

Simple analytical <strong>and</strong> graphical techniques are then used to estimate<br />

confidence limits from the assumed distributional data.<br />

In the Delphi method, expert judgment is used to estimate <strong>uncerta<strong>in</strong>ty</strong><br />

directly.<br />

Medium<br />

Pilot Version, September 2009 2-2


Table 2-1. Overview of Methods Used to Estimate Emissions Uncerta<strong>in</strong>ty a<br />

METHODOLOGY<br />

DESCRIPTION OF METHOD<br />

LEVEL OF<br />

EFFORT<br />

Propagation of<br />

Errors Method<br />

−<br />

−<br />

Emission parameter means <strong>and</strong> st<strong>and</strong>ard deviations are estimated us<strong>in</strong>g<br />

expert judgment, measurements, or other methods.<br />

St<strong>and</strong>ard statistical techniques of error propagation typically based upon<br />

Taylor’s series expansions are then used to estimate the composite<br />

<strong>uncerta<strong>in</strong>ty</strong>.<br />

Medium<br />

Direct<br />

Simulation<br />

Method<br />

−<br />

−<br />

−<br />

Monte Carlo, Lat<strong>in</strong> hypercube, bootstrap (resampl<strong>in</strong>g), <strong>and</strong> other<br />

numerical methods are used to estimate directly the central value <strong>and</strong><br />

confidence <strong>in</strong>tervals of <strong>in</strong>dividual emission estimates.<br />

In the Monte Carlo method, expert judgment is used to estimate the values<br />

of the distribution parameters prior to performance of the Monte Carlo<br />

simulation.<br />

Other methods require no such assumptions.<br />

High<br />

Direct or<br />

Indirect<br />

Measurement<br />

(Validation)<br />

Method<br />

−<br />

−<br />

−<br />

Direct or <strong>in</strong>direct field measurements of emissions are used to compute<br />

emissions <strong>and</strong> emissions <strong>uncerta<strong>in</strong>ty</strong> directly.<br />

Methods <strong>in</strong>clude direct measurement such as stack sampl<strong>in</strong>g <strong>and</strong> <strong>in</strong>direct<br />

measurement such as tracer studies.<br />

These methods also provide data for validat<strong>in</strong>g emission estimates <strong>and</strong><br />

emission models.<br />

High<br />

a Extracted from Table 4.1-1 of the Emissions Inventory Improvement Program (EIIP), Chapter IV: “Evaluat<strong>in</strong>g the Uncerta<strong>in</strong>ties of Emission<br />

Estimates,” U.S. EPA, Research Triangle Park, NC, July 1996<br />

2.2 Emissions Inventory Uncerta<strong>in</strong>ty <strong>in</strong> the Oil & Natural Gas Industry<br />

The API Compendium (API, 2004) <strong>and</strong> its forthcom<strong>in</strong>g revision (API, 2009) provide an extensive<br />

compilation <strong>and</strong> tabulation of methods that are used by companies <strong>in</strong> all the sectors of the O&G <strong>in</strong>dustry<br />

to calculate their GHG emissions <strong>in</strong> a consistent manner. The API Compendium provides a wide range of<br />

emission factors <strong>and</strong> other emission estimation methods that are directly applicable to all sectors of<br />

<strong>in</strong>dustry operations. It also exhibits the ranges of <strong>uncerta<strong>in</strong>ty</strong> (at the 95% confidence level) associated<br />

with each of the case study examples featured <strong>in</strong> Section 8 of the 2009 API Compendium. Related<br />

<strong>in</strong>dustry guidel<strong>in</strong>es <strong>in</strong>clude those of the Interstate Natural Gas Association of America (INGAA), which<br />

provides supplemental guidance for estimat<strong>in</strong>g GHG emissions from key emission sources associated<br />

with <strong>natural</strong> <strong>gas</strong> storage <strong>and</strong> transmission sector of the <strong>in</strong>dustry (INGAA, 2005) <strong>and</strong> the AGA which has<br />

also published specific guidel<strong>in</strong>es for estimat<strong>in</strong>g GHG emissions from <strong>gas</strong> distribution operations (AGA,<br />

2008).<br />

O&G <strong>in</strong>dustry operations vary widely among its operat<strong>in</strong>g sectors due to the nature of the operation, its<br />

geographical locations <strong>and</strong> local practices. Operations <strong>in</strong> some of the <strong>in</strong>dustry sectors are highly<br />

centralized <strong>in</strong> large <strong>and</strong> complex facilities while other extend over large geographical areas, with some of<br />

Pilot Version, September 2009 2-3


the operations not conta<strong>in</strong>ed <strong>in</strong> traditional; “facilities”. Additionally, companies operations tend to<br />

encompass many jurisdictions, which adds to the complexity of compil<strong>in</strong>g an emission <strong>in</strong>ventory.<br />

Therefore, data availability may be different among <strong>in</strong>dustry sectors <strong>and</strong> regions due to a given sector’s<br />

operational considerations <strong>and</strong> local requirements.<br />

The <strong>uncerta<strong>in</strong>ty</strong> associated with CO 2 emissions from combustion would be primarily attributable to<br />

variation <strong>in</strong> the composition of combusted fuels <strong>and</strong> their respective consumption rates (or total volumes).<br />

For quantification of combustion emissions, quality data are typically available for <strong>in</strong>dustry facilities <strong>in</strong><br />

all sectors, though significant effort may be required <strong>in</strong> order to collect data for smaller operat<strong>in</strong>g<br />

<strong>in</strong>stallations that are spread out <strong>in</strong> multiple locations.<br />

Moreover, s<strong>in</strong>ce a large fraction of <strong>in</strong>dustry operations rely on self-generated, if is the knowledge of the<br />

carbon content of such fuels that is at the root of determ<strong>in</strong><strong>in</strong>g their associated CO 2 emissions. For the<br />

exploration <strong>and</strong> production sector, the composition of these self-generated fuels may vary with the nature<br />

of the produc<strong>in</strong>g formations, while for ref<strong>in</strong><strong>in</strong>g it will depend on the composition of the crude <strong>oil</strong><br />

processed <strong>and</strong> the slate of products manufactured. On the other h<strong>and</strong>, for <strong>natural</strong> <strong>gas</strong> transmission <strong>and</strong><br />

distribution operations, <strong>gas</strong> quality <strong>and</strong> its composition are expected to adhere to contract requirements<br />

<strong>and</strong> would vary only with<strong>in</strong> a narrow specifications range. Hence, the use of average fuel compositions<br />

data has to be evaluated when compil<strong>in</strong>g an emission <strong>in</strong>ventory s<strong>in</strong>ce it might result <strong>in</strong> wide <strong>uncerta<strong>in</strong>ty</strong><br />

ranges for some sectors <strong>and</strong> operations, while they might be perfectly acceptable for others.<br />

A different set of parameters is important for underst<strong>and</strong><strong>in</strong>g emissions associated with process vents <strong>and</strong><br />

fugitive emissions. For many of the large process units that are found <strong>in</strong> ref<strong>in</strong>eries <strong>and</strong> <strong>natural</strong> <strong>gas</strong><br />

process<strong>in</strong>g plants, numerical models (equations) are available for estimat<strong>in</strong>g these emissions. For highpressure<br />

pipel<strong>in</strong>es transmitt<strong>in</strong>g <strong>natural</strong> <strong>gas</strong> over long distances, the ma<strong>in</strong> GHG emissions are due to<br />

reciprocat<strong>in</strong>g eng<strong>in</strong>es <strong>and</strong> turb<strong>in</strong>es, vent<strong>in</strong>g due to <strong>gas</strong> blow-down, <strong>and</strong> fugitive emissions associated with<br />

leak<strong>in</strong>g pip<strong>in</strong>g components. For low-pressure <strong>gas</strong> distribution, most of the GHG emissions come from<br />

compressors <strong>and</strong> leaks from <strong>gas</strong> distribution ma<strong>in</strong>s <strong>and</strong> associated equipment. Quantify<strong>in</strong>g emissions, <strong>and</strong><br />

their associated <strong>uncerta<strong>in</strong>ty</strong> ranges, for vent<strong>in</strong>g <strong>and</strong> fugitive emissions <strong>in</strong> the exploration <strong>and</strong> production<br />

sector poses a real challenge. These emissions could be quite significant for high-pressure uncontrolled<br />

<strong>natural</strong> <strong>gas</strong> production operations or m<strong>in</strong>iscule for controlled <strong>oil</strong> <strong>and</strong> associated <strong>gas</strong> production.<br />

For vented emissions, operators <strong>in</strong> the U.S., as well as other jurisdictions, typically ma<strong>in</strong>ta<strong>in</strong> required<br />

records for report<strong>in</strong>g (<strong>and</strong> archiv<strong>in</strong>g) <strong>gas</strong>-vent<strong>in</strong>g <strong>in</strong>cidents. However, U.S. reports of “lost <strong>and</strong><br />

unaccounted for <strong>gas</strong>” from <strong>natural</strong> <strong>gas</strong> pipel<strong>in</strong>es typically account from both vented <strong>and</strong> fugitive<br />

emissions. Therefore, disaggregat<strong>in</strong>g the data would be required <strong>in</strong> order to derive a separate average<br />

emission factor for vent<strong>in</strong>g <strong>in</strong>cidents only. When it comes to fugitive emissions from equipment leaks,<br />

Pilot Version, September 2009 2-4


the <strong>uncerta<strong>in</strong>ty</strong> associated with current practices is significant. The most reliable emission factors still use<br />

mid-1990 field measurement data, <strong>and</strong> when coupled with the difficulties of obta<strong>in</strong><strong>in</strong>g reliable equipment<br />

counts for estimat<strong>in</strong>g such emissions, the result could exhibit large <strong>uncerta<strong>in</strong>ty</strong> ranges, although these<br />

emissions may be negligible with<strong>in</strong> the context of the overall <strong>in</strong>ventory.<br />

In summary, s<strong>in</strong>ce the most prevalent emissions from fuel combustion is CO 2 , <strong>and</strong> from vent<strong>in</strong>g <strong>and</strong><br />

fugitive emissions, CH 4 , the ma<strong>in</strong> contributors to the <strong>uncerta<strong>in</strong>ty</strong> ranges of these respective GHGs <strong>in</strong> an<br />

<strong>in</strong>ventory generally are:<br />

−<br />

−<br />

For estimat<strong>in</strong>g CO 2 emissions – Uncerta<strong>in</strong>ty is primarily attributable to variation <strong>in</strong> “self<br />

generated” fuel <strong>gas</strong> composition <strong>and</strong> its associated consumption rates. Fuel <strong>gas</strong> composition<br />

could vary from location to location or from batch to batch, <strong>and</strong> therefore us<strong>in</strong>g average<br />

composition data may lead to a high degree of <strong>uncerta<strong>in</strong>ty</strong> if it is used to estimate emissions.<br />

Measurements (or knowledge) of fuel <strong>gas</strong> volumes, the <strong>gas</strong> carbon content (or calorific values),<br />

<strong>and</strong> careful review of the adequacy of the emission factors used, could help to improve data<br />

quality <strong>and</strong> m<strong>in</strong>imize this <strong>uncerta<strong>in</strong>ty</strong>.<br />

For estimat<strong>in</strong>g CH 4 emissions – Uncerta<strong>in</strong>ty is primarily associated with estimates of vented <strong>and</strong><br />

fugitive emissions. The records that <strong>in</strong>stallations are required to keep (<strong>and</strong> report) on vented or<br />

released <strong>gas</strong> might not be similar under all regimes globally. Fugitive emission estimates exhibit<br />

the highest degree of <strong>uncerta<strong>in</strong>ty</strong> due to the use of average emission factors per component,<br />

device or type of operation, <strong>and</strong> due to improper conversions of exist<strong>in</strong>g factors that are expressed<br />

<strong>in</strong> terms of volatile organic compounds (VOCs) to CH 4 . S<strong>in</strong>ce the CH 4 to VOC ratio varies<br />

among <strong>in</strong>stallations, or even with<strong>in</strong> different parts of a process<strong>in</strong>g plant, these average emission<br />

factors, coupled with generic conversions from VOC to CH 4 may not be the best representation of<br />

CH 4 emissions.<br />

2.3 Sources of Measurement Uncerta<strong>in</strong>ty<br />

The measurement process is comprised of different steps <strong>and</strong> each can <strong>in</strong>troduce <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong>to the f<strong>in</strong>al<br />

results. These steps can be applied whether the measurement process <strong>in</strong>volves measurements of activity<br />

data (flow volumes), fuel carbon content speciation, screen<strong>in</strong>g for fugitive emission leaks, or direct<br />

emissions test<strong>in</strong>g.<br />

The sources of <strong>uncerta<strong>in</strong>ty</strong> discussed below range from methods choice to physical constra<strong>in</strong>ts of the<br />

measurement process itself <strong>and</strong> the process<strong>in</strong>g of the data obta<strong>in</strong>ed.<br />

Pilot Version, September 2009 2-5


a. Measurement methods Uncerta<strong>in</strong>ty<br />

Uncerta<strong>in</strong>ty due to measurement methods is def<strong>in</strong>ed as those additional <strong>uncerta<strong>in</strong>ty</strong> sources that<br />

orig<strong>in</strong>ate from the techniques or methods <strong>in</strong>herent <strong>in</strong> the measurement process, especially if the<br />

methods are not “fit for use.” These <strong>uncerta<strong>in</strong>ty</strong> sources that might impact the measurement system<br />

can significantly affect the f<strong>in</strong>al results. Some common sources of measurement system uncerta<strong>in</strong>ties<br />

are listed <strong>in</strong> Exhibit 2-1.<br />

EXHIBIT 2-1: COMMON SOURCES OF<br />

MEASUREMENT SYSTEM UNCERTAINTY<br />

• Assumptions or constants used <strong>in</strong> the calculations<br />

• Improper placement of monitor<strong>in</strong>g device or extraction of unrepresentative samples<br />

• Spatial or profile <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the conversion from discrete measurement of a<br />

representative emission factor for similar processes <strong>in</strong> other locations<br />

• Environmental effects on measurement <strong>in</strong>struments, such as heat transfer effects on a<br />

temperature probe, or pressure considerations for flow measurements<br />

−<br />

• Drift of an <strong>in</strong>strument between successive calibrations<br />

• Electrical <strong>in</strong>terference with electronic components<br />

• Variation between the calibration <strong>and</strong> usage conditions<br />

b. Calibration <strong>uncerta<strong>in</strong>ty</strong><br />

Manufacturers <strong>and</strong> companies typically calibrate measurement <strong>in</strong>struments before they are used <strong>in</strong> the<br />

field or <strong>in</strong> a plant. However, <strong>in</strong>strument calibration needs to be checked periodically to detect<br />

<strong>in</strong>strument drift <strong>and</strong> thus reduce measurement <strong>uncerta<strong>in</strong>ty</strong>. The calibration process could achieve that<br />

goal if the process is traceable to a known reference st<strong>and</strong>ard <strong>and</strong> allowance is made for adjustments<br />

of the measurement <strong>in</strong>strument if a bias is detected dur<strong>in</strong>g the calibration process. .<br />

c. Data acquisition <strong>uncerta<strong>in</strong>ty</strong><br />

Uncerta<strong>in</strong>ties <strong>in</strong> data acquisition systems depend on system design. For manual data collection – <strong>and</strong><br />

more specifically data entry – human error can be a factor. If hard copy data are used, misplaced<br />

records could contribute to <strong>uncerta<strong>in</strong>ty</strong>. For <strong>in</strong>strumental data acquisition, <strong>uncerta<strong>in</strong>ty</strong> can arise from<br />

the signal condition<strong>in</strong>g, <strong>and</strong> the sensors or record<strong>in</strong>g devices used.<br />

Quality control techniques <strong>and</strong> robust data management practices can m<strong>in</strong>imize the effects of many of<br />

these <strong>uncerta<strong>in</strong>ty</strong> sources. For example, compar<strong>in</strong>g known <strong>in</strong>put values with their measured or<br />

computed results can provide an estimate of the data acquisition <strong>uncerta<strong>in</strong>ty</strong>. However, it is not<br />

always possible to do this <strong>in</strong> practice. In these cases, it is necessary to evaluate each potential error<br />

<strong>and</strong> aggregate these errors to assess the overall <strong>uncerta<strong>in</strong>ty</strong>.<br />

Pilot Version, September 2009 2-6


d. Data process<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong><br />

Typical <strong>uncerta<strong>in</strong>ty</strong> sources <strong>in</strong> this category may stem from data scatter dur<strong>in</strong>g the calibration process.<br />

While the equation obta<strong>in</strong>ed from a regression analysis of the calibration data represents the best fit,<br />

the data scatter about the curve <strong>in</strong>dicates that, with more data, a slightly different equation would be<br />

obta<strong>in</strong>ed <strong>in</strong> the same way, because the mean of a set of data will change as more values are obta<strong>in</strong>ed.<br />

Thus, each coefficient <strong>in</strong> a regression equation will have an <strong>uncerta<strong>in</strong>ty</strong> associated with it, just as the<br />

mean of a set of values does.<br />

2.4 Emission Estimation Approaches<br />

Emissions <strong>in</strong>formation is typically obta<strong>in</strong>ed either through direct on-site measurement of emissions or by<br />

us<strong>in</strong>g an emission estimation equation or model. Emission estimates are used for facility permitt<strong>in</strong>g,<br />

development of control strategies, compliance review, <strong>and</strong> demonstration of atta<strong>in</strong>ment of environmental<br />

goals. The four basic approaches for estimat<strong>in</strong>g emissions are:<br />

a. Emissions Factors<br />

Emissions factors are at the core of calculat<strong>in</strong>g GHG emissions when compil<strong>in</strong>g O&G <strong>in</strong>dustry<br />

<strong>in</strong>ventories. An emissions factor relates the rate of emission of a specific compound with an activity<br />

rate associated with its release.<br />

The general equation for us<strong>in</strong>g emission factors for calculat<strong>in</strong>g emissions is:<br />

Emissions = Activity Rate x Emissions Factor (Equation 2-1)<br />

In practice, for estimat<strong>in</strong>g GHG emissions from the O&G <strong>in</strong>dustry operations this means:<br />

− For CO 2<br />

Emissions = Volumetric Gas Flow x Carbon Content (Equation 2-2)<br />

– or –<br />

Emissions = Fuel Energy Consumption x Carbon per Heat<strong>in</strong>g Value Unit (Equation 2-3)<br />

− For CH 4<br />

Emissions = Component or Event Count x Emission Factor (Equation 2-4)<br />

When calculat<strong>in</strong>g emissions <strong>and</strong> their associated uncerta<strong>in</strong>ties, it is important to note that the overall<br />

<strong>uncerta<strong>in</strong>ty</strong> is based both on activity data (process flow, throughput, usage, or equipment count) <strong>and</strong><br />

on the emission factors used. Each contributor to <strong>uncerta<strong>in</strong>ty</strong> should be assessed <strong>in</strong>dependently <strong>and</strong><br />

then aggregated <strong>in</strong> the f<strong>in</strong>al analysis, as shown <strong>in</strong> Figure 4-3 <strong>in</strong> Section 4, <strong>and</strong> <strong>in</strong> the associated<br />

examples provided.<br />

Pilot Version, September 2009 2-7


Section 3.0 provides an overview of measurement practices with <strong>in</strong>formation on measurement<br />

<strong>uncerta<strong>in</strong>ty</strong>. In the absence of direct emission measurements <strong>in</strong> many cases, emission factors have<br />

traditionally been easy to use, which frequently makes them the low cost method of choice to<br />

calculate emissions.<br />

Over the years, U.S. EPA <strong>and</strong> other emission factors repository databases have provided average<br />

emission factors that can be used broadly across many <strong>in</strong>dustry source categories <strong>and</strong> operations. The<br />

published emission factors are typically accompanied by a description of the group of processes <strong>and</strong><br />

the conditions they represent. Authoritative factors are generally published by EPA <strong>in</strong> AP-42 (U.S.<br />

EPA, 1995 <strong>and</strong> further updates), or by the EU EMEP/CORINAIR Emission Inventory Guidebook<br />

(EMEP/CORINAIR, 2007). The IPCC has also launched a new Emissions Factors Database (IPCC,<br />

2006) for use with GHG emission calculations.<br />

b. Cont<strong>in</strong>uous Emissions Monitor<strong>in</strong>g<br />

This technique <strong>in</strong>volves cont<strong>in</strong>uously measur<strong>in</strong>g flow <strong>and</strong> concentrations of species directly emitted<br />

<strong>in</strong>to the atmosphere from a specific source, such as a stack. It is accomplished by plac<strong>in</strong>g an<br />

applicable monitor at the source. The error associated with these determ<strong>in</strong>ations varies for different<br />

compounds <strong>and</strong> it is not necessarily a more reliable method for measur<strong>in</strong>g emissions especially s<strong>in</strong>ce<br />

it is not available for monitor<strong>in</strong>g all GHG emissions. Additionally, the acquisition <strong>and</strong> operat<strong>in</strong>g<br />

costs of cont<strong>in</strong>uous emission monitor<strong>in</strong>g are very high <strong>and</strong> thus this technique has limited application<br />

to the evaluation of GHG emissions.<br />

c. Source Test<strong>in</strong>g<br />

Like cont<strong>in</strong>uous emissions monitor<strong>in</strong>g, source-test<strong>in</strong>g data may be generated by either extract<strong>in</strong>g a<br />

sample or plac<strong>in</strong>g a monitor at a source, followed by analysis to characterize the emitted species. In<br />

this application, the measurement campaign is limited to a specified number of hours. Facilities then<br />

use the average emission rate calculated from source test<strong>in</strong>g to estimate total annual emissions. For<br />

characteriz<strong>in</strong>g GHG emissions over a longer period of time (such as a year), periodic sampl<strong>in</strong>g <strong>and</strong><br />

analysis can be used to determ<strong>in</strong>e emission variability.<br />

This measurement approach is generally useful when appropriate test methods are used, <strong>and</strong> emission<br />

<strong>and</strong> process data are collected at a frequency that allows good characterization of emission<br />

variability. However, the cost of <strong>in</strong>creased measurement frequency should be balanced with the<br />

contribution of the tested source to the overall <strong>in</strong>ventory <strong>and</strong> the <strong>in</strong>cremental improvement <strong>in</strong> the<br />

range of <strong>uncerta<strong>in</strong>ty</strong> that is atta<strong>in</strong>able by this <strong>in</strong>creased test<strong>in</strong>g.<br />

Pilot Version, September 2009 2-8


d. Material Balance<br />

For some emission sources, a material balance (based on fuel flow <strong>and</strong> carbon measurements) may be<br />

an appropriate means of estimat<strong>in</strong>g GHG emissions. Use of a material balance requires knowledge of<br />

total flows or throughput rates, <strong>and</strong> the correspond<strong>in</strong>g compositions of those streams. Material<br />

balance approaches can also be used for assessment of evaporative losses or for simulation of process<br />

emissions under def<strong>in</strong>ed conditions.<br />

Clearly, various methods are applicable to quantify<strong>in</strong>g GHG emissions. Emission estimation methods<br />

range from simple activity measurements multiplied by applicable emission factors to more sophisticated<br />

estimation algorithms. The advanced methods represent an <strong>in</strong>tegrated approach that relies on the use of<br />

factors <strong>and</strong> other data, <strong>in</strong>clud<strong>in</strong>g generic process simulation models, source specific models, <strong>and</strong> species<br />

profiles databases.<br />

2.5 Inventory Steps <strong>and</strong> Data Aggregation<br />

In GHG emission <strong>in</strong>ventories, emission estimates are obta<strong>in</strong>ed from many <strong>in</strong>termediate <strong>and</strong> <strong>in</strong>dependent<br />

results, each of which is calculated from a separate set of data that is characterized by a different range of<br />

uncerta<strong>in</strong>ties. The compilation of an entity-wide GHG emissions <strong>in</strong>ventory typically follows a sequence<br />

of steps:<br />

• Establish<strong>in</strong>g boundaries – Where the organizational <strong>and</strong> operational boundaries are def<strong>in</strong>ed (for a<br />

first-time <strong>in</strong>ventory), or exam<strong>in</strong>ed (for recurr<strong>in</strong>g cycles), this step will be largely dictated by local<br />

requirements or corporate policies. It might <strong>in</strong>volve facility-by-facility assessment prior to<br />

aggregation, or it could use other pert<strong>in</strong>ent entity <strong>in</strong>dicators <strong>and</strong> <strong>in</strong>formation;<br />

• Collect<strong>in</strong>g <strong>and</strong> <strong>in</strong>putt<strong>in</strong>g data – Where the activities data are collected <strong>and</strong> archived based on the<br />

boundaries established above. The data are then <strong>in</strong>corporated <strong>in</strong>to appropriate calculation tools for<br />

emission calculations. The level of ‘granularity’ of the data collected <strong>and</strong> the details of the<br />

calculation methods are dictated by local requirements with <strong>in</strong>dustry guidance (API Compendium) as<br />

a resource to provide relevant technical details.<br />

• Validat<strong>in</strong>g data compiled – Where various techniques are used to compare the new data with earlier<br />

versions (if available) to identify potential large errors. These errors could <strong>in</strong>clude: either large<br />

changes or unchanged activity data for given facilities; operations that are not accounted for; lack of<br />

support<strong>in</strong>g data for measurements or emission factors used; erroneous units or unit conversions; <strong>and</strong><br />

more.<br />

Pilot Version, September 2009 2-9


• Assess<strong>in</strong>g data <strong>uncerta<strong>in</strong>ty</strong> – Where the confidence <strong>in</strong>tervals associated with the data available for<br />

each of the emission sources are characterized <strong>in</strong>dependently, as discussed later <strong>in</strong> this document.<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong>formation could be based on documentation of data repositories (API, 2009), expert<br />

judgment, or on measurements conducted dur<strong>in</strong>g the <strong>in</strong>ventory year.<br />

• F<strong>in</strong>aliz<strong>in</strong>g the <strong>in</strong>ventory – Where the quality-checked <strong>and</strong> validated data are aggregated for<br />

report<strong>in</strong>g based on company policy or local requirements. The preferable way of report<strong>in</strong>g the results<br />

is <strong>in</strong> terms of the total emissions for each of the GHG species, along with the global warm<strong>in</strong>g<br />

potential weighted sum of these emissions (also known as the CO 2 -E emission).<br />

The overall <strong>uncerta<strong>in</strong>ty</strong> range for each GHG species, <strong>and</strong> CO 2 -E, should also be reported with the total<br />

emissions <strong>in</strong> the format of:<br />

Emissions = Average Value + % (at the 95% confidence limit).<br />

Section 3.0 provides an overview of measurement practices that would result <strong>in</strong> high quality data when<br />

properly implemented. It focuses on measurements that are applicable to the key sources that contribute<br />

to the overall GHG emissions <strong>in</strong>ventory, i.e., CO 2 emissions from combustion devices.<br />

Section 4.0 provides more detailed guidance on the calculation methods that are applicable for def<strong>in</strong><strong>in</strong>g<br />

s<strong>in</strong>gle source uncerta<strong>in</strong>ties <strong>and</strong> for aggregat<strong>in</strong>g them at the facility (or entity) level. This section provides<br />

a range of examples that are directly applicable to O&G facilities <strong>and</strong> their GHG report<strong>in</strong>g needs.<br />

Pilot Version, September 2009 2-10


3.0 OVERVIEW OF MEASUREMENT PRACTICES<br />

In def<strong>in</strong><strong>in</strong>g aggregated <strong>uncerta<strong>in</strong>ty</strong> of measurement<br />

ensembles used for develop<strong>in</strong>g emission <strong>in</strong>ventories, the<br />

<strong>uncerta<strong>in</strong>ty</strong> for each measurement stream must be assessed<br />

<strong>in</strong> a way that is applicable to that measurement method<br />

<strong>and</strong> its implementation <strong>in</strong> practice. R<strong>and</strong>om errors could<br />

be a major factor <strong>in</strong> the <strong>uncerta<strong>in</strong>ty</strong> of an <strong>in</strong>dividual<br />

observation; however, their contribution to the overall<br />

emission <strong>in</strong>ventory dim<strong>in</strong>ishes as more measurements are<br />

obta<strong>in</strong>ed dur<strong>in</strong>g the report<strong>in</strong>g period.<br />

Section Focus<br />

This section provides an overview of<br />

measurement practices focus<strong>in</strong>g on <strong>gas</strong> flow<br />

measurements <strong>and</strong> the determ<strong>in</strong>ation of carbon<br />

content or the heat<strong>in</strong>g values of combusted fuels.<br />

The section recognizes <strong>in</strong>dustry recommended<br />

practices <strong>and</strong> st<strong>and</strong>ards that have traditionally<br />

applied to “custody transfer” of fuel products<br />

between companies, <strong>and</strong> upon enter<strong>in</strong>g the<br />

market.<br />

This section goes on to l<strong>in</strong>k these practices to the<br />

acquisition of GHG emissions <strong>and</strong> related<br />

Note: R<strong>and</strong>om errors tend to average out dur<strong>in</strong>g the year,<br />

while systematic errors (or measurement bias) become<br />

activity data, represent<strong>in</strong>g a move from reliance<br />

on available data or eng<strong>in</strong>eer<strong>in</strong>g judgment. The<br />

subsections address:<br />

more important <strong>and</strong> tend to accumulate rather than<br />

• Flow measurement practices;<br />

dim<strong>in</strong>ish over longer periods of time such as a year. • Uncerta<strong>in</strong>ties of flow measurements for<br />

GHG <strong>in</strong>ventories;<br />

In fact, determ<strong>in</strong><strong>in</strong>g the true value of any measured<br />

variable is not practical due to the limitations of<br />

• Uncerta<strong>in</strong>ty of sampl<strong>in</strong>g <strong>and</strong> analysis for<br />

GHG estimation; <strong>and</strong><br />

measurement equipment <strong>and</strong> procedures, <strong>and</strong> the<br />

• Laboratory management system.<br />

possibility of human error. Hence, <strong>in</strong>dustry measurement<br />

procedures <strong>and</strong> st<strong>and</strong>ards have been developed to emphasize practices that lead to collect<strong>in</strong>g better quality<br />

data, especially for critical measurements. Industry uses st<strong>and</strong>ards from several different st<strong>and</strong>ards<br />

develop<strong>in</strong>g organizations result<strong>in</strong>g <strong>in</strong> equivalent measurements, based on the scope of the st<strong>and</strong>ard,<br />

company preference, <strong>and</strong> type of devices used. Consensus <strong>in</strong>dustry st<strong>and</strong>ards, such as those developed by<br />

ANSI, API, ASTM, ISO <strong>and</strong> other st<strong>and</strong>ard sett<strong>in</strong>g organizations have rigor <strong>in</strong> their development process,<br />

<strong>and</strong> measurement st<strong>and</strong>ards are reviewed at least every five years to ensure that st<strong>and</strong>ards are <strong>in</strong> step with<br />

technological changes <strong>and</strong> advancements. Most, if not all, of the measurement st<strong>and</strong>ards are developed<br />

for measurements associated with ‘custody transfer’ <strong>and</strong> to def<strong>in</strong>e quantities that are essential for robust<br />

f<strong>in</strong>ancial transactions.<br />

API publishes one of the more comprehensive sets of custody transfer measurement st<strong>and</strong>ards, but it is<br />

neither complete nor the only widely recognized source for such <strong>in</strong>dustry practices. API’s MPMS<br />

<strong>in</strong>cludes over 140 titles, <strong>and</strong> API publishes approximately eight new or revised measurement st<strong>and</strong>ards<br />

each year. Appendix B presents a comprehensive list of specific measurement st<strong>and</strong>ards (<strong>and</strong> their<br />

respective editions) from several st<strong>and</strong>ards sett<strong>in</strong>g organizations, which could be used to support the<br />

Pilot Version, September 2009 3-1


calculation of GHG emissions. The measurement st<strong>and</strong>ards cited <strong>in</strong> Appendix B are current as of the date<br />

of this publication (i.e., June 2009). However, it is up to the user of these measurement st<strong>and</strong>ards to<br />

reference the specific st<strong>and</strong>ards/editions used for a given measurement, <strong>and</strong> to <strong>in</strong>corporate the updated<br />

measurement procedures, as applicable.<br />

Custody transfer measurements are typically expected to meet a set of performance specifications. For<br />

other measurements, such as those performed to support the development of a GHG emissions <strong>in</strong>ventory,<br />

data quality objectives should be established prior to <strong>in</strong>itiat<strong>in</strong>g any data collection <strong>in</strong> order to ensure that<br />

the <strong>uncerta<strong>in</strong>ty</strong> ranges of the measured quantities are consistent with the <strong>in</strong>tended use of the data.<br />

Throughout this section we provide references <strong>and</strong> describe a select subset of <strong>in</strong>dustry st<strong>and</strong>ards that are<br />

most typically used for the respective measurements discussed. Even so, the full list of measurement<br />

methods provided <strong>in</strong> Appendix B could be used to provide equivalent measurements to meet company<br />

practices <strong>and</strong> available <strong>in</strong>strumentation.<br />

For many O&G <strong>in</strong>dustry <strong>in</strong>stallations, CO 2 emissions from combustion <strong>and</strong> flar<strong>in</strong>g are the largest<br />

contributors to overall GHG emissions. Therefore, this section focuses on measurements <strong>and</strong> methods<br />

typically used for quantification of these CO 2 emissions. The subsections below provide details on flow<br />

measurement practices, <strong>and</strong> their associated uncerta<strong>in</strong>ties, as well as methods for the measurement of<br />

carbon content <strong>and</strong> heat<strong>in</strong>g values of combusted fuels.<br />

For some other O&G <strong>in</strong>dustry sectors, such as exploration, production, process<strong>in</strong>g, transmission <strong>and</strong><br />

distribution operations, emissions from other GHGs (such as methane) can contribute significantly to a<br />

facility’s GHG emissions. Available emission factors exhibit large uncerta<strong>in</strong>ties <strong>and</strong> might not be<br />

representative of current operat<strong>in</strong>g practices. Therefore, for <strong>in</strong>ventories where CH 4 constitutes a larger<br />

fraction of the emissions, the overall <strong>uncerta<strong>in</strong>ty</strong> would be expected to be substantially higher.<br />

Industry is now more fully <strong>in</strong>ternaliz<strong>in</strong>g the potential impact of measurement errors <strong>and</strong> bias through the<br />

full cha<strong>in</strong> of emission calculations <strong>in</strong>clud<strong>in</strong>g measurement equipment, software calculations, simulation<br />

models, <strong>and</strong> the limitations of reliance on exist<strong>in</strong>g emission factors on the <strong>uncerta<strong>in</strong>ty</strong> range of resultant<br />

GHG emissions <strong>in</strong>ventories. Considerations of the need for more representative measurement data, <strong>and</strong><br />

the assessment of equipment design <strong>and</strong> age, are ga<strong>in</strong><strong>in</strong>g more prom<strong>in</strong>ence <strong>in</strong> the process of assembl<strong>in</strong>g<br />

high certa<strong>in</strong>ty emission <strong>in</strong>ventories. This section focuses on measurements that are pert<strong>in</strong>ent to improved<br />

characterization of combusted fuels <strong>and</strong> the quantities used, but might not be directly applicable to<br />

measurement of leakages <strong>and</strong> fugitive emissions. The measurement practices highlighted here represent<br />

an <strong>in</strong>itial step <strong>in</strong> what could end up be<strong>in</strong>g a multi-year effort to improve measurements of GHGs <strong>and</strong><br />

quantify the activities that cause their emissions.<br />

Pilot Version, September 2009 3-2


3.1 Flow Measurement Practices<br />

Cont<strong>in</strong>uous h<strong>and</strong>l<strong>in</strong>g of very large liquid <strong>and</strong> <strong>gas</strong> flow volumes is a characteristic of all the sectors of the<br />

O&G <strong>in</strong>dustry. Therefore, an <strong>in</strong>-depth underst<strong>and</strong><strong>in</strong>g of flow measurement is essential both for <strong>in</strong>ternal<br />

process control <strong>and</strong> for transferr<strong>in</strong>g “custody” of <strong>in</strong>termediate streams or f<strong>in</strong>ished products. The accuracy<br />

of measurements of “custody meters” is historically quite high, <strong>and</strong> practices follow rigorous <strong>in</strong>dustry<br />

st<strong>and</strong>ards.<br />

Industry has been <strong>in</strong>strumental <strong>in</strong> develop<strong>in</strong>g <strong>in</strong>ternational voluntary st<strong>and</strong>ards such as ISO 5168 (see<br />

Reference 8) establish<strong>in</strong>g general pr<strong>in</strong>ciples <strong>and</strong> describ<strong>in</strong>g procedures for evaluat<strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> of<br />

measur<strong>in</strong>g fluid flow rate or quantity. Annex A of ISO 5168 provides a step-by-step procedure for<br />

calculat<strong>in</strong>g <strong>and</strong> report<strong>in</strong>g these measurement uncerta<strong>in</strong>ties. Similarly, Chapter 14 of the API Manual of<br />

Petroleum Measurement St<strong>and</strong>ards (MPMS), conta<strong>in</strong>s detailed procedures <strong>and</strong> practices for all aspects of<br />

<strong>natural</strong> <strong>gas</strong> (<strong>and</strong> similar <strong>gas</strong>es) fluids measurement <strong>and</strong> calculation of their associated uncerta<strong>in</strong>ties, at the<br />

po<strong>in</strong>t where <strong>oil</strong> or <strong>gas</strong> enters the marketplace (“custody transfer”) (API MPMS, 2006). Those same<br />

practices are not as rigorously applied to <strong>in</strong>ternal account<strong>in</strong>g <strong>and</strong> process control dur<strong>in</strong>g normal<br />

operations.<br />

3.1.1 Measurements by Orifice Meters<br />

Orifice meters are by far the most prevalent flow meter type used <strong>in</strong> the O&G <strong>in</strong>dustry, <strong>and</strong> are used for<br />

meter<strong>in</strong>g products dur<strong>in</strong>g “custody transfer” as well as for process control <strong>and</strong> <strong>in</strong>ternal account<strong>in</strong>g. These<br />

same flow meters are used to account for fuel volumes when estimat<strong>in</strong>g CO 2 emissions. Most of these<br />

flow meters are of the orifice type <strong>and</strong> are designed for long-term reliability <strong>and</strong> ruggedness under a<br />

variety of component mixtures <strong>and</strong> conditions that are essential for consistent fluid blend<strong>in</strong>g <strong>and</strong><br />

process<strong>in</strong>g. Although for these type of meters temperature <strong>and</strong> pressure calibrations can be done while<br />

the units are operat<strong>in</strong>g, they generally have limited access to direct orifice plate <strong>in</strong>spections <strong>and</strong><br />

ma<strong>in</strong>tenance outside of planned shutdown (‘turnaround’) cycles.<br />

Recommended practices for the <strong>in</strong>stallation, calibration <strong>and</strong> calculation of flows for these custody meters<br />

are provided <strong>in</strong> Section 3 of Chapter 14 of API’s MPMS (API, 2005). This st<strong>and</strong>ard was developed by a<br />

collaborative effort by members of API, AGA, <strong>and</strong> the Process<strong>in</strong>g Gas Association <strong>and</strong> with contributions<br />

from the Canadian Gas Association, American Chemical Council, the European Union, Norway, Japan<br />

<strong>and</strong> others. It is designed to ensure global consistency for O&G transactions. The four-part st<strong>and</strong>ard for<br />

square-edged, concentric orifice meters consists of:<br />

Part 1 – General equations <strong>and</strong> <strong>uncerta<strong>in</strong>ty</strong> guidel<strong>in</strong>es;<br />

Part 2 – Specifications <strong>and</strong> <strong>in</strong>stallation requirements;<br />

Pilot Version, September 2009 3-3


Part 3 – Natural <strong>gas</strong> applications; <strong>and</strong><br />

Part 4 – Background, development, implementation procedures, <strong>and</strong> subrout<strong>in</strong>e documentation.<br />

The st<strong>and</strong>ard recognizes that many factors contribute to the overall measurement <strong>uncerta<strong>in</strong>ty</strong> associated<br />

with many meter<strong>in</strong>g applications, as summarized <strong>in</strong> Exhibit 3-1.<br />

EXHIBIT 3-1: FACTORS CONTRIBUTING TO MEASUREMENT<br />

UNCERTAINTY FOR ORIFICE METERS<br />

a) Tolerances <strong>in</strong> prediction of coefficient of discharge<br />

− Derivation of the basic flow equation for an orifice flowmeter is based on physical laws.<br />

− Any derivation is accurate when all assumptions used to develop the equation are valid.<br />

− The empirical equation for the coefficient of discharge that is <strong>in</strong>cluded <strong>in</strong> API 14.3 (Reference 16) was developed<br />

from a large database with well-controlled <strong>and</strong> quantified <strong>in</strong>dependent variables.<br />

b) Predictability <strong>in</strong> def<strong>in</strong><strong>in</strong>g the physical properties of the flow<strong>in</strong>g fluid<br />

− All empirical equations <strong>and</strong> st<strong>and</strong>ards for concentric, square-edged orifice meters apply to steady state flow<br />

conditions for fluids that are considered to be clean, s<strong>in</strong>gle phase, <strong>and</strong> homogeneous, such as all <strong>gas</strong>es – <strong>and</strong> most<br />

liquids – <strong>in</strong> the petroleum, petrochemical, <strong>and</strong> <strong>natural</strong> <strong>gas</strong> <strong>in</strong>dustries.<br />

− Fluid's flow rates are expressed <strong>in</strong> volume units at base (st<strong>and</strong>ard or reference) conditions, <strong>and</strong> the volumetric flow<br />

rates that are measured at the operat<strong>in</strong>g flow<strong>in</strong>g conditions are then converted to st<strong>and</strong>ard volume with respect to the<br />

base conditions.<br />

− Fluid properties are def<strong>in</strong>ed as a function of the operat<strong>in</strong>g pressure <strong>and</strong> temperature that are monitored by secondary<br />

devices. Significant temperature variation between the thermal well <strong>and</strong> the orifice taps will affect the measurement.<br />

c) Fluid flow conditions<br />

− Database is available for the empirical equations for coefficient of discharge for steady-state fully developed pipe<br />

flow profile with negligible or no swirl flows <strong>and</strong> flow fluctuations.<br />

− Deviations from these conditions are typically due to pip<strong>in</strong>g <strong>in</strong>stallation upstream of the flowmeter <strong>and</strong> they<br />

<strong>in</strong>troduce flow measurement <strong>uncerta<strong>in</strong>ty</strong>.<br />

d) Construction tolerances <strong>in</strong> meter components<br />

− Part 2 of the reapproved API MPMS Chapter 14.3 st<strong>and</strong>ard lists the changes recommended <strong>in</strong> the mechanical<br />

tolerance requirements for the orifice meter components.<br />

− The st<strong>and</strong>ard encompasses a wide range of diameter ratios for which experimental results are available <strong>and</strong> some of<br />

the tolerances are more str<strong>in</strong>gent than the tolerances <strong>in</strong> the previous st<strong>and</strong>ards.<br />

e) Uncerta<strong>in</strong>ty of secondary devices/<strong>in</strong>strumentation<br />

− The secondary devices are the <strong>in</strong>struments used to monitor the flow<strong>in</strong>g fluid temperature, pressure, <strong>and</strong> the<br />

differential pressure across the orifice plate.<br />

− Parameters affect<strong>in</strong>g the accuracy of the differential pressure device <strong>in</strong>clude: ambient temperature, static pressure,<br />

l<strong>in</strong>earity, repeatability, long-term stability, <strong>and</strong> drift, as well as the <strong>uncerta<strong>in</strong>ty</strong> of the calibration st<strong>and</strong>ard.<br />

− The stated accuracy of most differential pressure-measur<strong>in</strong>g devices is expressed as a percentage of the full-scale<br />

read<strong>in</strong>g, which leads to <strong>in</strong>creased error b<strong>and</strong>s with decreas<strong>in</strong>g differential pressures.<br />

f) Data reduction <strong>and</strong> computation<br />

− Ultimate errors <strong>in</strong> flow rate computation depend on the accuracy of def<strong>in</strong><strong>in</strong>g the physical properties of the flow<strong>in</strong>g<br />

fluid, as computed by the microprocessor-based flow computers.<br />

− Computation of the physical properties, especially for <strong>gas</strong> flows, is dependent on the constituents of <strong>gas</strong> <strong>in</strong> the<br />

flow<strong>in</strong>g fluid.<br />

− All fixed <strong>in</strong>put <strong>and</strong> critical parameters affect<strong>in</strong>g the flow rate computation should be verified to reduce bias error <strong>in</strong><br />

flow measurement.<br />

Pilot Version, September 2009 3-4


All these factors should be assessed when estimat<strong>in</strong>g the overall range of <strong>uncerta<strong>in</strong>ty</strong> for flow<br />

measurements us<strong>in</strong>g th<strong>in</strong> plate, concentric, square-edged meter<strong>in</strong>g systems.<br />

In the reapproved 2006 version of the st<strong>and</strong>ard, several changes were <strong>in</strong>corporated to reduce the<br />

<strong>uncerta<strong>in</strong>ty</strong> attributable to <strong>in</strong>stallation effects <strong>and</strong> to improve the rigor of the flow calculation rout<strong>in</strong>es.<br />

The revised st<strong>and</strong>ard recognizes the lead-time necessary for upgrad<strong>in</strong>g exist<strong>in</strong>g <strong>in</strong>stallations, <strong>and</strong> leaves<br />

this lead-time to the discretion of facility operators <strong>and</strong> their data quality targets for flow measurement<br />

data.<br />

However, it should be recognized that if orifice meter <strong>in</strong>stallations are not upgraded to conform to the<br />

new recommendations, measurement bias error may occur. This bias might be due to improper upper <strong>and</strong><br />

lower distances from bends <strong>and</strong> po<strong>in</strong>ts of flow turbulence that might lead to <strong>in</strong>adequate flow condition<strong>in</strong>g<br />

prior to measurement. Additionally, even without chang<strong>in</strong>g equipment <strong>in</strong>stallations, the st<strong>and</strong>ard<br />

recommends adopt<strong>in</strong>g new calculation procedures <strong>and</strong> techniques (expla<strong>in</strong>ed <strong>in</strong> Part 1 <strong>and</strong> 3 of the<br />

st<strong>and</strong>ard) that represent significant improvements over the previously adopted approach. It is important<br />

to note that the expected <strong>uncerta<strong>in</strong>ty</strong> ranges for flow measurements quoted <strong>in</strong> Part 1 of the reaffirmed<br />

st<strong>and</strong>ard may differ from those obta<strong>in</strong>ed <strong>in</strong> practice when the equipment <strong>in</strong>stallation differs.<br />

3.1.2 Measurement of Flow to Flares<br />

The measurement of flow to flares is dist<strong>in</strong>ctly different than other flow measurements. Flares are<br />

designed as safety relief systems <strong>and</strong> typically are capable of h<strong>and</strong>l<strong>in</strong>g highly variable flow rates of<br />

widely vary<strong>in</strong>g <strong>gas</strong> compositions. Therefore, some of the practices that are generally applicable to<br />

custody transfer or process control flows have to be modified when <strong>address<strong>in</strong>g</strong> flows to flares. API<br />

published a measurement st<strong>and</strong>ard <strong>address<strong>in</strong>g</strong> <strong>gas</strong> or vapor flare flow measurements, which also <strong>in</strong>cludes<br />

cautionary details about the effects of foul<strong>in</strong>g (due to entra<strong>in</strong>ed liquid droplets, aerosol mists, or other<br />

contam<strong>in</strong>ations) on the measurement (API MPMS, July 2007).<br />

Most flare headers are designed to operate dur<strong>in</strong>g both non-upset conditions at near atmospheric pressure<br />

<strong>and</strong> ambient temperature, <strong>and</strong> dur<strong>in</strong>g flare episodes, at a wide range of pressure, temperature, <strong>and</strong> flow<br />

velocities. Dur<strong>in</strong>g such episodes, flare <strong>gas</strong> compositions are also highly variable <strong>and</strong> could range from<br />

molecular weights approach<strong>in</strong>g that of hydrogen to molecular weights of C 5+ .<br />

As with other flow measurements, the accurate determ<strong>in</strong>ation of flow to flares is dependent on many<br />

parameters such as the ability to predict – or measure – mixture composition, pressure, temperature,<br />

<strong>and</strong>/or density. The accuracy of measurements associated with highly variable flare <strong>gas</strong> mixtures will<br />

depend largely on the meter technology type <strong>and</strong> the ability of the flare flow measurement system<br />

(FFMS) to achieve the targeted response time <strong>and</strong> analytical accuracy levels. Exhibit 3-2 below lists the<br />

Pilot Version, September 2009 3-5


asic steps needed to conduct a simplified analysis for determ<strong>in</strong><strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> ranges of a given flow<br />

measurement system. The actual approaches for the required calculations are provided <strong>in</strong> Section 4,<br />

which provides examples demonstrat<strong>in</strong>g how to apply these methods.<br />

EXHIBIT 3-2: STEPS FOR SIMPLIFIED UNCERTAINTY ANALYSIS<br />

a) Determ<strong>in</strong>ation of the equation that def<strong>in</strong>es the meter output<br />

− Govern<strong>in</strong>g equations are those applicable for the meter technology type utilized.<br />

b) Determ<strong>in</strong>ation of the comb<strong>in</strong>ed sensitivity coefficient<br />

− Numerical values of <strong>uncerta<strong>in</strong>ty</strong> are associated with pressure, temperature, <strong>and</strong> composition.<br />

−<br />

Meter accuracy is estimated from calibration data, pipe size, or other <strong>in</strong>stallation effects.<br />

− Sensitivity coefficients are obta<strong>in</strong>ed by divid<strong>in</strong>g the calculated % <strong>uncerta<strong>in</strong>ty</strong> for an <strong>in</strong>put variable by the<br />

% change <strong>in</strong> that <strong>in</strong>put variable.<br />

c) Derive the comb<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> range (extended st<strong>and</strong>ard deviation)<br />

−<br />

Comb<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> is calculated by summ<strong>in</strong>g the square of the errors for pressure, temperature,<br />

composition, meter calibration, <strong>and</strong> <strong>in</strong>stallation effects.<br />

−<br />

Range of Uncerta<strong>in</strong>ty is obta<strong>in</strong>ed from the square root of this comb<strong>in</strong>ed sum.<br />

Variability <strong>in</strong> flare composition may also be a significant factor <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the measurement<br />

<strong>uncerta<strong>in</strong>ty</strong> of an FFMS. Knowledge of flare composition may have a major effect on the calculation of<br />

the actual volume, st<strong>and</strong>ard volume, or mass measured by the meters. For example:<br />

−<br />

−<br />

−<br />

For a differential pressure meter – the output is a function of the square root of the flare <strong>gas</strong><br />

density.<br />

For thermal flow meters – knowledge of the actual volume (or st<strong>and</strong>ard volume) requires<br />

consideration of the compositional effect on thermal conductivity <strong>and</strong> dynamic viscosity.<br />

For ultrasonic flow meters – sound speed is a function of <strong>gas</strong> composition.<br />

Convert<strong>in</strong>g actual flow to mass flow requires the knowledge of <strong>gas</strong> composition <strong>in</strong> order to derive <strong>gas</strong><br />

density. When an analyzer is <strong>in</strong>corporated <strong>in</strong> the measurement system to correct for composition, care<br />

must be taken to ensure that the response time of the system is short compared to the upset flow event<br />

dur<strong>in</strong>g flar<strong>in</strong>g to ensure representative measurement dur<strong>in</strong>g actual flar<strong>in</strong>g.<br />

An example of how all of these elements would be comb<strong>in</strong>ed <strong>in</strong>to the overall measurement <strong>uncerta<strong>in</strong>ty</strong> is<br />

provided <strong>in</strong> Table 3-1.<br />

Pilot Version, September 2009 3-6


Table 3-1. Example of FFMS Comb<strong>in</strong>ed Uncerta<strong>in</strong>ty a<br />

VARIABLE<br />

COMBINED SENSITIVITY<br />

AND ERROR (S x U 95 )<br />

(S x U 95 ) 2<br />

Pressure 2.0% 4.00<br />

Temperature 0.1% 0.01<br />

Flare composition 2.0% 4.00<br />

Meter error (calibration) 1.4% 1.96<br />

Installation effects 0.5% 0.25<br />

Sum of squares 10.22<br />

Square root of sum of squares 3.2%<br />

a Table 4 from API MPMS Section 14.10 (reference 17)<br />

3.1.3 Example: “Custody Transfer” Measurements<br />

“Custody transfer” measurements are def<strong>in</strong>ed as measurements that provide quantity <strong>and</strong> quality<br />

<strong>in</strong>formation, which can be used as the basis for a change <strong>in</strong> ownership <strong>and</strong>/or a change <strong>in</strong> responsibility<br />

for materials. In most O&G produc<strong>in</strong>g jurisdictions around the world national regulations <strong>and</strong> directives<br />

have emerged to specify requirements for the expected accuracy <strong>and</strong> <strong>uncerta<strong>in</strong>ty</strong> ranges associated with<br />

“custody transfer” <strong>and</strong> other critical measurements. For such precise meter<strong>in</strong>g applications, the<br />

flowmeters <strong>and</strong> adjacent pip<strong>in</strong>g used <strong>in</strong> the measurement system are expected to meet the requirements of<br />

the relevant, preferably the most str<strong>in</strong>gent, specifications of the API <strong>and</strong> ISO st<strong>and</strong>ards that are cited <strong>in</strong><br />

many national regulations.<br />

One such example of the measurement requirements promulgated for O&G operations are those of the<br />

Alberta Energy Resources Conservation Board (ERCB), as shown <strong>in</strong> Exhibit 3-3.<br />

Pilot Version, September 2009 3-7


EXHIBIT 3-3: ALBERTA ENERGY RESOURCE CONSERVATION BOARD (ERCB)<br />

[Directive 017, May 2007]<br />

a.) Directive 017 (EUB/Board, May 2007), spells out the measurement requirements for custody transfer with<strong>in</strong> the Upstream<br />

Oil <strong>and</strong> Gas operations <strong>in</strong> Alberta, Canada. The ERCB st<strong>and</strong>ards are stated as “maximum <strong>uncerta<strong>in</strong>ty</strong> of monthly volume”<br />

<strong>and</strong>/or “s<strong>in</strong>gle po<strong>in</strong>t measurement <strong>uncerta<strong>in</strong>ty</strong>”, as listed <strong>in</strong> Tables 3-2 for Oil Systems <strong>and</strong> Gas Systems measurements,<br />

respectively.<br />

b.) The uncerta<strong>in</strong>ties are to be applied as “plus/m<strong>in</strong>us” (e.g., ±5%), <strong>and</strong> only measurements at the delivery or sales po<strong>in</strong>ts are<br />

required to meet the highest accuracy st<strong>and</strong>ards s<strong>in</strong>ce they would have a direct impact on royalty determ<strong>in</strong>ation.<br />

Table 3-2. Summary of Alberta ERCB Accuracy Requirements a<br />

Maximum Uncerta<strong>in</strong>ty<br />

of Monthly Volume<br />

S<strong>in</strong>gle Po<strong>in</strong>t<br />

Measurement<br />

OIL SYSTEMS MEASUREMENTS<br />

(i) Total battery <strong>oil</strong> (delivery po<strong>in</strong>t measurement)<br />

Delivery po<strong>in</strong>t measures >100 m 3 /d N/A 0.5%<br />

Delivery po<strong>in</strong>t measures < 100 m 3 /d N/A 1%<br />

(ii) Total battery <strong>gas</strong> (<strong>in</strong>cludes produced <strong>gas</strong> that is<br />

vented, flared, or used as fuel)<br />

> 16.9 10 3 m 3 /d 5% 3%<br />

> 0.50 10 3 m 3 /d but < 16.9 10 3 m 3 /d 10% 3%<br />

< 0.50 10 3 m 3 /d 20% 10%<br />

(iii) Well <strong>oil</strong> (proration battery)<br />

Class 1 (high), > 30 m 3 /d 5% 2%<br />

Class 2 (medium), > 6 m 3 /d but < 30 m 3 /d 10% 2%<br />

Class 3 (low), > 2 m 3 /d but < 6 m 3 /d 20% 2%<br />

Class 4 (stripper), < 2 m 3 /d 40% 2%<br />

(iv) Well <strong>gas</strong> (proration battery)<br />

> 16.9 10 3 m 3 /d 5% 3%<br />

> 0.50 10 3 m 3 /d but < 16.9 10 3 m 3 /d 10% 3%<br />

< 0.50 10 3 m 3 /d 20% 10%<br />

GAS SYSTEMS MEASUREMENTS a<br />

(i) Gas deliveries (sales <strong>gas</strong>) N/A 2%<br />

(ii) Hydrocarbon liquid deliveries<br />

Delivery po<strong>in</strong>t measures >100 m 3 /d N/A 0.5%<br />

Delivery po<strong>in</strong>t measures 0.50 10 3 m 3 /d 5% 3%<br />

< 0.50 10 3 m 3 /d 20% 10%<br />

(vi) Flare <strong>gas</strong> 20% 5%<br />

(vii) Acid <strong>gas</strong> N/A 10%<br />

(viii) Dilution <strong>gas</strong> 5% 3%<br />

(ix) Well <strong>gas</strong> (well site separation)<br />

> 16.9 10 3 m 3 /d 5% 3%<br />

< 16.9 10 3 m 3 /d 10% 3%<br />

(x) Well <strong>gas</strong> (proration battery) 15% 3%<br />

(xi) Well condensate (recomb<strong>in</strong>ed) N/A 2%<br />

a Note: Extracted from Section 1.8.1 <strong>and</strong> 1.8.2, respectively, <strong>in</strong> Reference 20<br />

The directive makes it clear that other measurement po<strong>in</strong>ts that play a role <strong>in</strong> the overall control <strong>and</strong> account<strong>in</strong>g process would<br />

be subject to less str<strong>in</strong>gent accuracy st<strong>and</strong>ards. These less str<strong>in</strong>gent accuracy st<strong>and</strong>ards are designed to accommodate physical<br />

limitations <strong>and</strong>/or the overall economics of achiev<strong>in</strong>g very str<strong>in</strong>gent accuracy st<strong>and</strong>ards for each volumetric measurement.<br />

Pilot Version, September 2009 3-8


3.2 Uncerta<strong>in</strong>ties of Flow Measurements for GHG Inventories<br />

With the emergence of new m<strong>and</strong>atory report<strong>in</strong>g regulations <strong>and</strong> emission reduction compliance<br />

obligations, new requirements are be<strong>in</strong>g promulgated for the accuracy of fuel flow measurements when<br />

such flows are used to quantify GHG emissions. For example, accord<strong>in</strong>g to the m<strong>and</strong>atory GHG<br />

report<strong>in</strong>g regulations promulgated by the California Air Resources Board (CARB), flow measurement<br />

uncerta<strong>in</strong>ties are expected to be + 5%. (CARB, 2008) The California requirements specifically apply to<br />

all GHGs emitted from petroleum ref<strong>in</strong>eries, hydrogen plants, <strong>and</strong> cogeneration plants with the O&G<br />

exploration <strong>and</strong> production sector required only to report CO 2 emissions from large combustors (><br />

25,000 tonnes CO 2E /yr).<br />

In Europe, the European Union Emissions Trad<strong>in</strong>g System (EU-ETS) specifies a tiered approach for<br />

emission calculations together with required <strong>uncerta<strong>in</strong>ty</strong> ranges, accord<strong>in</strong>g to the Monitor<strong>in</strong>g <strong>and</strong><br />

Report<strong>in</strong>g Guidel<strong>in</strong>es (EU-ETS MRG, 2007). It sets up a matrix of <strong>uncerta<strong>in</strong>ty</strong> requirements for different<br />

facility sizes <strong>and</strong> measurement approaches used.<br />

−<br />

−<br />

For facilities emitt<strong>in</strong>g between 50,000 to 500,000 tonnes of fossil CO 2 – Uncerta<strong>in</strong>ty ranges<br />

specified are ±7.5%, +5%, <strong>and</strong> ±2.5% when the facilities employ tiers 1, 2, <strong>and</strong> 3 calculation<br />

approaches, respectively;<br />

For facilities emitt<strong>in</strong>g over 500,000 tonnes of fossil CO 2 – Uncerta<strong>in</strong>ty ranges are expected to<br />

be as low as ±1.5% for facilities required to employ Tier 4 approaches.<br />

It is important to note that the EU-ETS requirements are applicable to a limited set of O&G <strong>in</strong>dustry<br />

<strong>in</strong>stallations <strong>and</strong> that facility <strong>in</strong>ventories are be<strong>in</strong>g tracked only for CO 2 emissions from fuel combustion<br />

<strong>and</strong> flar<strong>in</strong>g. The requirement to quantify these sources with<strong>in</strong> such tight <strong>uncerta<strong>in</strong>ty</strong> ranges is a reflection<br />

of the fact that these are the sources for which appropriate emission calculation methods are available,<br />

while they are also the largest emission sources <strong>and</strong> the key contributors to most <strong>in</strong>stallations’ GHG<br />

emissions.<br />

When measur<strong>in</strong>g fuel flow rate, or its total volume, <strong>and</strong> us<strong>in</strong>g the <strong>in</strong>formation to calculate GHG<br />

emissions, it must be determ<strong>in</strong>ed whether the flow meters used are properly <strong>in</strong>stalled <strong>and</strong> calibrated, <strong>and</strong><br />

that they are capable of provid<strong>in</strong>g data that are with<strong>in</strong> the <strong>uncerta<strong>in</strong>ty</strong> ranges required by the govern<strong>in</strong>g<br />

climate program. Differences must be considered between the manufacturers’ specifications of flow<br />

meters’ expected measurement errors <strong>and</strong> those that are atta<strong>in</strong>ed when us<strong>in</strong>g the flow meters <strong>in</strong> the field.<br />

It is common practice to test flow meters <strong>in</strong> a laboratory sett<strong>in</strong>g under controlled conditions, prior to field<br />

<strong>in</strong>stallations. However, these laboratory bench tests typically do not simulate ”real world” variations <strong>in</strong><br />

fluid flow <strong>and</strong> other possible fluctuations, <strong>and</strong> drift of the entire measurement system. For any given<br />

Pilot Version, September 2009 3-9


operat<strong>in</strong>g facility, there might only be a very limited number of “custody transfer” meters that are<br />

equipped for test<strong>in</strong>g <strong>and</strong> calibration under real operat<strong>in</strong>g conditions.<br />

As an example, Table 3-3 provides a list<strong>in</strong>g of different meter types, their applicable fluid medium, <strong>and</strong> a<br />

brief description of their operat<strong>in</strong>g pr<strong>in</strong>ciples. The table also lists manufacturers’ specified <strong>in</strong>strument<br />

errors, as provided <strong>in</strong> a survey conducted by the EU-ETS Support Group (ETSG, 2007). The <strong>in</strong>formation<br />

provided is an <strong>in</strong>dication of potential error ranges <strong>and</strong> not the expected <strong>uncerta<strong>in</strong>ty</strong> ranges obta<strong>in</strong>ed <strong>in</strong><br />

practice. Appendix B provides additional details about the manufacturers’ recommendations for the<br />

<strong>in</strong>stallation, calibration, <strong>and</strong> ma<strong>in</strong>tenance of these flow meters. The error levels cited refer primarily to<br />

r<strong>and</strong>om errors that are observed under ‘ideal’ laboratory conditions <strong>and</strong> that decrease with repeated<br />

measurements. They do not properly account for systematic errors (or bias) where the errors are due to<br />

improper <strong>in</strong>stallations, <strong>in</strong>adequate calibrations, or devices drift, as discussed above.<br />

However, these manufacturers’ specified measurement errors might not be atta<strong>in</strong>able due to the practical<br />

operational limitations of the facility. In most O&G <strong>in</strong>dustry facilities, detailed <strong>in</strong>spections, ma<strong>in</strong>tenance,<br />

<strong>and</strong> recalibration of process control flowmeters are possible only once every few years when process units<br />

are shut down for scheduled turnaround.<br />

Table 3-3. Compilation of Specifications for Common Flow Meters a<br />

METER<br />

TYPE<br />

Rotary<br />

meter<br />

(Expected<br />

life span:<br />

25 years)<br />

Turb<strong>in</strong>e<br />

flow meter<br />

(Expected<br />

life span:<br />

25 years)<br />

Bellows<br />

meter<br />

(Expected<br />

life span:<br />

25 years)<br />

MEDIUM TECHNICAL DESCRIPTION MANUFACTURERS’<br />

REPORTED ERRORS B<br />

Gas The rotary flow meter is a type of positive<br />

0-20% of the measurement<br />

displacement (PD) flow meter that is widely used for range: 3%<br />

utility measurements of <strong>gas</strong> flow.<br />

Rotary flow meters have one or more rotors that are 20-100% of the<br />

used to trap the fluid. With each rotation of the rotors, measurement range: 1.5%<br />

a specific amount of fluid is captured. Flow rate is<br />

proportional to the rotational velocity of the rotors.<br />

Rotary meters are used for <strong>in</strong>dustrial applications.<br />

Gas<br />

Gas<br />

Turb<strong>in</strong>e flow meters have a rotor that sp<strong>in</strong>s <strong>in</strong><br />

proportion to flow rate. Many of those used for <strong>gas</strong><br />

flow are called axial meters. Axial turb<strong>in</strong>e meters have<br />

a rotor that revolves around the axis of flow. Axial<br />

meters differ accord<strong>in</strong>g to the number of blades <strong>and</strong> the<br />

shape of the rotors. Turb<strong>in</strong>e meters are used as bill<strong>in</strong>g<br />

meters to measure the amount of <strong>gas</strong> used at<br />

commercial build<strong>in</strong>gs <strong>and</strong> <strong>in</strong>dustrial plants.<br />

The bellow <strong>gas</strong> meter performs volumetric<br />

measurement via its bellows. The measurements are<br />

based on the pr<strong>in</strong>ciple that the flexible bellows is<br />

periodically filled <strong>and</strong> emptied.<br />

A major problem with the bellows system is the<br />

residue <strong>in</strong> the pipe. The <strong>in</strong>ternal mechanisms fail to<br />

perform their tasks due to such residue, caus<strong>in</strong>g the<br />

meter to dysfunction <strong>and</strong> fail<strong>in</strong>g to perform a sound<br />

measurement.<br />

0-20% of the measurement<br />

range: 3%<br />

20-100% of the<br />

measurement range: 1.5%<br />

0-20% of the measurement<br />

range: 6%<br />

20-100% of the range: 4%<br />

Pilot Version, September 2009 3-10


Table 3-3. Compilation of Specifications for Common Flow Meters, a cont<strong>in</strong>ued<br />

METER<br />

TYPE<br />

Venturi<br />

meter<br />

(Expected<br />

life span: 30<br />

years)<br />

Orifice<br />

meter<br />

(Expected<br />

life span: 30<br />

years)<br />

Ultrasonic<br />

meter<br />

(Expected<br />

life span: 15<br />

years)<br />

Coriolis<br />

meter<br />

(Expected<br />

life span: 10<br />

years)<br />

MEDIUM TECHNICAL DESCRIPTION MANUFACTURERS’<br />

REPORTED ERRORS B<br />

Gas <strong>and</strong> Venturi meters are another example of differential 20-100% of the<br />

Liquid pressure flow meters, as described under orifice measurement range: 1.5%<br />

meters above.<br />

In this case, the primary element is a Venturi flow<br />

nozzle. Venturis are especially suited to highspeed<br />

flows. They are also used for custody<br />

Gas <strong>and</strong><br />

Liquid<br />

Gas <strong>and</strong><br />

Liquid<br />

Gas <strong>and</strong><br />

Liquid<br />

transfer of <strong>natural</strong> <strong>gas</strong>.<br />

Orifice meters belong to the category of<br />

differential pressure flow meters that consist of a<br />

differential pressure transmitter, together with a<br />

primary element, such as the orifice plates.<br />

The orifice plates place a constriction <strong>in</strong> the flow<br />

stream, <strong>and</strong> the differential pressure transmitter<br />

measures the difference <strong>in</strong> pressure upstream <strong>and</strong><br />

downstream of the constriction. The transmitter<br />

or a flow computer then computes flow us<strong>in</strong>g<br />

Bernoulli’s theorem.<br />

Orifice plates are the most widely used type of<br />

primary elements. Their disadvantages are the<br />

amount of pressure drop caused, <strong>and</strong> the fact that<br />

they can be knocked out of position by impurities<br />

<strong>in</strong> the flow stream. Orifice plates are also subject<br />

to wear over time.<br />

There are two ma<strong>in</strong> types of ultrasonic flow<br />

meters: transit time <strong>and</strong> Doppler. The transit time<br />

meter has both a sender <strong>and</strong> a receiver. It sends<br />

two ultrasonic signals across a pipe at an angle:<br />

one with the flow, <strong>and</strong> one aga<strong>in</strong>st the flow. The<br />

meter then measures the “transit time” of each<br />

signal. The difference between the transit times<br />

with <strong>and</strong> aga<strong>in</strong>st the flow is proportional to flow<br />

rate. Doppler flow meters rely on hav<strong>in</strong>g the<br />

signal deflected by particles <strong>in</strong> the flow stream<br />

<strong>and</strong> the frequency shift <strong>in</strong> proportion to the mean<br />

fluid velocity.<br />

Coriolis flow meters conta<strong>in</strong> one or more vibrat<strong>in</strong>g<br />

tubes. These tubes are usually bent, although<br />

straight-tube meters are also available. The fluid<br />

to be measured passes through the vibrat<strong>in</strong>g tubes.<br />

It accelerates as it flows toward the maximum<br />

vibration po<strong>in</strong>t, <strong>and</strong> slows down as it leaves that<br />

po<strong>in</strong>t. This causes the tubes to twist. The amount<br />

of twist<strong>in</strong>g is directly proportional to mass flow.<br />

Position sensors detect tube positions.<br />

30-100% of the<br />

measurement range: 1.5%<br />

1-100% of the measurement<br />

range: 0.5%<br />

1-100% of the maximum<br />

measurement range: 1%<br />

Pilot Version, September 2009 3-11


METER<br />

TYPE<br />

Vortex meter<br />

(Expected life<br />

span: 10<br />

years)<br />

Gas Meter<br />

with<br />

Electronic<br />

Volume<br />

Conversion<br />

Instrument<br />

(EVCI)<br />

(Expected life<br />

span: 10<br />

years)<br />

Table 3-3. Compilation of Specifications for Common Flow Meters, a cont<strong>in</strong>ued<br />

MEDIUM TECHNICAL DESCRIPTION MANUFACTURERS’<br />

REPORTED ERRORS B<br />

Gas Vortex flow meters are one of the few types of 10-100% of the<br />

meters, besides differential pressure, that can measurement range: 2%<br />

accurately measure the flow of liquid, steam, <strong>and</strong><br />

<strong>gas</strong>. Vortex flow meters operate on the von<br />

Karman pr<strong>in</strong>ciple of fluid behavior, where the<br />

presence of obstacles <strong>in</strong> the fluid path generates a<br />

series of vortices called the von Karman street.<br />

To compute the flow rate, vortex flow meters<br />

count the number of vortices generated.<br />

Gas<br />

An electronic device designed for the primary<br />

purpose of convert<strong>in</strong>g a volume of <strong>gas</strong> measured<br />

at one set of conditions to a volume of <strong>gas</strong><br />

expressed at another set of conditions. The device<br />

<strong>in</strong>corporates <strong>in</strong>tegral (<strong>in</strong>ternal or external)<br />

temperature <strong>and</strong>/or pressure measurement<br />

transducers. It may be directly mounted onto a<br />

s<strong>in</strong>gle meter (with mechanical drive or magnetic<br />

drive coupl<strong>in</strong>g) or connected to a remotely located<br />

meter from which it is fed volumetric pulses. The<br />

device may perform additional functions such as<br />

super compressibility correction, meter accuracy<br />

curve correction (l<strong>in</strong>earization), <strong>and</strong> energy<br />

calculations.<br />

For 0.95-11 bar <strong>and</strong> -10 –<br />

40°C: 0.5%<br />

Notes:<br />

a Based on material presented <strong>in</strong> Appendix I of the ETSG, July 2007 survey summary document <strong>and</strong> sources cited.<br />

b The error levels specified are those reported by the manufacturers when <strong>in</strong>struments are calibrated under laboratory conditions.<br />

As <strong>in</strong>dicated <strong>in</strong> Section 3.1.2 (Exhibit 3-2), a few key steps that should be followed to determ<strong>in</strong>e the<br />

comb<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> associated with <strong>in</strong>dividual flow measurements. An exp<strong>and</strong>ed list of factors that<br />

ought to be considered when evaluat<strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> of flow measurements that are used for GHG<br />

emission calculations are provided <strong>in</strong> Exhibit 3-3.<br />

Pilot Version, September 2009 3-12


EXHIBIT 3-3: FACTORS TO CONSIDER WHEN EVALUATING UNCERTAINTY<br />

OF FLOW MEASUREMENTS USED FOR GHG EMISSION CALCULATIONS<br />

a) Confidence range of the measurement <strong>in</strong>strument<br />

− Manufacturers’ anticipated measurement errors for common flow meters could be used (Table 3-3) if on-site<br />

calibration data are not available<br />

b) Errors associated with “context-specific” factors<br />

Such factors may <strong>in</strong>clude the follow<strong>in</strong>g considerations:<br />

− Are measurement <strong>in</strong>struments <strong>in</strong>stalled accord<strong>in</strong>g to the manufacturer’s requirements?<br />

−<br />

−<br />

Is the measurement <strong>in</strong>strument designed for the medium (<strong>gas</strong>, liquid, solid substance) for which it is be<strong>in</strong>g<br />

used?<br />

If manufacturer’s data are not available, are the <strong>in</strong>struments operated accord<strong>in</strong>g to the general requirements<br />

applicable to that measurement pr<strong>in</strong>ciple?<br />

− Are there any other factors that can have adverse consequences on the <strong>uncerta<strong>in</strong>ty</strong> of the measurement<br />

<strong>in</strong>strument? (i.e., how the measurement <strong>in</strong>strument is used <strong>in</strong> practice).<br />

c) Pressure <strong>and</strong> temperature corrections for <strong>gas</strong> meters<br />

−<br />

Pressure <strong>and</strong> temperature corrections are only applicable to the determ<strong>in</strong>ation of the amount of <strong>gas</strong> <strong>and</strong> not to<br />

the measurement of liquids or solid substances.<br />

− The actual amount of <strong>gas</strong> flow has to be corrected for pressure <strong>and</strong> temperature to the specified st<strong>and</strong>ard<br />

conditions <strong>in</strong> order to avoid major systematic errors.<br />

d) Determ<strong>in</strong>ation of total uncerta<strong>in</strong>ties<br />

−<br />

Individual uncerta<strong>in</strong>ties determ<strong>in</strong>ed <strong>in</strong> a), b), <strong>and</strong> c) above ought to be summed up to determ<strong>in</strong>e the total<br />

<strong>uncerta<strong>in</strong>ty</strong> of the <strong>in</strong>dividual quantity measured.<br />

The discussion above perta<strong>in</strong>s to s<strong>in</strong>gle flow measur<strong>in</strong>g device <strong>uncerta<strong>in</strong>ty</strong>. Additional analyses are<br />

required to convert this <strong>in</strong>dividual measurement <strong>uncerta<strong>in</strong>ty</strong> to an assessment of the <strong>uncerta<strong>in</strong>ty</strong> range of<br />

annual measurements. Detailed guidance on the calculation steps is provided <strong>in</strong> Section 4.<br />

3.3 Uncerta<strong>in</strong>ties of Sampl<strong>in</strong>g <strong>and</strong> Analysis for GHG Emissions<br />

The emission measurement process comprises either direct measurement at the source level of collection<br />

of samples <strong>and</strong> their analysis <strong>in</strong> the laboratory to determ<strong>in</strong>e mass emissions. Sampl<strong>in</strong>g <strong>and</strong> analysis are<br />

part of the same measurement process <strong>and</strong> their comb<strong>in</strong>ed contribution to emissions estimation<br />

<strong>uncerta<strong>in</strong>ty</strong> is obta<strong>in</strong>ed by their comb<strong>in</strong>ed variances, as detailed <strong>in</strong> Section 4.0. Emission measurement<br />

uncerta<strong>in</strong>ties for processes of sampl<strong>in</strong>g <strong>and</strong> analysis depend on r<strong>and</strong>om errors, measurement precision,<br />

<strong>and</strong> systematic errors or bias.<br />

3.3.1 Gaseous Samples Collection <strong>and</strong> H<strong>and</strong>l<strong>in</strong>g<br />

Proper collection <strong>and</strong> h<strong>and</strong>l<strong>in</strong>g of <strong>natural</strong> <strong>gas</strong> samples could have a major impact on the accuracy <strong>and</strong><br />

representativeness of the analytical measurements based on these samples. Analyses of <strong>gas</strong> samples are<br />

used for multiple purposes <strong>and</strong> are applied to a variety of calculations <strong>in</strong>clud<strong>in</strong>g determ<strong>in</strong>ation of heat<strong>in</strong>g<br />

Pilot Version, September 2009 3-13


values, <strong>gas</strong> density <strong>and</strong> viscosity, hydrocarbon dew po<strong>in</strong>t, <strong>and</strong> compressibility. These analyses are<br />

essential for obta<strong>in</strong><strong>in</strong>g <strong>in</strong>formation about the composition, <strong>in</strong>clud<strong>in</strong>g contam<strong>in</strong>ants <strong>in</strong> the <strong>gas</strong> stream.<br />

Calculations based on these analyses are key to optimization of process conditions, determ<strong>in</strong>ation of<br />

adherence to contractual specifications, or estimation of GHG emissions when such a stream is<br />

combusted.<br />

The API MPMS provides specific details for collect<strong>in</strong>g <strong>and</strong> h<strong>and</strong>l<strong>in</strong>g <strong>natural</strong> <strong>gas</strong> samples for critical<br />

measurements such as custody transfer (API, February 2006). Exhibit 3-4 provides guidance on general<br />

considerations of <strong>in</strong>accuracies that might be <strong>in</strong>troduced <strong>in</strong> the measurement system when collect<strong>in</strong>g<br />

samples that are used for carbon content <strong>and</strong>/or heat<strong>in</strong>g values determ<strong>in</strong>ations for GHG emissions. At the<br />

same time, design<strong>in</strong>g a sampl<strong>in</strong>g <strong>and</strong> analysis system should – <strong>in</strong> all cases – take <strong>in</strong>to account regulatory<br />

requirements <strong>and</strong> contractual obligations.<br />

EXHIBIT 3-4: KEY FACTORS IMPACTING GAS SAMPLING AND ANALYSIS UNCERTAINTY<br />

a) Inappropriate sampl<strong>in</strong>g techniques or equipment<br />

− All sampl<strong>in</strong>g methods would require the use of a sample conta<strong>in</strong>er for transport<strong>in</strong>g the sample from the field<br />

location to the laboratory<br />

− Whenever practical, samples should be collected on a flow proportional or flow weighted basis, s<strong>in</strong>ce spot<br />

samples – by their nature – may not fully represent a <strong>gas</strong> stream of vary<strong>in</strong>g composition.<br />

− Gaseous samples of <strong>in</strong>terest are a mixture of organic <strong>and</strong> <strong>in</strong>organic <strong>gas</strong>es, <strong>and</strong> their <strong>in</strong>tegrity will be<br />

compromised.<br />

b) Inappropriate sample condition<strong>in</strong>g <strong>and</strong> h<strong>and</strong>l<strong>in</strong>g<br />

− Bias could be <strong>in</strong>troduced if any components of a sample are either depleted or augmented dur<strong>in</strong>g the<br />

sampl<strong>in</strong>g, transport, or laboratory h<strong>and</strong>l<strong>in</strong>g phases prior to analyses.<br />

− Condensation <strong>and</strong> revaporization of hydrocarbons can cause significant distortions <strong>in</strong> the <strong>gas</strong> sample.<br />

− Care should be taken to sample above the hydrocarbon dew po<strong>in</strong>t <strong>and</strong>/or to prevent retrograde condensation<br />

when pressure is reduced dur<strong>in</strong>g sampl<strong>in</strong>g.<br />

c) Collection of samples from non-representative locations <strong>and</strong>/or under non-representative operat<strong>in</strong>g<br />

conditions<br />

− Sampl<strong>in</strong>g systems that are used <strong>in</strong> conjunction with on-l<strong>in</strong>e analyzers, such as chromatographs or<br />

gravitometers, are typically designed to extract, condition, <strong>and</strong> deliver a representative sample to the analyzer.<br />

− Sampl<strong>in</strong>g l<strong>in</strong>es are kept as short as possible <strong>in</strong> conjunction with proper heat<strong>in</strong>g <strong>and</strong> <strong>in</strong>sulation to avoid<br />

condensation.<br />

− The flow rate of the sampl<strong>in</strong>g system is adjusted to allow for close to real time data, while at the same time<br />

not <strong>in</strong>creas<strong>in</strong>g the flow to a level that might lead to turbulence.<br />

d) Inappropriate analytical methods<br />

− The threshold sensitivity of the analytical methods used are typically those that are well documented by<br />

<strong>in</strong>dustry recommended practices for sample families<br />

− Analyses are typically limited to the range of mixture concentrations <strong>and</strong> species previously identified<br />

− For complicated sample matrices, the potential for <strong>in</strong>terferences is usually noted.<br />

Pilot Version, September 2009 3-14


3.3.2 Quantify<strong>in</strong>g Sampl<strong>in</strong>g Precision<br />

Quantify<strong>in</strong>g sampl<strong>in</strong>g precision requires that primary samples be collected accord<strong>in</strong>g to a def<strong>in</strong>ed<br />

protocol, but r<strong>and</strong>omized <strong>in</strong> some way for each sample (<strong>in</strong> either space or time). For example, a preselected<br />

percentage of the total number of samples can be collected <strong>in</strong> duplicate <strong>and</strong> the repeatability of<br />

the measurement determ<strong>in</strong>ed from these duplicate samples. Additionally, duplicate <strong>gas</strong>eous samples can<br />

also be analyzed <strong>in</strong> duplicate <strong>and</strong> thus a full record of both sampl<strong>in</strong>g <strong>and</strong> analysis system variations can be<br />

obta<strong>in</strong>ed. In this case, the sampl<strong>in</strong>g component of the variance represents the <strong>natural</strong> variability of the<br />

sampl<strong>in</strong>g target as well as any errors <strong>in</strong> the sample collection <strong>and</strong> preparation.<br />

When <strong>in</strong> situ measurement techniques are used (e.g., <strong>in</strong>frared <strong>gas</strong> analyzer), both the sampl<strong>in</strong>g <strong>and</strong><br />

analysis are addressed at the same time. The determ<strong>in</strong>ation of sampl<strong>in</strong>g bias, or the difference between<br />

the mean of several measurements <strong>and</strong> the true value, is more difficult. Biases could arise from several<br />

causes such as sample foul<strong>in</strong>g, <strong>in</strong>appropriate h<strong>and</strong>l<strong>in</strong>g, or unrepresentative sampl<strong>in</strong>g. The “true” value for<br />

the concentration of unknown species <strong>in</strong> a sample is never known s<strong>in</strong>ce it is impossible to construct a true<br />

reference laboratory st<strong>and</strong>ard for an unknown mixture of <strong>gas</strong>es.<br />

The importance of sampl<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> is a relatively new concept whose importance is slowly<br />

beg<strong>in</strong>n<strong>in</strong>g to be recognized. Recent research has shown that sampl<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> is often far greater than<br />

analytical <strong>uncerta<strong>in</strong>ty</strong>. Therefore, comb<strong>in</strong><strong>in</strong>g sampl<strong>in</strong>g <strong>and</strong> analytical uncerta<strong>in</strong>ties to provide an estimate<br />

of measurement <strong>uncerta<strong>in</strong>ty</strong> is an important component of quantify<strong>in</strong>g the overall <strong>uncerta<strong>in</strong>ty</strong> of GHG<br />

estimations that rely on sampl<strong>in</strong>g <strong>gas</strong>eous fuels of vary<strong>in</strong>g composition.<br />

3.4 Carbon Content Measurement Practices<br />

Different types of <strong>gas</strong> chromatography (GC) systems are normally used to analyze the carbon content of<br />

<strong>gas</strong>eous streams. The GC systems might be laboratory based or set up as an onl<strong>in</strong>e device for automated<br />

collection of samples <strong>and</strong> their analysis. The systems are typically set up to analyze the <strong>in</strong>dividual<br />

components <strong>in</strong> the sampled <strong>gas</strong> <strong>and</strong> provide detailed reports of properties <strong>in</strong>clud<strong>in</strong>g composition, calorific<br />

value, <strong>and</strong> density.<br />

The results of the determ<strong>in</strong>ation of <strong>in</strong>dividual – or groups – of carbon-conta<strong>in</strong><strong>in</strong>g species are then used to<br />

assess the total emissions of CO 2 upon combustion of such a fuel. Several key considerations <strong>in</strong>clude:<br />

−<br />

If the method is capable of determ<strong>in</strong><strong>in</strong>g CO 2 content with the rest of the carbon conta<strong>in</strong><strong>in</strong>g<br />

species, no further correction of the carbon content data is required <strong>in</strong> order to properly account<br />

for all CO 2 emissions;<br />

Pilot Version, September 2009 3-15


−<br />

−<br />

−<br />

If the method is set up to provide <strong>in</strong>formation only on hydrocarbon species, the CO 2 content<br />

should be obta<strong>in</strong>ed by an <strong>in</strong>dependent measurement <strong>and</strong> added to the fuel carbon content data;<br />

If the method is capable of a quantitative determ<strong>in</strong>ation of CH 4 content, these data can be used<br />

separately for calculat<strong>in</strong>g evaporative <strong>and</strong> process<strong>in</strong>g leaks along with vent<strong>in</strong>g losses; <strong>and</strong><br />

All carbon content measurement data should be used <strong>in</strong> conjunction with the applicable fuel flow<br />

measurements when calculat<strong>in</strong>g emissions.<br />

3.4.1 Laboratory-Based Measurements<br />

Several ASTM <strong>and</strong> ISO methods are available for determ<strong>in</strong><strong>in</strong>g the composition <strong>and</strong> carbon content <strong>in</strong> the<br />

<strong>natural</strong> <strong>gas</strong> range as well as for liquid <strong>and</strong> solid fuels. Although the terms “repeatability” <strong>and</strong><br />

“reproducibility” are applicable to all measurement situations (see Appendix A for term<strong>in</strong>ology <strong>and</strong><br />

def<strong>in</strong>itions), they are used here <strong>in</strong> the context <strong>in</strong> which they are def<strong>in</strong>ed <strong>in</strong> ASTM st<strong>and</strong>ards:<br />

−<br />

−<br />

Repeatability is def<strong>in</strong>ed as the difference between two successive results obta<strong>in</strong>ed by the same<br />

operator with the same apparatus under constant operat<strong>in</strong>g conditions on identical test materials,<br />

<strong>and</strong><br />

Reproducibility is the difference between two results obta<strong>in</strong>ed by different operators <strong>in</strong> different<br />

laboratories on identical test materials.<br />

When us<strong>in</strong>g a <strong>natural</strong> <strong>gas</strong> measurement method for ref<strong>in</strong>ery fuel <strong>gas</strong>, care should be taken to ensure that the<br />

range of compositions of <strong>in</strong>dividual components is with<strong>in</strong> the bounds specified by the method. Table 3-4<br />

lists selected commonly used laboratory measurement methods that are frequently used for the<br />

determ<strong>in</strong>ation of fuel carbon content. Additional details about these methods <strong>and</strong> further discussions of<br />

their ma<strong>in</strong> features are provided <strong>in</strong> Appendix D.<br />

Pilot Version, September 2009 3-16


Table 3-4. Summary of Selected Carbon Content Measurement Methods<br />

METHOD TITLE BRIEF DESCRIPTION MEASUREMENT<br />

PRECISION a<br />

ASTM 1945-03 Analysis of Natural Gas<br />

by Gas Chromatography<br />

−<br />

− Repeatability ranges from<br />

0.01- 0.10 mole%<br />

ASTM 1946-90<br />

(Reapproved 2006)<br />

ASTM UOP539-97<br />

ISO 6974<br />

(Six parts)<br />

ASTM D2650-04<br />

ASTM D5291 - 02<br />

(2007)<br />

Analysis of Reformed<br />

Gas by Gas<br />

Chromatography<br />

Ref<strong>in</strong>ery Gas Analysis by<br />

Gas Chromatography<br />

Natural Gas -<br />

Determ<strong>in</strong>ation of<br />

composition with<br />

Def<strong>in</strong>ed Uncerta<strong>in</strong>ty by<br />

Gas Chromatography<br />

St<strong>and</strong>ard Test Method<br />

for Chemical<br />

Composition of Gases by<br />

Mass Spectrometry<br />

St<strong>and</strong>ard Test Methods<br />

for Instrumental<br />

Determ<strong>in</strong>ation of<br />

Carbon, Hydrogen, <strong>and</strong><br />

Nitrogen <strong>in</strong> Petroleum<br />

Products <strong>and</strong> Lubricants<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

Covers the determ<strong>in</strong>ation of the<br />

chemical composition of <strong>natural</strong><br />

<strong>gas</strong>es <strong>and</strong> similar <strong>gas</strong>eous<br />

mixtures with<strong>in</strong> specified ranges<br />

of applicable composition for<br />

<strong>in</strong>dividual components<br />

Used for determ<strong>in</strong>ation of<br />

chemical composition of reformed<br />

<strong>gas</strong>es <strong>and</strong> similar <strong>gas</strong>eous<br />

mixtures<br />

Applicable to mixtures conta<strong>in</strong><strong>in</strong>g:<br />

hydrogen, oxygen, nitrogen,<br />

carbon monoxide, carbon dioxide,<br />

methane, ethane, <strong>and</strong> ethylene<br />

Used for determ<strong>in</strong><strong>in</strong>g the<br />

composition of ref<strong>in</strong>ery <strong>gas</strong><br />

samples or exp<strong>and</strong>ed liquefied<br />

petroleum <strong>gas</strong> (LPG) samples<br />

obta<strong>in</strong>ed from ref<strong>in</strong><strong>in</strong>g processes<br />

or <strong>natural</strong> sources<br />

Describes a <strong>gas</strong> chromatographic<br />

method for the quantitative<br />

determ<strong>in</strong>ation of the content of<br />

hydrogen, helium, oxygen,<br />

nitrogen, carbon dioxide <strong>and</strong> C1 to<br />

C8 hydrocarbons <strong>in</strong> <strong>natural</strong> <strong>gas</strong><br />

samples<br />

Uses either two or three packed or<br />

capillary columns comb<strong>in</strong>ations<br />

Applicable for the quantitative<br />

analysis of <strong>gas</strong>es conta<strong>in</strong><strong>in</strong>g<br />

specific comb<strong>in</strong>ations of the<br />

follow<strong>in</strong>g components: hydrogen;<br />

hydrocarbons (up to 6-Csper<br />

molecule); CO; CO 2 ; mercaptans<br />

(1-2 Cs per molecule); H 2 S; <strong>and</strong><br />

air (N 2 , O 2 , <strong>and</strong> Ar)<br />

Applicable to samples such as<br />

crude <strong>oil</strong>s, fuel <strong>oil</strong>s, additives, <strong>and</strong><br />

residues for carbon <strong>and</strong> hydrogen<br />

<strong>and</strong> nitrogen analysis<br />

Tested <strong>in</strong> the concentration range<br />

of at least 75 - 87 wt% carbon, at<br />

least 9 - 16 wt% hydrogen, <strong>and</strong><br />

0.1 - 2 wt% nitrogen<br />

−<br />

−<br />

−<br />

Reproducibility ranges<br />

from 0.02-0.12 mole%<br />

Repeatability ranges from<br />

0.05 - 0.5 mole%<br />

Reproducibility ranges<br />

from 0.1 - 1.0 mole%<br />

− Quantification from 0.1-<br />

99.9 mole% for a s<strong>in</strong>gle<br />

component or composite<br />

−<br />

For hydrogen sulfide,<br />

quantitative results<br />

between 0.1-25 mole%<br />

− Relative repeatability:<br />

2% for species < 1.0mole%;<br />

0.8% for species 1-50mole%<br />

− Relative reproducibility:<br />

4% for species < 1.0mole%<br />

1.6% for species 1-50mole%<br />

−<br />

−<br />

−<br />

−<br />

NOT applicable for<br />

constituents < 0.1<br />

mole%.<br />

Developed on a specific<br />

type of MS<br />

Users have to modify for<br />

their <strong>in</strong>strument.<br />

NOT recommended for<br />

the analysis of volatile<br />

materials such as<br />

<strong>gas</strong>ol<strong>in</strong>e, <strong>gas</strong>ol<strong>in</strong>eoxygenate<br />

blends, or<br />

<strong>gas</strong>ol<strong>in</strong>e type aviation<br />

turb<strong>in</strong>e fuels<br />

a<br />

Measurement precision data is provided as an <strong>in</strong>dication of atta<strong>in</strong>able precision if all steps of the methodology are adhered to as described <strong>in</strong> the methods<br />

procedures.<br />

Pilot Version, September 2009 3-17


3.4.2 On-l<strong>in</strong>e Measurements<br />

On-l<strong>in</strong>e determ<strong>in</strong>ation of fluid stream compositions is quite challeng<strong>in</strong>g due to possible variations <strong>in</strong> these<br />

compositions. This is especially notable for self-generated fuel <strong>gas</strong> such as ref<strong>in</strong>ery fuel <strong>gas</strong> or other<br />

process<strong>in</strong>g plant <strong>gas</strong>. Conversely, for commercial products such as <strong>natural</strong> <strong>gas</strong>, liquid fuels, coal <strong>and</strong><br />

coke, or for the analysis of associated <strong>gas</strong> <strong>in</strong> exploration <strong>and</strong> production operations, the challenges are<br />

more related to the ability to analyze multiple streams rapidly <strong>and</strong> ascerta<strong>in</strong> that they all are with<strong>in</strong> a<br />

desired property range.<br />

Instrumentation <strong>in</strong> this field has been developed to provide a measurement of stream components <strong>in</strong> order<br />

to achieve optimum control <strong>and</strong> assure product quality. The configurations of such analyzers are<br />

customized to accommodate typical site parameters <strong>and</strong> operat<strong>in</strong>g practices. Most such analyzers are<br />

designed with ASTM <strong>and</strong> ISO st<strong>and</strong>ards <strong>in</strong> m<strong>in</strong>d <strong>and</strong> their calibration rout<strong>in</strong>es are designed to provide<br />

both reported data <strong>and</strong> its associated <strong>uncerta<strong>in</strong>ty</strong>. As mentioned previously, the two primary applications<br />

are for ref<strong>in</strong>ery <strong>gas</strong> analyzers <strong>and</strong> <strong>natural</strong> <strong>gas</strong> analyzers, <strong>and</strong> these are discussed briefly below.<br />

a. Ref<strong>in</strong>ery Gas Analyzer<br />

Ref<strong>in</strong>ery <strong>gas</strong> samples are delivered to the sample <strong>in</strong>let of the GC after pass<strong>in</strong>g through a sample<br />

condition<strong>in</strong>g system that selectively removes any liquid fractions <strong>and</strong> particulate matter from the<br />

sample. This ensures that only the <strong>gas</strong> phase sample is delivered to the analyzer. An <strong>in</strong>ternal vacuum<br />

pump draws this conditioned sample <strong>in</strong>to each <strong>in</strong>jector, which then <strong>in</strong>jects the mixture onto each of<br />

the columns for analysis. Typically, a complete analysis of hydrogen, saturated <strong>and</strong> olef<strong>in</strong>ic<br />

hydrocarbons (C 1 -C 5 , <strong>and</strong> C 6+ grouped peaks), plus fixed <strong>gas</strong>es (O 2 , N 2 , CO, <strong>and</strong> CO 2 ) is performed.<br />

Precise “retention times” <strong>in</strong>formation <strong>and</strong> component areas translate <strong>in</strong>to accurate component<br />

identification <strong>and</strong> quantification of the relative magnitude of <strong>in</strong>dividual components present <strong>in</strong><br />

ref<strong>in</strong>ery <strong>gas</strong>.<br />

b. Natural Gas Analyzer<br />

These types of analyzers are applicable to <strong>natural</strong> <strong>gas</strong> samples from wellhead to pipel<strong>in</strong>e-quality <strong>gas</strong>.<br />

Samples are <strong>in</strong>troduced us<strong>in</strong>g sample cyl<strong>in</strong>ders, Tedlar bags, or by direct connection to the pipel<strong>in</strong>e or<br />

wellhead sampl<strong>in</strong>g po<strong>in</strong>ts. Usually, two chromatographic modules are used to quickly separate <strong>and</strong><br />

measure the <strong>in</strong>dividual components <strong>in</strong> <strong>natural</strong> <strong>gas</strong>. The analyzer separates <strong>and</strong> measures the<br />

permanent <strong>gas</strong>es <strong>and</strong> hydrocarbons present via an optimized, dual-channel portable <strong>gas</strong><br />

chromatograph. Wellhead samples may often conta<strong>in</strong> significant amounts of H 2 S. Many <strong>in</strong>struments<br />

take this <strong>in</strong>to account <strong>and</strong> there are no <strong>in</strong>terferences, which means that H 2 S can be measured from 50<br />

PPM to 30-mole%.<br />

Pilot Version, September 2009 3-18


3.5 Heat Content Determ<strong>in</strong>ation<br />

The heat<strong>in</strong>g value or calorific value of a substance is the amount of heat released dur<strong>in</strong>g the combustion<br />

of a specified amount of the substance. The calorific value is a characteristic for each substance <strong>and</strong> is<br />

measured <strong>in</strong> units of energy per unit of the substance, such as: kcal/kg, kJ/kg, J/mole, Btu/m³. The heat<br />

of combustion for fuels is expressed as:<br />

−<br />

−<br />

HHV – higher heat<strong>in</strong>g value (or gross calorific value or gross energy or upper heat<strong>in</strong>g value).<br />

This value is determ<strong>in</strong>ed by br<strong>in</strong>g<strong>in</strong>g all the products of combustion back to the orig<strong>in</strong>al precombustion<br />

temperature, <strong>and</strong> <strong>in</strong> particular condens<strong>in</strong>g any water vapor produced.<br />

LHV – lower heat<strong>in</strong>g value (or net calorific value) is determ<strong>in</strong>ed by subtract<strong>in</strong>g the heat of<br />

vaporization of the water vapor from the higher heat<strong>in</strong>g value <strong>and</strong> treat<strong>in</strong>g any water formed as a<br />

vapor. The energy required to vaporize the water therefore is not realized as heat.<br />

In the O&G <strong>in</strong>dustry, the two most prevalent modes of determ<strong>in</strong><strong>in</strong>g heat<strong>in</strong>g values of <strong>gas</strong>eous fuels is<br />

either by measur<strong>in</strong>g it directly, which can be accomplished either by stoichiometric combustion or by<br />

calorimetric techniques, or by computational methods that are based on st<strong>and</strong>ardized calculation<br />

procedures us<strong>in</strong>g <strong>gas</strong> sample composition data. A brief summary of these two types of practices is<br />

provided below.<br />

3.5.1 Direct Measurements<br />

The heat<strong>in</strong>g value <strong>in</strong>dicates the amount of energy that can be obta<strong>in</strong>ed as heat by burn<strong>in</strong>g a unit of <strong>gas</strong>.<br />

The heat<strong>in</strong>g values of a <strong>gas</strong> depend not only upon the temperature <strong>and</strong> pressure, but also upon the degree<br />

of saturation with water vapor.<br />

As mentioned above, general practices for determ<strong>in</strong><strong>in</strong>g fuel <strong>gas</strong> heat<strong>in</strong>g values rely on either calorimetric<br />

techniques or stoichiometric combustion practices. Table 3-5 provides a list<strong>in</strong>g <strong>and</strong> a brief description of<br />

some selected methods for heat<strong>in</strong>g value determ<strong>in</strong>ation for <strong>gas</strong>eous, liquid, <strong>and</strong> solid fossil fuels. Further<br />

discussion of the ma<strong>in</strong> features of these methods can be found <strong>in</strong> Appendix C.<br />

Pilot Version, September 2009 3-19


Table 3-5. Summary of Selected Heat<strong>in</strong>g Value Measurement Methods<br />

METHOD TITLE BRIEF DESCRIPTION MEASUREMENT<br />

PRECISION (*)<br />

ASTM D4891 – 89<br />

(Reapproved 2006)<br />

ASTM D1826 – 94<br />

(Reapproved 2003)<br />

ASTM D7314 – 08<br />

ASTM D4809 – 06<br />

ASTM D5865 – 07a<br />

Test Method for Heat<strong>in</strong>g<br />

Value of Gases <strong>in</strong> Natural<br />

Gas Range by<br />

Stoichiometric Combustion<br />

St<strong>and</strong>ard Test Method for<br />

Calorific (Heat<strong>in</strong>g) Value of<br />

Gases <strong>in</strong> Natural Gas Range<br />

by Cont<strong>in</strong>uous Record<strong>in</strong>g<br />

Calorimeter<br />

St<strong>and</strong>ard Practice for<br />

Determ<strong>in</strong>ation of the<br />

Heat<strong>in</strong>g Value of Gaseous<br />

Fuels us<strong>in</strong>g Calorimetry<br />

<strong>and</strong> On-l<strong>in</strong>e/At-l<strong>in</strong>e<br />

Sampl<strong>in</strong>g<br />

St<strong>and</strong>ard Test Method for<br />

Heat of Combustion of<br />

Liquid Hydrocarbon Fuels<br />

by Bomb Calorimeter<br />

(Precision Method)<br />

St<strong>and</strong>ard Test Method for<br />

Gross Calorific Value of<br />

Coal <strong>and</strong> Coke<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

Used for the determ<strong>in</strong>ation of<br />

heat<strong>in</strong>g value of <strong>natural</strong> <strong>gas</strong>es <strong>and</strong><br />

similar <strong>gas</strong>eous mixtures with<strong>in</strong> a<br />

specified composition range<br />

Provides an accurate <strong>and</strong> reliable<br />

procedure for regulatory<br />

compliance, custody transfer, <strong>and</strong><br />

process control<br />

Used for the determ<strong>in</strong>ation of the<br />

total calorific (heat<strong>in</strong>g) value of<br />

fuel <strong>gas</strong> produced or sold <strong>in</strong> the<br />

<strong>natural</strong> <strong>gas</strong> range from 900-1200<br />

Btu/scf<br />

Provides a reliable method for<br />

measurement on a cont<strong>in</strong>uous basis<br />

with a record<strong>in</strong>g calorimeter<br />

Used to determ<strong>in</strong>e the heat<strong>in</strong>g<br />

value of <strong>gas</strong>eous fuels with at-l<strong>in</strong>e<br />

<strong>and</strong> <strong>in</strong>-l<strong>in</strong>e <strong>in</strong>struments<br />

Suitable for periodic operation on a<br />

cont<strong>in</strong>uous basis<br />

Suitable for monitor<strong>in</strong>g systems<br />

for track<strong>in</strong>g properties when us<strong>in</strong>g<br />

or produc<strong>in</strong>g <strong>gas</strong>eous fuels <strong>in</strong><br />

<strong>in</strong>dustrial processes<br />

Covers the determ<strong>in</strong>ation of the<br />

heat of combustion of hydrocarbon<br />

fuels<br />

Can be used for a wide range of<br />

volatile <strong>and</strong> nonvolatile materials<br />

where slightly greater differences<br />

<strong>in</strong> precision can be tolerated<br />

Under normal conditions, the<br />

method is directly applicable to<br />

such fuels as <strong>gas</strong>ol<strong>in</strong>e, kerosenes,<br />

Nos. 1 <strong>and</strong> 2 fuel <strong>oil</strong>, Nos. 1-D <strong>and</strong><br />

2-D diesel fuel <strong>and</strong> Nos. 0-GT, 1-<br />

GT, <strong>and</strong> 2-GT <strong>gas</strong> turb<strong>in</strong>e fuels<br />

Perta<strong>in</strong>s to the determ<strong>in</strong>ation of the<br />

gross calorific value of coal <strong>and</strong><br />

coke by either an isoperibol or<br />

adiabatic bomb calorimeter<br />

− Repeatability: 0.76 Btu/scf,<br />

95% confidence: 2.1<br />

Btu/scf.<br />

− Reproducibility: 1.67<br />

Btu/scf, 95% confidence:<br />

5.1 Btu/scf.<br />

− Average bias: with<strong>in</strong> 0.1%<br />

from reference value<br />

(*) Measurement precision data are provided as an <strong>in</strong>dication of atta<strong>in</strong>able precision if all steps of the methodology are adhered to as described <strong>in</strong> the<br />

methods procedures.<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

Weekly st<strong>and</strong>ardization with<br />

methane<br />

Errors < 0.5% with<strong>in</strong> a week<br />

after st<strong>and</strong>ardization<br />

Higher errors expected for<br />

longer st<strong>and</strong>ardization<br />

periods<br />

No generic precision data<br />

apply here s<strong>in</strong>ce this is a<br />

practice <strong>and</strong> not a method<br />

The <strong>in</strong>stallation <strong>and</strong><br />

operation of particular<br />

systems vary with process<br />

type, performance <strong>and</strong><br />

regulatory requirements<br />

Strict adherence to all<br />

details of the procedure is<br />

essential<br />

The error contributed by<br />

each <strong>in</strong>dividual<br />

measurement that affects the<br />

precision shall be < 0.04 %,<br />

<strong>in</strong>sofar as possible<br />

Pilot Version, September 2009 3-20


3.5.2 Computational Methods<br />

Heat<strong>in</strong>g value may be determ<strong>in</strong>ed from <strong>gas</strong> compositional analysis <strong>in</strong> accordance with a st<strong>and</strong>ard practice<br />

established by the ASTM for calculat<strong>in</strong>g heat<strong>in</strong>g values for <strong>natural</strong> <strong>gas</strong> <strong>and</strong> similar mixtures from<br />

compositional analysis. ASTM D3588 – 98 (Reapproved 2003), is the st<strong>and</strong>ard recommended practice<br />

for calculat<strong>in</strong>g heat<strong>in</strong>g values, compressibility factors, <strong>and</strong> relative densities of <strong>gas</strong>eous fuels (ASTM<br />

D3588-98, 2003). This practice covers procedures for calculat<strong>in</strong>g these quantities at base conditions<br />

(14.696 psia <strong>and</strong> 60°F or15.6°C) for <strong>natural</strong> <strong>gas</strong> mixtures from compositional analysis. It applies to all<br />

common types of utility <strong>gas</strong>eous fuels, i.e., dry <strong>natural</strong> <strong>gas</strong>, reformed <strong>gas</strong>, <strong>oil</strong> <strong>gas</strong> (both high <strong>and</strong> low Btu),<br />

propane-air, coke oven <strong>gas</strong>, <strong>and</strong> other <strong>gas</strong>eous fractions for which suitable methods of analysis are<br />

designated.<br />

The ideal <strong>gas</strong> heat<strong>in</strong>g value <strong>and</strong> ideal <strong>gas</strong> relative density are calculated from the molar composition <strong>and</strong><br />

the respective ideal <strong>gas</strong> values for the components; these values are then adjusted by means of a<br />

calculated compressibility factor.<br />

The ASTM approach recognizes that the calorific value of a mixture, such as <strong>in</strong> ref<strong>in</strong>ery fuel <strong>gas</strong> systems,<br />

is a function of the mol% composition of the <strong>in</strong>dividual components of that mixture. For ref<strong>in</strong>ery fuel<br />

<strong>gas</strong>, this mixture could conta<strong>in</strong> both carbon conta<strong>in</strong><strong>in</strong>g species, which upon combustion will contribute<br />

directly to CO 2 emissions, as well as non-carbon conta<strong>in</strong><strong>in</strong>g species. Hydrogen, for example, is an<br />

important contributor to ref<strong>in</strong>ery fuel <strong>gas</strong> heat<strong>in</strong>g values but it does not contribute to CO 2 emissions when<br />

combusted.<br />

To implement this practice, the user would first determ<strong>in</strong>e the molar composition of the <strong>gas</strong> <strong>in</strong> accordance<br />

with any applicable ASTM or GPA method. For a precise calculation, at least 98 % of the sample<br />

constituents should be determ<strong>in</strong>ed as <strong>in</strong>dividual components, with no more than a total of 2 % <strong>in</strong> terms of<br />

groups of components (e.g. butanes, pentanes, hexanes, <strong>and</strong> so forth).<br />

An ideal combustion reaction for fossil fuels (that may conta<strong>in</strong> hydrogen) <strong>in</strong> the ideal <strong>gas</strong> state can be<br />

generally represented as:<br />

⎛ b c ⎞<br />

⎛ b ⎞<br />

CaHb<br />

+ cH2<br />

+ ⎜a<br />

+ + ⎟ O2<br />

= aCO2<br />

+ ⎜ + c⎟ H2O<br />

(Equation 3-1)<br />

⎝ 4 2⎠<br />

⎝ 2 ⎠<br />

The ideal net heat<strong>in</strong>g value is the heat<strong>in</strong>g value that is observed when all the water rema<strong>in</strong>s <strong>in</strong> the ideal<br />

<strong>gas</strong> state, while the ideal gross heat<strong>in</strong>g value is observed when all the water formed by the reaction<br />

condenses to liquid. The difference between them is the enthalpy of vaporization of the water formed<br />

dur<strong>in</strong>g the combustion process. Therefore, the ideal gross heat<strong>in</strong>g value for a mixture can be expressed<br />

as:<br />

Pilot Version, September 2009 3-21


Hm<br />

n<br />

∑<br />

x<br />

j<br />

j=<br />

1<br />

=<br />

n<br />

∑<br />

j−1<br />

× M<br />

x<br />

j<br />

j<br />

× M<br />

× H<br />

j<br />

mj<br />

(Equation 3-2)<br />

where<br />

x j = the mole fraction of Component j;<br />

M j = the molar mass of Component j;<br />

n = the total number of components; <strong>and</strong><br />

H mj = the ideal gross heat<strong>in</strong>g value per unit mass for Component j (at 60°F or 15.6°C), as tabulated<br />

<strong>in</strong> ASTM D3588. Values of H m are <strong>in</strong>dependent of pressure, but they vary with temperature.<br />

Errors that should be considered when comput<strong>in</strong>g heat<strong>in</strong>g values <strong>in</strong>clude errors <strong>in</strong> the heat<strong>in</strong>g values of<br />

the components <strong>and</strong> <strong>in</strong> the composition data. The <strong>uncerta<strong>in</strong>ty</strong> ranges of the heat<strong>in</strong>g values for the<br />

components cited <strong>in</strong> the ASTM practice are about 0.03%. These errors may affect the agreement between<br />

calculated <strong>and</strong> measured heat<strong>in</strong>g values; however, those are negligible when compared to the errors<br />

associated with the determ<strong>in</strong>ation of the composition of <strong>in</strong>dividual species. Appendix D conta<strong>in</strong>s a list<strong>in</strong>g<br />

of common energy <strong>and</strong> fossil fuel unit conversion factors that could be used for these <strong>and</strong> other<br />

calculations discussed <strong>in</strong> these document.<br />

3.6 Laboratory Management System<br />

An additional consideration for <strong>uncerta<strong>in</strong>ty</strong> of GHG measurements is the credibility <strong>and</strong> technical veracity<br />

of the laboratory perform<strong>in</strong>g the requested tests, as specified by different programs. For example, <strong>in</strong> the<br />

EU-ETS program the MRGs require the demonstration of laboratories management systems (EU-ETS<br />

MRGs, 2007; Section 13.5). Any laboratory used to determ<strong>in</strong>e an emission factor, calorific value, carbon<br />

content, or composition data should be accredited accord<strong>in</strong>g to ISO 17025:2005. If non-accredited<br />

laboratories are used, the EU regulations provide specific requirements for the validation <strong>and</strong> test<strong>in</strong>g of<br />

such laboratories.<br />

ISO/IEC 17025:2005 (ISO/IEC 17025, 2005) is not <strong>in</strong>tended to be used for overall laboratory<br />

certification, <strong>and</strong> it does not address compliance with regulatory <strong>and</strong> safety requirements. It merely<br />

emphasizes the need for a well-developed <strong>and</strong> communicated laboratory management system that<br />

addresses areas such as: quality, adm<strong>in</strong>istrative procedures, <strong>and</strong> technical systems that govern the<br />

operations of the laboratory. The ISO st<strong>and</strong>ard highlights the need for laboratories to ensure that their<br />

personnel are aware of the relevance <strong>and</strong> importance of their activities to the achievement of the<br />

management system’s objectives.<br />

The st<strong>and</strong>ard specifies the general requirements for demonstrat<strong>in</strong>g competence to carry out specific tests<br />

<strong>and</strong> calibrations, <strong>in</strong>clud<strong>in</strong>g field sampl<strong>in</strong>g. It covers test<strong>in</strong>g <strong>and</strong> calibration procedures that are performed<br />

Pilot Version, September 2009 3-22


us<strong>in</strong>g st<strong>and</strong>ard methods, non-st<strong>and</strong>ard methods, <strong>and</strong> laboratory-developed methods. This st<strong>and</strong>ard may be<br />

applied to all organizations perform<strong>in</strong>g tests <strong>and</strong>/or calibrations, <strong>in</strong>clud<strong>in</strong>g both <strong>in</strong>ternal companies’<br />

laboratories as well as external contract laboratories.<br />

ISO/IEC 17025:2005 is applicable to all laboratories regardless of the number of personnel or the extent<br />

of the scope of test<strong>in</strong>g <strong>and</strong>/or calibration activities. When a laboratory does not undertake one or more of<br />

the activities covered by ISO/IEC 17025:2005, such as sampl<strong>in</strong>g <strong>and</strong> the design/development of new<br />

methods, the requirements of those clauses would not apply.<br />

As part of compliance with ISO/IEC 17025:2005, laboratories that want to be accredited to this st<strong>and</strong>ard<br />

are m<strong>and</strong>ated to seek feedback, both positive <strong>and</strong> negative, be it from <strong>in</strong>-house users or from external<br />

customers. The <strong>in</strong>formation gathered is expected to help laboratories improve their management systems,<br />

their test<strong>in</strong>g <strong>and</strong> calibration activities, <strong>and</strong> customer service. The ISO st<strong>and</strong>ard seeks to improve<br />

laboratory measurement proficiency <strong>and</strong> accuracy by cont<strong>in</strong>ual improvement of the effectiveness of<br />

laboratory management systems <strong>and</strong> the implementation of quality policy, quality objectives, <strong>in</strong>ternal<br />

audits, data analysis, corrective <strong>and</strong> preventive actions, <strong>and</strong> periodic management review.<br />

Pilot Version, September 2009 3-23


4.0 STATISTICAL CONCEPTS AND CALCULATION METHODS<br />

Uncerta<strong>in</strong>ty is used to characterize the dispersion of<br />

values that could be reasonably attributed to a measured<br />

quantity (IPCC, Annex 3, 2001). Uncerta<strong>in</strong>ty may be<br />

expressed as a qualitative rank<strong>in</strong>g, such as the letter<br />

rat<strong>in</strong>gs assigned <strong>in</strong> EPA’s AP-42 publication series (U.S.<br />

EPA, 1995 with Supplements through 2000), or as a<br />

quantified value. For the purpose of quantify<strong>in</strong>g the<br />

<strong>uncerta<strong>in</strong>ty</strong> of a GHG <strong>in</strong>ventory, this section first<br />

addresses measurement <strong>uncerta<strong>in</strong>ty</strong>, then discusses<br />

<strong>uncerta<strong>in</strong>ty</strong> associated with emission factors, <strong>and</strong> f<strong>in</strong>ally<br />

addresses the propagation of <strong>uncerta<strong>in</strong>ty</strong>.<br />

4.1 Measurement Uncerta<strong>in</strong>ty<br />

At the most basic level, a GHG <strong>in</strong>ventory is comprised of<br />

estimated emissions from <strong>in</strong>dividual emission sources.<br />

For a given emission source, an emission estimate<br />

generally consists of an emission factor <strong>and</strong> some<br />

Section Focus<br />

This section is <strong>in</strong>tended for the user who has<br />

already generated a GHG emission <strong>in</strong>ventory for a<br />

facility or entity. It l<strong>in</strong>ks the statistical concepts<br />

<strong>in</strong>troduced <strong>in</strong> earlier sections to their application<br />

for measurement <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong> error<br />

propagation. Decision trees are provided to guide<br />

the user through quantify<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> for each<br />

part of a GHG <strong>in</strong>ventory <strong>and</strong> for propagat<strong>in</strong>g the<br />

<strong>uncerta<strong>in</strong>ty</strong> to the emission <strong>in</strong>ventory total. A<br />

general discussion on reduc<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> is also<br />

presented. The subsections <strong>in</strong>clude:<br />

• Measurement <strong>uncerta<strong>in</strong>ty</strong>;<br />

• Uncerta<strong>in</strong>ty propagation;<br />

• Quantify<strong>in</strong>g emission estimation <strong>uncerta<strong>in</strong>ty</strong>;<br />

• Quantify<strong>in</strong>g measurement <strong>uncerta<strong>in</strong>ty</strong>;<br />

• Aggregat<strong>in</strong>g uncerta<strong>in</strong>ties; <strong>and</strong><br />

• Assess<strong>in</strong>g data correlations.<br />

measure of the activity that results <strong>in</strong> the emission (referred to as the activity factor; see also Sections 2.3<br />

<strong>and</strong> 2.4). Emissions from multiple sources are then aggregated to produce the <strong>in</strong>ventory. The<br />

quantification of <strong>uncerta<strong>in</strong>ty</strong> should be applied at the emission source level (or group<strong>in</strong>g of similar<br />

emission sources) <strong>and</strong> then propagated to the total <strong>in</strong>ventory (as discussed <strong>in</strong> Section 2.5).<br />

Activity factors are generally a measured quantity, such as a count of equipment or measure of fuel<br />

consumed. Emission factors may be either based on site-specific measurements or based on published<br />

values that were derived from averag<strong>in</strong>g a variety of measurements. Where measurements are used for<br />

either activity factors or emission factors, two components of <strong>uncerta<strong>in</strong>ty</strong> need to be considered: precision<br />

<strong>and</strong> bias.<br />

4.1.1 Precision <strong>and</strong> Bias<br />

Precision refers to the variability <strong>in</strong> the measurement. A method may produce results that are not very<br />

precise (hav<strong>in</strong>g high variability), but result <strong>in</strong> a good estimate on average, as shown <strong>in</strong> Figure 4-1. The<br />

variability or precision associated with such an estimate will decrease as more data po<strong>in</strong>ts are collected.<br />

Pilot Version, September 2009 4-1


0.6<br />

0.4<br />

0.2<br />

Error<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

0 10 20 30<br />

Time<br />

Figure 4-1. Measurement Error Over Time of an Unbiased Estimate<br />

Bias, on the other h<strong>and</strong>, refers to how accurately a method estimates the true value. An example of bias<br />

would be a meter that is not calibrated correctly <strong>and</strong> consistently overestimates the measurement. Ideally,<br />

the data measurement scheme should be designed <strong>in</strong> a way to m<strong>in</strong>imize bias. For example, if the<br />

measur<strong>in</strong>g device is well ma<strong>in</strong>ta<strong>in</strong>ed <strong>and</strong> calibrated to m<strong>in</strong>imize drift, there may be no bias <strong>in</strong> the<br />

measurement.<br />

Figure 4-1 shows an example of the error of an unbiased measurement over time, where the errors are<br />

centered around zero. When these measurements are aggregated, some of the positive errors are offset by<br />

some of the negative errors, result<strong>in</strong>g <strong>in</strong> a lower estimate of <strong>uncerta<strong>in</strong>ty</strong> for the aggregate measurement.<br />

Figure 4-2 shows an example of the error <strong>in</strong> a biased measurement over time. Similar to the unbiased<br />

case <strong>in</strong> Figure 4-1, some of the high errors are offset with some of the low errors so the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the<br />

precision of the estimate is lower for the aggregate. However, <strong>in</strong> Figure 4-2, the errors are not centered<br />

on zero as <strong>in</strong> Figure 4-1; they are centered on five. This means that there is a bias <strong>in</strong> the estimate. Unlike<br />

precision, the <strong>uncerta<strong>in</strong>ty</strong> due to the bias generally does not decrease as more data po<strong>in</strong>ts are collected.<br />

Thus, precision <strong>and</strong> bias should be considered separately, if possible.<br />

Pilot Version, September 2009 4-2


6<br />

5<br />

4<br />

Error<br />

3<br />

2<br />

1<br />

0<br />

0 10 20 30<br />

Time<br />

Figure 4-2. Measurement Error Over Time of a Biased Estimate<br />

If bias can be quantified, it should be corrected <strong>and</strong> thus elim<strong>in</strong>ated from consideration <strong>in</strong> quantify<strong>in</strong>g<br />

<strong>uncerta<strong>in</strong>ty</strong>. For example, if a fuel stream has two types of measurement devices, data can be collected<br />

from both devices to check for agreement. A bias would be <strong>in</strong>dicated if the measurements differed.<br />

However, quantify<strong>in</strong>g <strong>and</strong> correct<strong>in</strong>g for bias might not always be practical s<strong>in</strong>ce it often requires<br />

application of frequent calibration rout<strong>in</strong>es <strong>and</strong> implementation of quality control procedures that would<br />

allow <strong>in</strong>strument adjustments <strong>and</strong>/or corrections under prescribed conditions. It will also require proper<br />

quantification rout<strong>in</strong>es that account for drift or other causes of bias between calibrations on an ongo<strong>in</strong>g<br />

basis.<br />

The general approach for quantify<strong>in</strong>g bias would depend on prior experience <strong>in</strong> the laboratory or from<br />

specifically designed field measurement campaigns. Measurement bias can vary from small to very large,<br />

depend<strong>in</strong>g on the application, <strong>and</strong> can even change over time if the measurement <strong>in</strong>strument is allowed to<br />

drift without calibration. Therefore, <strong>in</strong> practice, bias will most commonly be determ<strong>in</strong>ed us<strong>in</strong>g expert<br />

judgment <strong>and</strong> will be based on such parameters as the length of time s<strong>in</strong>ce the equipment was calibrated<br />

<strong>and</strong> other factors that would cause the measurement to systematically overestimate or underestimate the<br />

true value.<br />

4.1.2 Confidence Intervals<br />

Uncerta<strong>in</strong>ty is commonly expressed <strong>in</strong> terms of confidence <strong>in</strong>tervals, where the confidence <strong>in</strong>tervals<br />

establish the lower <strong>and</strong> upper tolerances associated with an estimated number. Expressed as an absolute<br />

value, the confidence <strong>in</strong>terval is computed as:<br />

Pilot Version, September 2009 4-3


s<br />

± t ×<br />

(Equation 4-1)<br />

n<br />

where<br />

s = st<strong>and</strong>ard deviation;<br />

n = sample size; <strong>and</strong><br />

t = t-value for “n-1” degrees of freedom.<br />

<strong>and</strong><br />

n<br />

1<br />

2<br />

s = ∑ ( xi<br />

−x)<br />

(Equation 4-2)<br />

−<br />

n 1 i=<br />

1<br />

where<br />

x i = the ith observation <strong>in</strong> the data set <strong>and</strong><br />

x = the mean of the data set.<br />

x<br />

n<br />

∑<br />

n<br />

x<br />

i<br />

i=<br />

= 1 (Equation 4-3)<br />

Tables for the Student’s t-distribution can be found <strong>in</strong> most basic statistics references. Most spreadsheet<br />

software programs have a function that will calculate the necessary t-value. This is the preferred method<br />

s<strong>in</strong>ce the software generally reta<strong>in</strong>s more significant digits for the t-value than a look-up table would<br />

display.<br />

4.2 Overview of Uncerta<strong>in</strong>ty Propagation<br />

Uncerta<strong>in</strong>ty propagation <strong>in</strong>volves mathematically comb<strong>in</strong><strong>in</strong>g <strong>in</strong>dividual sources of <strong>uncerta<strong>in</strong>ty</strong> to establish<br />

an estimate of the overall <strong>uncerta<strong>in</strong>ty</strong>. Specific <strong>uncerta<strong>in</strong>ty</strong> propagation techniques are discussed <strong>in</strong><br />

Section 4.2.1.<br />

The follow<strong>in</strong>g three assumptions are important when apply<strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> propagation technique for<br />

overall <strong>uncerta<strong>in</strong>ty</strong> assessment (IPCC, Section A1.4.3.1, 2001):<br />

1. The uncerta<strong>in</strong>ties are relatively small, which is def<strong>in</strong>ed as the st<strong>and</strong>ard deviation divided by the<br />

mean value be<strong>in</strong>g less than 0.3;<br />

2. The uncerta<strong>in</strong>ties have Gaussian (normal) distributions; <strong>and</strong><br />

3. The <strong>uncerta<strong>in</strong>ty</strong> values (i.e., the errors or uncerta<strong>in</strong>ties associated with the measured data or<br />

reported values) are mutually <strong>in</strong>dependent.<br />

In many cases, the first assumption may be difficult to meet. For example CH 4 <strong>and</strong> N 2 O emissions often<br />

have very sparse data <strong>and</strong> large associated uncerta<strong>in</strong>ties. Conduct<strong>in</strong>g a Monte Carlo simulation<br />

(discussed further <strong>in</strong> Section 4.6.1) is an option if the st<strong>and</strong>ard deviation divided by the mean is greater<br />

than 0.3. However, Monte Carlo simulations require a significant level of detail for the description data<br />

Pilot Version, September 2009 4-4


to characterize the probability distributions. Without such <strong>in</strong>formation, the potential error <strong>in</strong>troduced<br />

from <strong>in</strong>correctly specify<strong>in</strong>g the distributions for a Monte Carlo simulation could outweigh the potential<br />

error that might be associated with apply<strong>in</strong>g an <strong>uncerta<strong>in</strong>ty</strong> propagation technique for sources with large<br />

uncerta<strong>in</strong>ties. Therefore, this document suggests that the first assumption can be relaxed for emission<br />

estimates with a small overall contribution to the GHG <strong>in</strong>ventory. Through the propagation of <strong>uncerta<strong>in</strong>ty</strong><br />

for all emissions <strong>in</strong> the <strong>in</strong>ventory, the impact of small emission sources with large uncerta<strong>in</strong>ties can be<br />

evaluated relative to the entire <strong>in</strong>ventory. This evaluation can be used to identify <strong>and</strong> prioritize emission<br />

sources that require more data to reduce the overall <strong>uncerta<strong>in</strong>ty</strong> of the <strong>in</strong>ventory.<br />

The second assumption is based on the normality of the distribution of the underly<strong>in</strong>g source data (i.e.,<br />

symmetrical around the mean). Accord<strong>in</strong>g to the Central Limit Theorem, for a large enough sample size<br />

(n>30), we can relax the normality assumption but still assume that the sampl<strong>in</strong>g distribution of the<br />

sample means is normally distributed (Casella <strong>and</strong> Berger, 1990). Hence, if the calculated <strong>uncerta<strong>in</strong>ty</strong> is<br />

based on statistical sampl<strong>in</strong>g of the population, one would need to obta<strong>in</strong> more samples to approach<br />

normality. Alternatively, we might consider data transformation, i.e., mathematically transform<strong>in</strong>g the<br />

data to a different scale <strong>and</strong> us<strong>in</strong>g that transformed ‘normal’ distribution to derive the 95% confidence<br />

<strong>in</strong>terval. For example, <strong>in</strong> the case where the data distribution is skewed <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> is > 100% of<br />

the mean (i.e., where the lower limit would be less than zero), the data could be transformed to a<br />

lognormal distribution. This approach, however, requires the confidence <strong>in</strong>terval to be transformed back<br />

to the orig<strong>in</strong>al scale to express the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the orig<strong>in</strong>al units, which can <strong>in</strong>troduce error. As a result,<br />

there is a trend away from us<strong>in</strong>g transformational approaches due to issues <strong>in</strong> transform<strong>in</strong>g the data back<br />

to their orig<strong>in</strong>al scale.<br />

The third assumption states that there is no significant covariance between the uncerta<strong>in</strong>ties that are to be<br />

comb<strong>in</strong>ed, which is equivalent to say<strong>in</strong>g that the errors or uncerta<strong>in</strong>ties are <strong>in</strong>dependent or that there is no<br />

correlation between the <strong>uncerta<strong>in</strong>ty</strong> terms. The uncerta<strong>in</strong>ties <strong>in</strong> two quantities would be considered<br />

<strong>in</strong>dependent if they were estimated by entirely separate processes <strong>and</strong> there was no common source of<br />

<strong>uncerta<strong>in</strong>ty</strong>. The uncerta<strong>in</strong>ties <strong>in</strong> two quantities would be dependent if they had a common source of<br />

<strong>uncerta<strong>in</strong>ty</strong> (Williamson, 1996). Covariance between two <strong>uncerta<strong>in</strong>ty</strong> terms can be addressed through an<br />

additional term <strong>in</strong> the <strong>uncerta<strong>in</strong>ty</strong> propagation equations (discussed further <strong>in</strong> Section 4.2.2). However,<br />

the IPCC Good Practices document suggests avoid<strong>in</strong>g the need for the covariance term <strong>in</strong> the equation by<br />

“…stratify<strong>in</strong>g the data or comb<strong>in</strong><strong>in</strong>g the categories where the covariance occurs” (IPCC, 2001).<br />

Pilot Version, September 2009 4-5


4.2.1 Propagation Equations<br />

There are four general equations for propagat<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> that are used <strong>in</strong> this document <strong>and</strong> the API<br />

Compendium for compil<strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> associated with a GHG <strong>in</strong>ventory. A general <strong>in</strong>troduction to<br />

the equations is presented here, with example applications provided <strong>in</strong> Sections 4.3, 4.4, <strong>and</strong> 5.<br />

Consider two quantities that can be measured: X <strong>and</strong> Y. The <strong>uncerta<strong>in</strong>ty</strong> for these values can be<br />

expressed on an absolute basis as ±U x <strong>and</strong> ±U y , respectively, where U is calculated through statistical<br />

analysis (as represented by Equation 4-1), determ<strong>in</strong>ed through the Monte Carlo technique, or assigned by<br />

expert judgment. Uncerta<strong>in</strong>ty may also be expressed on a relative basis, generally reported as percentage:<br />

⎛U X ⎞ ⎛U<br />

± 100⎜<br />

⎟ % or<br />

Y ⎞<br />

± 100⎜<br />

⎟ %, respectively.<br />

⎝ X ⎠ ⎝ Y ⎠<br />

Depend<strong>in</strong>g on the <strong>uncerta<strong>in</strong>ty</strong> propagation equation, the absolute or relative <strong>uncerta<strong>in</strong>ty</strong> value may be<br />

required. In addition, selection of the propagation equation also depends on whether the uncerta<strong>in</strong>ties<br />

associated with the <strong>in</strong>dividual parameters are <strong>in</strong>dependent or correlated.<br />

a. Uncerta<strong>in</strong>ty Propagation for a Sum (or Difference)<br />

Two potential equations are used for comput<strong>in</strong>g the total <strong>uncerta<strong>in</strong>ty</strong> from the addition or<br />

subtraction of two or more measured quantities. The selection between the two equations<br />

depends on whether the uncerta<strong>in</strong>ties associated with the measured quantities, X <strong>and</strong> Y, are<br />

correlated.<br />

For uncerta<strong>in</strong>ties that are mutually <strong>in</strong>dependent, or uncorrelated (i.e., the <strong>uncerta<strong>in</strong>ty</strong> terms are not<br />

related to each other), the aggregated <strong>uncerta<strong>in</strong>ty</strong> is calculated as the “square root of the sum of<br />

the squares” us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties, as shown <strong>in</strong> Equation 4-4.<br />

2 2 2<br />

U ( abs) X+ Y+ ... + N= U<br />

X+ UY + ... + U<br />

N<br />

(Equation 4-4)<br />

where<br />

U(abs) =<br />

the absolute <strong>uncerta<strong>in</strong>ty</strong>.<br />

The absolute <strong>uncerta<strong>in</strong>ty</strong> values are used <strong>in</strong> the equations, <strong>and</strong> the result<strong>in</strong>g aggregated<br />

<strong>uncerta<strong>in</strong>ty</strong> (U X+Y+…+N ) is also on an absolute basis. Note that where a constant is also <strong>in</strong>cluded <strong>in</strong><br />

the emission estimation calculation, the absolute <strong>uncerta<strong>in</strong>ty</strong> should <strong>in</strong>clude the constant. This is<br />

demonstrated <strong>in</strong> the example provided <strong>in</strong> Section 4.4.1.<br />

For two <strong>uncerta<strong>in</strong>ty</strong> parameters that are related to each other, the equation becomes:<br />

( )<br />

2 2<br />

( )<br />

Correlated X Y X Y<br />

2<br />

X Y<br />

U abs<br />

+<br />

= U + U + r U × U<br />

(Equation 4-5)<br />

Pilot Version, September 2009 4-6


where<br />

r = the correlation coefficient between U X , U Y , (discussed further <strong>in</strong> Sections 4.2.2 <strong>and</strong> 4.6).<br />

However, the IPCC Good Practices guidance states, “Once the summation exceeds two terms <strong>and</strong><br />

the covariance occurs, the use of the Monte Carlo approach is preferable where data resources are<br />

available” (IPCC, 2001).<br />

b. Uncerta<strong>in</strong>ty Propagation for a Product (or Quotient)<br />

The equation for propagat<strong>in</strong>g uncerta<strong>in</strong>ties from the product or quotient of two or more measured<br />

<strong>and</strong> <strong>in</strong>dependent quantities is similar to Equation 4-4. However, <strong>in</strong> this case the relative<br />

uncerta<strong>in</strong>ties are used, as shown <strong>in</strong> Equation 4-6. When multiplied by 100, the result<strong>in</strong>g<br />

comb<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> (U(Rel) XxYxN ) is expressed as a percentage.<br />

2 2<br />

⎛UX<br />

⎞ ⎛UY<br />

⎞ ⎛U<br />

N ⎞<br />

Urel ( )<br />

X× Y× ... × N= Urel ( )<br />

X÷ Y÷ ... ÷ N= ⎜ ⎟ + ⎜ ⎟ + ... + ⎜ ⎟<br />

⎝ X ⎠ ⎝ Y ⎠ ⎝ N ⎠<br />

2<br />

(Equation 4-6)<br />

Equation 4-7 is used to estimate the <strong>uncerta<strong>in</strong>ty</strong> of a product or quotient of two parameters (X <strong>and</strong><br />

Y) where the uncerta<strong>in</strong>ties are correlated <strong>and</strong> positive values. Here also, relative <strong>uncerta<strong>in</strong>ty</strong><br />

values are used <strong>in</strong> the equation <strong>and</strong> the result<strong>in</strong>g comb<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> is on a relative basis.<br />

2 2<br />

⎛UX ⎞ ⎛UY ⎞ ⎛UX UY<br />

⎞<br />

Urel ( )<br />

Correlated X × Y<br />

= ⎜ ⎟ + ⎜ ⎟ + 2r⎜ × ⎟<br />

⎝ X ⎠ ⎝ Y ⎠ ⎝ X Y ⎠<br />

(Equation 4-7)<br />

c. Comb<strong>in</strong><strong>in</strong>g Uncerta<strong>in</strong>ties<br />

It may be necessary to comb<strong>in</strong>e multiple <strong>uncerta<strong>in</strong>ty</strong> parameters associated with a s<strong>in</strong>gle<br />

measured value, such as comb<strong>in</strong><strong>in</strong>g uncerta<strong>in</strong>ties for precision <strong>and</strong> bias. For <strong>uncerta<strong>in</strong>ty</strong><br />

parameters that are <strong>in</strong>dependent, the comb<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> is calculated us<strong>in</strong>g the absolute<br />

uncerta<strong>in</strong>ties as shown <strong>in</strong> Equation 4-4. Similarly, for <strong>uncerta<strong>in</strong>ty</strong> parameters that are related to<br />

each other, Equation 4-5 applies.<br />

4.2.2 Correlation Coefficient<br />

The correlation coefficient, r, used <strong>in</strong> Equations 4-5 <strong>and</strong> 4-7, is a number between -1 <strong>and</strong> 1 that measures<br />

the l<strong>in</strong>ear relationship between the errors or uncerta<strong>in</strong>ties of two measured parameters. The value of r is<br />

zero when the parameters are <strong>in</strong>dependent. As stated previously, once the <strong>uncerta<strong>in</strong>ty</strong> propagation<br />

exceeds two terms <strong>and</strong> covariance occurs, the use of the Monte Carlo approach (described further <strong>in</strong><br />

Section 4.6.1) is preferable (IPCC, 2001). Additional details on calculat<strong>in</strong>g the correlation coefficient are<br />

provided <strong>in</strong> Section 4.6. A simplified explanation follows.<br />

Pilot Version, September 2009 4-7


For two terms that might be correlated, the errors or uncerta<strong>in</strong>ties are plotted aga<strong>in</strong>st each other. For the<br />

purpose of this discussion, U x represents the uncerta<strong>in</strong>ties of one variable plotted along the x-axis, <strong>and</strong> U y<br />

represents the uncerta<strong>in</strong>ties of the second variable plotted on the y-axis. The correlation coefficient, r, is<br />

determ<strong>in</strong>ed by a l<strong>in</strong>ear regression of the U x <strong>and</strong> U y values.<br />

If one suspects that the <strong>uncerta<strong>in</strong>ty</strong> parameters are correlated, but data are not available to plot or calculate<br />

the correlation coefficient, the follow<strong>in</strong>g rule-of-thumb values could be applied us<strong>in</strong>g expert judgment<br />

(Franzblau, 1958):<br />

o<br />

o<br />

o<br />

o<br />

o<br />

r = 0: no correlation, the data are <strong>in</strong>dependent<br />

r = ±0.2: weak correlation<br />

r = ±0.5: medium correlation<br />

r = ±0.8: strong correlation<br />

r = ±1: perfect correlation, the data fall on a straight l<strong>in</strong>e.<br />

4.3 Quantify<strong>in</strong>g Emission Estimation Uncerta<strong>in</strong>ty<br />

For the purpose of these guidel<strong>in</strong>es, the general steps for quantify<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> are:<br />

1. Determ<strong>in</strong>e the <strong>uncerta<strong>in</strong>ty</strong> for emission factor data;<br />

2. Determ<strong>in</strong>e the <strong>uncerta<strong>in</strong>ty</strong> for measured data; <strong>and</strong><br />

3. Aggregate uncerta<strong>in</strong>ties.<br />

The follow<strong>in</strong>g provides two simple examples of <strong>uncerta<strong>in</strong>ty</strong> calculations for emissions estimation<br />

methods common <strong>in</strong> the <strong>oil</strong> <strong>and</strong> <strong>gas</strong> <strong>in</strong>dustry.<br />

4.3.1 Simple Emission Estimation: EF × AF<br />

In construct<strong>in</strong>g a facility or entity-wide GHG <strong>in</strong>ventory, many of the emission estimates are based on a<br />

simple multiplication of the emission factor (EF) by a measure of the activity (AF, or activity factor). The<br />

follow<strong>in</strong>g example demonstrates how <strong>uncerta<strong>in</strong>ty</strong> is determ<strong>in</strong>ed for this type of emission estimate.<br />

Pilot Version, September 2009 4-8


EXHIBIT 4-1: Uncerta<strong>in</strong>ty Example for a Simple Emission Estimation<br />

Input Data: A <strong>gas</strong> production facility operated 45 high-bleed pneumatic devices dur<strong>in</strong>g the previous year.<br />

The average production <strong>gas</strong> composition is 80% CH 4 <strong>and</strong> 5% CO 2 .<br />

Emission Factor: The API Compendium provides a default CH 4 EF for high-bleed pneumatic devices of<br />

4.941 tonne CH 4 /device-yr ± 33.1% (Table 5-15 of the 2009 API Compendium. Uncerta<strong>in</strong>ty is expressed at<br />

the 95% confidence <strong>in</strong>terval.)<br />

Emission Estimate: Emissions for this source are estimated based on the follow<strong>in</strong>g calculations.<br />

4.941 tonne CH 80 mole % CH<br />

CH : (45 pneumatic devices) × × = 226 tonnes CH /yr<br />

CO :<br />

4 4<br />

4 4<br />

device - yr 78.8 mole % CH4<br />

2<br />

226 tonne CH4 tonne mole CH4<br />

tonne mole <strong>gas</strong><br />

× ×<br />

yr 16 tonne CH4 0.80 tonne mole CH4<br />

0.05 tonne mole CO 44 tonne CO<br />

38.8 tonnes CO /yr<br />

2 2<br />

× × =<br />

tonne mole <strong>gas</strong> tonne mole CO2<br />

2<br />

Uncerta<strong>in</strong>ty Assessment:<br />

Measurement Uncerta<strong>in</strong>ty:<br />

o For this example, the activity data are based on a s<strong>in</strong>gle po<strong>in</strong>t measurement. All of the devices were<br />

accounted for, so there is no bias <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> of the activity value (i.e., the number of<br />

pneumatic devices) is 0.<br />

o The composition measurements are based on multiple measurements represent<strong>in</strong>g a sampl<strong>in</strong>g of the<br />

composition. Equations 4-1, 4-2, <strong>and</strong> 4-3 are applied to calculate the st<strong>and</strong>ard deviation of the<br />

composition samples collected throughout the year. The st<strong>and</strong>ard deviation accounts for the<br />

measurement error <strong>and</strong> <strong>natural</strong> variability of the sampled values.<br />

o For this example, the precision <strong>uncerta<strong>in</strong>ty</strong> of the composition data is assumed to be ± 1%. (A more<br />

detailed demonstration of quantify<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> for measured composition data is provided <strong>in</strong> a<br />

separate example.) On an absolute basis, this equates to 0.8 for the CH 4 composition, <strong>and</strong> 0.05 for<br />

the CO 2 composition.<br />

o Bias associated with the sampl<strong>in</strong>g <strong>and</strong> analysis is assumed to be small due to equipment<br />

ma<strong>in</strong>tenance <strong>and</strong> calibration practices. A value of 3 % is assigned for this assessment. On an<br />

absolute basis, this equates to 2.40 for the CH 4 composition, <strong>and</strong> 0.150 for the CO 2 composition.<br />

U = U + U<br />

U<br />

U<br />

2 2<br />

Composition Data Bias Precision<br />

CH4<br />

CO2<br />

= + =<br />

2 2<br />

0.80 2.40 2.53<br />

= + =<br />

2 2<br />

0.05 0.150 0.158<br />

Emission Factor Uncerta<strong>in</strong>ty:<br />

As noted above, an <strong>uncerta<strong>in</strong>ty</strong> of ± 33.1% was specified for the default emission factor. Any bias <strong>in</strong> the<br />

default emission factor is accounted for <strong>in</strong> the associated <strong>uncerta<strong>in</strong>ty</strong> value.<br />

Pilot Version, September 2009 4-9


EXHIBIT 4-1: Uncerta<strong>in</strong>ty Example for a Simple Emission Estimation, cont<strong>in</strong>ued<br />

Uncerta<strong>in</strong>ty aggregation – The follow<strong>in</strong>g calculations step through the aggregation of <strong>uncerta<strong>in</strong>ty</strong> for this<br />

emission source. First, the <strong>uncerta<strong>in</strong>ty</strong> of the emission estimates for CH 4 <strong>and</strong> CO 2 are calculated by<br />

apply<strong>in</strong>g the relative uncerta<strong>in</strong>ties to Equation 4-6.<br />

Urel ( ) = U + U + U<br />

2 2 2<br />

Emission Estimate Number of Devices Composition Data Emission Factor<br />

2<br />

2 ⎛2.53<br />

⎞<br />

2<br />

Urel ( )<br />

CH<br />

= 0 + 0.331 0.333 33.3%<br />

4 ⎜ ⎟ + = =<br />

⎝ 80 ⎠<br />

2<br />

2 ⎛0.158<br />

⎞<br />

2<br />

Urel ( )<br />

CO<br />

= 0 + 0.331 0.333 33.3%<br />

2 ⎜ ⎟ + = =<br />

⎝ 5 ⎠<br />

Next, the CH 4 emissions are converted to a CO 2 equivalent basis, s<strong>in</strong>ce there are no additional emission<br />

sources to sum for this example.<br />

CO2e = ( 226 tonnes CH<br />

4/yr × 21)<br />

+ 38.8 tonnes CO<br />

2/yr<br />

= 4,740 + 38.8 = 4,780 tonnes CO e/yr<br />

Note that the global warm<strong>in</strong>g potential (GWP) of CH 4 is treated as a constant.<br />

The absolute <strong>uncerta<strong>in</strong>ty</strong> for the aggregated CO 2 equivalent emissions are based on Equation 4-5 s<strong>in</strong>ce the<br />

uncerta<strong>in</strong>ties for both CH 4 <strong>and</strong> CO 2 are perfectly correlated (r = 1).<br />

( )<br />

U abs U U r U U<br />

2 2<br />

( )<br />

Correlated X + Y<br />

=<br />

X<br />

+<br />

Y<br />

+ 2<br />

X<br />

×<br />

Y<br />

2 2<br />

( ) ( ) r ( ) ( )<br />

( )<br />

2 2<br />

( )<br />

Correlated X + Y<br />

= 1,580 + 12.9 + 2× 1× 1,580 × 12.9 = 1,590<br />

2<br />

( )<br />

U ( abs) = 4,740× 0.333 + 38.8× 0.333 + 2 4,740 × 0.333 × 38.8×<br />

0.333<br />

U abs<br />

Correlated X + Y<br />

On a relative basis, this equates to 1,590/4,780 = 33.3%<br />

The f<strong>in</strong>al emission estimate for this example is 4,780 tonnes CO 2 e/yr ± 33.3%<br />

4.3.2 Fugitive Emission Estimation<br />

This next example demonstrates the <strong>uncerta<strong>in</strong>ty</strong> calculation for estimat<strong>in</strong>g methane emissions result<strong>in</strong>g<br />

from fugitive sources associated with an electric reciprocat<strong>in</strong>g compressor located <strong>in</strong> a conventional crude<br />

production operation. The example is taken from a Canadian study on GHG emission <strong>uncerta<strong>in</strong>ty</strong> (CAPP,<br />

2004).<br />

Pilot Version, September 2009 4-10


EXHIBIT 4-2: Uncerta<strong>in</strong>ty Example for Fugitive Emissions Estimation<br />

Input Data: Table 4-1 conta<strong>in</strong>s components counts <strong>and</strong> their uncerta<strong>in</strong>ties for an electric reciprocat<strong>in</strong>g<br />

compressor. The uncerta<strong>in</strong>ties shown for the component counts are the 95% confidence limits on the<br />

average number of components <strong>and</strong> were determ<strong>in</strong>ed from an analysis of field survey data. It is assumed<br />

that the sampl<strong>in</strong>g plan was designed to be representative of the component population, <strong>and</strong> therefore bias is<br />

elim<strong>in</strong>ated.<br />

Table 4-1. Component Counts <strong>and</strong> Uncerta<strong>in</strong>ties<br />

Equipment schedules for facilities <strong>in</strong> the upstream O&G <strong>in</strong>dustry<br />

Equipment<br />

Type<br />

Electric<br />

reciprocat<strong>in</strong>g<br />

compressor<br />

Lower<br />

Uncerta<strong>in</strong>ty<br />

(%)<br />

Upper<br />

Uncerta<strong>in</strong>ty<br />

(%)<br />

Component<br />

Type Service Count<br />

Connectors Gas/Vapor 275 18 18<br />

Connectors Light Liquid 2 77 77<br />

Controllers Fuel Gas 5 31 326<br />

Compressor Gas/Vapor 2 75 75<br />

Seals<br />

Open-ended Gas/Vapor 4 58 58<br />

L<strong>in</strong>es<br />

Valves Gas/Vapor 20 16 16<br />

Valves Light Liquid 1 77 77<br />

CAPP, Volume 5, Table 4.1, 2004<br />

Emissions Factor: Table 4-2 provides emission factors <strong>and</strong> their uncerta<strong>in</strong>ties for each of the components <strong>in</strong><br />

Table 4-1. Here also, bias is assumed to be elim<strong>in</strong>ated due to a well designed sampl<strong>in</strong>g plan.<br />

Table 4-2. Emission Factors <strong>and</strong> Uncerta<strong>in</strong>ties<br />

Summary of average emission factors for uncontrolled fugitive THC emissions<br />

(kg/hr/source) at UOG facilities.<br />

Factor<br />

Group<br />

Sweet/<br />

Sour Service<br />

Equipment<br />

Component<br />

Type<br />

Emissions<br />

Factors (kg<br />

THC/source-hr)<br />

Lower<br />

Uncerta<strong>in</strong>ty<br />

(%)<br />

Upper<br />

Uncerta<strong>in</strong>ty<br />

(%)<br />

Gas All Gas/Vapor Connectors 7.06E-04 31 31<br />

Gas All Light Liquid Connectors 5.51E-04 90 111<br />

Gas All Fuel Gas Controllers 2.38E-01 27 27<br />

Gas All Gas/Vapor Compressor 7.13E-01 36 36<br />

Seals<br />

Gas All Gas/Vapor Open-ended 4.27E-01 62 161<br />

L<strong>in</strong>es<br />

Gas All Gas/Vapor Valves 2.46E-03 15 15<br />

Gas All Light Liquid Valves 3.52E-03 19 19<br />

CAPP, Volume 3, Table 19, 2004<br />

Weight Fractions of Emissions: Table 4-3 conta<strong>in</strong>s the CH 4 weight fractions for <strong>gas</strong> production <strong>and</strong> light<br />

crude. The weight fractions are from Table C-7 of the 2009 API Compendium. Expert judgment was used<br />

to estimate the <strong>uncerta<strong>in</strong>ty</strong>. S<strong>in</strong>ce the <strong>uncerta<strong>in</strong>ty</strong> of the components <strong>and</strong> the emission factor give lower <strong>and</strong><br />

upper <strong>uncerta<strong>in</strong>ty</strong> bounds, it is important to have lower <strong>and</strong> upper <strong>uncerta<strong>in</strong>ty</strong> levels for the weight fraction<br />

as well.<br />

Pilot Version, September 2009 4-11


EXHIBIT 4-2: Uncerta<strong>in</strong>ty Example for Fugitive Emissions Estimation, cont<strong>in</strong>ued<br />

Methane Emissions<br />

Table 4-3. Methane Weight Fractions for Production Operations by Service<br />

Operations Wt. Fraction<br />

Lower<br />

Uncerta<strong>in</strong>ty<br />

(%)<br />

Upper<br />

Uncerta<strong>in</strong>ty<br />

(%)<br />

Conventional Oil: 0.523 5% 5%<br />

Gas Service<br />

Conventional Oil: 0.0363 5% 5%<br />

Light Liquid Service<br />

Source: Picard, D. J., B. D. Ross, <strong>and</strong> D. W. H. Koon. A Detailed Inventory of CH 4<br />

<strong>and</strong> VOC Emissions from Upstream Oil <strong>and</strong> Gas Operations <strong>in</strong> Alberta, Volume II<br />

Development of the Inventory, Canadian Petroleum Association, March 1992,<br />

Tables 12 through 15.<br />

The methane emissions are estimated by the follow<strong>in</strong>g equation.<br />

Methane Emissions = Component Count × Emissions Factor × Weight Fraction<br />

Uncerta<strong>in</strong>ty Estimate:<br />

o To estimate the <strong>uncerta<strong>in</strong>ty</strong> of the emissions for the <strong>in</strong>dividual components, use Equation 4-6, the<br />

equation for the <strong>uncerta<strong>in</strong>ty</strong> of a product. This applies the relative uncerta<strong>in</strong>ties for uncerta<strong>in</strong>ties<br />

that are <strong>in</strong>dependent. For this example, the equation is written as:<br />

Urel U U U<br />

2 2 2<br />

( ) component<br />

= count<br />

+ emission factor<br />

+ weight fraction<br />

For example, the total methane emissions for compressor seals are:<br />

0.713 kg 8760hr tonnes<br />

Emissions = 2 seals× × 0.523 wt. fraction × × = 6.53 tonnes/yr<br />

hr-source year 1000kg<br />

The lower <strong>uncerta<strong>in</strong>ty</strong> of this estimate is calculated as follows:<br />

Urel U U U<br />

2 2 2 2 2 2<br />

( )<br />

component<br />

=<br />

count<br />

+<br />

EF<br />

+<br />

wt fraction<br />

= 0.75 + 0.36 + 0.05 = 83.3%<br />

o<br />

Note that <strong>in</strong> the emissions formula, there are two constants. Multiplication by a constant does not<br />

change the relative <strong>uncerta<strong>in</strong>ty</strong> of an estimate. The total methane emissions are the sum of the<br />

methane emissions for all of the components. The total <strong>uncerta<strong>in</strong>ty</strong> for methane emissions result<strong>in</strong>g<br />

from fugitive sources associated with the electric reciprocat<strong>in</strong>g compressor are calculated us<strong>in</strong>g<br />

Equation 4-4, which applies the absolute uncerta<strong>in</strong>ties for the <strong>uncerta<strong>in</strong>ty</strong> of a sum.<br />

Pilot Version, September 2009 4-12


EXHIBIT 4-2: Uncerta<strong>in</strong>ty Example for Fugitive Emissions Estimation, cont<strong>in</strong>ued<br />

o<br />

Table 4-4 gives the methane emissions for the <strong>in</strong>dividual components <strong>and</strong> their uncerta<strong>in</strong>ties along<br />

with the total methane emissions <strong>and</strong> its <strong>uncerta<strong>in</strong>ty</strong>. The 95% confidence <strong>in</strong>terval bounds for the<br />

total methane emissions is shown as (7.41, 30.6) tonnes/year.<br />

Table 4-4. Estimated Fugitive CH 4 Emission<br />

Equipment Type<br />

Electric reciprocat<strong>in</strong>g compressor<br />

Relative<br />

Absolute<br />

Component<br />

Type<br />

Service<br />

CH 4<br />

Emissions<br />

Lower<br />

Uncerta<strong>in</strong>ty<br />

(%)<br />

Upper<br />

Uncerta<strong>in</strong>ty<br />

(%)<br />

Lower<br />

Uncerta<strong>in</strong>ty<br />

Upper<br />

Uncerta<strong>in</strong>ty<br />

Connectors Gas/Vapor 0.889 36.2 36.2 0.322 0.322<br />

Connectors Light Liquid 0.000350 100 a 135 0.000350 0.000474<br />

Controllers Fuel Gas 0.545 41.4 327 0.226 1.78<br />

Compressor Gas/Vapor 6.53 83.3 83.3 5.44 5.44<br />

Seals<br />

Open-ended Gas/Vapor 7.83 85.0 171 6.66 13.4<br />

L<strong>in</strong>es<br />

Valves Gas/Vapor 0.225 22.5 22.5 0.0507 0.0507<br />

Valves Light Liquid 0.00112 79.5 79.5 0.000889 0.000889<br />

TOTAL 16.0 53.7 91.0 8.61 14.6<br />

a This value was truncated (set to -100%) s<strong>in</strong>ce the emissions cannot be less than 0.<br />

4.3.3 Emission Factor Uncerta<strong>in</strong>ty<br />

The decision tree presented <strong>in</strong> Figure 4-3 addresses <strong>uncerta<strong>in</strong>ty</strong> for emission factor data. Uncerta<strong>in</strong>ties<br />

may be published along with the literature values for emission factors, <strong>in</strong> which case, the <strong>uncerta<strong>in</strong>ty</strong> from<br />

the literature should be used. If the uncerta<strong>in</strong>ties associated with literature values are unavailable or data<br />

are not available to calculate <strong>uncerta<strong>in</strong>ty</strong>, one must rely on expert judgment to estimate the <strong>uncerta<strong>in</strong>ty</strong>.<br />

Expert judgment <strong>in</strong>volves a person, or group of people, familiar with the systems assign<strong>in</strong>g an<br />

<strong>uncerta<strong>in</strong>ty</strong> to the estimate based on knowledge of the process. It is used when there is no<br />

<strong>in</strong>formation to quantify the <strong>uncerta<strong>in</strong>ty</strong> based on data or manufacturer’s specifications of the<br />

measured parameter. Expert judgment is covered <strong>in</strong> Sections 2.2, 3.2.2.3, <strong>and</strong> Annex 2A.1 of the<br />

2006 IPCC Guidel<strong>in</strong>es for National Greenhouse Gas Inventories (IPCC, 2006). Section 7 of the<br />

ISO-5168 expla<strong>in</strong>s how to deal with <strong>uncerta<strong>in</strong>ty</strong> estimates based on expert judgment (ISO,<br />

2005).<br />

Pilot Version, September 2009 4-13


Further guidance for assign<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> values is provided <strong>in</strong> Section 5 <strong>in</strong> the context of<br />

quantify<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> for the GHG <strong>in</strong>ventory of a hypothetical <strong>oil</strong> <strong>and</strong> <strong>gas</strong> facility. The<br />

follow<strong>in</strong>g example demonstrates <strong>uncerta<strong>in</strong>ty</strong> estimation for a default emission factor.<br />

EXHIBIT 4-3: Uncerta<strong>in</strong>ty Example for Emission Factors<br />

Input Data:<br />

o The CO 2 emissions factor for <strong>natural</strong> <strong>gas</strong> <strong>in</strong> production (non-pipel<strong>in</strong>e quality) is 0.0547 tonnes/10 6<br />

Btu (HHV) (from Table 4-2 of the 2009 API Compendium). An estimate of <strong>uncerta<strong>in</strong>ty</strong> for this<br />

value is not provided <strong>in</strong> the orig<strong>in</strong>al reference, so an <strong>uncerta<strong>in</strong>ty</strong> of 10% at the 95% confidence<br />

<strong>in</strong>terval is assumed based on expert judgment. Bias is assumed to be accounted for <strong>in</strong> this value.<br />

o Similarly, the <strong>natural</strong> <strong>gas</strong> heat<strong>in</strong>g values is 1020 Btu/scf (from Table 3-8 of the 2009 API<br />

Compendium). An estimate of <strong>uncerta<strong>in</strong>ty</strong> for this value is not provided <strong>in</strong> the orig<strong>in</strong>al reference so<br />

an <strong>uncerta<strong>in</strong>ty</strong> of 10% at the 95% confidence <strong>in</strong>terval is assumed based on expert judgment. Bias is<br />

assumed to be accounted for <strong>in</strong> this value.<br />

Emission Factor Estimate:<br />

o The emission factor is quantified as the product of the carbon content <strong>and</strong> heat<strong>in</strong>g value, as shown<br />

by the follow<strong>in</strong>g formula:<br />

6<br />

Emission Factor Gas Carbon Content Heat<strong>in</strong>g Value 10 scf/MMscf<br />

× × ×<br />

6<br />

(tonnes CO<br />

2/MMscf) (tonnes CO<br />

2/MMBtu) (Btu/scf) 10 Btu/MMBtu<br />

Uncerta<strong>in</strong>ty Estimate:<br />

o For the purpose of this example, the uncerta<strong>in</strong>ties associated with the carbon content <strong>and</strong> heat<strong>in</strong>g<br />

value are assumed to be <strong>in</strong>dependent because the values are cited from different literature<br />

references <strong>and</strong> are not based on measured data. Therefore, Equation 4-6 is applied to estimate the<br />

<strong>uncerta<strong>in</strong>ty</strong> for the emission factor. This applies the relative uncerta<strong>in</strong>ties for the carbon content<br />

<strong>and</strong> heat<strong>in</strong>g value.<br />

⎛U<br />

X ⎞ ⎛UY<br />

⎞<br />

U ( Rel)<br />

X × Y<br />

= ⎜ ⎟ + ⎜ ⎟<br />

⎝ X ⎠ ⎝ Y ⎠<br />

2<br />

2<br />

U = + =<br />

2 2<br />

(Rel)<br />

Emission Factor<br />

0.10 0.10 0.141<br />

The result<strong>in</strong>g emission factor is then:<br />

6<br />

0.0547 tonnes CO2<br />

1,020 Btu 10 scf/MMscf<br />

6<br />

Emission Factor = × ×<br />

MMBtu scf 10 Btu/MMBtu<br />

Emission Factor = 55.8 ± 14.1% tonnes CO /MMscf<br />

( )<br />

2<br />

Pilot Version, September 2009 4-14


Emission Factor Uncerta<strong>in</strong>ty<br />

Are you apply<strong>in</strong>g a default<br />

emission factor or are you us<strong>in</strong>g<br />

site-specific data?<br />

Site specific emission data<br />

Refer to Measurement Decision<br />

Tree<br />

Default emission factor<br />

Do the default emission<br />

factors have <strong>uncerta<strong>in</strong>ty</strong><br />

specified or quantified?<br />

Yes<br />

Apply reported <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong><br />

progress to Uncerta<strong>in</strong>ty<br />

Aggregation<br />

No<br />

Assign <strong>uncerta<strong>in</strong>ty</strong> based on expert<br />

judgment <strong>and</strong> document reasons<br />

support<strong>in</strong>g the assignment.<br />

Progress to Uncerta<strong>in</strong>ty Aggregation.<br />

Figure 4-3. Decision Diagram for Emission Factor Uncerta<strong>in</strong>ty<br />

Pilot Version, September 2009 4-15


4.4 Quantify<strong>in</strong>g Measurement Uncerta<strong>in</strong>ty<br />

Ideally, one would develop emission estimates <strong>and</strong> associated <strong>uncerta<strong>in</strong>ty</strong> from measured facility data.<br />

This data could be obta<strong>in</strong>ed either from periodic sampl<strong>in</strong>g or by cont<strong>in</strong>uous monitor<strong>in</strong>g. The decision tree<br />

provided <strong>in</strong> Figure 4-4 directs the user to the appropriate equations for quantify<strong>in</strong>g measurement<br />

<strong>uncerta<strong>in</strong>ty</strong>. Follow<strong>in</strong>g the decision tree provided, we will first exam<strong>in</strong>e the equations for aggregat<strong>in</strong>g<br />

<strong>uncerta<strong>in</strong>ty</strong> for a s<strong>in</strong>gle measurement po<strong>in</strong>t.<br />

Are the data based on a s<strong>in</strong>gle<br />

po<strong>in</strong>t measurement or multiple<br />

measurements?<br />

S<strong>in</strong>gle po<strong>in</strong>t<br />

Determ<strong>in</strong>e what parameters<br />

contribute to <strong>uncerta<strong>in</strong>ty</strong>. Note that<br />

bias may be one of the parameters.<br />

Are the uncerta<strong>in</strong>ties <strong>in</strong> the<br />

measurements <strong>in</strong>dependent? (See text<br />

for guidance)<br />

Yes<br />

Apply “Square root of the sum of the<br />

squares” to aggregate <strong>uncerta<strong>in</strong>ty</strong><br />

parameters that are <strong>in</strong>dependent<br />

(Equation 4-4)<br />

No<br />

Apply Equation 4-5 to aggregate the<br />

<strong>uncerta<strong>in</strong>ty</strong> for parameters that are<br />

correlated.<br />

Although there is only a s<strong>in</strong>gle measurement value <strong>in</strong> this application, such as the cumulative flow rate<br />

through a totalizer meter, there may be more than one parameter that contributes to the <strong>uncerta<strong>in</strong>ty</strong> of the<br />

measurement. For example, Section 3.2 <strong>in</strong>dicates that the follow<strong>in</strong>g items need to be considered when<br />

estimat<strong>in</strong>g measurement <strong>uncerta<strong>in</strong>ty</strong>:<br />

• Uncerta<strong>in</strong>ty of the measurement <strong>in</strong>strument;<br />

• Additional <strong>uncerta<strong>in</strong>ty</strong> of “context specific” factors (discussed previously <strong>in</strong> Section 3.2); <strong>and</strong><br />

• Uncerta<strong>in</strong>ty of measurement corrections, e.g., pressure <strong>and</strong> temperature corrections for <strong>gas</strong> meters<br />

measurements.<br />

The aggregated <strong>uncerta<strong>in</strong>ty</strong> from these parameters is calculated by either apply<strong>in</strong>g Equation 4-4 for<br />

<strong>in</strong>dependent parameters or Equation 4-5 for correlated parameters.<br />

Example –S<strong>in</strong>gle Flow Measurement<br />

The follow<strong>in</strong>g example demonstrates the <strong>uncerta<strong>in</strong>ty</strong> calculation for estimat<strong>in</strong>g CO 2 emissions result<strong>in</strong>g<br />

from the combustion of produced <strong>natural</strong> <strong>gas</strong>. The scenario presented is based on a s<strong>in</strong>gle measurement of<br />

the flow.<br />

Pilot Version, September 2009 4-16


Measurement Uncerta<strong>in</strong>ty<br />

Are the data based on a s<strong>in</strong>gle<br />

po<strong>in</strong>t measurement or multiple<br />

measurements?<br />

S<strong>in</strong>gle po<strong>in</strong>t<br />

Determ<strong>in</strong>e what parameters contribute<br />

to <strong>uncerta<strong>in</strong>ty</strong>. Note that bias may be<br />

one of the parameters. Are the errors <strong>in</strong><br />

the measurements <strong>in</strong>dependent? (See<br />

text for guidance)<br />

Yes<br />

Apply “Square root of the sum of the<br />

squares” to aggregate <strong>uncerta<strong>in</strong>ty</strong><br />

parameters that are <strong>in</strong>dependent (Equation<br />

4-4).<br />

No<br />

Apply Equation 4-5 to aggregate the<br />

<strong>uncerta<strong>in</strong>ty</strong> for parameters that are<br />

correlated.<br />

Multiple po<strong>in</strong>ts<br />

Do the measurements<br />

represent a sampl<strong>in</strong>g of the<br />

measured parameter?<br />

No<br />

Yes<br />

Apply Equations 4-1 through 4-3 to calculate the mean <strong>and</strong> st<strong>and</strong>ard<br />

deviation, respectively.<br />

Apply Equation 4-8 to estimate the <strong>uncerta<strong>in</strong>ty</strong> based on the measured<br />

data, OR apply Equation 4-9 to estimate <strong>uncerta<strong>in</strong>ty</strong> for a s<strong>in</strong>gle<br />

observed estimate where other data are used to quantify the<br />

<strong>uncerta<strong>in</strong>ty</strong>.<br />

Determ<strong>in</strong>e what (additional) parameters<br />

contribute to <strong>uncerta<strong>in</strong>ty</strong>. Note that bias<br />

may be one of the parameters.<br />

Are the errors <strong>in</strong> the measurements<br />

<strong>in</strong>dependent? (See text for guidance)<br />

Yes<br />

Apply Equation 4-4 to aggregate <strong>uncerta<strong>in</strong>ty</strong> for<br />

addition/ subtraction of data.<br />

Apply Equation 4-6 to aggregate <strong>uncerta<strong>in</strong>ty</strong> for<br />

multiplication/ division of data.<br />

No<br />

Apply Equation 4-5 to aggregate <strong>uncerta<strong>in</strong>ty</strong> for<br />

addition/ subtraction of data.<br />

Apply Equation 4-7 to aggregate <strong>uncerta<strong>in</strong>ty</strong> for<br />

multiplication/ division of data.<br />

Aggregate the <strong>uncerta<strong>in</strong>ty</strong> parameters<br />

by apply<strong>in</strong>g the “Square root of the<br />

sum of the squares.” (Equation 4-4)<br />

Figure 4-4. Decision Diagram for Measurement Uncerta<strong>in</strong>ty<br />

Pilot Version, September 2009 4-17


EXHIBIT 4-4: Uncerta<strong>in</strong>ty Example for S<strong>in</strong>gle Flow Measurement<br />

Input Data<br />

Flow for a <strong>gas</strong>eous fuel is measured us<strong>in</strong>g a totalizer meter prior to be<strong>in</strong>g routed to a combustion device.<br />

The total annual flow rate for the fuel is 18,361 MMscf/yr. Because the meter records a cumulative flow,<br />

the <strong>uncerta<strong>in</strong>ty</strong> associated with this measurement is not reduced by tak<strong>in</strong>g daily or monthly read<strong>in</strong>gs of the<br />

flow. The <strong>uncerta<strong>in</strong>ty</strong> of this measurement is determ<strong>in</strong>ed by follow<strong>in</strong>g the decision tree from Figure 4-4<br />

through the measurement <strong>uncerta<strong>in</strong>ty</strong>. The <strong>uncerta<strong>in</strong>ty</strong> of the measurement value is then aggregated.<br />

Uncerta<strong>in</strong>ty Assessment:<br />

Measurement <strong>uncerta<strong>in</strong>ty</strong><br />

o From Section 3.2 Table 3-4, the r<strong>and</strong>om error that is expected for a properly <strong>in</strong>stalled <strong>and</strong> operated<br />

orifice meter is 1.5% (95% confidence <strong>in</strong>terval) when the meter is operat<strong>in</strong>g at 30-100% of the<br />

measurement range. For this example, this equates to an absolute <strong>uncerta<strong>in</strong>ty</strong> value of:<br />

o<br />

o<br />

o<br />

MMscf<br />

18,361 × 0.015 = 275<br />

yr<br />

“Context-specific” factors <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> of pressure <strong>and</strong> temperature corrections for <strong>gas</strong><br />

meters can be based on expert data as summarized <strong>in</strong> <strong>in</strong>dustry st<strong>and</strong>ards referenced <strong>in</strong> Section 3.0.<br />

In the absence of quantitative <strong>in</strong>formation about this <strong>uncerta<strong>in</strong>ty</strong>, this example provides a sensitivity<br />

analysis of the impact of assum<strong>in</strong>g a range of context-specific <strong>uncerta<strong>in</strong>ty</strong> values: 10%, 25%, <strong>and</strong><br />

100% (on a relative <strong>uncerta<strong>in</strong>ty</strong> basis). These values were selected to test the sensitivity of the<br />

calculations <strong>and</strong> assess the effect over a wide range of variability.<br />

For this example, it is assumed that it is not possible to quantify the bias. This meter was <strong>in</strong>stalled<br />

accord<strong>in</strong>g to the manufacture’s requirements 17 years ago <strong>and</strong> has an expected life span of 25 years.<br />

The meter was last calibrated 7 years ago. Due to the <strong>in</strong>stallation <strong>and</strong> calibration of the equipment,<br />

expert judgment was used to estimate a 5% bias <strong>in</strong> the measurement. This equates to an absolute<br />

<strong>uncerta<strong>in</strong>ty</strong> value of:<br />

MMscf<br />

18,361 × 0.05 = 918<br />

yr<br />

As shown <strong>in</strong> the measurement <strong>uncerta<strong>in</strong>ty</strong> decision tree (Figure 4-4), the selection of an equation<br />

depends on whether the uncerta<strong>in</strong>ties are related (correlated). For this example, the <strong>uncerta<strong>in</strong>ty</strong><br />

components (bias, meter error, <strong>and</strong> context-specific factors) are <strong>in</strong>dependent. To calculate the total<br />

<strong>uncerta<strong>in</strong>ty</strong> of a s<strong>in</strong>gle measurement for this example, Equation 4-4 is applied to account for the<br />

uncerta<strong>in</strong>ties associated with the measurement, the other context-specific factors, <strong>and</strong> bias:<br />

U abs U U U<br />

2 2 2<br />

( ) Aggregated<br />

= measurement<br />

+ context specific<br />

+ bias<br />

For example, if the context specific <strong>uncerta<strong>in</strong>ty</strong> is 10% on a relative basis (1,840 on an absolute basis), the<br />

aggregated <strong>uncerta<strong>in</strong>ty</strong> is:<br />

U abs = + + =<br />

2 2 2<br />

( )<br />

Aggregated<br />

275 1836.1 918 2,070<br />

(or 11.3% on a relative <strong>uncerta<strong>in</strong>ty</strong> basis)<br />

Pilot Version, September 2009 4-18


EXHIBIT 4-4: Uncerta<strong>in</strong>ty Example for S<strong>in</strong>gle Flow Measurement, cont<strong>in</strong>ued<br />

The follow<strong>in</strong>g table shows the calculated aggregate <strong>uncerta<strong>in</strong>ty</strong> for the different values of the context-specific<br />

factors due to pressure <strong>and</strong> temperature corrections.<br />

Meter Measurement<br />

Uncerta<strong>in</strong>ty, 10 6 scf<br />

(1.5%)<br />

Table 4-5. Uncerta<strong>in</strong>ty <strong>in</strong> a S<strong>in</strong>gle Measurement<br />

Assigned<br />

Context Specific<br />

Uncerta<strong>in</strong>ty, %<br />

Context Specific<br />

Uncerta<strong>in</strong>ty,<br />

10 6 scf (absolute)<br />

Bias,<br />

10 6 scf<br />

(5 %)<br />

S<strong>in</strong>gle Measurement<br />

Total Uncerta<strong>in</strong>ty,<br />

10 6 scf (absolute)<br />

S<strong>in</strong>gle<br />

Measurement<br />

Total<br />

Uncerta<strong>in</strong>ty, %<br />

275 10 1,840 918 2,070 11.3%<br />

275 25 4,590 918 4,690 25.5%<br />

275 100 18,400 918 18,400 100%<br />

Example – Multiple Flow Measurements<br />

The next example demonstrates the <strong>uncerta<strong>in</strong>ty</strong> calculation for estimat<strong>in</strong>g CO 2 emissions result<strong>in</strong>g from the<br />

combustion of produced <strong>natural</strong> <strong>gas</strong>. Two methods are compared. The first calculates an annual average<br />

CO 2 emission factor based on monthly <strong>natural</strong> <strong>gas</strong> composition measurements <strong>and</strong> an annual summation of<br />

daily flow rates. The second determ<strong>in</strong>es a monthly CO 2 emission factor based on a monthly <strong>natural</strong> <strong>gas</strong><br />

composition sample <strong>and</strong> applies a monthly summation of daily flow rates.<br />

EXHIBIT 4-5: Uncerta<strong>in</strong>ty Example for Multiple Flow Measurements<br />

Table 4-5 shows flow measurement data for produced <strong>natural</strong> <strong>gas</strong> that is routed to a combustion device. The fuel<br />

flow is measured cont<strong>in</strong>uously (scf/sec) with an orifice meter. A data acquisition system records the daily flow rate<br />

measurements. The daily <strong>and</strong> monthly totals are shown <strong>in</strong> Table 4-6.<br />

Uncerta<strong>in</strong>ty Assessment:<br />

Measurement <strong>uncerta<strong>in</strong>ty</strong><br />

o<br />

o<br />

o<br />

o<br />

The total volume of <strong>gas</strong> combusted for this example results <strong>in</strong> an annual flow rate of 1,187×10 6 scf.<br />

Because the flow is measured cont<strong>in</strong>uously (with the total recorded daily), this is not considered a sampl<strong>in</strong>g<br />

of data so Equations 4-1 <strong>and</strong> 4-3 do not apply.<br />

From Section 3.2 Table 3-4, the r<strong>and</strong>om error that is expected for a properly <strong>in</strong>stalled <strong>and</strong> operated orifice<br />

meter is 1.5% (95% confidence <strong>in</strong>terval) when the meter is operat<strong>in</strong>g at 30-100% of the measurement range.<br />

The context-specific factors discussed previously also apply for this example. Aga<strong>in</strong>, a sensitivity analysis<br />

is applied for the context-specific <strong>uncerta<strong>in</strong>ty</strong> values of 10%, 25%, <strong>and</strong> 100%.<br />

As with the S<strong>in</strong>gle Flow Measurement example, expert judgment was used to assign a 5% bias <strong>in</strong> the<br />

measurement.<br />

Pilot Version, September 2009 4-19


EXHIBIT 4-5: Uncerta<strong>in</strong>ty Example for Multiple Flow Measurements, cont<strong>in</strong>ued<br />

Table 4-6. Flow Measurements (<strong>in</strong> Mscf/day)<br />

Day Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec.<br />

1 3,374 2,344 3,102 3,483 3,321 3,530 2,974 3,484 3,559 3,269 3,239 3,344<br />

2 3,403 2,373 3,329 3,471 3,331 3,518 3,033 3,400 3,494 3,365 3,210 3,231<br />

3 3,381 2,235 3,406 3,530 3,342 3,480 3,254 3,372 3,503 3,236 3,207 3,275<br />

4 3,319 2,276 3,419 3,606 3,335 3,460 3,417 3,406 3,679 3,162 3,132 3,402<br />

5 3,299 2,319 3,555 3,597 3,342 3,503 3,329 3,385 3,636 3,240 3,107 3,570<br />

6 3,173 2,215 3,737 3,501 3,342 3,487 3,034 3,393 3,604 3,233 3,047 3,364<br />

7 3,182 2,459 3,711 3,486 3,378 3,463 2,915 3,449 3,601 3,239 3,060 3,209<br />

8 3,257 2,288 3,771 3,441 3,253 3,323 3,007 3,370 3,541 3,370 3,101 3,344<br />

9 2,985 2,572 3,806 3,400 3,320 3,253 3,158 3,506 3,544 3,347 2,969 3,286<br />

10 3,022 2,433 3,507 3,348 3,301 3,551 3,330 3,412 3,507 3,433 2,901 3,158<br />

11 2,830 2,769 3,340 3,305 3,332 3,478 3,198 3,464 3,557 3,458 3,154 3,186<br />

12 2,914 2,640 3,328 3,370 3,395 3,510 3,262 3,449 3,459 3,405 3,425 3,037<br />

13 2,864 2,431 3,377 3,452 3,348 3,471 3,263 3,341 3,518 3,424 3,488 2,834<br />

14 2,641 2,767 3,432 3,467 3,246 3,302 3,339 3,435 3,484 3,389 3,323 2,849<br />

15 2,647 2,687 3,390 3,465 3,229 3,534 3,158 3,489 3,418 3,397 3,234 2,819<br />

16 2,519 2,888 3,424 3,579 3,322 3,590 3,188 3,468 3,404 3,404 3,434 2,901<br />

17 2,670 2,912 3,432 3,605 3,344 3,475 3,239 3,369 3,425 3,404 3,381 2,807<br />

18 2,482 3,006 3,424 3,543 3,387 3,445 3,114 3,409 3,417 3,407 3,376 2,892<br />

19 2,569 3,089 3,522 3,477 3,356 3,520 3,225 3,362 3,468 3,216 3,382 2,942<br />

20 2,320 3,299 3,444 3,335 3,136 3,561 3,220 3,356 3,474 3,233 3,389 2,915<br />

21 2,405 3,401 3,551 3,545 3,291 3,449 3,122 3,488 3,483 3,295 3,420 2,968<br />

22 2,368 2,945 3,436 3,486 3,463 3,389 2,830 3,374 3,466 3,200 3,464 2,982<br />

23 2,287 3,147 3,495 3,460 3,430 3,474 2,962 3,296 3,447 3,257 3,463 2,942<br />

24 2,277 3,398 3,446 3,461 3,405 3,351 3,546 3,330 3,355 3,282 3,410 3,028<br />

25 2,214 3,521 3,563 3,530 3,430 3,352 3,333 3,422 3,371 3,241 3,346 3,089<br />

26 2,168 3,414 3,511 3,424 3,472 3,316 3,373 3,308 3,383 3,188 3,434 2,963<br />

27 2,216 3,241 3,392 3,482 3,555 3,269 3,516 3,302 3,384 3,177 3,480 2,891<br />

28 2,306 3,206 3,246 3,295 3,550 3,262 3,564 3,483 3,369 3,222 3,307 2,954<br />

29 2,091 3,394 3,336 3,543 3,297 3,547 3,553 3,376 3,300 3,244 3,113<br />

30 2,108 3,489 3,345 3,555 3,262 3,564 3,593 3,304 3,240 3,305 3,047<br />

31 2,209 3,470 3,537 3,611 3,557 3,241 2,972<br />

Total,<br />

10 3 scf/<br />

month<br />

83,500 78,275 107,449 103,825 104,590 102,874 100,624 106,027 104,232 102,277 98,432 95,313<br />

o<br />

S<strong>in</strong>ce the uncerta<strong>in</strong>ties associated with the meter, the context-specific factors, <strong>and</strong> the bias are <strong>in</strong>dependent (there<br />

is no autocorrelation), we can apply Equation 4-4 to estimate the <strong>uncerta<strong>in</strong>ty</strong>. The absolute uncerta<strong>in</strong>ties are used<br />

<strong>in</strong> this equation. The results are shown <strong>in</strong> Table 4-7 below.<br />

December<br />

∑<br />

2 2 2<br />

( )<br />

U ( abs)<br />

= U + U + U<br />

Year Measurementi context specifici Biasi<br />

i=<br />

January<br />

Pilot Version, September 2009 4-20


EXHIBIT 4-5: Uncerta<strong>in</strong>ty Example for Multiple Flow Measurements, cont<strong>in</strong>ued<br />

Table 4-7. Uncerta<strong>in</strong>ty <strong>in</strong> Summation of Flow Measurements - Annual<br />

Assigned Context<br />

Specific Uncerta<strong>in</strong>ty, %<br />

Annual Measurement<br />

Total Uncerta<strong>in</strong>ty<br />

(absolute), 10 3 scf<br />

Annual Measurement<br />

Flow Rate<br />

Uncerta<strong>in</strong>ty, %<br />

10 133,947 11.28%<br />

25 303,257 25.54%<br />

100 1,189,036 100.14%<br />

As with the annual volume, the uncerta<strong>in</strong>ties associated with the meter (1.5%), the context-specific factors<br />

(assigned 10%, 25%, <strong>and</strong> 100% to exam<strong>in</strong>e the sensitivity of this <strong>uncerta<strong>in</strong>ty</strong>), <strong>and</strong> bias (5%) apply to the<br />

daily read<strong>in</strong>gs <strong>and</strong> monthly totals. Summ<strong>in</strong>g the daily flow rates for the monthly totals results <strong>in</strong> the same<br />

relative uncerta<strong>in</strong>ties as shown <strong>in</strong> Table 4-6. Table 4-8 summarizes the absolute uncerta<strong>in</strong>ties for the monthly<br />

flow rates.<br />

Table 4-8. Uncerta<strong>in</strong>ty <strong>in</strong> Summation of Flow Measurements – Monthly<br />

Monthly Measurement Flow Rate Uncerta<strong>in</strong>ty<br />

Relative Uncerta<strong>in</strong>ty, % 11.28% 25.54% 100.14%<br />

10% 25% 100%<br />

Month MMscf (absolute uncerta<strong>in</strong>ties, 10 3 scf)<br />

January 83.50 9,419 21,325 83,614<br />

February 78.28 8,830 19,991 78,382<br />

March 107.45 12,121 27,442 107,595<br />

April 103.83 11,712 26,516 103,966<br />

May 104.59 11,798 26,712 104,733<br />

June 102.87 11,605 26,273 103,014<br />

July 100.62 11,351 25,699 100,761<br />

August 106.03 11,960 27,078 106,171<br />

September 104.23 11,758 26,620 104,374<br />

October 102.28 11,537 26,121 102,417<br />

November 98.43 11,104 25,139 98,566<br />

December 95.31 10,752 24,342 95,443<br />

4.4.1 Measurement Uncerta<strong>in</strong>ty – Multiple Measurements<br />

Cont<strong>in</strong>u<strong>in</strong>g with the decision tree provided <strong>in</strong> Figure 4-4, where multiple measurement po<strong>in</strong>ts are available,<br />

the correspond<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> can be derived on the basis of a statistical sample. See Cochran, 1977 for a<br />

comprehensive guide to sampl<strong>in</strong>g.<br />

Pilot Version, September 2009 4-21


Are the data based on a s<strong>in</strong>gle<br />

po<strong>in</strong>t measurement or multiple<br />

measurements?<br />

Multiple po<strong>in</strong>ts<br />

Do the measurements<br />

represent a sampl<strong>in</strong>g of the<br />

measured parameter?<br />

Yes<br />

Apply Equations 4-1 through 4-3 to calculate the mean <strong>and</strong><br />

st<strong>and</strong>ard deviation, respectively.<br />

Apply Equation 4-8 to estimate the <strong>uncerta<strong>in</strong>ty</strong> based on the<br />

measured data, OR apply Equation 4-9 to estimate <strong>uncerta<strong>in</strong>ty</strong> for a<br />

s<strong>in</strong>gle observed estimate where other data is used for to quantify<br />

the <strong>uncerta<strong>in</strong>ty</strong>.<br />

The sample st<strong>and</strong>ard deviation “<strong>in</strong>cludes contributions to the precision both from the measurement system<br />

<strong>and</strong> from the material composition variation from sample to sample” (Coleman <strong>and</strong> Steele, 1989). In other<br />

words, if the measured data for an emission source are derived from a statistical sample, the use of the<br />

st<strong>and</strong>ard deviation as a measure of the spread of the data accounts for <strong>uncerta<strong>in</strong>ty</strong> of the measurement<br />

<strong>in</strong>strument <strong>and</strong> the differences among the samples. For example, if three samples are taken every month<br />

<strong>and</strong> the data for the 36 samples are used to calculate a yearly mean, the <strong>uncerta<strong>in</strong>ty</strong> calculated from these<br />

samples accounts for both the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the measurement <strong>in</strong>strument <strong>and</strong> the variability among<br />

observations. Thus, this <strong>uncerta<strong>in</strong>ty</strong> will be larger than the <strong>uncerta<strong>in</strong>ty</strong> due to measurement error alone. As<br />

the sample size <strong>in</strong>creases, the <strong>uncerta<strong>in</strong>ty</strong> that comb<strong>in</strong>es the <strong>in</strong>strument error <strong>and</strong> context-specific factors<br />

will decrease.<br />

Next, we would calculate the st<strong>and</strong>ard deviation of the sample us<strong>in</strong>g Equation 4-1. The IPCC Good<br />

Practices document <strong>and</strong> others recommend apply<strong>in</strong>g the Equation 4-8 to quantify the <strong>uncerta<strong>in</strong>ty</strong> of the<br />

data set (IPCC, 2001), which is also referred to as the relative exp<strong>and</strong>ed <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong> can be thought of<br />

as half the b<strong>and</strong>width of a 95% confidence <strong>in</strong>terval (ISO, 2005).<br />

t×<br />

s( x)/<br />

n<br />

U( rel)( x) = × 100%<br />

(Equation 4-8)<br />

x<br />

where<br />

U(Rel)(x) = the relative exp<strong>and</strong>ed <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the data set (%);<br />

t = a value based on Student’s t-distribution with n-1 degrees of freedom which gives a 95%<br />

confidence <strong>in</strong>terval;<br />

x = is the mean for the set of data calculated <strong>in</strong> Equation 4-3;<br />

s( x ) = the st<strong>and</strong>ard deviation of the data set calculated <strong>in</strong> Equation 4-2; <strong>and</strong><br />

n = the sample size for the set of data.<br />

If one uses a s<strong>in</strong>gle observation as an estimate <strong>and</strong> uses other data to calculate the <strong>uncerta<strong>in</strong>ty</strong>,<br />

Section A1.2.3 of the IPCC Good Practices document expla<strong>in</strong>s that Equation 4-9 should be used <strong>in</strong>stead of<br />

Equation 4-8 (IPCC, 2006). IPCC’s example application of this approach is for the use of s<strong>in</strong>gle emission<br />

estimate for a particular year that has been calculated on more than one occasion. The recalculations have<br />

Pilot Version, September 2009 4-22


occurred as a result of changes <strong>in</strong> the methodology, corrections, or as a result of new data. In this case, it is<br />

the st<strong>and</strong>ard deviation of the sample set that is appropriate <strong>and</strong> not the st<strong>and</strong>ard deviation of the mean.<br />

t×<br />

s( x)<br />

U( rel)( x) = × 100%<br />

(Equation 4-9)<br />

x<br />

where<br />

U(Rel)(x) = the relative exp<strong>and</strong>ed <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the data set (%);<br />

t = a value based on Student’s t-distribution with n-1 degrees of freedom which gives a 95%<br />

confidence <strong>in</strong>terval;<br />

x = is the mean for the set of data calculated <strong>in</strong> Equation 4-3; <strong>and</strong><br />

s( x ) = the st<strong>and</strong>ard deviation of the data set calculated <strong>in</strong> Equation 4-2.<br />

Cont<strong>in</strong>u<strong>in</strong>g with the decision tree from Figure 4-4, <strong>uncerta<strong>in</strong>ty</strong> from other parameters may also require<br />

consideration, despite the fact that the st<strong>and</strong>ard deviation of a statistical sample of observations accounts<br />

for the measurement <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong> variability.<br />

Are the data based on a s<strong>in</strong>gle<br />

po<strong>in</strong>t measurement or multiple<br />

measurements?<br />

Multiple po<strong>in</strong>ts<br />

Do the measurements<br />

represent a sampl<strong>in</strong>g of<br />

the measured parameter?<br />

No<br />

Yes<br />

Apply Equations 4-1 through 4-3 to calculate the mean <strong>and</strong><br />

st<strong>and</strong>ard deviation, respectively.<br />

Apply Equation 4-8 to estimate the <strong>uncerta<strong>in</strong>ty</strong> based on the<br />

measured data, OR apply Equation 4-9 to estimate <strong>uncerta<strong>in</strong>ty</strong><br />

for a s<strong>in</strong>gle observed estimate where other data is used for to<br />

quantify the <strong>uncerta<strong>in</strong>ty</strong>.<br />

Determ<strong>in</strong>e what (additional) parameters<br />

contribute to <strong>uncerta<strong>in</strong>ty</strong>. Note that bias may be<br />

one of the parameters.<br />

Are the errors <strong>in</strong> the measurements <strong>in</strong>dependent?<br />

(See text for guidance)<br />

No<br />

Yes<br />

Apply Equation 4-4 to aggregate <strong>uncerta<strong>in</strong>ty</strong><br />

for addition/ subtraction of data.<br />

Apply Equation 4-6 to aggregate <strong>uncerta<strong>in</strong>ty</strong><br />

for multiplication/ division of data.<br />

Apply Equation 4-5 to aggregate <strong>uncerta<strong>in</strong>ty</strong><br />

for addition/ subtraction of data.<br />

Apply Equation 4-7 to aggregate <strong>uncerta<strong>in</strong>ty</strong><br />

for multiplication/ division of data.<br />

Aggregate the <strong>uncerta<strong>in</strong>ty</strong><br />

parameters by apply<strong>in</strong>g the “Square<br />

root of the sum of the squares.”<br />

(Equation 4-4)<br />

Where multiple <strong>uncerta<strong>in</strong>ty</strong> parameters apply, selection of the equation to aggregate <strong>uncerta<strong>in</strong>ty</strong> parameters<br />

depends on whether the uncerta<strong>in</strong>ties are <strong>in</strong>dependent. In addition, the activity value may be based on the<br />

product or sum of multiple data or variables. The decision diagram references the appropriate equation<br />

based on these criteria.<br />

Example – Statistical Sampl<strong>in</strong>g Uncerta<strong>in</strong>ty<br />

For this example, <strong>natural</strong> <strong>gas</strong> samples are collected to calculate the CO 2 emission factor associated with<br />

combust<strong>in</strong>g the <strong>gas</strong>. (Note: this example would also apply to composition data for a flared <strong>gas</strong> stream.)<br />

Pilot Version, September 2009 4-23


Two methods are compared. The first calculates an annual average CO 2 emission factor based on monthly<br />

<strong>natural</strong> <strong>gas</strong> composition measurements <strong>and</strong> an annual summation of daily flow rates. The second<br />

determ<strong>in</strong>es monthly CO 2 emission factors based on monthly <strong>natural</strong> <strong>gas</strong> composition samples <strong>and</strong> applies a<br />

monthly summation of daily flow rates.<br />

Although this example is exam<strong>in</strong><strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> associated with an emission factor, the decision tree<br />

provided <strong>in</strong> Figure 4-3 references the figure above (derived from Figure 4-4) for quantify<strong>in</strong>g emission<br />

factor <strong>uncerta<strong>in</strong>ty</strong> where the emission factor is based on multiple measurements from a statistical sample.<br />

EXHIBIT 4-6: Uncerta<strong>in</strong>ty Example for Statistical Sampl<strong>in</strong>g<br />

Annual Composition Data<br />

o The facility collected 12 <strong>natural</strong> <strong>gas</strong> composition samples throughout the year <strong>in</strong> order to quantify the<br />

CO 2 content of the <strong>gas</strong> (expressed as tonnes CO 2 /MMscf), as shown <strong>in</strong> Table 4-9.<br />

o S<strong>in</strong>ce the data are based on a statistical sample, the <strong>uncerta<strong>in</strong>ty</strong> of the average composition is<br />

estimated us<strong>in</strong>g the sample st<strong>and</strong>ard deviation for each compound <strong>in</strong> the <strong>natural</strong> <strong>gas</strong>. The st<strong>and</strong>ard<br />

deviation will account for the <strong>uncerta<strong>in</strong>ty</strong> due to measurement error <strong>and</strong> the <strong>natural</strong> variability of the<br />

sampled values. Sampl<strong>in</strong>g procedures, ma<strong>in</strong>tenance activities, <strong>and</strong> equipment calibration are assumed<br />

to elim<strong>in</strong>ate bias. Equation 4-7 was used to calculate the <strong>uncerta<strong>in</strong>ty</strong>. The calculation is shown for<br />

CH 4 .<br />

t<br />

0.05, df 12 1<br />

s( x)/ n 2.201 1.529369 / 12<br />

Urel ( )( x) 100% × α = = − ×<br />

= × = 100% × = 1.04%<br />

x<br />

93.11333<br />

The molecular weight of the average composition is calculated by apply<strong>in</strong>g the follow<strong>in</strong>g equation:<br />

MW<br />

Mixture<br />

=<br />

1<br />

100<br />

×<br />

# compounds<br />

∑( Mole%<br />

i<br />

× MWi<br />

)<br />

i=<br />

1<br />

result<strong>in</strong>g <strong>in</strong> 17.25045 lb/lbmole, as shown <strong>in</strong> Table 4-10.<br />

Pilot Version, September 2009 4-24


Table 4-9. Measured Composition Data<br />

Mole% dry January February March April May June July August September October November December<br />

Methane 90.73 91.3 91.37 91.21 94.86 93.97 93.91 94.3 94.45 94.33 94.08 92.85<br />

Ethane 3.83 3.74 4.1 4.16 2.27 2.7 2.81 2.59 2.27 2.3 2.3 2.88<br />

CO 2 3.69 3.24 2.93 2.96 1.32 1.23 0.79 1.13 1.38 1.38 1.4 1.49<br />

Propane 0.9 0.8 0.82 0.88 0.61 0.79 0.66 0.65 0.65 0.65 0.66 0.76<br />

i-Butane 0.11 0.1 0.1 0.11 0.09 0.12 0.09 0.1 0.1 0.1 0.1 0.11<br />

n-Butane 0.14 0.13 0.13 0.13 0.12 0.16 0.15 0.14 0.13 0.13 0.13 0.14<br />

i-Pentane 0.03 0.04 0.03 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.05<br />

n-Pentane 0.02 0.03 0.02 0.03 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.04<br />

C6+ 0.03 0.05 0.04 0.05 0.05 0.07 0.06 0.24 0.05 0.05 0.04 0.08<br />

Total 99.48 99.43 99.54 99.57 99.39 99.13 98.54 99.24 99.1 99.01 98.78 98.4<br />

Table 4-10. Average Composition Calculations<br />

Mean,<br />

mole%<br />

dry Std dev t*s/sqrt(n) U(rel)<br />

U(abs),<br />

mole %<br />

MW<br />

Calculation,<br />

lb/lbmole<br />

U(abs),<br />

lb/lbmole<br />

wt% C<br />

calculation,<br />

wt%<br />

U(abs),<br />

wt%<br />

Methane 93.11333 1.529369 0.971714736 1.04% 0.971715 14.93538 0.1559 64.7728 1.4797<br />

Ethane 2.995833 0.747498 0.474937795 15.85% 0.474938 0.900847 0.1428 4.168007 0.6662<br />

CO 2 1.911667 0.988652 0.62815969 32.86% 0.62816 0.841325 0.2765 1.32982 0.4378<br />

Propane 0.735833 0.100856 0.064080962 8.71% 0.064081 0.324503 0.0283 1.535612 0.1373<br />

i-Butane 0.1025 0.00866 0.005502463 5.37% 0.005502 0.059573 0.0032 0.28521 0.0164<br />

n-Butane 0.135833 0.010836 0.006885023 5.07% 0.006885 0.078946 0.0040 0.377961 0.0206<br />

i-Pentane 0.040833 0.006686 0.004247814 10.40% 0.004248 0.029461 0.0031 0.142025 0.0151<br />

n-Pentane 0.030833 0.006686 0.004247814 13.78% 0.004248 0.022246 0.0031 0.107244 0.0149<br />

C6+ 0.0675 0.055942 0.035544067 52.66% 0.035544 0.058172 0.0306 0.281732 0.1485<br />

Total 99.13417 17.25045 73.00041<br />

Sum <strong>uncerta<strong>in</strong>ty</strong> (abs) 0.350567 1.693261<br />

Sum <strong>uncerta<strong>in</strong>ty</strong> (rel) 2.03% 2.32%<br />

For sample size of n=12, the Student’s t distribution value is 2.201.<br />

Note, the result<strong>in</strong>g estimates are not rounded to show the comparison.<br />

Pilot Version, September 2009 4-25


.<br />

EXHIBIT 4-6: Uncerta<strong>in</strong>ty Example for Statistical Sampl<strong>in</strong>g, cont<strong>in</strong>ued<br />

o<br />

The <strong>uncerta<strong>in</strong>ty</strong> associated with this value is calculated by apply<strong>in</strong>g Equation 4-4, us<strong>in</strong>g the absolute<br />

uncerta<strong>in</strong>ties for each molar compound.<br />

∑<br />

U 2<br />

( abs ) = ( )<br />

( % )<br />

mole%<br />

MW<br />

∑<br />

U abs mole × MW<br />

×<br />

2 2 2<br />

(0.0104× 14.93538) + (0.1585× 0.900847) + (0.3286×<br />

0.841325)<br />

= + (0.0871× 0.324503) + (0.0537× 0.059573) + (0.0507×<br />

0.078946)<br />

2 2<br />

+ (0.1040× 0.029461) + (0.1378× 0.022246) + (0.5266×<br />

0.058172)<br />

2 2 2<br />

2 2 2 2 2 2<br />

(0.1559) + (0.1428) + (0.2765) + (0.0283) + (0.0032) + (0.0040)<br />

= = 0.350567<br />

2 2 2<br />

+ (0.0031) + (0.0031) + (0.0306)<br />

Urel 0.350567<br />

( ) = × 100% = 2.03%<br />

∑( mole% × MW )<br />

17.25045<br />

The weight percent carbon of the average composition is calculated by apply<strong>in</strong>g the follow<strong>in</strong>g equation:<br />

Wt% C<br />

∑<br />

lbmole x lbmole C 12 lb C 1<br />

i<br />

Total<br />

= × × ×<br />

100 lbmoletotal lbmole<br />

i<br />

lbmole C MWTotal<br />

This equates to 73.00041% C, as shown <strong>in</strong> Table 4-9. The <strong>uncerta<strong>in</strong>ty</strong> associated with this value is calculated<br />

by apply<strong>in</strong>g Equation 4-1, us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties for the weight percent carbon of each molar<br />

compound.<br />

o The <strong>uncerta<strong>in</strong>ty</strong> associated with this value is calculated by apply<strong>in</strong>g Equation 4-1, us<strong>in</strong>g the absolute<br />

uncerta<strong>in</strong>ties for each molar compound:<br />

2<br />

U ( abs) = U ( abs)<br />

( %)<br />

wt %<br />

∑ wt ∑<br />

2 2 2<br />

(0.0228× 64.7728) + (0.1598× 4.168007) + (0.3292×<br />

1.32982)<br />

=<br />

2 2 2<br />

+ (0.0894× 1.535612) + (0.0574× 0.28521) + (0.0546× 0.377961) = 1.693261<br />

2 2 2<br />

+ (0.1060× 0.142025) + (0.1393× 0.107244) + (0.5270×<br />

0.281732)<br />

o<br />

o<br />

1.693261<br />

Urel ( ) = × 100% = 2.32%<br />

∑( wt%)<br />

73.00041<br />

The average annual CO 2 emissions factor is then calculated by apply<strong>in</strong>g the follow<strong>in</strong>g equation:<br />

6<br />

lb CTotal 44lb CO<br />

2/lbmole CO<br />

2<br />

lbTotal lbmoleTotal<br />

10 scf tonne CO2<br />

× × × × ×<br />

lbTotal 12lb C/lbmole C lbmoleTotal 379.3 scf MMscf 2204.62 lb CO2<br />

=55.2180 tonnes CO 2 /MMscf.<br />

The <strong>uncerta<strong>in</strong>ty</strong> for this quantity is calculated by apply<strong>in</strong>g Equation 4-6 for the relative uncerta<strong>in</strong>ties<br />

of MW Total <strong>and</strong> wt% C Total<br />

2<br />

2 2<br />

⎛UX<br />

⎞ ⎛UY<br />

⎞<br />

Urel ( ) = ⎜ ⎟ + ⎜ ⎟ = 2.03 + 2.32<br />

⎝ X ⎠ ⎝ Y ⎠<br />

2 2<br />

= 3.08%<br />

Pilot Version, September 2009 4-26


EXHIBIT 4-6: Uncerta<strong>in</strong>ty Example for Statistical Sampl<strong>in</strong>g, cont<strong>in</strong>ued<br />

Monthly Composition Data<br />

o<br />

o<br />

o<br />

The facility collected one <strong>natural</strong> <strong>gas</strong> composition sample each month. For comparison with the annual average<br />

<strong>gas</strong> composition example above, the same composition values shown <strong>in</strong> Table 4-8 will be used.<br />

For this example, only one data po<strong>in</strong>t is available each month. Table C-2 (Appendix C) provides reproducibility<br />

<strong>uncerta<strong>in</strong>ty</strong> associated with <strong>natural</strong> <strong>gas</strong> samples. These values can be applied to account for the measurement<br />

error <strong>in</strong> each monthly sample. Note that the reproducibility <strong>uncerta<strong>in</strong>ty</strong> varies based on the mole % of each <strong>gas</strong><br />

compound. The values are shown for January <strong>in</strong> Table 4-10.<br />

An additional 5% <strong>uncerta<strong>in</strong>ty</strong> is assigned by expert judgment to account for potential variability <strong>and</strong> bias <strong>in</strong> the<br />

<strong>gas</strong> composition dur<strong>in</strong>g the month. The comb<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> is calculated by apply<strong>in</strong>g Equation 4-4, us<strong>in</strong>g the<br />

absolute uncerta<strong>in</strong>ties. The calculation is demonstrated for CH 4 . Results for January are shown <strong>in</strong> Table 4-11.<br />

U ( abs) = U ( abs) + U ( abs)<br />

U abs<br />

2 2<br />

Composition Re producibility Variability<br />

2 2<br />

( )<br />

CH<br />

= 0.15 + 4.5365 = 4.539<br />

4<br />

4.539<br />

Urel ( ) = × 100% = 5.00%<br />

90.73<br />

Table 4-11. Measured Monthly Composition Data<br />

Reproducibility<br />

Uncerta<strong>in</strong>ty<br />

(abs), mole%<br />

Variability<br />

Uncerta<strong>in</strong>ty<br />

(U abs =mole%x5%)<br />

Comb<strong>in</strong>ed<br />

mole%<br />

Uncerta<strong>in</strong>ty<br />

(rel)<br />

MW<br />

Calculation,<br />

lb/lbmole<br />

wt%<br />

Carbon<br />

Calculation,<br />

%<br />

wt% C<br />

U(rel)<br />

mole% dry January<br />

Methane 90.73 0.15 4.5365 5.00% 14.5531 60.71 6.49%<br />

Ethane 3.83 0.1 0.1915 5.64% 1.1517 5.13 6.99%<br />

CO2 3.69 0.1 0.1845 5.69% 1.6240 2.47 7.03%<br />

Propane 0.9 0.07 0.045 9.25% 0.3969 1.81 10.13%<br />

i-Butane 0.11 0.07 0.0055 63.83% 0.0639 0.29 63.97%<br />

n-Butane 0.14 0.07 0.007 50.25% 0.0814 0.37 50.42%<br />

i-Pentane 0.03 0.02 0.0015 66.85% 0.0216 0.10 66.98%<br />

n-Pentane 0.02 0.02 0.001 100.12% 0.0144 0.07 100.21%<br />

C6+ 0.03 0.02 0.0015 66.85% 0.0259 0.12 66.98%<br />

Total 99.48 17.9329 71.0717<br />

Sum <strong>uncerta<strong>in</strong>ty</strong> (abs) 0.7404 3.9734<br />

Sum <strong>uncerta<strong>in</strong>ty</strong> (rel) 4.13% 5.59%<br />

o<br />

As with the annual composition example, the molecular weight of the monthly composition is calculated by<br />

apply<strong>in</strong>g the follow<strong>in</strong>g equation:<br />

1<br />

MW = × ∑ mole% × MW<br />

100 =<br />

# compounds<br />

( )<br />

Mixture i i<br />

i 1<br />

result<strong>in</strong>g <strong>in</strong> 17.9329 lb/lbmole, as shown <strong>in</strong> Table 4-11.<br />

Pilot Version, September 2009 4-27


EXHIBIT 4-6: Uncerta<strong>in</strong>ty Example for Statistical Sampl<strong>in</strong>g, cont<strong>in</strong>ued<br />

o<br />

For each <strong>in</strong>dividual <strong>gas</strong> compound, the relative <strong>uncerta<strong>in</strong>ty</strong> of the mole%i × MWi is equivalent to the<br />

comb<strong>in</strong>ed reproducibility <strong>and</strong> variability uncerta<strong>in</strong>ties s<strong>in</strong>ce the molecular weight of each <strong>gas</strong><br />

compound is a constant. The aggregated <strong>uncerta<strong>in</strong>ty</strong> associated with the mixture’s MW is calculated<br />

by apply<strong>in</strong>g Equation 4-1, us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties for each molar compound.<br />

∑<br />

2<br />

U ( abs) = U ( abs )<br />

( MW Total )<br />

mole%<br />

× MW<br />

∑<br />

2 2 2<br />

(0.0500× 14.5531) + (0.0564× 1.1517) + (0.0569×<br />

1.6240)<br />

= + (0.0925× 0.3969) + (0.6383× 0.0639) + (0.5025×<br />

0.0814)<br />

+ (0.6685× 0.0216) + (1.0012× 0.0144) + (0.6685×<br />

0.0259)<br />

2 2 2<br />

2 2 2<br />

=<br />

2<br />

(0.7281) + (0<br />

.0650) + (0.0924) + (0.0367) + (0.0408) + (0.0409)<br />

+ (0.0145) + (0.0144) + (0.0173)<br />

2 2 2 2 2<br />

2 2 2<br />

0.7404<br />

Urel ( ) = × 100% = 4.13%<br />

∑( MW Total )<br />

17.9329<br />

= 0.7404<br />

o<br />

The weight percent carbon of the average composition is calculated by apply<strong>in</strong>g the follow<strong>in</strong>g<br />

equation:<br />

Wt% C<br />

∑<br />

lbmole x lbmole C 12 lb C 1<br />

i<br />

Total<br />

= × × ×<br />

100 lbmole<br />

total<br />

lbmolei lbmole C MWTotal<br />

This equates to 71.07% C, as shown <strong>in</strong> Table 4-11.<br />

o<br />

For each compound <strong>in</strong> the <strong>gas</strong> mixture, the <strong>uncerta<strong>in</strong>ty</strong> from this calculation is determ<strong>in</strong>ed by<br />

apply<strong>in</strong>g Equation 4-6, us<strong>in</strong>g the relative uncerta<strong>in</strong>ties of the lbmole i <strong>and</strong> MW Total . This is<br />

demonstrated for the January CH 4 composition.<br />

Urel ( ) = Urel ( ) × Urel ( ) = 5 + 4.13 =6.49%<br />

2 2 2 2<br />

Wt % C i<br />

mole%<br />

i MW Total<br />

o The <strong>uncerta<strong>in</strong>ty</strong> associated with the wt% C of the mixture is calculated by apply<strong>in</strong>g Equation 4-4,<br />

us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties for the weight percent carbon of each molar compound.<br />

∑<br />

2<br />

U ( abs) = U ( abs)<br />

( %)<br />

Wt%<br />

∑ wt<br />

2 2 2<br />

(0.0649× 60.71) + (0.0699× 5.13) + (0.0703×<br />

2.47)<br />

= + × + × + × =<br />

+ (0.6698× 0.10) + (1.0021× 0.07) + (0.6698×<br />

0.12)<br />

3.9724<br />

Urel ( ) = × 100% = 5.59%<br />

∑( Wt %)<br />

71.0717<br />

2<br />

(0.1013 1.81) (0.6397<br />

2<br />

0.29) (0.5042<br />

2<br />

0.37) 3.9734<br />

2 2 2<br />

Pilot Version, September 2009 4-28


EXHIBIT 4-6: Uncerta<strong>in</strong>ty Example for Statistical Sampl<strong>in</strong>g, cont<strong>in</strong>ued<br />

o<br />

The monthly CO 2 emissions factor is then calculated by apply<strong>in</strong>g the follow<strong>in</strong>g equation:<br />

6<br />

lb CTotal 44lb CO<br />

2/lbmole CO<br />

2<br />

lbTotal lbmoleTotal<br />

10 scf tonne CO2<br />

× × × × ×<br />

lb 12lb C/lbmole C lbmole 379.3 scf MMscf 2204.62 lb CO<br />

Total Total 2<br />

=55.8856 tonnes CO2/MMscf for January.<br />

o<br />

The <strong>uncerta<strong>in</strong>ty</strong> for this quantity is calculated by apply<strong>in</strong>g Equation 4-3 for the relative uncerta<strong>in</strong>ties<br />

of MW Total <strong>and</strong> wt% C Total<br />

2 2<br />

⎛UX<br />

⎞ ⎛UY<br />

⎞<br />

Urel ( ) = ⎜ ⎟ + ⎜ ⎟ = 4.13 + 5.59<br />

⎝ X ⎠ ⎝ Y ⎠<br />

2 2<br />

=6.95%<br />

o<br />

The same methods are applied to each of the monthly samples. Table 4-12 summarizes the result<strong>in</strong>g<br />

emission factors (tonnes CO 2 /MMscf) <strong>and</strong> uncerta<strong>in</strong>ties.<br />

Table 4-12. Measured Monthly Emission Factors<br />

Tonnes<br />

CO 2 /MMscf<br />

U(abs), Tonnes<br />

CO 2 /MMscf U(rel), %<br />

January 55.8856 3.8840 6.95<br />

February 55.7698 3.9276 7.04<br />

March 55.9697 3.9414 7.04<br />

April 56.1644 3.9304 7.00<br />

May 54.7437 4.1879 7.65<br />

June 55.2278 4.1441 7.50<br />

July 54.7069 4.1606 7.61<br />

August 55.4646 4.1751 7.53<br />

September 54.6648 4.1705 7.63<br />

October 54.6332 4.1647 7.62<br />

November 54.4964 4.1527 7.62<br />

December 54.8858 4.0798 7.43<br />

4.5 Aggregat<strong>in</strong>g Uncerta<strong>in</strong>ty<br />

Figure 4-5 provides the decision tree for aggregat<strong>in</strong>g uncerta<strong>in</strong>ties. This diagram steps through the<br />

comb<strong>in</strong>ation of activity data <strong>and</strong> emission factors to result <strong>in</strong> the f<strong>in</strong>al emission estimate. It also addresses<br />

the aggregation of emissions from multiple sources, apply<strong>in</strong>g the GWP to convert non-CO 2 emissions to a<br />

CO 2 equivalent basis, <strong>and</strong> the f<strong>in</strong>al summation of CO 2 equivalent emissions.<br />

An important po<strong>in</strong>t to note is that, although the GWP values reported by IPCC have correspond<strong>in</strong>g<br />

uncerta<strong>in</strong>ties, the GWP values are treated as constants <strong>in</strong> compil<strong>in</strong>g a facility- or entity-wide GHG<br />

<strong>in</strong>ventory. Multiply<strong>in</strong>g by a constant does not change the relative <strong>uncerta<strong>in</strong>ty</strong>.<br />

Pilot Version, September 2009 4-29


Table 4-13 shows the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the annual estimate of emissions for the different estimates of the<br />

emission factor <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong> the activity rate <strong>uncerta<strong>in</strong>ty</strong> presented <strong>in</strong> the previous examples that address<br />

emissions from the combustion of <strong>natural</strong> <strong>gas</strong>. The table shows the results of us<strong>in</strong>g literature values <strong>and</strong><br />

sampl<strong>in</strong>g data to determ<strong>in</strong>e the emission factors.<br />

Total CO 2 emissions are calculated based on the product of the activity data (fuel consumption) <strong>and</strong> the<br />

emission factor (tonnes CO 2 /volume fuel). Table 4-13 compares the emission estimate results from three<br />

approaches:<br />

−<br />

−<br />

−<br />

Annual emissions based on the measured <strong>gas</strong> consumption <strong>and</strong> a default emission factor;<br />

Annual emissions based on the measured <strong>gas</strong> consumption <strong>and</strong> an emission factor derived from an<br />

annual average <strong>gas</strong> composition; <strong>and</strong><br />

Annual emissions based on an aggregate of monthly <strong>gas</strong> composition <strong>and</strong> flow rate measurements.<br />

Pilot Version, September 2009 4-30


Uncerta<strong>in</strong>ty Aggregation<br />

Are the errors for the<br />

follow<strong>in</strong>g aggregations<br />

correlated?<br />

Refer to the text for<br />

guidance on test<strong>in</strong>g for<br />

autocorrelation <strong>and</strong> for<br />

methods to make the terms<br />

<strong>in</strong>dependent.<br />

If two emission sources have the same<br />

emission factor (for example, b<strong>oil</strong>ers<br />

<strong>and</strong> heaters) comb<strong>in</strong>e the activity data<br />

<strong>and</strong> aggregate the <strong>uncerta<strong>in</strong>ty</strong> before<br />

apply<strong>in</strong>g the emission factor.<br />

Aggregate emissions for<br />

the source as AF x EF.<br />

Independent errors: Apply Equation 4-4<br />

to aggregate <strong>uncerta<strong>in</strong>ty</strong> for addition/<br />

subtraction of data.<br />

Correlated errors: Apply Equation 4-5<br />

to aggregate <strong>uncerta<strong>in</strong>ty</strong> for addition/<br />

subtraction of data.<br />

Independent errors: Apply Equation 4-6<br />

to aggregate <strong>uncerta<strong>in</strong>ty</strong> for<br />

multiplication/ division of data.<br />

Correlated errors: Apply Equation 4-7<br />

to aggregate <strong>uncerta<strong>in</strong>ty</strong> for<br />

multiplication/ division of data.<br />

Sum the emissions for<br />

multiple sources.<br />

Apply the GWP values to<br />

convert total emissions to<br />

CO 2 e basis <strong>and</strong> apply<br />

GWP uncerta<strong>in</strong>ties.<br />

Independent errors: Apply Equation 4-4<br />

to aggregate <strong>uncerta<strong>in</strong>ty</strong> for addition/<br />

subtraction of data.<br />

Correlated errors: Apply Equation 4-5<br />

to aggregate <strong>uncerta<strong>in</strong>ty</strong> for addition/<br />

subtraction of data.<br />

GWP values are considered constants, so<br />

there is no aggregation of <strong>uncerta<strong>in</strong>ty</strong> for<br />

this step.<br />

Sum the CO 2 e emissions<br />

<strong>and</strong> aggregate total<br />

<strong>uncerta<strong>in</strong>ty</strong>.<br />

Independent errors: Apply Equation 4-4<br />

to aggregate <strong>uncerta<strong>in</strong>ty</strong> for addition/<br />

subtraction of data.<br />

Correlated errors: Apply Equation 4-5 to<br />

aggregate <strong>uncerta<strong>in</strong>ty</strong> for addition/<br />

subtraction of data.<br />

Figure 4-5. Step C – Decision Diagram for Uncerta<strong>in</strong>ty Aggregation<br />

Pilot Version, September 2009 4-31


Table 4-13. Comparison of Annual Emission Estimates<br />

Tonnes<br />

Emissions,<br />

Uncerta<strong>in</strong>ty (rel)<br />

Context specific factor sensitivity<br />

analysis<br />

Month<br />

CO 2 /MMscf U(rel) MMscf tonnes CO 2 10% 25% 100%<br />

Emissions based on January 55.8856 6.95% 83.50 4,666.44 13.25% 26.47% 100.38%<br />

monthly flow <strong>and</strong> February 55.7698 7.04% 78.28 4,365.38 13.30% 26.49% 100.38%<br />

carbon content<br />

March 55.9697 7.04% 107.45 6,013.89 13.30% 26.49% 100.38%<br />

April 56.1644 7.00% 103.83 5,831.27 13.27% 26.48% 100.38%<br />

May 54.7437 7.65% 104.59 5,725.67 13.63% 26.66% 100.43%<br />

June 55.2278 7.50% 102.87 5,681.48 13.55% 26.62% 100.42%<br />

July 54.7069 7.61% 100.62 5,504.85 13.60% 26.65% 100.42%<br />

August 55.4646 7.53% 106.03 5,880.73 13.56% 26.63% 100.42%<br />

September 54.6648 7.63% 104.23 5,697.83 13.62% 26.65% 100.43%<br />

October 54.6332 7.62% 102.28 5,587.75 13.61% 26.65% 100.43%<br />

November 54.4964 7.62% 98.43 5,364.20 13.61% 26.65% 100.43%<br />

Annual Total 1,187.42 65,550.85 3.91% 7.71% 29.10%<br />

Emissions based on annual flow <strong>and</strong> annual<br />

average carbon content 55.2180 3.08% 1,187.42 65,566.90 11.69% 25.72% 100.18%<br />

Emissions based on annual flow <strong>and</strong> default<br />

emission factor 55.7940 14.14% 1,187.42 66,250.86 18.09% 29.19% 101.13%<br />

Note, the result<strong>in</strong>g emission estimates are not rounded to show the comparison.<br />

Pilot Version, September 2009 4-32


4.5.1 Round<strong>in</strong>g-off of Statistical Estimate<br />

Inappropriate round<strong>in</strong>g of the data can lead to errors <strong>in</strong> the f<strong>in</strong>al estimate. Us<strong>in</strong>g computer software, such<br />

as spreadsheets, helps the user avoid round<strong>in</strong>g dur<strong>in</strong>g <strong>in</strong>termediate steps. The estimate of emissions should<br />

be rounded to smallest unit of measure (API, 13.1.8.3, 1985). The <strong>uncerta<strong>in</strong>ty</strong> should be rounded to the<br />

same number of digits as the estimate.<br />

4.6 Assess<strong>in</strong>g Data Correlations<br />

As shown <strong>in</strong> Equations 4-5 <strong>and</strong> 4-7, the <strong>uncerta<strong>in</strong>ty</strong> propagation equation can be extended to account for<br />

<strong>uncerta<strong>in</strong>ty</strong> terms that are correlated or not <strong>in</strong>dependent. A simple way to assess if the uncerta<strong>in</strong>ties are<br />

correlated is to exam<strong>in</strong>e a graph of the uncerta<strong>in</strong>ties. If there is no pattern, the uncerta<strong>in</strong>ties are most likely<br />

<strong>in</strong>dependent. If there is a pattern to the uncerta<strong>in</strong>ties, they are not <strong>in</strong>dependent.<br />

The correlation between the uncerta<strong>in</strong>ties of two measured parameters can be calculated by apply<strong>in</strong>g the<br />

follow<strong>in</strong>g equation:<br />

r<br />

UX<br />

, UY<br />

=<br />

∑<br />

( UX − U ) ( )<br />

i X<br />

× UY −U<br />

i Y<br />

( n− 1) × s( U ) × s( U )<br />

X<br />

Y<br />

where<br />

r UxUy = the correlation coefficient of the uncerta<strong>in</strong>ties for X <strong>and</strong> Y;<br />

n = the sample size;<br />

Ux i = the uncerta<strong>in</strong>ties associated with sample po<strong>in</strong>ts from source X;<br />

U = the mean of the uncerta<strong>in</strong>ties from source X;<br />

X<br />

U = the mean of the uncerta<strong>in</strong>ties from source y;<br />

Y<br />

Uy i = the uncerta<strong>in</strong>ties associated with sample po<strong>in</strong>ts from source Y;<br />

s(U X ) = the st<strong>and</strong>ard deviation for the uncerta<strong>in</strong>ties of source X; <strong>and</strong><br />

s(U Y ) = the st<strong>and</strong>ard deviation for the uncerta<strong>in</strong>ties of source Y.<br />

(Equation 4-9)<br />

Before comb<strong>in</strong><strong>in</strong>g the data it is important to elim<strong>in</strong>ate the correlation of uncerta<strong>in</strong>ties, if possible. ISO<br />

5168:2005(E) Annex F discusses methods for mak<strong>in</strong>g measurement uncerta<strong>in</strong>ties <strong>in</strong>dependent, such as<br />

calibrat<strong>in</strong>g <strong>in</strong>struments aga<strong>in</strong>st different references <strong>and</strong> “redef<strong>in</strong><strong>in</strong>g mathematical relationships to elim<strong>in</strong>ate<br />

correlations” (ISO, 2005).<br />

Section A1.4.5 of the IPCC Good Practices document lists four sources for correlation:<br />

• Use of common activity data for several emissions estimates;<br />

• Mutual constra<strong>in</strong>ts on a group of emission estimates (such as a specified total fuel usage which<br />

provides <strong>in</strong>put to a number of processes);<br />

Pilot Version, September 2009 4-33


• The evolution of activity <strong>and</strong> emission factors associated with new processes, technology etc.,<br />

which decouples the <strong>uncerta<strong>in</strong>ty</strong> from one time period to the next; <strong>and</strong><br />

• External drivers that affect a suite of emissions (economic, climatic, resource based) (IPCC, 2001).<br />

To elim<strong>in</strong>ate <strong>uncerta<strong>in</strong>ty</strong> correlations due to common activity data, IPCC suggests summ<strong>in</strong>g the emission<br />

factor estimates <strong>and</strong> then multiply<strong>in</strong>g the activity factor by the sum to obta<strong>in</strong> total emissions. For mutual<br />

constra<strong>in</strong>t, the IPCC Good Practices document suggests “to leave one of the proportions unspecified, <strong>and</strong><br />

to determ<strong>in</strong>e it by the difference between the other proportions <strong>and</strong> the total fraction.”<br />

In addition, IPCC’s Good Practices document recommends that if there are more than two correlated<br />

variables, a Monte Carlo simulation should be applied <strong>in</strong>stead of <strong>uncerta<strong>in</strong>ty</strong> propagation.<br />

4.6.1 Monte Carlo Simulation<br />

Monte Carlo simulation is a more complex, model-based method for iteratively evaluat<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong><br />

associated with <strong>in</strong>dividual parameters. It may be the preferred approach where more complex equations are<br />

assessed. It is one of many methods for analyz<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> propagation where the goal is to determ<strong>in</strong>e<br />

how r<strong>and</strong>om variation, lack of knowledge, or error affects the sensitivity, performance, or reliability of the<br />

result<strong>in</strong>g emission <strong>in</strong>ventory.<br />

Monte Carlo simulation is a “repeated sampl<strong>in</strong>g <strong>and</strong> calculation method” because the <strong>in</strong>puts are r<strong>and</strong>omly<br />

generated from probability distributions of the respective variables to simulate the process of sampl<strong>in</strong>g<br />

from an actual population. Inputs are def<strong>in</strong>ed as probabilistic parameters rather than simple estimates. The<br />

<strong>uncerta<strong>in</strong>ty</strong> model relies on repeated r<strong>and</strong>om sampl<strong>in</strong>g of all <strong>in</strong>puts <strong>and</strong> simultaneous recalculation of<br />

emissions (outputs) to measure variation over the course of numerous model iterations. The data generated<br />

from the Monte Carlo simulation can be represented as probability distributions (or histograms) or<br />

converted to error bars <strong>and</strong> confidence <strong>in</strong>tervals.<br />

Monte Carlo simulation has an advantage over <strong>uncerta<strong>in</strong>ty</strong> propagation <strong>in</strong> that one can specify multivariate<br />

distributions to account for correlations between different sources of <strong>uncerta<strong>in</strong>ty</strong>. The IPCC Good<br />

Practices document recommends choos<strong>in</strong>g one of the follow<strong>in</strong>g distributions: normal, lognormal, uniform,<br />

or triangular. 1 The major difficulty <strong>in</strong> us<strong>in</strong>g the Monte Carlo simulation is the need to determ<strong>in</strong>e the<br />

distribution of the data. If there are not enough data to assume normality by the Central Limit Theorem<br />

(more than 30 data po<strong>in</strong>ts), there are most likely not enough data to determ<strong>in</strong>e the underly<strong>in</strong>g distribution of<br />

the data. Consequently, such analyses are often forced to rely on subject matter expert op<strong>in</strong>ion to<br />

determ<strong>in</strong>e distributions rather than on observed data.<br />

1 The IPCC Good Practice document discusses how to perform Monte Carlo simulation <strong>in</strong> Section 6.2 (IPCC, 2006).<br />

It discusses choice of distribution <strong>in</strong> Section A1.2.5.<br />

Pilot Version, September 2009 4-34


Additionally, Monte Carlo simulation can also be computationally <strong>in</strong>tensive, with 10,000 simulations be<strong>in</strong>g<br />

the norm. The bigger difficulty/barrier is the need to build a simulation model <strong>in</strong> Excel for <strong>uncerta<strong>in</strong>ty</strong><br />

analysis that reflects the complexity of the emissions estimation model <strong>and</strong> allows generation of the<br />

variables required for the Monte Carlo simulation software.<br />

To perform a Monte Carlo simulation, one must first determ<strong>in</strong>e the distribution of the data for each of the<br />

uncerta<strong>in</strong> variables used <strong>in</strong> the emissions model estimate. Ideally, each of these distributions should be<br />

derived from data <strong>and</strong> knowledge of the underly<strong>in</strong>g process. It is helpful <strong>in</strong> many <strong>in</strong>stances to first graph<br />

the data, <strong>and</strong> us<strong>in</strong>g the shape of the graph to determ<strong>in</strong>e the underly<strong>in</strong>g distributions. The parameters that<br />

def<strong>in</strong>e the distribution could be derived from the data. For example, a normal distribution is def<strong>in</strong>ed by its<br />

mean <strong>and</strong> variance. If data are limited, one may have to rely on expert judgment to determ<strong>in</strong>e the<br />

underly<strong>in</strong>g distribution.<br />

It is then necessary to statistically test the hypothesis that the data follow a certa<strong>in</strong> distribution. The test<br />

will vary based on the hypothesized distribution. For example, the Shapiro-Wilks test is often used to test<br />

if the data are normal or lognormal. Options to test for other distributions <strong>in</strong>clude Empirical Distribution<br />

Functions (S<strong>in</strong>gh <strong>and</strong> S<strong>in</strong>gh, 2006).<br />

Once distributions are determ<strong>in</strong>ed for all of the data sources, the Monte Carlo simulation will proceed by<br />

r<strong>and</strong>omly sampl<strong>in</strong>g each of the distributions that describe the data used for estimat<strong>in</strong>g emissions. As many<br />

as 10,000 replicate samples are typically taken, with the total emissions be<strong>in</strong>g estimated for each replicate.<br />

These repeated determ<strong>in</strong>ations of emission are used to generate a distribution of the total emissions with its<br />

mean be<strong>in</strong>g the estimate of total emissions, <strong>and</strong> its <strong>uncerta<strong>in</strong>ty</strong> determ<strong>in</strong>ed by its variance.<br />

4.6.2 Comparison of Uncerta<strong>in</strong>ty Propagation <strong>and</strong> Monte Carlo<br />

Section 6.3.1 of the IPCC Good Practices document compares the <strong>uncerta<strong>in</strong>ty</strong> propagation method <strong>and</strong> the<br />

Monte Carlo simulations (IPCC, 2006). It notes that the <strong>uncerta<strong>in</strong>ty</strong> propagation method’s assumption of<br />

normality leads to symmetric 95% confidence <strong>in</strong>tervals whereas the Monte Carlo method can take <strong>in</strong>to<br />

account the fact that emissions are bounded below by zero to fit an asymmetric (<strong>and</strong> thus narrower)<br />

confidence <strong>in</strong>terval. If the data are skewed <strong>and</strong> one transforms the data (discussed earlier), one could<br />

achieve the asymmetric confidence <strong>in</strong>tervals us<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> propagation, as well.<br />

S<strong>in</strong>ce the Monte Carlo simulations can assume a truncated distribution, the lower confidence limits tend to<br />

be closer to the mean than the upper confidence limits. The IPCC Good Practices document goes on to<br />

state that the two methods produce results that are fairly comparable. It recommends that countries report<br />

the results of the <strong>uncerta<strong>in</strong>ty</strong> propagation method <strong>and</strong> those countries with “sufficient resources <strong>and</strong><br />

expertise” report Monte Carlo results as well.<br />

Pilot Version, September 2009 4-35


These guidel<strong>in</strong>es concentrate solely on the <strong>uncerta<strong>in</strong>ty</strong> propagation method due to the potential to <strong>in</strong>troduce<br />

further errors <strong>in</strong> assign<strong>in</strong>g the probability distributions for the Monte Carlo simulations. As stated<br />

previously, apply<strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> propagation methods, even where the assumptions are not met, is<br />

advised <strong>in</strong> these guidel<strong>in</strong>es, particularly for emission sources with a small contribution to the overall GHG<br />

<strong>in</strong>ventory. As data collection methods improve for GHG <strong>in</strong>ventories, the ability to quantify uncerta<strong>in</strong>ties<br />

will also improve.<br />

Pilot Version, September 2009 4-36


5.0 UNCERTAINTY CALCULATION EXAMPLES<br />

5.1 Introduction<br />

The section demonstrates the concepts provided <strong>in</strong><br />

Section 4.0 through examples taken directly from the<br />

2009 API Compendium of Greenhouse Gas Emissions<br />

Estimation Methodologies for the Oil <strong>and</strong> Gas Industry<br />

(API Compendium, 2009). Each of the examples<br />

represents a hypothetical situation rather than any<br />

particular actual facility or operation. The facility<br />

example is based on a GHG <strong>in</strong>ventory from an “Onshore<br />

Field with High CO 2 Content,” as described <strong>in</strong> Section<br />

8.1.1 of the API Compendium. The uncerta<strong>in</strong>ties<br />

associated with vented emissions from ref<strong>in</strong>ery catalytic<br />

crack<strong>in</strong>g units <strong>and</strong> hydrogen plants are based on<br />

methodologies <strong>and</strong> examples presented <strong>in</strong> Sections 5.2.1<br />

<strong>and</strong> 5.2.2 of the API Compendium, respectively. Details<br />

on the source-by-source <strong>uncerta<strong>in</strong>ty</strong> calculations are<br />

provided <strong>in</strong> Appendix F. Highlighted text <strong>in</strong> this section<br />

is used to designate <strong>uncerta<strong>in</strong>ty</strong> calculations.<br />

Section Focus<br />

This section comb<strong>in</strong>es the guidel<strong>in</strong>es,<br />

procedures, <strong>and</strong> equations for calculat<strong>in</strong>g<br />

<strong>uncerta<strong>in</strong>ty</strong> that were outl<strong>in</strong>ed <strong>in</strong> Section 4 <strong>and</strong><br />

applies them to a hypothetical facility to<br />

calculate total <strong>uncerta<strong>in</strong>ty</strong> for the facility-level<br />

GHG <strong>in</strong>ventory. The statistical approaches are<br />

also applied to two select ref<strong>in</strong>ery operations<br />

to exam<strong>in</strong>e <strong>and</strong> compare <strong>uncerta<strong>in</strong>ty</strong> estimates<br />

for different emission estimation<br />

methodologies.<br />

This section will not describe how the<br />

<strong>in</strong>ventory was generated or calculated. For<br />

that background, the reader is referred to the<br />

API Compendium (API, 2009). Much of the<br />

emission calculation <strong>in</strong>formation is simply<br />

repr<strong>in</strong>ted directly from the API Compendium<br />

without elaboration <strong>in</strong> this report.<br />

This section will describe how uncerta<strong>in</strong>ties<br />

are assigned to each value <strong>in</strong> the <strong>in</strong>ventory <strong>and</strong><br />

then propagated to a s<strong>in</strong>gle overall <strong>uncerta<strong>in</strong>ty</strong><br />

associated with the total summed <strong>in</strong>ventory for<br />

the facility.<br />

5.2 Example 1: Onshore Oil Field with High CO 2 Content<br />

5.2.1 Background<br />

Tables 5-1 <strong>and</strong> 5-2 summarize the emission sources <strong>and</strong> <strong>uncerta<strong>in</strong>ty</strong> values associated with this facility.<br />

This example field is described <strong>in</strong> detail <strong>in</strong> the API Compendium, but is summarized here for context. A<br />

discussion of the <strong>uncerta<strong>in</strong>ty</strong> values associated with the example facility parameters follows.<br />

Pilot Version, September 2009 5-1


(Repr<strong>in</strong>ted from the API Compendium)<br />

Table 5-1. Onshore Oil Field (High CO 2 Content) Emission Sources<br />

(±%) (±%) (±%) Source Fuel/Refrigerant Units<br />

(per unit)<br />

unit per year)<br />

comb<strong>in</strong>ed) (±%) a<br />

No. of Uncerta<strong>in</strong>ty Unit Capacity<br />

a Uncerta<strong>in</strong>ty<br />

Average<br />

Operation (per Uncerta<strong>in</strong>ty<br />

Annual Activity<br />

Factor (all units Uncerta<strong>in</strong>ty<br />

Combustion Sources<br />

B<strong>oil</strong>ers Produced Gas 6 0 N/A N/A 40×10 6 scf/yr 15<br />

Heaters/reb<strong>oil</strong>ers Produced Gas 3 0 2×10 6 Btu/hr 5 343 days/yr 2 53.2×10 6 scf/yr 6.71<br />

Compressor eng<strong>in</strong>es<br />

– turb<strong>in</strong>es<br />

Produced Gas 11 0 N/A N/A 250×10 6 scf/yr 15<br />

Emergency flare Produced Gas 1 0 N/A N/A 500×10 6 scf/yr 15<br />

Emergency<br />

Diesel 1 0 1800 hp 5 200 hr/yr 10 2,912 ×10 6 Btu/yr 12.3<br />

generator IC eng<strong>in</strong>e<br />

Fire water pump IC<br />

eng<strong>in</strong>e<br />

Fleet vehicles<br />

(trucks)<br />

Vented Sources<br />

Dehydration vents<br />

(also has Kimray<br />

pump emissions)<br />

Diesel 1 0 460 hp 5<br />

24 hr/yr;<br />

87% load<br />

10;<br />

20<br />

77.7 ×10 6 Btu/yr 13.2<br />

Gasol<strong>in</strong>e 5 0 N/A 40,000 mi/yr ea. 15.0 N/A<br />

Produced Gas 1 0<br />

30×10 6<br />

scf/day<br />

5 343 days/yr 2 10,290×10 6 scf/yr 5.39<br />

Central tank battery Crude Oil 1 0 6,100 bbl/day 5 343 days/yr 2 2,092,300 bbl/yr 5.39<br />

Storage tanks Chemical 1 0 N/A N/A N/A<br />

Naphtha 1 0 N/A N/A N/A<br />

Glycol 1 0 N/A N/A N/A<br />

Water blowdown N/A 1 0 N/A N/A N/A<br />

tank<br />

Slop <strong>oil</strong> tank Slop Oil 1 0 N/A N/A N/A<br />

Am<strong>in</strong>e unit for CO 2 removal<br />

Inlet Produced Gas N/A 30×10 6<br />

scf/day<br />

5 343 days/yr 2 10,290×10 6 scf/yr 5.39<br />

Outlet Outlet Gas<br />

N/A N/A N/A 8,997×10 6 scf/yr 5<br />

(0.5 mole% CO 2 )<br />

Pneumatic devices Produced Gas 64 5 N/A N/A 64 pneumatic<br />

devices<br />

5<br />

Pilot Version, September 2009 5-2


(Repr<strong>in</strong>ted from the API Compendium)<br />

Table 5-1. Onshore Oil Field (High CO 2 Content) Emission Sources (cont<strong>in</strong>ued)<br />

(±%) (±%) (±%) Source Fuel/Refrigerant Units<br />

(per unit)<br />

unit per year)<br />

comb<strong>in</strong>ed) (±%) a<br />

No. of Uncerta<strong>in</strong>ty<br />

Unit<br />

Capacity Uncerta<strong>in</strong>ty<br />

Average<br />

Operation (per Uncerta<strong>in</strong>ty<br />

Annual Activity<br />

Factor (all units Uncerta<strong>in</strong>ty<br />

Vented Sources, cont<strong>in</strong>ued<br />

Chemical Produced Gas 67 5 N/A N/A 67 CIPs 5<br />

<strong>in</strong>jection pumps<br />

(CIPs)<br />

Vessel<br />

blowdowns<br />

Produced Gas 112 0 N/A N/A 112 vessels 0<br />

(non-rout<strong>in</strong>e)<br />

Compressor<br />

starts (nonrout<strong>in</strong>e)<br />

Produced Gas 11 0 N/A N/A 11 compressors 0<br />

Compressor<br />

blowdowns<br />

Produced Gas 11 0 N/A N/A 11 compressors 0<br />

(non-rout<strong>in</strong>e)<br />

Well workovers Produced Gas 24 0 N/A N/A 24 well workovers 0<br />

(non-rout<strong>in</strong>e)<br />

Pressure relief Produced Gas 482 1 N/A N/A 482 PRVs 1<br />

valves<br />

Fugitive<br />

Sources<br />

Equipment leaks Produced Gas N/A N/A 8,760 hr/yr 0 See Table 5-2<br />

Fleet vehicle<br />

refrigeration<br />

Indirect Sources<br />

Electricity<br />

consumed<br />

R-134a 5<br />

trucks<br />

0 N/A N/A Unknown 5<br />

N/A N/A N/A N/A 917 MW-hr/yr 2<br />

Footnote:<br />

Note: the values shown above are for example only. They do not reflect actual operations.<br />

a<br />

Uncerta<strong>in</strong>ty is based on eng<strong>in</strong>eer<strong>in</strong>g judgment at a 95% confidence <strong>in</strong>terval.<br />

Pilot Version, September 2009 5-3


Table 5-2. Onshore Oil Field (High CO 2 Content) Fugitive Emission Sources<br />

(Repr<strong>in</strong>ted from the API Compendium)<br />

Average Component Uncerta<strong>in</strong>ty (±%) a<br />

Component<br />

Service<br />

Count<br />

Valves Liquid <strong>and</strong> Gas 2,740 75<br />

Pump seals Liquid <strong>and</strong> Gas 185 75<br />

Connectors Gas 110 75<br />

Flanges Liquid <strong>and</strong> Gas 10,000 75<br />

Open-ended l<strong>in</strong>es Gas 6 75<br />

Others Liquid <strong>and</strong> 710 75<br />

Footnotes:<br />

Note, the values shown above are for example only. They do not reflect actual operations.<br />

a Uncerta<strong>in</strong>ty is based on eng<strong>in</strong>eer<strong>in</strong>g judgment at a 95% confidence <strong>in</strong>terval.<br />

Facility Description: An onshore <strong>oil</strong> field <strong>in</strong> Texas consists of 320 produc<strong>in</strong>g <strong>oil</strong> wells.<br />

Throughput: The average daily <strong>oil</strong> <strong>and</strong> <strong>gas</strong> production rates are 6,100 bbl/day <strong>and</strong> 30×10 6 scf/day,<br />

respectively.<br />

Operations: The facility operates approximately 343 days per year. The facility imports 917 MW-hr<br />

annually from the eGRID subregion “ERCOT all”. The facility <strong>gas</strong> composition is presented <strong>in</strong> Table 5-3<br />

<strong>and</strong> results <strong>in</strong> a heat<strong>in</strong>g value of 928 Btu/scf with an <strong>uncerta<strong>in</strong>ty</strong> of ± 4%, based on eng<strong>in</strong>eer<strong>in</strong>g judgment.<br />

Table 5-3. Gas Composition for Onshore Oil Field (High CO 2 Content)<br />

(Repr<strong>in</strong>ted from the API Compendium)<br />

Gas Compound Produced Gas Mole % Uncerta<strong>in</strong>ty a<br />

(±%)<br />

CO 2 12 4<br />

N 2 2.1 4<br />

CH 4 80 4<br />

C 2 H 6 4.2 4<br />

C 3 H 8 1.3 4<br />

C 4 H 10 0.4 4<br />

Footnote:<br />

a Uncerta<strong>in</strong>ty is based on eng<strong>in</strong>eer<strong>in</strong>g judgment at a 95% confidence <strong>in</strong>terval.<br />

Note: the values shown above are for example only. They do not reflect average operations.<br />

Most of the GHG emissions from this facility are from combustion sources. A small additional amount<br />

comes from vented sources s<strong>in</strong>ce the <strong>oil</strong> field <strong>gas</strong> conta<strong>in</strong>s a relatively high CO 2 content (12 mole %).<br />

In this example, emissions from some emission sources are calculated by use of emission factors, us<strong>in</strong>g the<br />

follow<strong>in</strong>g simple equation:<br />

Pilot Version, September 2009 5-4


Emission Factor (EF) × Activity Factor (AF) = Total emissions from that source<br />

For these emission sources, the first task <strong>in</strong> the calculation of total <strong>in</strong>ventory <strong>uncerta<strong>in</strong>ty</strong> is assign<strong>in</strong>g<br />

uncerta<strong>in</strong>ties to each of the activity factors <strong>and</strong> emission factors that were used <strong>in</strong> the <strong>in</strong>ventory. Some<br />

emission calculation equations have multiple terms, rather than only two simple terms. For example:<br />

CO from flares = CO <strong>in</strong> the <strong>gas</strong> + CO formed by combustion<br />

2 2 2<br />

( × ) + ( × ×<br />

)<br />

= flared <strong>gas</strong> rate CO <strong>gas</strong> composition <strong>gas</strong> rate hydrocarbon composition combustion efficiency<br />

2<br />

The same approaches discussed below for assign<strong>in</strong>g uncerta<strong>in</strong>ties to simple activity factors will apply to<br />

each term <strong>in</strong> a more complicated equation. Further detail is also provided <strong>in</strong> Section 4.0.<br />

5.2.2 Assign<strong>in</strong>g Uncerta<strong>in</strong>ties to Activity Factors<br />

Sites may have a comb<strong>in</strong>ation of directly measured emissions <strong>and</strong> emissions calculated us<strong>in</strong>g activity factors<br />

<strong>and</strong> emission factors. For direct measurements of emissions, the equations <strong>and</strong> decision trees provided <strong>in</strong><br />

Section 4.0 can be used to quantify uncerta<strong>in</strong>ties.<br />

This section discusses assignment of uncerta<strong>in</strong>ties to the activity factors. In some cases, measured data will<br />

allow assignment of calculated confidence bounds, as covered <strong>in</strong> detail <strong>in</strong> the Section 4.0 examples.<br />

However, there will be many cases where confidence bounds on activity factor data will be assigned by<br />

expert judgment. This section covers how expert judgment assigned some of those bounds <strong>in</strong> this<br />

hypothetical case.<br />

Some assignment of expert judgment may require that the expert look at the activity value, say a total count<br />

of 67 chemical <strong>in</strong>jection pumps, <strong>and</strong> decide how many pumps a person might miss (undercount), or how<br />

many devices might be non-operat<strong>in</strong>g, or <strong>in</strong>correctly identified as chemical <strong>in</strong>jection pumps (over counted).<br />

If the expert, familiar with the count, decided that at most three pumps were under or over counted, the<br />

<strong>uncerta<strong>in</strong>ty</strong> limit might be assigned simply to be 3/67 = 4%. In this case, the company expert decided that a<br />

blanket 5% <strong>uncerta<strong>in</strong>ty</strong> was more appropriate. Some general categories of <strong>uncerta<strong>in</strong>ty</strong> assignments follows.<br />

Perfectly-known Activity Factors<br />

In this hypothetical example, some of the activity factors were simply counts of large equipment types at the<br />

facility. These counts, such as the number of b<strong>oil</strong>ers at the facility, are known with absolute certa<strong>in</strong>ty s<strong>in</strong>ce<br />

they are discreet values <strong>and</strong> were produced by company personnel <strong>in</strong>timately familiar with the specific<br />

facility. Therefore, the 95% confidence bounds (shown as “% <strong>uncerta<strong>in</strong>ty</strong>”) of the activity factor value is<br />

zero (0), s<strong>in</strong>ce the value is perfectly known. Table 5-1 shows uncerta<strong>in</strong>ties assumed for each activity factor.<br />

The perfectly known activity factors are <strong>in</strong> the second column under “No. of Units” <strong>and</strong> the uncerta<strong>in</strong>ties<br />

Pilot Version, September 2009 5-5


associated with them are assigned by expert judgment to be 0% <strong>in</strong> the third column. The reader should note<br />

that if these counts of equipment had been produced <strong>in</strong> a different way, for example if they were taken from<br />

an <strong>in</strong>dustry average of equipment counts at this general type of facility, <strong>uncerta<strong>in</strong>ty</strong> then would have to be a<br />

real value, not zero. In that case, confidence bounds might be provided with the <strong>in</strong>dustry average, or may<br />

have to be assigned aga<strong>in</strong> by expert judgment.<br />

Well-known Activity Factors<br />

Counts of other devices on site, even if produced by company personnel, may not be perfectly known. It is<br />

possible to know the exact number of am<strong>in</strong>e units with perfect certa<strong>in</strong>ty, but not to know some less<br />

significant equipment components. In this hypothetical case, counts were taken from the exact facility, such<br />

as counts of pressure relief valves (PRVs), pneumatic devices, <strong>and</strong> chemical <strong>in</strong>jection pumps. However,<br />

some small <strong>uncerta<strong>in</strong>ty</strong> was assigned to these counts by expert judgment s<strong>in</strong>ce the counts are not perfectly<br />

known. In this hypothetical case, uncerta<strong>in</strong>ties between 1% <strong>and</strong> 5% were assigned to the counts of PRVs,<br />

pneumatic devices, <strong>and</strong> chemical <strong>in</strong>jection pumps. For unit capacities, the fifth column <strong>in</strong> Table 5-1, these<br />

capacities are well known, <strong>and</strong> expert judgment assigned them to be ±5%. In this hypothetical example,<br />

“days of operation” are supplied by company experts. In this example, these estimates were not based on<br />

measured operat<strong>in</strong>g hours but were estimated based on operator logs. An <strong>uncerta<strong>in</strong>ty</strong> of 2% was assigned<br />

by expert judgment.<br />

Approximated Activity Factors<br />

For other sources, such as counts of valves, seals, flanges for fugitive emissions, there may be larger<br />

uncerta<strong>in</strong>ties associated with the activity factor counts. This is true even if the count were produced for the<br />

exact facility. The <strong>uncerta<strong>in</strong>ty</strong> is determ<strong>in</strong>ed us<strong>in</strong>g expert judgment based on the quality of the component<br />

<strong>in</strong>ventory <strong>and</strong> the length of time s<strong>in</strong>ce the last <strong>in</strong>ventory of fugitive emission sources, s<strong>in</strong>ce changes to the<br />

facility <strong>and</strong> therefore component counts are possible. In this hypothetical example, the counts were not<br />

taken for this exact facility, but were applied from average component count <strong>in</strong>formation from <strong>in</strong>dustrywide<br />

counts of fugitive components from this general type of facility. Therefore expert judgment assigned a<br />

much wider <strong>uncerta<strong>in</strong>ty</strong> to each count of ±75%. In cases where exact component counts were taken for this<br />

facility, the <strong>uncerta<strong>in</strong>ty</strong> percentage would be much lower. Table 5-2 shows the activity factor counts for<br />

fugitive components (repr<strong>in</strong>ted directly from the API Compendium), <strong>and</strong> the assigned uncerta<strong>in</strong>ties.<br />

Measured Activity Factors<br />

In this hypothetical example, some of the activity factors were flow rate <strong>in</strong>formation measured by on-site<br />

totaliz<strong>in</strong>g meters that record data. These flow rate measurements were assigned a ±15% <strong>uncerta<strong>in</strong>ty</strong> by<br />

Pilot Version, September 2009 5-6


expert judgment. The assignment is based upon company knowledge that the meters are not regularly<br />

calibrated. While many meters can have much better accuracy, without a quality control (QC) program<br />

<strong>in</strong>clud<strong>in</strong>g calibrations, for this example the expert determ<strong>in</strong>ed that the meters of this type have an accuracy<br />

of with<strong>in</strong> ±15%. If a QC program were <strong>in</strong> place, or if <strong>in</strong>dependent multiple repeat measurements had<br />

<strong>in</strong>stead been used, the user could have calculated the exact <strong>uncerta<strong>in</strong>ty</strong> <strong>and</strong> the confidence bounds, us<strong>in</strong>g the<br />

equations from Section 4.0 based on a data set of repeat measurements. No expert judgment would be<br />

required if that were the case. It is likely that the confidence bounds would be much tighter (lower) for<br />

repeat measurements.<br />

5.2.3 Propagat<strong>in</strong>g Uncerta<strong>in</strong>ty <strong>in</strong> Calculated Activity Factors<br />

Assignment of <strong>uncerta<strong>in</strong>ty</strong> to the most detailed level of activity data used <strong>in</strong> the <strong>in</strong>ventory is the preferred<br />

approach. Then statistical methods are used to propagate the <strong>uncerta<strong>in</strong>ty</strong> values.<br />

For example, <strong>in</strong> Table 5-1, the sum of the Annual Activity Factors is calculated as:<br />

Annual Activity Factor = Number of Units × Unit Capacity × Average Operations Time<br />

Each term that is multiplied to result <strong>in</strong> the annual activity factor has its own uncerta<strong>in</strong>ties. For sources<br />

such as the six b<strong>oil</strong>ers, there is no (0%) <strong>uncerta<strong>in</strong>ty</strong> associated with the count of equipment s<strong>in</strong>ce it is<br />

know that there are exactly six b<strong>oil</strong>ers at this facility. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the unit capacity is the<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the unit’s average operational capacity.<br />

Uncerta<strong>in</strong>ties for these combustion sources are calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative<br />

<strong>uncerta<strong>in</strong>ty</strong> values.<br />

Urel ( ) = Urel ( ) + Urel ( ) + Urel ( )<br />

2 2 2<br />

Activity Factor Number Of Units UnityCapacity AverageOperations<br />

For example, the <strong>uncerta<strong>in</strong>ty</strong> for the activity factor for the heaters/reb<strong>oil</strong>ers is calculated us<strong>in</strong>g the values<br />

shown <strong>in</strong> Table 5-1:<br />

Urel ( ) = Urel ( ) + Urel ( ) + Urel ( )<br />

Urel<br />

2 2 2<br />

Activity Factor Number Of Units UnityCapacity AverageOperations<br />

2 2 2<br />

( )<br />

Activity Factor<br />

= 0 + 5 + 2 = 5.39%<br />

Appendix F provides details on the <strong>uncerta<strong>in</strong>ty</strong> estimates for each emission source <strong>in</strong>cluded <strong>in</strong> this example.<br />

The result<strong>in</strong>g <strong>uncerta<strong>in</strong>ty</strong> estimates for this example facility are provided <strong>in</strong> Table 5-4 <strong>and</strong> Appendix F.<br />

Pilot Version, September 2009 5-7


Table 5-4. Onshore Oil Field (High CO 2 Content) Emissions<br />

Source<br />

CO 2 CH 4 N 2 O <strong>and</strong> Other GHG Total Emissions, CO 2 Eq<br />

Source Type<br />

Combustion<br />

Sources<br />

Vented sources<br />

Uncerta<strong>in</strong>ty<br />

Emissions<br />

%<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions<br />

%<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions<br />

%<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions<br />

%<br />

(tonnes/yr) Lower Upper<br />

B<strong>oil</strong>er/heaters 5,200 8.78 8.78 0.0865 26.1 26.1 0.0242 100 150 5,210 8.77 8.77<br />

Natural <strong>gas</strong> eng<strong>in</strong>es 13,900 15.7 15.7 0.904 29.4 29.4 0.325 100 151 14,100 15.6 15.6<br />

Emergency generator IC<br />

eng<strong>in</strong>e<br />

219 15.6 15.6<br />

0.0108 27.8 27.8 0.00175 100 151<br />

220 15.5 15.5<br />

Fire water pump IC eng<strong>in</strong>e<br />

0.00112 100 106 0.0000467 100 151<br />

Flares 27,400 23.4 23.4 153 25.3 25.3 0.223 100 200 30,700 21.1 21.1<br />

Fleet vehicles 127 19.4 19.4 0.00643 100 151 0.00871 100 151 129 19.1 19.2<br />

Combustion Total 46,800 14.5 14.5 154 25.2 25.2 0.582 68.9 114 49,900 13.7 13.7<br />

Dehydration <strong>and</strong> Kimray<br />

pump vents<br />

105 77.5 77.5 254 77.5 77.5 NA NA NA 5,440 76.0 76.0<br />

Tanks – flash<strong>in</strong>g losses 775 90.4 90.4 1,880 90.4 90.4 NA NA NA 40,300 88.7 88.7<br />

Am<strong>in</strong>e unit 62,600 6.97 6.97 193 100 119 NA NA NA 66,700 8.94 9.77<br />

Pneumatic devices 64.6 50.2 50.2 157 50.2 50.2 NA NA NA 3,360 49.2 49.2<br />

Chemical <strong>in</strong>jection pumps 48.6 100 108 118 100 108 NA NA NA 2,530 98.1 106<br />

Vessel blowdowns 0.0702 100 326 0.171 100 326 NA NA NA 3.65 98.1 319<br />

Compressor starts 0.745 100 190 1.81 100 190 NA NA NA 38.7 98.1 187<br />

Compressor blowdowns 0.333 100 179 0.808 100 179 NA NA NA 17.3 98.1 175<br />

Well workovers 0.0181 100 300 0.0439 100 300 NA NA NA 0.939 98.1 294<br />

Other non-rout<strong>in</strong>e (PRVs) 0.131 100 310 0.318 100 310 NA NA NA 6.81 98.1 319<br />

Vented Total 63,600 6.95 6.95 2,610 66.3 66.5 NA NA NA 118,000 30.9 31.0<br />

Pilot Version, September 2009 5-8


Table 5-4. Onshore Oil Field (High CO 2 Content) Emissions, cont<strong>in</strong>ued<br />

Source<br />

CO 2 CH 4 N 2 O <strong>and</strong> Other GHG Total Emissions, CO 2 Eq<br />

Uncerta<strong>in</strong>ty<br />

Emissions<br />

%<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions<br />

%<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions<br />

%<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions<br />

%<br />

(tonnes/yr) Lower Upper<br />

Source Type<br />

Fugitive Sources Fugitive components NA NA NA 52.6 66.2 83.3 NA NA NA 1,100 66.2 83.3<br />

Fleet vehicle<br />

refrigeration, R-314a<br />

NA NA NA NA NA NA 0.00100 100 112 1.30 100 112<br />

Fugitive Total NA NA NA 52.6 66.2 83.3 0.00100 100 112 1,100 66.1 83.2<br />

Indirect Sources Electricity consumed 551 10.2 10.2 0.00776 100 100 0.00628 100 100 553 10.2 10.2<br />

Indirect Total 551 10.2 10.2 0.00776 100 100 0.00628 100 100 553 10.2 10.2<br />

TOTAL (tonnes of each <strong>gas</strong>) 111,000 7.29 7.29 2,820 61.4 61.7 N 2 O:0.588 67.1 113<br />

R134a:<br />

0.00100 100 112<br />

TOTAL (CO 2 e) 111,000 7.29 7.29 59,100 61.4 61.7 184 66.6 112 170,300 21.9 21.9<br />

Pilot Version, September 2009 5-9


5.2.4 Propagat<strong>in</strong>g Assymetric Uncerta<strong>in</strong>ty Distribution<br />

Appendix F demonstrates the use of an asymmetric <strong>uncerta<strong>in</strong>ty</strong> distribution. Where the <strong>uncerta<strong>in</strong>ty</strong> values for<br />

emissions data were greater than 100%, the lower bound estimate was truncated at -100% <strong>and</strong> tracked<br />

separately from the upper bound estimate. The upper <strong>and</strong> lower bound uncerta<strong>in</strong>ties were then propagated<br />

through to the total CO 2 equivalent emissions for the facility. For this example, the result<strong>in</strong>g difference<br />

between the upper <strong>and</strong> lower <strong>uncerta<strong>in</strong>ty</strong> values was very small.<br />

5.3 Example 2: Ref<strong>in</strong>ery<br />

5.3.1 Background<br />

Example 1 provides a very detailed, step-by-step demonstration of the <strong>uncerta<strong>in</strong>ty</strong> calculations for a crude <strong>oil</strong><br />

production facility. Because many of the source types are similar across all <strong>in</strong>dustry sectors, this example<br />

focuses on a few dist<strong>in</strong>ct ref<strong>in</strong>ery process units. A comparison <strong>in</strong> the <strong>uncerta<strong>in</strong>ty</strong> calculations is provided for<br />

methodologies presented <strong>in</strong> the API Compendium for fluid catalytic crack<strong>in</strong>g unit (FCCU) <strong>and</strong> hydrogen plant<br />

emissions. As with the previous example, much of the <strong>in</strong>formation is repr<strong>in</strong>ted directly from the API<br />

Compendium without change.<br />

5.3.2 Uncerta<strong>in</strong>ty Comparison for FCCU Emission Estimation Methods<br />

The follow<strong>in</strong>g example applies <strong>uncerta<strong>in</strong>ty</strong> calculations to Exhibit 5.6 from the API Compendium for the<br />

FCCU GHG emission estimation methods presented <strong>in</strong> the API Compendium. The same operat<strong>in</strong>g<br />

parameters specified <strong>in</strong> the API Compendium are applied here, with the follow<strong>in</strong>g assignment of uncerta<strong>in</strong>ties<br />

added.<br />

• The catalytic crack<strong>in</strong>g unit has a coke burn rate of 119,750 tonnes per year ± 15% <strong>and</strong> a blower air<br />

capacity of 2,150 m 3 /m<strong>in</strong> ± 15% (assigned by expert judgment). The air blower is assumed to<br />

operate cont<strong>in</strong>uously for the year (a ± 2% <strong>uncerta<strong>in</strong>ty</strong> is applied to this assumption).<br />

• The carbon fraction of the coke is 0.93 ± 5.5% based on site-specific data (determ<strong>in</strong>ed from<br />

measured compositions).<br />

• The flue <strong>gas</strong> concentrations are 11% for CO 2 <strong>and</strong> 9% for CO exit<strong>in</strong>g the regenerator. Table D-3 of<br />

this <strong>uncerta<strong>in</strong>ty</strong> document provides reproducibility values for the precision of Reformed Gas<br />

Samples based on ASTM 1946-90. For molar compositions between 5 <strong>and</strong> 25 percent, a<br />

reproducibility factor of 0.5 applies. An additional 5% <strong>uncerta<strong>in</strong>ty</strong> is assigned by expert judgment<br />

to account for potential variability <strong>in</strong> the composition.<br />

• It is assumed that no CH 4 is formed dur<strong>in</strong>g the regeneration process.<br />

• A CO b<strong>oil</strong>er is used for control of the flue <strong>gas</strong> stream. Supplemental fir<strong>in</strong>g with <strong>natural</strong> <strong>gas</strong> is<br />

employed at a rate of 100×10 6 ± 5% Btu/hr on a higher heat<strong>in</strong>g value basis.<br />

The API Compendium presents three equations for estimat<strong>in</strong>g CO 2 emissions from FCCUs. The follow<strong>in</strong>g<br />

demonstrates the <strong>uncerta<strong>in</strong>ty</strong> quantification for each of the three methods.<br />

Pilot Version, September 2009 5-10


Uncerta<strong>in</strong>ty for Regenerator CO 2 Emissions – Coke Burn Rate Approach<br />

(Compendium Equation 5-4)<br />

Apply<strong>in</strong>g API Compendium Equation 5-4, the estimated CO 2 emissions from the regenerator would be:<br />

tonnes Coke Burned 0.93 tonnes C 44 tonnes CO2<br />

E<br />

CO<br />

= 119,750 × × 408,348 tonnes CO<br />

2<br />

2<br />

/year<br />

year tonnes Coke 12 tonnes C =<br />

The <strong>uncerta<strong>in</strong>ty</strong> is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U( rel) = U( rel) + U( rel)<br />

U rel<br />

CO2<br />

2 2<br />

Coke burned<br />

C content<br />

2 2<br />

( )<br />

CO<br />

= 15 + 5.5 = 15.98%<br />

2<br />

Uncerta<strong>in</strong>ty for Regenerator CO 2 Emissions – “K 1 , K 2 , K 3 ” Approach<br />

(API Compendium Equation 5-5)<br />

Apply<strong>in</strong>g the air rate to API Compendium Equation 5-5, the CO 2 emission estimate is:<br />

⎡0.2982 kg - m<strong>in</strong> 2,150 dscm ⎤ 44 tonne 8760 hr<br />

E<br />

CO<br />

= × × ( 11% + 9% ) × × × 411,862 tonnes CO<br />

2 ⎢<br />

=<br />

2<br />

/yr<br />

⎣ hr - dscm % m<strong>in</strong> ⎥<br />

⎦ 12 1,000 kg yr<br />

Note, the K 1 term (0.2982 kg-m<strong>in</strong>/hr-dscm%) is a constant.<br />

For this calculation, the <strong>uncerta<strong>in</strong>ty</strong> associated with the sum of the CO 2 <strong>and</strong> CO is determ<strong>in</strong>ed first. This<br />

<strong>uncerta<strong>in</strong>ty</strong> is calculated by apply<strong>in</strong>g Equation 4-4, us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties.<br />

U ( abs)<br />

U ( abs)<br />

U ( abs)<br />

concentrations<br />

CO2<br />

CO<br />

=<br />

=<br />

0.5<br />

0.5<br />

=<br />

2<br />

2<br />

U ( abs)<br />

+ (0.05×<br />

11)<br />

+ (0.05×<br />

9)<br />

2<br />

Reproducibility<br />

2<br />

2<br />

= 0.743<br />

= 0.673<br />

+ U ( abs)<br />

2<br />

Variability<br />

U ( rel)<br />

U ( rel)<br />

CO<br />

CO2<br />

0.743<br />

= 100% × = 6.76%<br />

2<br />

11<br />

0.673<br />

= 100% × = 7.47%<br />

9<br />

Equation 4-4, us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties, is also applied to comb<strong>in</strong>e these compositions.<br />

U ( abs)<br />

=<br />

U ( abs)<br />

2<br />

concentrations<br />

CO2<br />

+ U ( abs)<br />

2<br />

CO<br />

U ( abs)<br />

U ( rel)<br />

concentrations<br />

concentrations<br />

=<br />

0.743<br />

2<br />

+ 0.673<br />

= 1.002<br />

1.002<br />

= 100% × = 5.01%<br />

11+<br />

9<br />

2<br />

The CO 2 <strong>uncerta<strong>in</strong>ty</strong> is then calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Pilot Version, September 2009 5-11


U( rel) = U( rel) + U( rel) + U( rel)<br />

U rel<br />

CO2<br />

2 2 2<br />

Air rate CO <strong>and</strong> CO2 Annualhours<br />

2 2 2<br />

( )<br />

CO<br />

= 15 + 5.01 + 2 = 15.94%<br />

2<br />

Uncerta<strong>in</strong>ty for Regenerator CO 2 Emissions – Air Blower Rate Approach<br />

(API Compendium Equation 5-6)<br />

Us<strong>in</strong>g the air rate <strong>in</strong> API Compendium Equation 5-6 yields:<br />

E<br />

2150 m<br />

=<br />

⎛0.11 m CO<br />

×<br />

0.09 m CO m CO<br />

+ ×<br />

⎞<br />

×<br />

44 kg CO /kgmole CO<br />

⎝<br />

⎠<br />

525,600 m<strong>in</strong> tonnes<br />

× ×<br />

year 1000 kg<br />

3 3 3<br />

3<br />

2 2 2 2<br />

CO2<br />

⎜ 3 3 3 ⎟<br />

3<br />

m<strong>in</strong> m <strong>gas</strong> m <strong>gas</strong> m CO 23.685 m CO<br />

2/kgmole CO2<br />

E<br />

= 419,859 tonnes CO /year<br />

CO2<br />

2<br />

From an <strong>uncerta<strong>in</strong>ty</strong> perspective, this calculation is the same as shown for the “K 1 , K 2 , K 3 ” Approach (API<br />

Compendium Equation 5-5). Both equations apply the summed composition of CO 2 <strong>and</strong> CO, the air rate,<br />

<strong>and</strong> an annual operational time. The <strong>uncerta<strong>in</strong>ty</strong> of 15.94%, calculated above, would apply for this<br />

approach as well.<br />

Uncerta<strong>in</strong>ty for Supplemental Natural Gas Fir<strong>in</strong>g<br />

The emissions from the supplemental fir<strong>in</strong>g are <strong>in</strong> addition to the CO 2 emissions from the FCCU<br />

regenerator. Emissions from the supplemental fir<strong>in</strong>g of <strong>natural</strong> <strong>gas</strong> are estimated us<strong>in</strong>g the combustion<br />

emission approaches presented <strong>in</strong> API Compendium Section 4. For CO 2 , the emission factor is taken from<br />

API Compendium Table 4-3 for pipel<strong>in</strong>e <strong>natural</strong> <strong>gas</strong>.<br />

E<br />

×<br />

hr 10 Btu yr<br />

6<br />

100 10 Btu 0.0531 tonne CO2<br />

8760 hr<br />

CO<br />

= × ×<br />

2<br />

6<br />

E<br />

= 46,516 tonnes CO / yr<br />

CO2<br />

2<br />

The CO 2 <strong>uncerta<strong>in</strong>ty</strong> is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g relative <strong>uncerta<strong>in</strong>ty</strong> values. API<br />

Compendium Table 4-3 does not provide an <strong>in</strong>dication of the <strong>uncerta<strong>in</strong>ty</strong> associated with this emission<br />

factor, so a value of 5% is assigned by expert judgment.<br />

U( rel) = U( rel) + U( rel)<br />

U rel<br />

CO2<br />

2 2<br />

( )<br />

CO<br />

= 5 + 5 = 7.07%<br />

2<br />

2 2<br />

Heat rate<br />

Emission Factor<br />

The CH 4 emission factor is taken from API Compendium Table 4-7 for <strong>natural</strong> <strong>gas</strong> fired b<strong>oil</strong>ers.<br />

Pilot Version, September 2009 5-12


E<br />

100 10 Btu ×<br />

8760 hr<br />

= × ×<br />

hr 10 Btu yr<br />

6<br />

-6<br />

× 1.0 10 tonne CH4<br />

CH4<br />

6<br />

E<br />

= 0.88 tonnes CH / yr<br />

CH4<br />

4<br />

The <strong>uncerta<strong>in</strong>ty</strong> is calculated by apply<strong>in</strong>g Equation 4-6 us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values. The CH 4<br />

emission factor has a “B” quality rat<strong>in</strong>g assigned to it. Based on this, an <strong>uncerta<strong>in</strong>ty</strong> of 10% is applied to<br />

the emission factor.<br />

U( rel) = U( rel) + U( rel)<br />

U rel<br />

CH<br />

4<br />

2 2<br />

( )<br />

CH<br />

= 5 + 10 = 11.2%<br />

4<br />

2 2<br />

Heat rate<br />

Emission Factor<br />

The N 2 O emission factor is also taken from API Compendium Table 4-7 for controlled <strong>natural</strong> <strong>gas</strong> fired<br />

b<strong>oil</strong>ers.<br />

E<br />

E<br />

6<br />

-7<br />

× 9.8×<br />

10 tonne N2O<br />

NO 2<br />

6<br />

100 10 Btu 8760 hr<br />

= × ×<br />

hr 10 Btu yr<br />

= 0.86 tonnes N O / yr<br />

NO 2<br />

2<br />

The <strong>uncerta<strong>in</strong>ty</strong> is calculated by apply<strong>in</strong>g Equation 4-6 us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values. The N 2 O<br />

emission factor has an “E” quality rat<strong>in</strong>g assigned to it. Based on this, an <strong>uncerta<strong>in</strong>ty</strong> of 50% is applied to<br />

the emission factor.<br />

U( rel) = U( rel) + U( rel)<br />

U rel<br />

NO<br />

2<br />

2 2<br />

( )<br />

NO= 5 + 50 = 50.2%<br />

2<br />

2 2<br />

Heat rate<br />

Emission Factor<br />

Table 5-5 summarizes the emission <strong>and</strong> <strong>uncerta<strong>in</strong>ty</strong> estimates for the different FCCU methodologies.<br />

Equation 4-4, us<strong>in</strong>g the absolute <strong>uncerta<strong>in</strong>ty</strong> values, is applied where the emission estimates are summed.<br />

Based on the assumptions applied for the FCCU methodologies, the <strong>uncerta<strong>in</strong>ty</strong> associated with each of the<br />

methods provided <strong>in</strong> the API Compendium is comparable. In all three equations, the aggregated <strong>uncerta<strong>in</strong>ty</strong> is<br />

<strong>in</strong>fluenced primarily by the ± 15% <strong>uncerta<strong>in</strong>ty</strong> values assigned to the coke burn rate (used <strong>in</strong> the first <strong>and</strong> third<br />

methods) <strong>and</strong> the blower air capacity (used <strong>in</strong> the second method).<br />

Pilot Version, September 2009 5-13


Coke burn rate<br />

approach<br />

(Equation 5-4)<br />

“K 1 , K 2 , K 3 ”<br />

approach<br />

(Equation 5-5),<br />

Air blower rate<br />

approach<br />

(Equation 5-6)<br />

Table 5-5. Uncerta<strong>in</strong>ty Comparison for FCCU Estimation Methods<br />

Contribution CO 2 CH 4 N 2 O<br />

Coke Burn 408,348 ± 16.0%<br />

CO B<strong>oil</strong>er 46,516 ± 7.07% 0.88 ± 11.2% 0.86 ± 50.2%<br />

Total 454,864 ± 14.4% 0.88 ± 11.2% 0.86 ± 50.2%<br />

Total, CO 2 Eq. 454,149 ± 14.4%<br />

Contribution CO 2 CH 4 N 2 O<br />

Coke Burn 411,862 ± 15.9%<br />

CO B<strong>oil</strong>er 46,516 ± 7.07% 0.88 ± 11.2% 0.86 ± 50.2%<br />

Total 458,378± 14.3% 0.88 ± 11.2% 0.86 ± 50.2%<br />

Total, CO 2 Eq. 458,663 ± 14.3%<br />

Contribution CO 2 CH 4 N 2 O<br />

Coke Burn 419,859 ± 15.9%<br />

CO B<strong>oil</strong>er 46,516 ± 7.07% 0.88 ± 11.2% 0.86 ± 50.2%<br />

Total 466,375± 14.4% 0.88 ± 11.2% 0.86 ± 50.2%<br />

Total, CO 2 Eq. 466,660 ± 14.4%<br />

Round<strong>in</strong>g is limited to the <strong>uncerta<strong>in</strong>ty</strong> values to facilitate comparison.<br />

5.3.3 Uncerta<strong>in</strong>ty Comparison for Hydrogen Plant Emission Estimation Methods<br />

The API Compendium provides two rigorous calculation approaches for estimat<strong>in</strong>g the CO 2 generation rate<br />

from the hydrogen plant, both us<strong>in</strong>g a specific feed <strong>gas</strong> composition. The approaches are based on either the<br />

volume of feedstock used or the hydrogen production rate. This section compares the <strong>uncerta<strong>in</strong>ty</strong> estimates<br />

associated with these methods. For this comparison, the follow<strong>in</strong>g operat<strong>in</strong>g parameters <strong>and</strong> uncerta<strong>in</strong>ties are<br />

assigned:<br />

• A hydrogen plant has a feedstock rate of 3×10 9 ± 15% st<strong>and</strong>ard cubic feet per year <strong>and</strong> produces<br />

13×10 9 ± 15% st<strong>and</strong>ard cubic feet of hydrogen per year.<br />

• The feed <strong>gas</strong> composition (molar basis) is CH 4 = 85%, C 2 H 6 = 8%, C 4 H 10 = 3%; the balance is <strong>in</strong>erts<br />

(assume N 2 for the <strong>in</strong>erts). Table D-2 of this Uncerta<strong>in</strong>ty document provides reproducibility<br />

<strong>uncerta<strong>in</strong>ty</strong> associated with <strong>natural</strong> <strong>gas</strong> samples. These values can be applied to account for the<br />

measurement error <strong>in</strong> the composition sample. An additional 5% <strong>uncerta<strong>in</strong>ty</strong> is assigned by expert<br />

judgment to account for potential variability <strong>and</strong> bias <strong>in</strong> the <strong>gas</strong> composition dur<strong>in</strong>g the month.<br />

• It is assumed that no CH 4 is entra<strong>in</strong>ed <strong>in</strong> the hydrogen product.<br />

For both methods, the <strong>uncerta<strong>in</strong>ty</strong> associated with the feedstock composition is needed. The comb<strong>in</strong>ed<br />

<strong>uncerta<strong>in</strong>ty</strong> of the reproducibility <strong>and</strong> variability is calculated by apply<strong>in</strong>g Equation 4-4, us<strong>in</strong>g the absolute<br />

uncerta<strong>in</strong>ties. The calculation is demonstrated for ethane below; results for all of the compounds are shown <strong>in</strong><br />

Table 5-6.<br />

Pilot Version, September 2009 5-14


U ( abs) = U ( abs) + U ( abs)<br />

2 2<br />

Composition Re producibility Variability<br />

U abs<br />

0.4176<br />

Urel ( ) = × 100% = 5.22%<br />

8<br />

2 2<br />

( )<br />

Ethane<br />

= 0.12 + 0.4 = 0.4176<br />

mole%<br />

dry<br />

Reproducibility<br />

Uncerta<strong>in</strong>ty<br />

(abs), mole%<br />

Table 5-6. Composition Data<br />

Variability<br />

Uncerta<strong>in</strong>ty<br />

(U abs =mole%×5%)<br />

Comb<strong>in</strong>ed<br />

Uncerta<strong>in</strong>ty<br />

(rel)<br />

(applies to<br />

MW)<br />

MW<br />

Calculation,<br />

lb/lbmole<br />

wt%<br />

Carbon<br />

Calculation,<br />

%<br />

wt%<br />

C<br />

U(rel)<br />

Methane 85 0.15 4.25 5.00% 13.6340 53.96 6.24%<br />

Ethane 8 0.12 0.4 5.22% 2.4056 10.16 6.41%<br />

Butane 3 0.1 0.15 6.01% 1.7436 7.62 7.07%<br />

N 2 4 0.1 0.2 5.59% 1.1200 0.00 6.72%<br />

Total 100 18.9032 71.7339<br />

Sum <strong>uncerta<strong>in</strong>ty</strong><br />

(abs) 0.7042 3.4704<br />

Sum <strong>uncerta<strong>in</strong>ty</strong><br />

(rel) 3.73% 4.84%<br />

The molecular weight of the <strong>gas</strong> is calculated by apply<strong>in</strong>g the follow<strong>in</strong>g equation:<br />

MW<br />

Mixture<br />

=<br />

1<br />

100<br />

×<br />

# compounds<br />

∑( Mole%<br />

i<br />

× MWi<br />

)<br />

i=<br />

1<br />

This results <strong>in</strong> 18.9 lb/lbmole, as shown <strong>in</strong> Table 5-6.<br />

For each <strong>in</strong>dividual <strong>gas</strong> compound, the relative <strong>uncerta<strong>in</strong>ty</strong> of the mole% i × MW i is equivalent to the<br />

comb<strong>in</strong>ed reproducibility <strong>and</strong> variability uncerta<strong>in</strong>ties, s<strong>in</strong>ce the molecular weight of each <strong>gas</strong> compound is a<br />

constant. The aggregated <strong>uncerta<strong>in</strong>ty</strong> associated with the mixture’s MW is calculated by apply<strong>in</strong>g<br />

Equation 4-4, us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties for each molar compound.<br />

U ( abs) = U ( abs)<br />

∑( MW Total )<br />

2<br />

mole%<br />

× MW<br />

U ( abs) = (0.0500× 13.6340) + (0.0522× 2.4056) + (0.0601× 1.7436) + (0.0559×<br />

1.12)<br />

∑( MW Total )<br />

U abs<br />

2 2 2 2<br />

2 2 2 2<br />

( ) = (0.6821) + (0.1256) + (0.1048) + (0.0626) = 0.7042<br />

( MW Total )<br />

∑<br />

Urel ( )<br />

∑<br />

( MW Total )<br />

∑<br />

0.7042 = 100% 3.73%<br />

18.9032 × =<br />

The weight percent carbon of the average composition is calculated by apply<strong>in</strong>g the follow<strong>in</strong>g equation:<br />

Pilot Version, September 2009 5-15


Wt% C<br />

∑<br />

lbmole x lbmole C 12 lb C 1<br />

i<br />

Total<br />

= × × ×<br />

100 lbmole<br />

total<br />

lbmolei lbmole C MWTotal<br />

This equates to 71.7% C, as shown <strong>in</strong> Table 5-6.<br />

For each compound <strong>in</strong> the <strong>gas</strong> mixture, the <strong>uncerta<strong>in</strong>ty</strong> from this calculation is determ<strong>in</strong>ed by apply<strong>in</strong>g<br />

Equation 4-6, us<strong>in</strong>g the relative uncerta<strong>in</strong>ties of the lbmole i <strong>and</strong> MW Total . This is demonstrated for ethane.<br />

UR ( e lWt ) % C= Urel ( ) × Urel ( ) = 5.22 + 3.73 = 6.41%<br />

2 2 2 2<br />

i mole%<br />

i MW Total<br />

The <strong>uncerta<strong>in</strong>ty</strong> associated with the wt% C of the mixture is calculated by apply<strong>in</strong>g Equation 4-4, us<strong>in</strong>g the<br />

absolute uncerta<strong>in</strong>ties for the weight percent carbon of each molar compound.<br />

∑<br />

2<br />

U ( abs) = U ( abs)<br />

( %)<br />

Wt%<br />

∑ wt<br />

U ( abs) = (0.0624× 53.96) + (0.0641× 10.16) + (0.0707× 7.62) + (0.0672×<br />

0)<br />

∑( wt%)<br />

U ( abs) = 3.4704<br />

∑( wt%)<br />

3.4704<br />

Urel ( ) = × 100% = 4.84%<br />

∑( Wt %)<br />

71.7339<br />

2 2 2 2<br />

The uncerta<strong>in</strong>ties associated with the composition are used <strong>in</strong> the follow<strong>in</strong>g comparison of the emission<br />

estimation methodologies for H 2 plants.<br />

Uncerta<strong>in</strong>ty for H 2 Plant Emissions – Feedstock Rate Approach<br />

(API Compendium Equation 5-8)<br />

The CO 2 emissions can be calculated us<strong>in</strong>g the feedstock rate <strong>and</strong> carbon content, apply<strong>in</strong>g Equation 5-8 from<br />

the API Compendium:<br />

E<br />

E<br />

CO2<br />

CO2<br />

9<br />

3×<br />

10 scf<br />

=<br />

yr<br />

lbmole<br />

×<br />

379.3<br />

= 178,336 tonnes CO<br />

2<br />

feed<br />

scf<br />

/ yr<br />

18.9 lb<br />

×<br />

lbmole<br />

feed 0.7173 lb C 44 lb CO<br />

×<br />

×<br />

feed lb feed 12 lb C<br />

2<br />

tonne<br />

×<br />

2204.62 lb<br />

The CO 2 <strong>uncerta<strong>in</strong>ty</strong> is then calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Urel ( ) = Urel ( ) + Urel ( ) + Urel ( )<br />

Urel<br />

CO<br />

2<br />

2<br />

2 2 2<br />

Feedstock rate MW feedstock C content feedstock<br />

2 2 2<br />

( )<br />

CO<br />

= 15 + 3.73 + 4.84 = 16.2%<br />

Uncerta<strong>in</strong>ty for H 2 Plant Emissions – H 2 Production Approach<br />

(API Compendium Equation 5-9)<br />

A second approach for estimat<strong>in</strong>g emissions associated with a hydrogen plant is based on the H 2 production<br />

rate rather than the feedstock rate. This approach applies the stoichiometric ratio of H 2 formed to CO 2<br />

Pilot Version, September 2009 5-16


formed, as shown <strong>in</strong> API Compendium Equation 5-9. For this example, the chemical reaction for each<br />

compound is:<br />

CH 4 : CH 4 + 2H 2 O = 4H 2 + 1CO 2<br />

C 2 H 6 : C 2 H 6 + 4H 2 O = 7H 2 + 2CO 2<br />

C 4 H 10 : C 4 H 10 + 8H 2 O = 13H 2 + 4CO 2<br />

For this approach, the moles of carbon <strong>and</strong> hydrogen are determ<strong>in</strong>ed by multiply<strong>in</strong>g the number of molecules<br />

of each <strong>in</strong> each compound by the composition of each compound <strong>in</strong> the feed <strong>gas</strong> (i.e., CH 4 , C 2 H 6 , <strong>and</strong> C 4 H 10 ).<br />

These results are used to determ<strong>in</strong>e the ratio of moles of carbon to moles of H 2 , <strong>and</strong> are shown <strong>in</strong> Table 5-7.<br />

Table 5-7. Hydrogen <strong>and</strong> Carbon Composition Data<br />

Compound<br />

# C<br />

Atoms<br />

# H 2<br />

Molecules Concentration<br />

Comb<strong>in</strong>ed<br />

Uncerta<strong>in</strong>ty (rel)<br />

(mole%) Moles C Moles H 2<br />

CH 4 1 4 0.85 5.00% 0.85 3.4<br />

C 2 H 6 2 7 0.08 5.22% 0.16 0.56<br />

C 4 H 10 4 13 0.03 6.01% 0.12 0.39<br />

Total Moles 1.13 4.35<br />

Sum <strong>uncerta<strong>in</strong>ty</strong><br />

(abs)<br />

0.0439 0.0439<br />

Sum <strong>uncerta<strong>in</strong>ty</strong><br />

(rel)<br />

3.89% 3.89%<br />

The carbon-to-hydrogen ratio is calculated by divid<strong>in</strong>g the total moles C by the total moles H 2 (1.13/4.35 =<br />

0.26). S<strong>in</strong>ce each mole of carbon produces 1 mole of CO 2 , the CO 2 /H 2 ratio is the<br />

same as the C/H 2 ratio (0.26).<br />

The <strong>uncerta<strong>in</strong>ty</strong> associated with the total moles of C <strong>and</strong> H 2 is calculated by apply<strong>in</strong>g Equation 4-4, us<strong>in</strong>g the<br />

absolute uncerta<strong>in</strong>ties of each molar compound.<br />

∑<br />

2<br />

U ( abs) = U ( abs)<br />

( C)<br />

mole C<br />

∑ mole<br />

U ( abs) = (0.0500× 0.85) + (0.0522× 0.08) + (0.0601×<br />

0.03)<br />

∑( mole C)<br />

U ( abs) = 0.0439<br />

∑( mole C)<br />

0.0439<br />

Urel ( ) = × 100% = 3.89%<br />

∑( mole C)<br />

1.13<br />

∑<br />

2 2 2<br />

2<br />

U ( abs) = U ( abs)<br />

( H H<br />

2 )<br />

mole<br />

∑ mole<br />

2<br />

U ( abs) = (0.0500× 3.4) + (0.0522× 0.53) + (0.0601×<br />

0.39)<br />

∑( mole H 2 )<br />

U ( abs) = 0.1742<br />

∑( mole H 2 )<br />

0.1742<br />

Urel ( ) = × 100% = 4.00%<br />

∑( mole H 2 )<br />

4.35<br />

2 2 2<br />

Pilot Version, September 2009 5-17


The CO 2 emissions are calculated us<strong>in</strong>g Equation 5-9:<br />

6<br />

10 scf H2 lbmole H2 lbmole <strong>gas</strong> 1.13 lbmole CO2 44 lb CO2<br />

tonne<br />

E<br />

CO<br />

= 13,000 × × × × ×<br />

2<br />

year 379.3 scf 4.35 lbmole H lbmole <strong>gas</strong> lbmole CO 2204.62 lb<br />

2 2<br />

E<br />

= 177,700 tonnes CO /yr<br />

CO2<br />

2<br />

The CO 2 <strong>uncerta<strong>in</strong>ty</strong> is then calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Urel ( ) = Urel ( ) + Urel ( ) + Urel ( )<br />

Urel<br />

CO<br />

2 2<br />

2 2 2<br />

( )<br />

CO<br />

= 15 + 3.89 + 4 = 16.0%<br />

2<br />

2 2 2<br />

Feedstock rate moles C moles H<br />

Based on the assumptions applied for the H 2 plant emission methodologies, the <strong>uncerta<strong>in</strong>ty</strong> associated with<br />

each of the methods provided <strong>in</strong> the API Compendium is comparable. In both equations, the aggregated<br />

<strong>uncerta<strong>in</strong>ty</strong> is <strong>in</strong>fluenced primarily by the ±15% <strong>uncerta<strong>in</strong>ty</strong> values assigned to the feedstock rate (used <strong>in</strong> the<br />

first method) <strong>and</strong> the H 2 production rate (used <strong>in</strong> the second method).<br />

5.4 Strategic Reduction of Uncerta<strong>in</strong>ty<br />

This section addresses the potential need to ref<strong>in</strong>e the emission <strong>in</strong>ventory to reduce the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the<br />

overall emission estimate. There may be several reasons to do this. In some specific locations, there may be<br />

state or national regulations, or guidel<strong>in</strong>es for voluntary programs that suggest or require an emission<br />

<strong>in</strong>ventory to have uncerta<strong>in</strong>ties lower than a certa<strong>in</strong> percentage level. A company may also <strong>in</strong>dependently<br />

wish to ref<strong>in</strong>e its own <strong>uncerta<strong>in</strong>ty</strong> limits, if it considers the uncerta<strong>in</strong>ties too large.<br />

The reader should note that none of the strategies mentioned here are aimed at reduc<strong>in</strong>g the actual emissions<br />

of GHGs. That is a separate subject, <strong>and</strong> while emission reductions are achievable <strong>in</strong> some cases, they are<br />

beyond the scope of this report. This section focuses on reduc<strong>in</strong>g the mathematical <strong>and</strong> statistical <strong>uncerta<strong>in</strong>ty</strong><br />

associated with an exist<strong>in</strong>g emission <strong>in</strong>ventory.<br />

Once a decision has been made to ref<strong>in</strong>e <strong>and</strong> reduce the <strong>uncerta<strong>in</strong>ty</strong> associated with a given <strong>in</strong>ventory, some<br />

strategic analysis of the major sources contribut<strong>in</strong>g to the <strong>uncerta<strong>in</strong>ty</strong> is <strong>in</strong> order. It is important to know<br />

which sources significantly contribute to the overall <strong>in</strong>ventory. It would make little sense to ref<strong>in</strong>e a term<br />

with large confidence bounds, but that contributed very little to the overall <strong>in</strong>ventory. It may also be useful to<br />

have a target <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> m<strong>in</strong>d. For example, if the current total <strong>uncerta<strong>in</strong>ty</strong> is ±50.0 % <strong>and</strong> the company<br />

wishes to reduce it to ±25.0%, then that target is useful <strong>in</strong> the analysis. As uncerta<strong>in</strong>ties of <strong>in</strong>dividual values<br />

<strong>in</strong> the calculations are exam<strong>in</strong>ed, values that have uncerta<strong>in</strong>ties that are already at or below the 25.0% target,<br />

Pilot Version, September 2009 5-18


are less likely to be fruitful targets for reduction. The goal is to f<strong>in</strong>d the largest contributors to emissions that<br />

have the largest uncerta<strong>in</strong>ties.<br />

The largest contributors to <strong>uncerta<strong>in</strong>ty</strong> can be determ<strong>in</strong>ed by multiply<strong>in</strong>g the emission estimate by the<br />

maximum error bound for each source. This would result <strong>in</strong> the upper bound emission estimate for the<br />

particular source. The emission estimates can then be sorted by the largest contributors. This is demonstrated<br />

<strong>in</strong> Table 5-8 for the example crude <strong>oil</strong> production facility.<br />

Source Type<br />

Combustion<br />

Sources<br />

Vented Sources<br />

Fugitive<br />

Sources<br />

Indirect<br />

Emissions<br />

Table 5-8. Emission Uncerta<strong>in</strong>ty Rank<strong>in</strong>g for Onshore Oil Production Example<br />

Maximum<br />

Source<br />

Emissions<br />

(tonnes<br />

CO 2 e /yr)<br />

Maximum<br />

Uncerta<strong>in</strong>ty, %<br />

Emissions,<br />

(tonnes<br />

CO 2 e /yr) Rank<strong>in</strong>g<br />

B<strong>oil</strong>er/heaters 5,210 8.77 5,661 6<br />

Natural <strong>gas</strong> eng<strong>in</strong>es 14,100 15.6 16,244 4<br />

Diesel eng<strong>in</strong>es 220 15.5 254<br />

Flares 30,700 21.1 37,123 3<br />

Fleet vehicles 129 19.2 154<br />

Dehydration <strong>and</strong> Kimray pump vents 5,440 76.0 9,571 5<br />

Tanks – flash<strong>in</strong>g losses 40,300 88.7 76,039 1<br />

Am<strong>in</strong>e unit 66,700 9.77 73,216 2<br />

Pneumatic devices 3,360 49.2 5,013 8<br />

Chemical <strong>in</strong>jection pumps 2,530 106 5,215 7<br />

Vessel blowdowns 3.65 319 15.3<br />

Compressor starts 38.7 187 111<br />

Compressor blowdowns 17.3 175 47.6<br />

Well workovers 0.939 294 3.70<br />

Other non-rout<strong>in</strong>e (PRVs) 6.81 319 28.5<br />

Fugitive components<br />

Fleet vehicle<br />

refrigeration, R-314a<br />

Electricity consumed<br />

1,100 83.3 2,025 9<br />

1.30 112 2.75<br />

553 10.2 609 10<br />

Figure 5-1 provides an illustration of the emissions (which are not expressed <strong>in</strong> CO 2 e, but simply <strong>in</strong> tonnes of<br />

each type of <strong>gas</strong>) for the onshore <strong>oil</strong> field which is a repr<strong>in</strong>t from the API Compendium.<br />

Pilot Version, September 2009 5-19


GHG Emissions, tonnes/yr<br />

60,000<br />

50,000<br />

40,000<br />

30,000<br />

20,000<br />

10,000<br />

0<br />

Combustion Vented Fugitive Indirect<br />

Emission Source Category<br />

Carbon Dioxide<br />

Methane<br />

Nitrous Oxide<br />

Other GHGs<br />

Figure 5-1. Onshore Oil Field: Summary of Emissions<br />

Figure 5-2 illustrates emissions for the facility with each emission category <strong>and</strong> each <strong>gas</strong> converted to CO 2 e,<br />

us<strong>in</strong>g each <strong>gas</strong>’ GWP. It should be noted that although the GWP itself has <strong>uncerta<strong>in</strong>ty</strong> associated with it, this<br />

report treats the GWP as a selected constant. Therefore, no <strong>uncerta<strong>in</strong>ty</strong> is associated or propagated from the<br />

GWP values. Figure 5-2 also illustrates the bounds of <strong>uncerta<strong>in</strong>ty</strong> (at 95% confidence) for each emission<br />

source category.<br />

5.4.1 Opportunities to Improve the Uncerta<strong>in</strong>ty Estimate for the Onshore Oil Field<br />

Each facility should exam<strong>in</strong>e the major categories of emissions <strong>and</strong> emission <strong>uncerta<strong>in</strong>ty</strong>, <strong>and</strong> then exam<strong>in</strong>e<br />

specific emission sources with<strong>in</strong> the category. Prioritiz<strong>in</strong>g the largest sources of <strong>uncerta<strong>in</strong>ty</strong> can be done with<br />

this simple approach.<br />

Among the major types of emissions <strong>in</strong> Figure 5-2, there are three very significant emission categories:<br />

1) combustion sources of CO 2; 2) vented sources of CO 2; <strong>and</strong> 3) vented sources of CH 4 . These are the most<br />

significant source of <strong>greenhouse</strong> <strong>gas</strong> emissions for this facility. Together they comprise almost 95% of all<br />

GHG emissions from the facility.<br />

Pilot Version, September 2009 5-20


CO2 Equilvalents, tonnes/yr<br />

90,000<br />

80,000<br />

70,000<br />

60,000<br />

50,000<br />

40,000<br />

30,000<br />

Carbon Dioxide<br />

Methane<br />

Nitrous Oxide<br />

Other GHGs<br />

20,000<br />

10,000<br />

0<br />

Combustion Vented Fugitive Indirect<br />

Emission Source Category<br />

Figure 5-2. Onshore Oil Field: Summary of CO 2 Equivalent Emissions <strong>and</strong> Uncerta<strong>in</strong>ties<br />

Exam<strong>in</strong>ation of the uncerta<strong>in</strong>ties, as shown <strong>in</strong> the bars on Figure 5-2, or the absolute <strong>uncerta<strong>in</strong>ty</strong> values <strong>in</strong><br />

Table F-15, shows that “vented emissions of CH 4 ” are the most significant source of <strong>uncerta<strong>in</strong>ty</strong>, contribut<strong>in</strong>g<br />

36,400 CO 2 e tonnes of <strong>uncerta<strong>in</strong>ty</strong> (based on 2600 ±66.5% CO 2 e tonnes) <strong>in</strong> a total <strong>in</strong>ventory that had only<br />

37,300 CO 2 e tonnes of <strong>uncerta<strong>in</strong>ty</strong> (based on 170,000 ±21.9% CO 2 e tonnes). Carbon dioxide combustion<br />

sources are the next largest contributor of <strong>uncerta<strong>in</strong>ty</strong>, contribut<strong>in</strong>g 6,780 CO 2 e tonnes of <strong>uncerta<strong>in</strong>ty</strong>. The<br />

third largest source is CO 2 vented, with 4,420 CO 2 e tonnes of <strong>uncerta<strong>in</strong>ty</strong> (based on 63,600 ±6.95% CO 2 e<br />

tonnes).<br />

Therefore, should the company wish to reduce <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the GHG emission <strong>in</strong>ventory from this onshore<br />

<strong>oil</strong> field facility, these categories would be the primary targets for <strong>uncerta<strong>in</strong>ty</strong> reduction. These appear to be<br />

the sources where <strong>uncerta<strong>in</strong>ty</strong> reduction efforts could be effectively spent to ref<strong>in</strong>e the <strong>in</strong>ventory <strong>and</strong> reduce<br />

the <strong>uncerta<strong>in</strong>ty</strong>.<br />

Reduction of Uncerta<strong>in</strong>ty <strong>in</strong> Vented CH 4 Sources<br />

With<strong>in</strong> vented emissions, there are 10 sources listed <strong>in</strong> Table 5-8. The highest rank<strong>in</strong>g source, tank flash<strong>in</strong>g<br />

losses, contributes a significant part of the vented emissions (33% of total vented emissions), as well as the<br />

Pilot Version, September 2009 5-21


vast majority of the <strong>uncerta<strong>in</strong>ty</strong> for the entire vented CH 4 category. That s<strong>in</strong>gle category source’s <strong>uncerta<strong>in</strong>ty</strong><br />

is 1700 tonnes of methane, or 35,700 tonnes of CO 2 e. Therefore, improvement of this estimate could greatly<br />

reduce <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the overall <strong>in</strong>ventory.<br />

Exam<strong>in</strong>ation of the detailed calculation for that category (presented earlier), shows that the largest <strong>uncerta<strong>in</strong>ty</strong><br />

is <strong>in</strong> the emission factor, which is a general <strong>in</strong>dustry-wide emission factor. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> that factor is<br />

±90.4%. This <strong>uncerta<strong>in</strong>ty</strong> can be reduced simply by us<strong>in</strong>g an improved estimation method to determ<strong>in</strong>e tank<br />

flash<strong>in</strong>g losses.<br />

As elaborated <strong>in</strong> the API Compendium, other emission estimation methodologies can be used to estimate<br />

emissions with lower uncerta<strong>in</strong>ties. For example, if the “EUB Rule of Thumb” approach (API Compendium<br />

Section 5.4.1) were applied <strong>in</strong>stead of the default tank flash<strong>in</strong>g emission factor for the example onshore<br />

production facility, the emissions for this category would be 20,500 ±49.7% tonnes CO 2 e. 2 This one revision<br />

would change the overall <strong>in</strong>ventory emissions to 151,000 ±9.88% tonnes CO 2 e.<br />

The company may also decide to take direct measurements of methane emissions from the tanks or other<br />

vented sources with large uncerta<strong>in</strong>ties, such as am<strong>in</strong>e unit emissions <strong>and</strong> dehydration unit emissions.<br />

Repeated direct measurements or a site-specific emission factor would likely reduce <strong>uncerta<strong>in</strong>ty</strong>. In some<br />

cases, the company might be able to produce an improved emission factor with lower <strong>uncerta<strong>in</strong>ty</strong> without<br />

direct emission measurements. For example, dehydrator emission factors were produced by computer<br />

simulations of dehydrators us<strong>in</strong>g national average <strong>in</strong>put data; the company might elect to produce simulations<br />

specifically for their dehydrators, us<strong>in</strong>g their dehydrator operat<strong>in</strong>g conditions, <strong>and</strong> thus produce a company<br />

specific emission factor with less <strong>uncerta<strong>in</strong>ty</strong>.<br />

Reduction of Uncerta<strong>in</strong>ty <strong>in</strong> Combustion CO 2 Sources<br />

If the company decided to take the next step of emission reductions, it may target the next largest category of<br />

<strong>uncerta<strong>in</strong>ty</strong>. With<strong>in</strong> combustion emissions, there are many <strong>in</strong>dividual sources, as were shown <strong>in</strong> Table 5-8<br />

earlier:<br />

• B<strong>oil</strong>ers/heaters;<br />

• Natural <strong>gas</strong> eng<strong>in</strong>es;<br />

• Diesel eng<strong>in</strong>es;<br />

• Flares; <strong>and</strong><br />

• Fleet vehicles.<br />

2 This emission estimate is based on an assumed separator pressure of 30 ±5% psi, <strong>and</strong> an assumed <strong>uncerta<strong>in</strong>ty</strong> of<br />

±50% applied to the correlation constant used <strong>in</strong> API Compendium Equation 5-20.<br />

Pilot Version, September 2009 5-22


As was shown <strong>in</strong> Table 5-8, emissions from b<strong>oil</strong>ers/heaters, <strong>natural</strong> <strong>gas</strong> eng<strong>in</strong>es <strong>and</strong> flares are ranked <strong>in</strong> the<br />

top ten highest emission sources, with one source, emergency flare, contribut<strong>in</strong>g about 62% of the total.<br />

Uncerta<strong>in</strong>ty associated with the emergency flare was calculated to be 21.1%, or about ±6,500 tonnes CO 2 e/yr.<br />

By exam<strong>in</strong><strong>in</strong>g the calculations used for flar<strong>in</strong>g, the follow<strong>in</strong>g general strategies could be selected by the<br />

operat<strong>in</strong>g company to reduce <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> flar<strong>in</strong>g:<br />

• Ref<strong>in</strong>e the measurement of total <strong>gas</strong> flared (the activity factor), to reduce the activity factor<br />

<strong>uncerta<strong>in</strong>ty</strong> from the current value of 15% <strong>and</strong>/or;<br />

• Ref<strong>in</strong>e the <strong>gas</strong> composition measurements to reduce the <strong>uncerta<strong>in</strong>ty</strong> from 4%.<br />

Ref<strong>in</strong><strong>in</strong>g the measurement of total <strong>gas</strong> flared may result from many approaches, such as improv<strong>in</strong>g the meter<br />

quality (even possibly replac<strong>in</strong>g the meter), improv<strong>in</strong>g the quality control of the exist<strong>in</strong>g meter (such as<br />

number of calibrations <strong>and</strong> <strong>in</strong>spections), or improv<strong>in</strong>g the number of measurements taken <strong>and</strong> recorded from<br />

the meter that is used to calculate the total <strong>gas</strong> flared (this assumes measurements were not already<br />

cont<strong>in</strong>uous). These approaches have vary<strong>in</strong>g costs, <strong>and</strong> some may be cost-prohibitive. The company would<br />

have to determ<strong>in</strong>e which approach was the most cost effective.<br />

Ref<strong>in</strong><strong>in</strong>g the <strong>gas</strong> composition data may also come from several methods, such as tak<strong>in</strong>g additional rout<strong>in</strong>e<br />

samples, <strong>in</strong>stall<strong>in</strong>g a cont<strong>in</strong>uous <strong>gas</strong> analyzer, or us<strong>in</strong>g a better analysis method. As with the <strong>gas</strong> flow rate<br />

measurement, these approaches have vary<strong>in</strong>g costs, <strong>and</strong> some may be cost-prohibitive. The company would<br />

have to determ<strong>in</strong>e which approach was the most cost effective.<br />

If the company was effective <strong>in</strong> reduc<strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> flare <strong>gas</strong> CO 2 emissions, it might then elect to<br />

proceed to the next largest CO 2 <strong>uncerta<strong>in</strong>ty</strong> source. The end-user will have to recalculate total emissions for<br />

the company or facility each time, <strong>and</strong> determ<strong>in</strong>e if the <strong>uncerta<strong>in</strong>ty</strong> goal or target has been reached.<br />

Reduction of Uncerta<strong>in</strong>ty <strong>in</strong> Vented CO 2 Sources<br />

If the company decided to take the next step of emission reductions, it may target the next largest category of<br />

<strong>uncerta<strong>in</strong>ty</strong>, which is vented CO 2 sources. Vented CO 2 emissions result from seven sources listed <strong>in</strong><br />

Table F-15. The am<strong>in</strong>e unit accounts for the over 98% of the emissions <strong>in</strong> this category.<br />

Am<strong>in</strong>e unit CO 2 vented emissions have an <strong>uncerta<strong>in</strong>ty</strong> of 4,360 tonnes of CO 2 e <strong>in</strong> a category that only has an<br />

<strong>uncerta<strong>in</strong>ty</strong> of 4,420 tonnes of CO 2 e. Therefore any <strong>uncerta<strong>in</strong>ty</strong> reduction efforts <strong>in</strong> this area should be<br />

directed at the am<strong>in</strong>e unit calculations. However, the calculations used for the am<strong>in</strong>e units reveal that the<br />

<strong>uncerta<strong>in</strong>ty</strong> is actually relatively low. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> that emission category is less than 7%. It is possible<br />

to reduce this <strong>uncerta<strong>in</strong>ty</strong> by improv<strong>in</strong>g the uncerta<strong>in</strong>ties for <strong>gas</strong> composition, <strong>and</strong> <strong>gas</strong> throughput. While it is<br />

possible to reduce this <strong>uncerta<strong>in</strong>ty</strong>, given the low percentage level of the <strong>uncerta<strong>in</strong>ty</strong>, any improvement may<br />

be small. Therefore this is likely a case where company efforts are best spent on the previous categories.<br />

Pilot Version, September 2009 5-23


6.0 REFERENCES<br />

AGA, 2008, Greenhouse Gas Emission Estimation Guidel<strong>in</strong>es for the Natural Gas Distribution Sector;<br />

American Gas Association, Wash<strong>in</strong>gton DC, April 2008<br />

API 1985, Manual of Petroleum Measurement St<strong>and</strong>ards, Chapter 13, Statistical Aspects of Measur<strong>in</strong>g <strong>and</strong><br />

Sampl<strong>in</strong>g, Part 1, “Statistical Concepts <strong>and</strong> Procedures <strong>in</strong> Measurement”, Reaffirmed February 2006, API<br />

Publications, Wash<strong>in</strong>gton DC<br />

API, 2004 <strong>and</strong> 2009, Compendium of GHG Emissions Methodologies for the O&G Industry, American<br />

Petroleum Institute, Wash<strong>in</strong>gton DC, February 2004 (Addendum 2005). Updated August 2009.<br />

API, 2009, revised <strong>and</strong> updated version of Reference 2.<br />

API/IPIECA, 2007, Greenhouse Gas Emissions Estimation & Inventories: An International Workshop<br />

Address<strong>in</strong>g Uncerta<strong>in</strong>ty & Accuracy, Workshop Report, London, UK<br />

http://www.ipieca.org/activities/climate_change/workshops/jan_07.php<br />

API/IPIECA, 2007, Oil & Natural Gas Industry Guidel<strong>in</strong>es for Greenhouse Gas Reduction Projects,<br />

IPIECA, London, March 2007<br />

API/IPIECA/OGP, 2003, Petroleum Industry Guidel<strong>in</strong>es for Report<strong>in</strong>g GHG Emissions, IPIECA, London,<br />

December 2003<br />

API Manual of Petroleum Measurement Systems, 2006, Chapter 14, “Natural Gas Fluids Measurement”,<br />

Sections 1 to 10, reaffirmed 2006, API Publications, Wash<strong>in</strong>gton DC<br />

API Manual of Petroleum Measurement Systems, Chapter 14.1, “Collect<strong>in</strong>g <strong>and</strong> H<strong>and</strong>l<strong>in</strong>g of Natural Gas<br />

Samples for Custody Transfer”, Sixth Edition, February 2006, API Publications, Wash<strong>in</strong>gton DC<br />

API Manual of Petroleum Measurement Systems, Chapter 14.10, “Measurement of Flow to Flares”, First<br />

Edition, July 2007, API Publications, Wash<strong>in</strong>gton DC<br />

ASTM 1945-03, “Analysis of Natural Gas by Gas Chromatography”, current edition approved May 10,<br />

2003. Published July 2003. Orig<strong>in</strong>ally approved <strong>in</strong> 1962. Last previous edition approved <strong>in</strong> 2001 as<br />

D1945–96(2001).<br />

ASTM D 1946 – 90 (Reapproved 2006), St<strong>and</strong>ard Practice for Analysis of Reformed Gas by Gas<br />

Chromatography, current edition approved June 1, 2006. Published June 2006 (Orig<strong>in</strong>ally approved <strong>in</strong><br />

1962)<br />

ASTM UOP, 1997, UOP539-97, Ref<strong>in</strong>ery Gas Analysis by Gas Chromatography<br />

ASTM D 2650, 2004, St<strong>and</strong>ard Test Method for Chemical Composition of Gases by Mass Spectrometry,<br />

Published November 1, 2004.<br />

ASTM D 1826 – 94 (Reapproved 2003), “St<strong>and</strong>ard Test Method for Calorific (Heat<strong>in</strong>g) Value of Gases <strong>in</strong><br />

Natural Gas Range by Cont<strong>in</strong>uous Record<strong>in</strong>g Calorimeter”, Current edition approved May 10, 2003.<br />

Published May 2003. Orig<strong>in</strong>ally approved <strong>in</strong> 1961. Last previous edition approved <strong>in</strong> 1998 as D 1826 – 94<br />

(1998).<br />

ASTM D-3588-98, “St<strong>and</strong>ard Practice for Calculat<strong>in</strong>g Heat Value, Compressibility Factor, <strong>and</strong> Relative<br />

Density of Gaseous Fuels”, Current edition approved May 10, 2003. Published May 2003. Orig<strong>in</strong>ally<br />

approved <strong>in</strong> 1998. Last previous edition approved <strong>in</strong> 1998 as D 3588 – 98.<br />

ASTM D 4891 – 89 (Reapproved 2006), St<strong>and</strong>ard Test Method for Heat<strong>in</strong>g Value of Gases <strong>in</strong> Natural Gas<br />

Range by Stoichiometric Combustion, Current edition approved June 1, 2006. Published June 2006.<br />

Orig<strong>in</strong>ally approved <strong>in</strong> 1989. Last previous edition approved <strong>in</strong> 2001 as D4891–89 (2001)<br />

ASTM D7313-08, “St<strong>and</strong>ard Practice for Determ<strong>in</strong>ation of the Heat<strong>in</strong>g Value of Gaseous Fuels us<strong>in</strong>g<br />

Calorimetry <strong>and</strong> On-l<strong>in</strong>e/At-l<strong>in</strong>e Sampl<strong>in</strong>g”, Current edition approved May 1, 2008. Published May 2008.<br />

Pilot Version, September 2009 6-1


Canadian Association of Petroleum Producers (CAPP). A National Inventory of Greenhouse Gas (GHG),<br />

Criteria Air Contam<strong>in</strong>ant (CAC) <strong>and</strong> Hydrogen Sulphide (H 2 S) Emissions by the Upstream Oil <strong>and</strong> Gas<br />

Industry, Technical Report, Volume 3, Methodology for Greenhouse Gases, September 2004.<br />

Canadian Association of Petroleum Producers (CAPP). A National Inventory of Greenhouse Gas (GHG),<br />

Criteria Air Contam<strong>in</strong>ant (CAC) <strong>and</strong> Hydrogen Sulphide (H 2 S) Emissions by the Upstream Oil <strong>and</strong> Gas<br />

Industry, Technical Report, Volume 5, Compendium of Term<strong>in</strong>ology, Information Sources, Emission<br />

Factors, Equipment Schedules <strong>and</strong> Uncerta<strong>in</strong>ty Data, September 2004.<br />

CARB, 2008, Regulation for the M<strong>and</strong>atory Report<strong>in</strong>g of Greenhouse Gas Emissions, California Air<br />

Resources Board (CARB), F<strong>in</strong>al Review Draft, September 18, 2008, Sacramento, California<br />

Casella, G, <strong>and</strong> R.L. Berger. Statistical Inference, Duxbury Press, Belmont, CA, 1990.<br />

Cochran, William G, 1977, Sampl<strong>in</strong>g Techniques, 3 rd Edition, John Wiley & Sons, Inc, New York.<br />

Coleman, Hugh W. <strong>and</strong> W. Glenn Steele, Jr., 1989, Experimentation <strong>and</strong> Uncerta<strong>in</strong>ty Analysis for<br />

Eng<strong>in</strong>eers, John Wiley & Sons, Inc, New York.<br />

EMEP/CORINAIR, 2007, Emission Inventory Guidebook, European Environmental Agency<br />

(http://reports.eea.europa.eu/EMEPCORINAIR5/en/page002.html)<br />

ETSG, 2007, Compendium of Notes, Emission Trad<strong>in</strong>g Technical Support Group, 30 July 2007<br />

EU-ETS MRG, 2007, “Establish<strong>in</strong>g guidel<strong>in</strong>es for the monitor<strong>in</strong>g <strong>and</strong> report<strong>in</strong>g of <strong>greenhouse</strong> <strong>gas</strong><br />

emissions pursuant to Directive 2003/87/EC of the European Parliament <strong>and</strong> of the Council”, 2007/589/EC,<br />

Brussels, Belgium, July 18, 2007.<br />

Franzblau, A. A Primer of Statistics for Non-Statisticians, Harcourt, Brace & World, Chapter 7, 1958.<br />

INGAA, 2005, Greenhouse Gas Emission Estimation Guidel<strong>in</strong>es for Natural Gas Transmission <strong>and</strong><br />

Storage; Interstate Natural Gas Association of America (INGAA), Wash<strong>in</strong>gton, DC, September 2005<br />

IPCC Emissions Factors Database, http://www.ipcc-nggip.iges.or.jp/EFDB/ma<strong>in</strong>.php<br />

IPCC, 2000. “IPCC Good Practices Guidance <strong>and</strong> Uncerta<strong>in</strong>ty Management <strong>in</strong> National Greenhouse Gas<br />

Inventories”, accepted by the IPCC Plenary at its 16th session held <strong>in</strong> Montreal, 1-8 May, 2000,<br />

Corrigendum, June 15, 2001.<br />

IPCC, 2006, “2006 IPCC Guidel<strong>in</strong>es for National Greenhouse Gas Inventories” http://www.ipccnggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_3_Ch3_Uncerta<strong>in</strong>ties.pdf<br />

ISO 6974, 2002, Natural <strong>gas</strong> – Determ<strong>in</strong>ation of composition with def<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> by <strong>gas</strong><br />

chromatography (<strong>in</strong> 6 parts); First edition 2002-10-15, Geneva, Switzerl<strong>and</strong><br />

ISO 5168, 2005, Measurement of fluid flow — Procedures for the evaluation of uncerta<strong>in</strong>ties, Second<br />

edition, 2005-06-15, Geneva, Switzerl<strong>and</strong><br />

ISO 5168-2005-06-15, 2005, “International St<strong>and</strong>ard: Measurement of fluid flow – Procedures for the<br />

evaluation of uncerta<strong>in</strong>ties”, Geneva, Switzerl<strong>and</strong>.<br />

ISO/IEC 17025:2005, “General requirements for the competence of test<strong>in</strong>g <strong>and</strong> calibration laboratories”.<br />

Current version effective as of 2005-05-12. Revises: ISO/IEC 17025:1999<br />

Rob<strong>in</strong>son, J.R. On Uncerta<strong>in</strong>ty <strong>in</strong> the Computation of Global Emissions for Biomass Burn<strong>in</strong>g. Climatic<br />

Change, 14, pp. 243-262, 1989.<br />

Shires, T.M., <strong>and</strong> M.R. Harrison. Methane Emissions from the Natural Gas Industry, Volume 6: Vented <strong>and</strong><br />

Combustion Source Summary, F<strong>in</strong>al Report, GRI-94/0257.23 <strong>and</strong> EPA-600/R-96-080f, Gas Research Institute<br />

<strong>and</strong> US Environmental Protection Agency, June 1996. http://www.<strong>gas</strong>technology.org<br />

Pilot Version, September 2009 6-2


The Alberta Energy <strong>and</strong> Utilities Board (EUB/Board), Directive 017, Measurement Requirements for<br />

Upstream Oil <strong>and</strong> Gas Operations, Revised edition May 7, 2007<br />

U.S. EPA, Technology Transfer Network, Clear<strong>in</strong>ghouse for Inventories & Emissions Factors, Emissions<br />

Factors & AP-42, United States Environmental Protection Agency (U.S. EPA), Research Triangle Park,<br />

North Carol<strong>in</strong>a (http://www.epa.gov/ttn/chief/ap42/)<br />

Williamson, H.J., M.B. Hall, <strong>and</strong> M.R. Harrison. Methane Emissions from the Natural Gas Industry, Volume<br />

4: Statistical Methodology, F<strong>in</strong>al Report, GRI-94/0257.21 <strong>and</strong> EPA-600/R-96-080d, Gas Research Institute<br />

<strong>and</strong> US Environmental Protection Agency, June 1996. http://www.<strong>gas</strong>technology.org<br />

Pilot Version, September 2009 6-3


APPENDIX A<br />

GLOSSARY OF STATISTICAL AND GHG INVENTORY TERMS


Appendix A<br />

GLOSSARY OF STATISTICAL AND GHG INVENTORY TERMS 1<br />

TERM STATISTICAL DEFINITION GHG INVENTORY APPLICATION<br />

ACCURACY The ability to <strong>in</strong>dicate values closely<br />

approximat<strong>in</strong>g the true value of the<br />

measured variable.<br />

Relative measure of the exactness of an<br />

emission or removal estimate.<br />

Estimates should neither over nor under<br />

estimate true emissions or removals<br />

systematically.<br />

ACTIVITY DATA<br />

ARITHMETIC<br />

MEAN<br />

BIAS<br />

CENTRAL LIMIT<br />

THEOREM<br />

COEFFICIENT OF<br />

VARIATION<br />

CONFIDENCE<br />

INTERVAL<br />

CONFIDENCE<br />

LEVEL<br />

CORRELATION<br />

CORRELATION<br />

COEFFICIENT<br />

The sum of the values divided by the<br />

number of values.<br />

Bias is any <strong>in</strong>fluence on a result that<br />

produces an <strong>in</strong>correct approximation of the<br />

true value of the variable be<strong>in</strong>g measured.<br />

Bias is the result of a predictable systematic<br />

error.<br />

A mathematical/statistical theorem, which<br />

states that the arithmetic mean of n<br />

<strong>in</strong>dependently distributed, <strong>and</strong> r<strong>and</strong>om<br />

variables, approximates a normal<br />

distribution as n tends to <strong>in</strong>f<strong>in</strong>ity.<br />

Confidence <strong>in</strong>terval or range of <strong>uncerta<strong>in</strong>ty</strong>,<br />

C, is the range or <strong>in</strong>terval with<strong>in</strong> which the<br />

true value is expected to lie with a stated<br />

degree of confidence.<br />

The degree of confidence that may be<br />

placed on an estimated range of <strong>uncerta<strong>in</strong>ty</strong>.<br />

Mutual dependence between two quantities.<br />

A number ly<strong>in</strong>g between –1 <strong>and</strong> +1 that<br />

measures the mutual dependence between<br />

two variables that are observed together.<br />

It is def<strong>in</strong>ed as the covariance of the two<br />

variables divided by the product of their<br />

st<strong>and</strong>ard deviations.<br />

Magnitude of human activity result<strong>in</strong>g<br />

<strong>in</strong> emissions or removals.<br />

For example, the total amounts of fuel<br />

burned for fuel combustion sources, or<br />

the number of pip<strong>in</strong>g components for<br />

fugitive emissions.<br />

It can be <strong>in</strong>troduced by us<strong>in</strong>g improper<br />

measurements or by us<strong>in</strong>g<br />

unrepresentative activity data.<br />

For example, us<strong>in</strong>g only leakage rates<br />

from high/medium pressure pipel<strong>in</strong>es<br />

without the low pressure distribution<br />

system.<br />

Under some conditions, the central<br />

limit theorem can justify the<br />

approximation that the total emissions<br />

from a bottom-up <strong>in</strong>ventory have a<br />

normal distribution.<br />

The ratio of the population st<strong>and</strong>ard<br />

deviation, <strong>and</strong> the mean.<br />

Sample coefficient of variation is the<br />

ratio of the sample st<strong>and</strong>ard deviation<br />

<strong>and</strong> the sample mean.<br />

In practice a confidence <strong>in</strong>terval is<br />

def<strong>in</strong>ed by a probability value, say<br />

95%, <strong>and</strong> confidence limits on either<br />

side of the mean value.<br />

Level of trust <strong>in</strong> a measurement or<br />

estimate.<br />

Pilot Version, September 2009 A-1


Appendix A<br />

GLOSSARY OF STATISTICAL AND GHG INVENTORY TERMS, cont<strong>in</strong>ued<br />

TERM STATISTICAL DEFINITION GHG INVENTORY APPLICATION<br />

COVARIANCE A measure of the mutual dependence<br />

between two variables.<br />

DEGREES OF<br />

FREEDOM<br />

DIRECT<br />

MEASUREMENT<br />

DISTRIBUTION<br />

FUNCTION<br />

EMISSION<br />

FACTOR<br />

ERROR<br />

ESTIMATION<br />

EXPERT<br />

JUDGEMENT<br />

INDEPENDENCE<br />

INDIRECT<br />

MEASUREMENT<br />

KEY SOURCE<br />

CATEGORY<br />

The number of <strong>in</strong>dependent results used <strong>in</strong><br />

estimat<strong>in</strong>g the st<strong>and</strong>ard deviation.<br />

A distribution function, or cumulative<br />

distribution function, F(x), for a r<strong>and</strong>om<br />

variable X, specifies the probability Pr(X ≤<br />

x) that X is less than or equal to x.<br />

The difference between true <strong>and</strong> observed<br />

values.<br />

The assessment of the value of a quantity or<br />

its <strong>uncerta<strong>in</strong>ty</strong> through the assignment of<br />

numerical observation values <strong>in</strong> an<br />

estimation formula.<br />

Two r<strong>and</strong>om variables are <strong>in</strong>dependent if<br />

there is a complete absence of association<br />

between how their sample values vary.<br />

Correlation coefficients are commonly used<br />

to document lack of <strong>in</strong>dependence between<br />

two r<strong>and</strong>om variables.<br />

A measurement that produces a f<strong>in</strong>al<br />

result directly from the scale on an<br />

<strong>in</strong>strument.<br />

A coefficient that relates the activity<br />

data to the amount of chemical<br />

compound that is emitted.<br />

Emission factors are often based on a<br />

sample of measurement data, averaged<br />

to develop a representative rate of<br />

emission for a given activity level<br />

under a given set of operat<strong>in</strong>g<br />

conditions.<br />

A carefully considered, welldocumented<br />

qualitative or quantitative<br />

judgment made <strong>in</strong> the absence of<br />

unequivocal observational evidence by<br />

a person or persons who have expertise<br />

<strong>in</strong> the given field.<br />

A measurement that produces a f<strong>in</strong>al<br />

result by calculation us<strong>in</strong>g results from<br />

one or more direct measurements.<br />

A key source category is one whose<br />

estimate has a significant <strong>in</strong>fluence on<br />

the total direct GHGs <strong>in</strong> terms of their<br />

absolute level of emissions, their<br />

emission, or both.<br />

Pilot Version, September 2009 A-2


Appendix A<br />

GLOSSARY OF STATISTICAL AND GHG INVENTORY TERMS, cont<strong>in</strong>ued<br />

TERM STATISTICAL DEFINITION GHG INVENTORY APPLICATION<br />

LINEAR<br />

REGRESSION<br />

LOGNORMAL<br />

DISTRIBUTION<br />

MEAN<br />

MEASUREMENT<br />

MEDIAN<br />

MONTE CARLO<br />

METHOD<br />

NORMAL<br />

DISTRIBUTION<br />

OUTLIER<br />

POPULATION<br />

PRECISION<br />

L<strong>in</strong>ear regression provides a way of fitt<strong>in</strong>g a<br />

straight l<strong>in</strong>e to a set of observed data po<strong>in</strong>ts,<br />

tak<strong>in</strong>g <strong>in</strong>to account the effects of<br />

observational variability.<br />

This is an asymmetric distribution, which<br />

starts from zero, rises to a maximum <strong>and</strong><br />

then tails off more slowly to <strong>in</strong>f<strong>in</strong>ity.<br />

The average of two or more observed<br />

values.<br />

The sample mean, or arithmetic average, is<br />

an estimator for the mean.<br />

The median, or population median, is the<br />

50 th population percentile.<br />

For symmetric distributions it equals the<br />

mean.<br />

The pr<strong>in</strong>ciple of Monte Carlo analysis is to<br />

perform the <strong>in</strong>ventory calculation many<br />

times, where each time the uncerta<strong>in</strong><br />

emission factors or model parameters <strong>and</strong><br />

activity data are chosen r<strong>and</strong>omly (by the<br />

computer) from with<strong>in</strong> the distribution of<br />

uncerta<strong>in</strong>ties specified <strong>in</strong>itially by the user.<br />

The normal (or Gaussian) distribution has a<br />

probability density function that can be<br />

def<strong>in</strong>ed by two parameters (the mean <strong>and</strong><br />

the st<strong>and</strong>ard deviation).<br />

The population is the totality of items under<br />

consideration. In the case of a r<strong>and</strong>om<br />

variable, the probability distribution is<br />

considered to def<strong>in</strong>e the population of that<br />

variable.<br />

The degree to which data with<strong>in</strong> a set<br />

cluster together.<br />

For example, if emissions observations<br />

are plotted aga<strong>in</strong>st correspond<strong>in</strong>g<br />

activity levels, the slope of the l<strong>in</strong>e<br />

fitted by a l<strong>in</strong>ear regression provides an<br />

estimate of the appropriate emission<br />

factor.<br />

Procedure for determ<strong>in</strong><strong>in</strong>g a value for a<br />

physical variable.<br />

Uncerta<strong>in</strong>ties <strong>in</strong> emission factors <strong>and</strong>/or<br />

activity data are often large <strong>and</strong> may<br />

not have normal distributions. In this<br />

case the conventional statistical rules<br />

for comb<strong>in</strong><strong>in</strong>g uncerta<strong>in</strong>ties become<br />

very approximate.<br />

Monte Carlo analysis can deal with this<br />

situation by generat<strong>in</strong>g an <strong>uncerta<strong>in</strong>ty</strong><br />

distribution for the <strong>in</strong>ventory estimate.<br />

A result that differs considerably from<br />

the ma<strong>in</strong> body of results <strong>in</strong> a set.<br />

Precision is the <strong>in</strong>verse of <strong>uncerta<strong>in</strong>ty</strong><br />

<strong>in</strong> the sense that the more precise<br />

someth<strong>in</strong>g is, the less uncerta<strong>in</strong> it is.<br />

Pilot Version, September 2009 A-3


Appendix A<br />

GLOSSARY OF STATISTICAL AND GHG INVENTORY TERMS, cont<strong>in</strong>ued<br />

TERM STATISTICAL DEFINITION GHG INVENTORY APPLICATION<br />

PROBABILITY A probability is a real number <strong>in</strong> the scale 0<br />

to 1 attached to a r<strong>and</strong>om event.<br />

The probability that a r<strong>and</strong>om event E<br />

occurs is often denoted as Pr(E).<br />

PROBABILITY<br />

DISTRIBUTION<br />

PROBABILITY<br />

DENSITY<br />

FUNCTION (PDF)<br />

PROPAGATION OF<br />

UNCERTAINTIES<br />

QUALITY<br />

ASSURANCE (QA)<br />

QUALITY<br />

CONTROL (QC)<br />

A function giv<strong>in</strong>g the probability that a<br />

r<strong>and</strong>om variable takes any given value or<br />

belongs to a given set of values.<br />

The probability on the whole set of values<br />

of the r<strong>and</strong>om variable equals 1.<br />

This is a mathematical function that<br />

characterizes the probability behavior of a<br />

given population.<br />

It is a function that specifies the relative<br />

likelihood of a cont<strong>in</strong>uous r<strong>and</strong>om variable<br />

of tak<strong>in</strong>g any specific value.<br />

Most PDFs require one or more parameters<br />

to specify them fully.<br />

A set of rules that specify how to<br />

algebraically comb<strong>in</strong>e the quantitative<br />

measures of <strong>uncerta<strong>in</strong>ty</strong> associated with the<br />

<strong>in</strong>put values to the mathematical formulae<br />

used <strong>in</strong> <strong>in</strong>ventory compilation, so as to<br />

obta<strong>in</strong> correspond<strong>in</strong>g measures of<br />

<strong>uncerta<strong>in</strong>ty</strong> for the output values.<br />

In practical situations, the PDF used is<br />

chosen from a relatively small number<br />

of st<strong>and</strong>ard PDFs <strong>and</strong> the ma<strong>in</strong><br />

statistical task is to estimate its<br />

parameters.<br />

A knowledge of which PDF has been<br />

used is a necessary item <strong>in</strong> the<br />

documentation of an <strong>uncerta<strong>in</strong>ty</strong><br />

assessment.<br />

See Section 4.0<br />

A planned system of review procedures<br />

conducted by personnel not directly<br />

<strong>in</strong>volved <strong>in</strong> the <strong>in</strong>ventory<br />

compilation/development process to<br />

verify that data quality objectives were<br />

met <strong>and</strong> ensure that the <strong>in</strong>ventory<br />

represents the best possible estimate of<br />

emissions <strong>and</strong> s<strong>in</strong>ks given the current<br />

state of scientific knowledge <strong>and</strong> data<br />

available.<br />

A system of rout<strong>in</strong>e technical activities,<br />

to measure <strong>and</strong> control the quality of<br />

the <strong>in</strong>ventory as it is be<strong>in</strong>g developed.<br />

These may <strong>in</strong>clude data accuracy<br />

checks, <strong>and</strong> the use of applicable<br />

procedures for emission calculations<br />

<strong>and</strong> report<strong>in</strong>g.<br />

Pilot Version, September 2009 A-4


Appendix A<br />

GLOSSARY OF STATISTICAL AND GHG INVENTORY TERMS, cont<strong>in</strong>ued<br />

TERM STATISTICAL DEFINITION GHG INVENTORY APPLICATION<br />

RANDOM ERROR The difference between an <strong>in</strong>dividual<br />

measurement <strong>and</strong> the limit<strong>in</strong>g value of the<br />

sample mean.<br />

An error that varies <strong>in</strong> an unpredictable<br />

manner when a large number of<br />

measurements of the same variable are<br />

made under effectively identical<br />

conditions.<br />

RANDOM SAMPLE<br />

RANDOM<br />

VARIABLE<br />

RANGE<br />

REPEATABILITY<br />

A sample of n items chosen from a<br />

population such that every possible sample<br />

has the same probability of be<strong>in</strong>g chosen.<br />

A variable that may take any of the values<br />

of a specified set of values that are<br />

represented by a probability distribution.<br />

Region between the limits with<strong>in</strong> which a<br />

quantity is measured.<br />

A measure of the agreement between the<br />

results of successive measurements of the<br />

same variable carried out by the same<br />

method, with the same <strong>in</strong>strument, at the<br />

same location, <strong>and</strong> with<strong>in</strong> a short period of<br />

time.<br />

REPRODUCIBILITY A measure of the agreement between the<br />

results of measurements of the same<br />

variable where <strong>in</strong>dividual measurements are<br />

carried out by the same methods, with the<br />

same type of <strong>in</strong>struments, but by different<br />

observers at different locations, <strong>and</strong> after a<br />

long period of time.<br />

RESIDUAL<br />

SAMPLE<br />

SENSITIVITY<br />

ANALYSIS<br />

STANDARD<br />

DEVIATION<br />

STANDARD ERROR<br />

OF THE MEAN<br />

The difference between the observed value<br />

<strong>and</strong> the value predicted by a statistical<br />

model, e.g. by l<strong>in</strong>ear regression.<br />

A sample is a f<strong>in</strong>ite set of observations<br />

drawn from a population.<br />

This is a study to determ<strong>in</strong>e how sensitive<br />

(or stable) is a calculation method to<br />

variations of its <strong>in</strong>put data or underly<strong>in</strong>g<br />

assumptions.<br />

The population st<strong>and</strong>ard deviation is the<br />

positive square root of the variance. It is<br />

estimated by the sample st<strong>and</strong>ard deviation<br />

that is the positive square root of the sample<br />

variance.<br />

A term often used to signify the sample<br />

st<strong>and</strong>ard deviation of the mean.<br />

A ‘discrete’ r<strong>and</strong>om variable is one that<br />

may take only isolated values.<br />

A ‘cont<strong>in</strong>uous’ r<strong>and</strong>om variable is one<br />

that may take any value with<strong>in</strong> a f<strong>in</strong>ite<br />

or <strong>in</strong>f<strong>in</strong>ite <strong>in</strong>terval.<br />

It is the component of an observation<br />

that cannot be expla<strong>in</strong>ed by the model.<br />

This analysis can <strong>in</strong>clude observ<strong>in</strong>g the<br />

range of output values that correspond<br />

to <strong>in</strong>put variables; <strong>and</strong> calculat<strong>in</strong>g f<strong>in</strong>ite<br />

difference approximations for study<strong>in</strong>g<br />

error propagation with<strong>in</strong> a system.<br />

Pilot Version, September 2009 A-5


Appendix A<br />

GLOSSARY OF STATISTICAL AND GHG INVENTORY TERMS, cont<strong>in</strong>ued<br />

TERM STATISTICAL DEFINITION GHG INVENTORY APPLICATION<br />

SYSTEMATIC<br />

ERROR<br />

TRUE VALUE<br />

TIME SERIES<br />

UNCERTAINTY<br />

UNCERTAINTY<br />

ANALYSIS<br />

VALIDATION<br />

VARIABILITY<br />

VARIANCE<br />

VARIANCE OF<br />

SAMPLE MEAN<br />

VERIFICATION<br />

The difference between the true, but usually<br />

unknown, value of a quantity be<strong>in</strong>g<br />

measured, <strong>and</strong> the mean observed value as<br />

would be estimated by the sample mean of<br />

an <strong>in</strong>f<strong>in</strong>ite set of observations.<br />

Systematic errors result <strong>in</strong> a bias.<br />

The correct value of a variable.<br />

A series of values that are affected by<br />

r<strong>and</strong>om processes <strong>and</strong> are observed at<br />

successive time po<strong>in</strong>ts.<br />

A parameter associated with the result of<br />

measurement that characterizes the<br />

dispersion of the values that could be<br />

reasonably attributed to the measured<br />

quantity<br />

A quantitative measure of the <strong>uncerta<strong>in</strong>ty</strong> of<br />

output values caused by uncerta<strong>in</strong>ties <strong>in</strong> its<br />

<strong>in</strong>put values, <strong>and</strong> to exam<strong>in</strong>e the relative<br />

importance of these factors.<br />

The observed differences attributable to<br />

true heterogeneity or diversity <strong>in</strong> a<br />

population.<br />

It can be characterized by quantities such as<br />

the sample variance.<br />

The measure of the dispersion or scatter of<br />

the values of the r<strong>and</strong>om variable about the<br />

mean.<br />

The mean of a sample taken from a<br />

population is itself a r<strong>and</strong>om variable with<br />

its own characteristic behavior <strong>and</strong> its own<br />

variance.<br />

It is an error that <strong>in</strong> the course of a<br />

number of measurements made under<br />

the same conditions, on material<br />

hav<strong>in</strong>g the same true value of a<br />

variable, either rema<strong>in</strong>s constant <strong>in</strong><br />

absolute value <strong>and</strong> sign or varies <strong>in</strong> a<br />

predictable manner.<br />

A general term that refers to the lack of<br />

certa<strong>in</strong>ty (<strong>in</strong> <strong>in</strong>ventory components)<br />

result<strong>in</strong>g from causal factors such as<br />

unidentified sources <strong>and</strong> s<strong>in</strong>ks, lack of<br />

transparency etc.<br />

Involves check<strong>in</strong>g to ensure that the<br />

<strong>in</strong>ventory has been compiled correctly<br />

<strong>in</strong> l<strong>in</strong>e with report<strong>in</strong>g <strong>in</strong>structions <strong>and</strong><br />

guidel<strong>in</strong>es.<br />

Variability derives from processes that<br />

are either <strong>in</strong>herently r<strong>and</strong>om or whose<br />

nature <strong>and</strong> effects are <strong>in</strong>fluential but<br />

unknown.<br />

Variability is not usually reducible by<br />

further measurement or study.<br />

The collection of activities <strong>and</strong><br />

procedures to be followed dur<strong>in</strong>g the<br />

plann<strong>in</strong>g <strong>and</strong> development, or after<br />

completion of an <strong>in</strong>ventory, to help<br />

establish its reliability for <strong>in</strong>tended use.<br />

1 Extracted from: Chapter 13.1 of API MPMS: Statistical Concepts <strong>and</strong> Procedures <strong>in</strong> Measurement; <strong>and</strong> Annex 3 of the IPCC Good Practice Guidance<br />

<strong>and</strong> Uncerta<strong>in</strong>ty Management <strong>in</strong> National Greenhouse Gas Inventories, 2000.<br />

Pilot Version, September 2009 A-6


APPENDIX B<br />

LIST OF INDUSTRY MEASUREMENT STANDARDS


Appendix B<br />

LIST OF INDUSTRY MEASUREMENT STANDARDS<br />

This Appendix provides a list of over 300 hydrocarbon measurement st<strong>and</strong>ards used to measure quantities of<br />

petroleum products <strong>and</strong> <strong>natural</strong> <strong>gas</strong> liquids. Entire series of st<strong>and</strong>ards from particular st<strong>and</strong>ards developers are<br />

listed as many of the st<strong>and</strong>ards are <strong>in</strong>ter-related <strong>and</strong> have to be used <strong>in</strong> conjunction with one another for<br />

measurement of quantities. This list is provided for users’ convenience to highlight the fact that companies may<br />

use different sets of measurement st<strong>and</strong>ards that fit their operat<strong>in</strong>g environment <strong>and</strong> available <strong>in</strong>strumentation.<br />

Each of the st<strong>and</strong>ards cited is designed to meet a variety of data needs <strong>and</strong> a def<strong>in</strong>ed level of accuracy, precision<br />

<strong>and</strong> <strong>uncerta<strong>in</strong>ty</strong> ranges. The compilation provided here <strong>in</strong>cludes st<strong>and</strong>ards developed by the American<br />

Petroleum <strong>in</strong>stitute (API); the American Society of Test<strong>in</strong>g <strong>and</strong> Materials (ASTM)’ the American Gas<br />

Association (AGA); the Gas Processors Association (GPA), <strong>and</strong> the <strong>in</strong>ternational organization for<br />

st<strong>and</strong>ardization (ISO). The list does not comprise an exhaustive reference to all st<strong>and</strong>ards; it does not cite<br />

applicable st<strong>and</strong>ards from the EU, Japan, or other st<strong>and</strong>ards sett<strong>in</strong>g organizations.<br />

B.1 API Manual of Petroleum Measurement St<strong>and</strong>ards (MPMS)<br />

Chapter 1<br />

Chapter 2.2A<br />

Chapter 2.2B<br />

Chapter 2.2C<br />

Chapter 2.2D<br />

Chapter 2.2E<br />

Chapter 2.2F<br />

Std 2552<br />

Std 2554<br />

Std 2555<br />

RP 2556<br />

Chapter 2.7<br />

Chapter 2.8A<br />

Vocabulary<br />

Measurement <strong>and</strong> Calibration of Upright Cyl<strong>in</strong>drical Tanks by the Manual Strapp<strong>in</strong>g<br />

Method<br />

[Chapter 2.2A should be used <strong>in</strong> conjunction with Chapter 2.2B. These two st<strong>and</strong>ards<br />

comb<strong>in</strong>ed supersede the previous API St<strong>and</strong>ard 2550, Measurement <strong>and</strong> Calibration of<br />

Upright Cyl<strong>in</strong>drical Tanks]<br />

Calibration of Upright Cyl<strong>in</strong>drical Tanks Us<strong>in</strong>g the Optical Reference L<strong>in</strong>e Method<br />

Calibration of Upright Cyl<strong>in</strong>drical Tanks Us<strong>in</strong>g the Optical-Triangulation Method<br />

Calibration of Upright Cyl<strong>in</strong>drical Tanks Us<strong>in</strong>g the Internal Electro-optical Distance<br />

Rang<strong>in</strong>g Method<br />

Petroleum <strong>and</strong> Liquid Petroleum Products—Calibration of Horizontal Cyl<strong>in</strong>drical Tanks—<br />

Part 1: Manual Methods<br />

Petroleum <strong>and</strong> Liquid Petroleum Products—Calibration of Horizontal Cyl<strong>in</strong>drical Tanks—<br />

Part 2: Internal Electro-optical Distance-rang<strong>in</strong>g Method<br />

Measurement <strong>and</strong> Calibration of Spheres <strong>and</strong> Spheroids<br />

Measurement <strong>and</strong> Calibration of Tank Cars<br />

Liquid Calibration of Tanks<br />

Correct<strong>in</strong>g Gauge Tables for Incrustation<br />

Calibration of Barge Tanks<br />

Calibration of Tanks on Ships <strong>and</strong> Oceango<strong>in</strong>g Barges<br />

Pilot Version, September 2009 B-1


Chapter 2.8B Establishment of the Location of the Reference Gauge Po<strong>in</strong>t <strong>and</strong> the Gauge Height of<br />

Tanks on Mar<strong>in</strong>e Tank Vessels<br />

Chapter 3.1A St<strong>and</strong>ard Practice for the Manual Gaug<strong>in</strong>g of Petroleum <strong>and</strong> Petroleum Products<br />

Chapter 3.1B St<strong>and</strong>ard Practice for Level Measurement of Liquid Hydrocarbons <strong>in</strong> Stationary Tanks by<br />

Automatic Tank Gaug<strong>in</strong>g<br />

Chapter 3.2 St<strong>and</strong>ard Practice for Gaug<strong>in</strong>g Petroleum <strong>and</strong> Petroleum Products <strong>in</strong> Tank Cars<br />

Chapter 3.3 St<strong>and</strong>ard Practice for Level Measurement of Liquid Hydrocarbons <strong>in</strong> Stationary<br />

Pressurized Storage Tanks by Automatic Tank Gaug<strong>in</strong>g<br />

Chapter 3.4 St<strong>and</strong>ard Practice for Level Measurement of Liquid Hydrocarbons on Mar<strong>in</strong>e Vessels by<br />

Automatic Tank Gaug<strong>in</strong>g<br />

Chapter 3.5 St<strong>and</strong>ard Practice for Level Measurement of Light Hydrocarbon Liquids Onboard Mar<strong>in</strong>e<br />

Vessels by Automatic Tank Gaug<strong>in</strong>g<br />

Chapter 3.6 Measurement of Liquid Hydrocarbons by Hybrid Tank Measurement Systems<br />

Chapter 4.1 Prov<strong>in</strong>g Systems – Introduction<br />

Chapter 4.2 Displacement Provers<br />

Chapter 4.4 Tank Provers<br />

Chapter 4.5 Master-Meter Provers<br />

Chapter 4.6 Pulse Interpolation<br />

Chapter 4.7 Field-St<strong>and</strong>ard Test Measures<br />

Chapter 4.8 Operation of Prov<strong>in</strong>g Systems<br />

Chapter 4.9.1 Methods of Calibration for Displacement <strong>and</strong> Volumetric Tank Provers, Part 1—<br />

Introduction to the Determ<strong>in</strong>ation of the Volume of Displacement <strong>and</strong> Tank Provers<br />

Chapter 4.9.2 Methods of Calibration for Displacement <strong>and</strong> Volumetric Tank Provers, Part 2—<br />

Determ<strong>in</strong>ation of the Volume of Displacement <strong>and</strong> Tank<br />

Chapter 5.1 General Consideration for Measurement by Meters<br />

Chapter 5.2 Measurement of Liquid Hydrocarbons by Displacement Meters<br />

Chapter 5.3 Measurement of Liquid Hydrocarbons by Turb<strong>in</strong>e Meters<br />

Chapter 5.4 Accessory Equipment for Liquid Meters<br />

Chapter 5.5 Fidelity <strong>and</strong> Security of Flow Measurement Pulsed-Data Transmission Systems<br />

Chapter 5.6 Measurement of Liquid Hydrocarbons by Coriolis Meters<br />

Chapter 5.8 Measurement of Liquid Hydrocarbons by Ultrasonic Flowmeters Us<strong>in</strong>g Transit Time<br />

Technology<br />

Draft St<strong>and</strong>ard Vortex Shedd<strong>in</strong>g Flowmeter for Measurement of Hydrocarbon Fluids<br />

Chapter 6.1 Lease Automatic Custody Transfer (LACT) Systems<br />

Chapter 6.2 Load<strong>in</strong>g Rack Meter<strong>in</strong>g Systems<br />

Chapter 6.4 Meter<strong>in</strong>g Systems for Aviation Fuel<strong>in</strong>g Facilities<br />

Chapter 6.5 Meter<strong>in</strong>g Systems for Load<strong>in</strong>g <strong>and</strong> Unload<strong>in</strong>g Mar<strong>in</strong>e Bulk Carriers<br />

Chapter 6.6 Pipel<strong>in</strong>e Meter<strong>in</strong>g Systems<br />

Chapter 6.7 Meter<strong>in</strong>g Viscous Hydrocarbons<br />

Pilot Version, September 2009 B-2


Chapter 7<br />

Chapter 8.1<br />

Chapter 8.2<br />

Chapter 8.3<br />

Chapter 8.4<br />

Chapter 9.1<br />

Chapter 9.2<br />

Chapter 9.3<br />

Chapter 10.1<br />

Chapter 10.2<br />

Chapter 10.3<br />

Chapter 10.4<br />

Chapter 10.5<br />

Chapter 10.6<br />

Chapter 10.7<br />

Chapter 10.8<br />

Chapter 10.9<br />

Chapter 11.1<br />

Chapter 11.2.2<br />

Chapter 11.2.2M<br />

Temperature Determ<strong>in</strong>ation<br />

Manual Sampl<strong>in</strong>g of Petroleum <strong>and</strong> Petroleum Products<br />

Automatic Sampl<strong>in</strong>g of Petroleum <strong>and</strong> Petroleum Products<br />

Mix<strong>in</strong>g <strong>and</strong> H<strong>and</strong>l<strong>in</strong>g of Liquid Samples of Petroleum <strong>and</strong> Petroleum Products<br />

St<strong>and</strong>ard Practice for Sampl<strong>in</strong>g <strong>and</strong> H<strong>and</strong>l<strong>in</strong>g of Fuels for Volatility Measurement<br />

St<strong>and</strong>ard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of<br />

Crude Petroleum <strong>and</strong> Liquid Petroleum Products by Hydrometer Method<br />

St<strong>and</strong>ard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure<br />

Hydrometer<br />

St<strong>and</strong>ard Test Method for Density, Relative Density, <strong>and</strong> API Gravity of Crude Petroleum<br />

<strong>and</strong> Liquid Petroleum Products by Thermohydrometer Method<br />

St<strong>and</strong>ard Test Method for Sediment <strong>in</strong> Crude Oils <strong>and</strong> Fuel Oils by the Extraction Method<br />

Determ<strong>in</strong>ation of Water <strong>in</strong> Crude Oil by Distillation<br />

St<strong>and</strong>ard Test Method for Water <strong>and</strong> Sediment <strong>in</strong> Crude Oil by the Centrifuge Method<br />

(Laboratory Procedure)<br />

Determ<strong>in</strong>ation of Sediment <strong>and</strong> Water <strong>in</strong> Crude Oil by the Centrifuge Method (Field<br />

Procedure)<br />

St<strong>and</strong>ard Test Method for Water <strong>in</strong> Petroleum Products <strong>and</strong> Bitum<strong>in</strong>ous Materials by<br />

Distillation<br />

St<strong>and</strong>ard Test Method for Water <strong>and</strong> Sediment <strong>in</strong> Fuel Oils by the Centrifuge Method<br />

(Laboratory Procedure)<br />

St<strong>and</strong>ard Test Method for Water <strong>in</strong> Crude Oils by Potentiometric Karl Fischer Titration<br />

St<strong>and</strong>ard Test Method for Sediment <strong>in</strong> Crude Oil by Membrane Filtration<br />

St<strong>and</strong>ard Test Method for Water <strong>in</strong> Crude Oils by Coulometric Karl Fischer Titration<br />

Temperature <strong>and</strong> Pressure Volume Correction Factors for Generalized Crude Oils, Ref<strong>in</strong>ed<br />

Products, <strong>and</strong> Lubricat<strong>in</strong>g Oils<br />

Compressibility Factors for Hydrocarbons: 0.350 – 0.637 Relative Density (60 °F/60 °F)<br />

<strong>and</strong> –50 °F to 140 °F Meter<strong>in</strong>g Temperature<br />

Compressibility Factors for Hydrocarbons: 350 – 637 Kilograms per Cubic Meter Density<br />

(15 °C) <strong>and</strong> –46 °C to 60 °C Meter<strong>in</strong>g Temperature<br />

Chapter 11.2.4 Temperature Correction for the Volume of NGL <strong>and</strong> LPG Tables 23E, 24E, 53E, 54E,<br />

59E, 60E<br />

Chapter 11.2.5 A Simplified Vapor Pressure Correlation for Commercial NGLs<br />

Chapter 11.3.2.1 Ethylene Density<br />

Chapter 11.3.3.2 Propylene Compressibility<br />

Chapter 11.4.1 Properties of Reference Materials, Part 1—Density of Water <strong>and</strong> Water Volume<br />

Correction Factors for Calibration of Volumetric Provers<br />

Chapter 11.5.1 Density/Weight/Volume Intraconversion, Part 1—Conversions of API Gravity at 60 °F<br />

Chapter 11.5.2<br />

Density/Weight/Volume Intraconversion, Part 2—Conversions for Relative Density<br />

(60/60 °F)<br />

Pilot Version, September 2009 B-3


Chapter 11.5.3<br />

Chapter 12.1.1<br />

Chapter 12.1.2<br />

Chapter 12.2<br />

Chapter 12.2.1<br />

Chapter 12.2.2<br />

Chapter 12.2.3<br />

Chapter 12.2.4<br />

Chapter 12.2.5<br />

Chapter 12.3<br />

Chapter 13.1<br />

Chapter 13.2<br />

Chapter 14.1<br />

Chapter 14.2<br />

Chapter 14.3.1<br />

Chapter 14.3.2<br />

Chapter 14.3.3<br />

Chapter 14.3.4<br />

Chapter 14.4<br />

Chapter 14.5<br />

Chapter 14.6<br />

Chapter 14.7<br />

Chapter 14.8<br />

Chapter 14.9<br />

Chapter 14.10<br />

Chapter 15<br />

Chapter 16.2<br />

Density/Weight/Volume Intraconversion, Part 3—Conversions for Absolute Density at<br />

15 °C<br />

Calculation of Static Petroleum Quantities, Part 1—Upright Cyl<strong>in</strong>drical Tanks <strong>and</strong> Mar<strong>in</strong>e<br />

Vessels<br />

Calculation of Static Petroleum Quantities, Part 2—Calculation Procedures for Tank Cars<br />

Calculation of Liquid Petroleum Quantities Measured by Turb<strong>in</strong>e or Displacement Meters<br />

Calculation of Petroleum Quantities Us<strong>in</strong>g Dynamic Measurement Methods <strong>and</strong> Volume<br />

Correction Factors, Part 1—Introduction<br />

Calculation of Petroleum Quantities Us<strong>in</strong>g Dynamic Measurement Methods <strong>and</strong><br />

Volumetric Correction Factors, Part 2—Measurement Tickets<br />

Calculation of Petroleum Quantities Us<strong>in</strong>g Dynamic Measurement Methods <strong>and</strong><br />

Volumetric Correction Factors, Part 3—Prov<strong>in</strong>g Reports<br />

Calculation of Petroleum Quantities Us<strong>in</strong>g Dynamic Measurement Methods <strong>and</strong><br />

Volumetric Correction Factors, Part 4—Calculation of Base Prover Volumes by<br />

Waterdraw Method<br />

Calculation of Petroleum Quantities Us<strong>in</strong>g Dynamic Measurement Methods <strong>and</strong><br />

Volumetric Correction Factors, Part 5—Base Prover Volume Us<strong>in</strong>g Master Meter Method<br />

Calculation of Volumetric Shr<strong>in</strong>kage from Blend<strong>in</strong>g Light Hydrocarbons with Crude Oil<br />

Statistical Concepts <strong>and</strong> Procedures <strong>in</strong> Measurement<br />

Statistical Methods of Evaluat<strong>in</strong>g Meter Prov<strong>in</strong>g Data<br />

Collect<strong>in</strong>g <strong>and</strong> H<strong>and</strong>l<strong>in</strong>g of Natural Gas Samples for Custody Transfer<br />

Compressibility Factors of Natural Gas <strong>and</strong> Other Related Hydrocarbon Gases<br />

Concentric, Square-edged Orifice Meters, Part 1—General Equations <strong>and</strong> Uncerta<strong>in</strong>ty<br />

Guidel<strong>in</strong>es<br />

Concentric, Square-Edged Orifice Meters, Part 2—Specification <strong>and</strong> Installation<br />

Requirements<br />

Concentric, Square-Edged Orifice Meters, Part 3—Natural Gas Applications<br />

Concentric, Square-Edged Orifice Meters, Part 4—Background, Development,<br />

Implementation Procedures <strong>and</strong> Subrout<strong>in</strong>e Documentation<br />

Convert<strong>in</strong>g Mass of Natural Gas Liquids <strong>and</strong> Vapors to Equivalent Liquid Volumes<br />

Calculation of Gross Heat<strong>in</strong>g Value, Specific Gravity, <strong>and</strong> Compressibility of Natural Gas<br />

Mixtures from Compositional Analysis<br />

Cont<strong>in</strong>uous Density Measurement<br />

Mass Measurement of Natural Gas Liquids<br />

Liquefied Petroleum Gas Measurement<br />

Measurement of Natural Gas by Coriolis Meter<br />

Measurement of Flow to Flares<br />

Guidel<strong>in</strong>es for Use of the International System of Units (SI) <strong>in</strong> the Petroleum <strong>and</strong> Allied<br />

Industries<br />

Mass Measurement of Liquid Hydrocarbons <strong>in</strong> Vertical Cyl<strong>in</strong>drical Storage Tanks by<br />

Hydrostatic Tank Gaug<strong>in</strong>g<br />

Pilot Version, September 2009 B-4


Chapter 17.1<br />

Chapter 17.2<br />

Chapter 17.3<br />

Chapter 17.4<br />

Chapter 17.5<br />

Chapter 17.6<br />

Chapter 17.7<br />

Chapter 17.8<br />

Chapter 17.9<br />

Chapter 17.10.2<br />

Chapter 17.11<br />

Chapter 17.12<br />

Chapter 18.1<br />

Publ 2514A<br />

Publ 2524<br />

Publ 2558<br />

TR 2567<br />

TR 2568<br />

TR 2569<br />

Chapter 19.1<br />

Chapter 19.1A<br />

Guidel<strong>in</strong>es for Mar<strong>in</strong>e Cargo Inspection<br />

Measurement of Cargoes on Board Tank Vessels<br />

Guidel<strong>in</strong>es for Identification of the Source of Free Waters Associated With Mar<strong>in</strong>e<br />

Petroleum Cargo Movements<br />

Method for Quantification of Small Volumes on Mar<strong>in</strong>e Vessels (OBQ/ROB)<br />

Guidel<strong>in</strong>es for Cargo Analysis <strong>and</strong> Reconciliation<br />

Guidel<strong>in</strong>es for Determ<strong>in</strong><strong>in</strong>g Fullness of Pipel<strong>in</strong>es Between Vessels <strong>and</strong> Shore Tanks<br />

Recommended Practices for Develop<strong>in</strong>g Barge Control Factors (Volume Ratio)<br />

Guidel<strong>in</strong>es for Pre-Load<strong>in</strong>g Inspection of Mar<strong>in</strong>e Vessel Cargo Tanks<br />

Vessel Experience Factor (VEF)<br />

Measurement of Refrigerated <strong>and</strong>/or Pressurized Cargoes on Board Mar<strong>in</strong>e Gas Carriers,<br />

Part 2—Liquefied Petroleum <strong>and</strong> Chemical Gases<br />

Measurement <strong>and</strong> Sampl<strong>in</strong>g of Cargoes on Board Tank Vessels Us<strong>in</strong>g Closed <strong>and</strong><br />

Restricted Equipment<br />

Procedure for Bulk Liquid Chemical Cargo Inspection by Cargo Inspectors<br />

Measurement Procedures for Crude Oil Gathered From Small Tanks by Truck<br />

Atmospheric Hydrocarbon Emissions from Mar<strong>in</strong>e Vessel Transfer Operations<br />

Impact Assessment of New Data on the Validity of American Petroleum Institute Mar<strong>in</strong>e<br />

Transfer Operation Emission Factors<br />

W<strong>in</strong>d Tunnel Test<strong>in</strong>g of External Float<strong>in</strong>g-Roof Storage Tanks<br />

Evaporative Loss from Storage Tank Float<strong>in</strong>g Roof L<strong>and</strong><strong>in</strong>gs<br />

Evaporative Loss from the Clean<strong>in</strong>g of Storage Tanks<br />

Evaporative Loss from Closed-vent Internal Float<strong>in</strong>g-roof Storage Tanks<br />

Evaporative Loss from Fixed-roof Tanks<br />

Evaporation Loss from Low-pressure Tanks<br />

Chapter 19.1D Documentation File for API Manual of Petroleum Measurement St<strong>and</strong>ards Chapter 19.1<br />

“Evaporative Loss from Fixed-roof Tanks”<br />

Chapter 19.2 Evaporative Loss from Float<strong>in</strong>g-roof Tanks<br />

Chapter 19.3, Part A W<strong>in</strong>d Tunnel Test Method for the Measurement of Deck-fitt<strong>in</strong>g Loss Factors for External<br />

Float<strong>in</strong>g-roof Tanks<br />

Chapter 19.3, Part B Air Concentration Test Method—Rim-seal Loss Factors for Float<strong>in</strong>g-roof Tanks<br />

Chapter 19.3, Part C Weight Loss Test Method for the Measurement of Rim-seal Loss Factors for Internal<br />

Float<strong>in</strong>g-roof Tanks<br />

Chapter 19.3, Part D Fugitive Emission Test Method for the Measurement of Deck-seam Loss Factors for<br />

Internal Float<strong>in</strong>g-roof Tanks<br />

Chapter 19.3, Part E Weight Loss Test Method for the Measurement of Deck-fitt<strong>in</strong>g Loss Factors for Internal<br />

Float<strong>in</strong>g-roof Tanks<br />

Chapter 19.3, Part F Evaporative Loss Factor for Storage Tanks Certification Program<br />

Chapter 19.3, Part G Certified Loss Factor Test<strong>in</strong>g Laboratory Registration<br />

Chapter 19.3, Part H Tank Seals <strong>and</strong> Fitt<strong>in</strong>gs Certification—Adm<strong>in</strong>istration<br />

Pilot Version, September 2009 B-5


Chapter 19.4<br />

Chapter 20.1<br />

RP 85<br />

RP 86<br />

RP 87<br />

Chapter 21.1<br />

Chapter 21.2<br />

Chapter 21.2-A1<br />

Chapter 22.1<br />

Chapter 22.2<br />

Std 2560<br />

Publ 2566<br />

Recommended Practice for Speciation of Evaporative Losses<br />

Allocation Measurement<br />

Use of Subsea Wet-<strong>gas</strong> Flowmeters <strong>in</strong> Allocation Measurement Systems<br />

Recommended Practice for Measurement of Multiphase Flow<br />

Recommended Practice for Field Analysis of Crude Oil Samples Conta<strong>in</strong><strong>in</strong>g from Two to<br />

Fifty Percent Water by Volume<br />

Electronic Gas Measurement<br />

Flow Measurement—Electronic Liquid Measurement<br />

Addendum 1 to Flow Measurement Us<strong>in</strong>g Electronic Meter<strong>in</strong>g Systems<br />

Test<strong>in</strong>g Protocols—General Guidel<strong>in</strong>es for Develop<strong>in</strong>g Test<strong>in</strong>g Protocols for Devices<br />

Used <strong>in</strong> the Measurement of Hydrocarbon Fluids<br />

Test<strong>in</strong>g Protocols—Differential Pressure Flow Measurement Devices<br />

Reconciliation of Liquid Pipel<strong>in</strong>e Quantities<br />

State of the Art Multiphase Flow Meter<strong>in</strong>g<br />

B.2 International Organization for St<strong>and</strong>ardization (ISO)<br />

ISO 91-1:1992 Petroleum measurement tables — Part 1: Tables based on reference temperatures of 15<br />

degrees C <strong>and</strong> 60 degrees F<br />

ISO 91-2:1991 Petroleum measurement tables — Part 2: Tables based on a reference temperature of 20<br />

degrees C<br />

ISO 2714:1980 Liquid hydrocarbons — Volumetric measurement by displacement meter systems other<br />

than dispens<strong>in</strong>g pumps<br />

ISO 2715:1981 Liquid hydrocarbons — Volumetric measurement by turb<strong>in</strong>e meter systems<br />

ISO 3170:2004 Petroleum liquids — Manual sampl<strong>in</strong>g<br />

ISO 3171:1988 Petroleum liquids — Automatic pipel<strong>in</strong>e sampl<strong>in</strong>g<br />

ISO 3675:1998 Crude petroleum <strong>and</strong> liquid petroleum products — Laboratory determ<strong>in</strong>ation of density —<br />

Hydrometer method<br />

ISO 3733:1999 Petroleum products <strong>and</strong> bitum<strong>in</strong>ous materials — Determ<strong>in</strong>ation of water — Distillation<br />

method<br />

ISO 3734:1997 Petroleum products — Determ<strong>in</strong>ation of water <strong>and</strong> sediment <strong>in</strong> residual fuel <strong>oil</strong>s —<br />

Centrifuge method<br />

ISO 3735:1999 Crude petroleum <strong>and</strong> fuel <strong>oil</strong>s — Determ<strong>in</strong>ation of sediment — Extraction method<br />

ISO 3838:2004 Crude petroleum <strong>and</strong> liquid or solid petroleum products — Determ<strong>in</strong>ation of density or<br />

relative density — Capillary-stoppered pyknometer <strong>and</strong> graduated bicapillary pyknometer<br />

methods<br />

ISO 3993:1984 Liquefied petroleum <strong>gas</strong> <strong>and</strong> light hydrocarbons — Determ<strong>in</strong>ation of density or relative<br />

density — Pressure hydrometer method<br />

ISO 4124:1994 Liquid hydrocarbons — Dynamic measurement — Statistical control of volumetric<br />

meter<strong>in</strong>g systems<br />

ISO 4257:2001 Liquefied petroleum <strong>gas</strong>es — Method of sampl<strong>in</strong>g<br />

Pilot Version, September 2009 B-6


ISO 4266-1:2002 Petroleum <strong>and</strong> liquid petroleum products — Measurement of level <strong>and</strong> temperature <strong>in</strong><br />

storage tanks by automatic methods — Part 1: Measurement of level <strong>in</strong> atmospheric tanks<br />

ISO 4266-2:2002 Petroleum <strong>and</strong> liquid petroleum products — Measurement of level <strong>and</strong> temperature <strong>in</strong><br />

storage tanks by automatic methods — Part 2: Measurement of level <strong>in</strong> mar<strong>in</strong>e vessels<br />

ISO 4266-3:2002 Petroleum <strong>and</strong> liquid petroleum products — Measurement of level <strong>and</strong> temperature <strong>in</strong><br />

storage tanks by automatic methods — Part 3: Measurement of level <strong>in</strong> pressurized storage<br />

tanks (non-refrigerated)<br />

ISO 4266-5:2002 Petroleum <strong>and</strong> liquid petroleum products — Measurement of level <strong>and</strong> temperature <strong>in</strong><br />

storage tanks by automatic methods — Part 5: Measurement of temperature <strong>in</strong> mar<strong>in</strong>e<br />

vessels<br />

ISO 4266-6:2002 Petroleum <strong>and</strong> liquid petroleum products — Measurement of level <strong>and</strong> temperature <strong>in</strong><br />

storage tanks by automatic methods — Part 6: Measurement of temperature <strong>in</strong> pressurized<br />

storage tanks (non-refrigerated)<br />

ISO 4267-2:1988 Petroleum <strong>and</strong> liquid petroleum products — Calculation of <strong>oil</strong> quantities — Part 2:<br />

Dynamic measurement<br />

ISO 4268:2000 Petroleum <strong>and</strong> liquid petroleum products — Temperature measurements — Manual<br />

methods<br />

ISO 4269:2001 Petroleum <strong>and</strong> liquid petroleum products — Tank calibration by liquid measurement —<br />

Incremental method us<strong>in</strong>g volumetric meters<br />

ISO 4512:2000 Petroleum <strong>and</strong> liquid petroleum products — Equipment for measurement of liquid levels <strong>in</strong><br />

storage tanks — Manual methods<br />

ISO 5024:1999 Petroleum liquids <strong>and</strong> liquefied petroleum <strong>gas</strong>es — Measurement — St<strong>and</strong>ard reference<br />

conditions<br />

ISO 6296:2000 Petroleum products — Determ<strong>in</strong>ation of water — Potentiometric Karl Fischer titration<br />

method<br />

ISO 6551:1982 Petroleum liquids <strong>and</strong> <strong>gas</strong>es — Fidelity <strong>and</strong> security of dynamic measurement — Cabled<br />

transmission of electric <strong>and</strong>/or electronic pulsed data<br />

ISO 7278-1:1987 Liquid hydrocarbons — Dynamic measurement — Prov<strong>in</strong>g systems for volumetric meters<br />

— Part 1: General pr<strong>in</strong>ciples<br />

ISO 7278-2:1988 Liquid hydrocarbons — Dynamic measurement — Prov<strong>in</strong>g systems for volumetric meters<br />

— Part 2: Pipe provers<br />

ISO 7278-3:1998 Liquid hydrocarbons — Dynamic measurement — Prov<strong>in</strong>g systems for volumetric meters<br />

— Part 3: Pulse <strong>in</strong>terpolation techniques<br />

ISO 7278-4:1999 Liquid hydrocarbons — Dynamic measurement — Prov<strong>in</strong>g systems for volumetric meters<br />

— Part 4: Guide for operators of pipe provers<br />

ISO 7507-1:2003 Petroleum <strong>and</strong> liquid petroleum products — Calibration of vertical cyl<strong>in</strong>drical tanks —<br />

Part 1: Strapp<strong>in</strong>g method<br />

ISO 7507-2:2005 Petroleum <strong>and</strong> liquid petroleum products — Calibration of vertical cyl<strong>in</strong>drical tanks —<br />

Part 2: Optical-reference-l<strong>in</strong>e method<br />

ISO 7507-3:2006 Petroleum <strong>and</strong> liquid petroleum products — Calibration of vertical cyl<strong>in</strong>drical tanks —<br />

Part 3: Optical-triangulation method<br />

ISO 7507-4:1995 Petroleum <strong>and</strong> liquid petroleum products — Calibration of vertical cyl<strong>in</strong>drical tanks —<br />

Part 4: Internal electro-optical distance-rang<strong>in</strong>g method<br />

ISO 7507-5:2000 Petroleum <strong>and</strong> liquid petroleum products — Calibration of vertical cyl<strong>in</strong>drical tanks —<br />

Part 5: External electro-optical distance-rang<strong>in</strong>g method<br />

Pilot Version, September 2009 B-7


ISO 8222:2002<br />

ISO 8697:1999<br />

ISO 9029:1990<br />

ISO 9030:1990<br />

ISO 9114:1997<br />

ISO 9200:1993<br />

ISO 9403:2000<br />

ISO 9770:1989<br />

Petroleum measurement systems — Calibration — Temperature corrections for use when<br />

calibrat<strong>in</strong>g volumetric prov<strong>in</strong>g tanks<br />

Crude petroleum <strong>and</strong> petroleum products — Transfer accountability — Assessment of on<br />

board quantity (OBQ) <strong>and</strong> quantity rema<strong>in</strong><strong>in</strong>g on board (ROB)<br />

Crude petroleum — Determ<strong>in</strong>ation of water — Distillation method<br />

Crude petroleum — Determ<strong>in</strong>ation of water <strong>and</strong> sediment — Centrifuge method<br />

Crude petroleum — Determ<strong>in</strong>ation of water content by hydride reaction — Field method<br />

Crude petroleum <strong>and</strong> liquid petroleum products — Volumetric meter<strong>in</strong>g of viscous<br />

hydrocarbons<br />

Crude petroleum — Transfer accountability — Guidel<strong>in</strong>es for cargo <strong>in</strong>spection<br />

Crude petroleum <strong>and</strong> petroleum products — Compressibility factors for hydrocarbons <strong>in</strong><br />

the range 638 kg/m 3 to 1 074 kg/m 3<br />

ISO 10336:1997 Crude petroleum — Determ<strong>in</strong>ation of water — Potentiometric Karl Fischer titration<br />

method<br />

ISO 10337:1997 Crude petroleum — Determ<strong>in</strong>ation of water — Coulometric Karl Fischer titration method<br />

ISO 11223:2004 Petroleum <strong>and</strong> liquid petroleum products — Direct static measurements — Measurement<br />

of content of vertical storage tanks by hydrostatic tank gaug<strong>in</strong>g<br />

ISO 11563:2003 Crude petroleum <strong>and</strong> petroleum products — Bulk cargo transfer — Guidel<strong>in</strong>es for<br />

achiev<strong>in</strong>g the fullness of pipel<strong>in</strong>es<br />

ISO 12185:1996 Crude petroleum <strong>and</strong> petroleum products — Determ<strong>in</strong>ation of density — Oscillat<strong>in</strong>g U-<br />

tube method<br />

ISO 12917-1:2002 Petroleum <strong>and</strong> liquid petroleum products — Calibration of horizontal cyl<strong>in</strong>drical tanks —<br />

Part 1: Manual methods<br />

ISO 12917-2:2002 Petroleum <strong>and</strong> liquid petroleum products — Calibration of horizontal cyl<strong>in</strong>drical tanks —<br />

Part 2: Internal electro-optical distance-rang<strong>in</strong>g method<br />

ISO 12937:2000 Petroleum products — Determ<strong>in</strong>ation of water — Coulometric Karl Fischer titration<br />

method<br />

ISO/TR 13739:1998 Petroleum products — Methods for specify<strong>in</strong>g practical procedures for the transfer of<br />

bunker fuels to ships<br />

ISO 13740:1998 Crude petroleum <strong>and</strong> petroleum products — Transfer accountability — Assessment of<br />

vessel experience factor on load<strong>in</strong>g (VEFL) <strong>and</strong> vessel experience factor on discharg<strong>in</strong>g<br />

(VEFD) of ocean-go<strong>in</strong>g tanker vessels<br />

ISO 15169:2003 Petroleum <strong>and</strong> liquid petroleum products — Determ<strong>in</strong>ation of volume, density <strong>and</strong> mass of<br />

the hydrocarbon content of vertical cyl<strong>in</strong>drical tanks by hybrid tank measurement systems<br />

ISO 6578:1991 Refrigerated hydrocarbon liquids — Static measurement — Calculation procedure<br />

ISO 8310:1991 Refrigerated light hydrocarbon fluids — Measurement of temperature <strong>in</strong> tanks conta<strong>in</strong><strong>in</strong>g<br />

liquefied <strong>gas</strong>es — Resistance thermometers <strong>and</strong> thermocouples<br />

ISO 8311:1989 Refrigerated light hydrocarbon fluids — Calibration of membrane tanks <strong>and</strong> <strong>in</strong>dependent<br />

prismatic tanks <strong>in</strong> ships — Physical measurement<br />

ISO 8943:2007 Refrigerated light hydrocarbon fluids — Sampl<strong>in</strong>g of liquefied <strong>natural</strong> <strong>gas</strong> — Cont<strong>in</strong>uous<br />

<strong>and</strong> <strong>in</strong>termittent methods<br />

ISO 9091-1:1991 Refrigerated light-hydrocarbon fluids — Calibration of spherical tanks <strong>in</strong> ships — Part 1:<br />

Stereo-photogrammetry<br />

Pilot Version, September 2009 B-8


ISO 9091-2:1992 Refrigerated light hydrocarbon fluids — Calibration of spherical tanks <strong>in</strong> ships — Part 2:<br />

Triangulation measurement<br />

ISO 13398:1997 Refrigerated light hydrocarbon fluids — Liquefied <strong>natural</strong> <strong>gas</strong> — Procedure for custody<br />

transfer on board ship<br />

ISO 18132-1:2006 Refrigerated light hydrocarbon fluids — General requirements for automatic level gauges<br />

— Part 1: Gauges onboard ships carry<strong>in</strong>g liquefied <strong>gas</strong>es<br />

ISO 18132-2:2008 Refrigerated light hydrocarbon fluids — General requirements for automatic level gauges<br />

— Part 2: Gauges <strong>in</strong> refrigerated-type shore tanks<br />

ISO 4006:1991 Measurement of fluid flow <strong>in</strong> closed conduits — Vocabulary <strong>and</strong> symbols<br />

ISO 4185:1980 Measurement of liquid flow <strong>in</strong> closed conduits — Weigh<strong>in</strong>g method<br />

ISO 5168:2005 Measurement of fluid flow — Procedures for the evaluation of uncerta<strong>in</strong>ties<br />

ISO/TR 7066-1:1997 Assessment of <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> calibration <strong>and</strong> use of flow measurement devices — Part 1:<br />

L<strong>in</strong>ear calibration relationships<br />

ISO 7066-2:1988 Assessment of <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the calibration <strong>and</strong> use of flow measurement devices — Part<br />

2: Non-l<strong>in</strong>ear calibration relationships<br />

ISO 8316:1987 Measurement of liquid flow <strong>in</strong> closed conduits — Method by collection of the liquid <strong>in</strong> a<br />

volumetric tank<br />

ISO 9368-1:1990 Measurement of liquid flow <strong>in</strong> closed conduits by the weigh<strong>in</strong>g method — Procedures for<br />

check<strong>in</strong>g <strong>in</strong>stallations — Part 1: Static weigh<strong>in</strong>g systems<br />

ISO 9951:1993 Measurement of <strong>gas</strong> flow <strong>in</strong> closed conduits — Turb<strong>in</strong>e meters<br />

ISO 11631:1998 Measurement of fluid flow — Methods of specify<strong>in</strong>g flowmeter performance<br />

ISO 2186:2007 Fluid flow <strong>in</strong> closed conduits — Connections for pressure signal transmissions between<br />

primary <strong>and</strong> secondary elements<br />

ISO/TR 3313:1998 Measurement of fluid flow <strong>in</strong> closed conduits — Guidel<strong>in</strong>es on the effects of flow<br />

pulsations on flow-measurement <strong>in</strong>struments<br />

ISO 5167-1:2003 Measurement of fluid flow by means of pressure differential devices <strong>in</strong>serted <strong>in</strong> circular<br />

cross-section conduits runn<strong>in</strong>g full — Part 1: General pr<strong>in</strong>ciples <strong>and</strong> requirements<br />

ISO 5167-2:2003 Measurement of fluid flow by means of pressure differential devices <strong>in</strong>serted <strong>in</strong> circular<br />

cross-section conduits runn<strong>in</strong>g full — Part 2: Orifice plates<br />

ISO 5167-3:2003 Measurement of fluid flow by means of pressure differential devices <strong>in</strong>serted <strong>in</strong> circular<br />

cross-section conduits runn<strong>in</strong>g full — Part 3: Nozzles <strong>and</strong> Venturi nozzles<br />

ISO 5167-4:2003 Measurement of fluid flow by means of pressure differential devices <strong>in</strong>serted <strong>in</strong> circular<br />

cross-section conduits runn<strong>in</strong>g full — Part 4: Venturi tubes<br />

ISO 9300:2005 Measurement of <strong>gas</strong> flow by means of critical flow Venturi nozzles<br />

ISO/TR 9464:2008 Guidel<strong>in</strong>es for the use of ISO 5167:2003<br />

ISO/TR 12767:2007 Measurement of fluid flow by means of pressure differential devices — Guidel<strong>in</strong>es on the<br />

effect of departure from the specifications <strong>and</strong> operat<strong>in</strong>g conditions given <strong>in</strong> ISO 5167<br />

ISO/TR 15377:2007 Measurement of fluid flow by means of pressure-differential devices — Guidel<strong>in</strong>es for the<br />

specification of orifice plates, nozzles <strong>and</strong> Venturi tubes beyond the scope of ISO 5167<br />

ISO 3966:2008 Measurement of fluid flow <strong>in</strong> closed conduits — Velocity area method us<strong>in</strong>g Pitot static<br />

tubes<br />

ISO 6817:1992<br />

Measurement of conductive liquid flow <strong>in</strong> closed conduits — Method us<strong>in</strong>g<br />

electromagnetic flowmeters<br />

Pilot Version, September 2009 B-9


ISO 7194:2008 Measurement of fluid flow <strong>in</strong> closed conduits — Velocity-area methods of flow<br />

measurement <strong>in</strong> swirl<strong>in</strong>g or asymmetric flow conditions <strong>in</strong> circular ducts by means of<br />

current-meters or Pitot static tubes<br />

ISO 9104:1991 Measurement of fluid flow <strong>in</strong> closed conduits — Methods of evaluat<strong>in</strong>g the performance<br />

of electromagnetic flow-meters for liquids<br />

ISO 10790:1999 Measurement of fluid flow <strong>in</strong> closed conduits — Guidance to the selection, <strong>in</strong>stallation <strong>and</strong><br />

use of Coriolis meters (mass flow, density <strong>and</strong> volume flow measurements)<br />

ISO/TR 12764:1997 Measurement of fluid flow <strong>in</strong> closed conduits — Flowrate measurement by means of<br />

vortex shedd<strong>in</strong>g flowmeters <strong>in</strong>serted <strong>in</strong> circular cross-section conduits runn<strong>in</strong>g full<br />

ISO 13359:1998 Measurement of conductive liquid flow <strong>in</strong> closed conduits — Flanged electromagnetic<br />

flowmeters — Overall length<br />

ISO 14511:2001 Measurement of fluid flow <strong>in</strong> closed conduits — Thermal mass flowmeters<br />

ISO 13443:1996 Natural <strong>gas</strong> — St<strong>and</strong>ard reference conditions<br />

ISO 14532:2001 Natural <strong>gas</strong> — Vocabulary<br />

ISO 15112:2007 Natural <strong>gas</strong> — Energy determ<strong>in</strong>ation<br />

ISO 15970:2008 Natural <strong>gas</strong> — Measurement of properties — Volumetric properties: density, pressure,<br />

temperature <strong>and</strong> compression factor<br />

ISO 15971:2008 Natural <strong>gas</strong> — Measurement of properties — Calorific value <strong>and</strong> Wobbe <strong>in</strong>dex<br />

ISO 6976:1995 Natural <strong>gas</strong> — Calculation of calorific values, density, relative density <strong>and</strong> Wobbe <strong>in</strong>dex<br />

from composition<br />

ISO 10101-1:1993 Natural <strong>gas</strong> — Determ<strong>in</strong>ation of water by the Karl Fischer method — Part 1: Introduction<br />

ISO 10101-2:1993 Natural <strong>gas</strong> — Determ<strong>in</strong>ation of water by the Karl Fischer method — Part 2: Titration<br />

procedure<br />

ISO 10101-3:1993 Natural <strong>gas</strong> — Determ<strong>in</strong>ation of water by the Karl Fischer method — Part 3: Coulometric<br />

procedure<br />

ISO 10715:1997 Natural <strong>gas</strong> — Sampl<strong>in</strong>g guidel<strong>in</strong>es<br />

ISO 11541:1997 Natural <strong>gas</strong> — Determ<strong>in</strong>ation of water content at high pressure<br />

ISO 12213-1:2006 Natural <strong>gas</strong> — Calculation of compression factor — Part 1: Introduction <strong>and</strong> guidel<strong>in</strong>es<br />

ISO 12213-2:2006 Natural <strong>gas</strong> — Calculation of compression factor — Part 2: Calculation us<strong>in</strong>g molarcomposition<br />

analysis<br />

ISO 12213-3:2006 Natural <strong>gas</strong> — Calculation of compression factor — Part 3: Calculation us<strong>in</strong>g physical<br />

properties<br />

ISO 20765-1:2005 Natural <strong>gas</strong> — Calculation of thermodynamic properties — Part 1: Gas phase properties<br />

for transmission <strong>and</strong> distribution applications<br />

ISO/TR 26762:2008 Natural <strong>gas</strong> — Upstream area — Allocation of <strong>gas</strong> <strong>and</strong> condensate<br />

B.3 ASTM International<br />

ASTM D4057 St<strong>and</strong>ard Practice for Manual Sampl<strong>in</strong>g of Petroleum <strong>and</strong> Petroleum Products<br />

ASTM D4177 St<strong>and</strong>ard Practice for Automatic Sampl<strong>in</strong>g of Petroleum <strong>and</strong> Petroleum Products<br />

ASTM D1298 St<strong>and</strong>ard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of<br />

Crude Petroleum <strong>and</strong> Liquid Petroleum Products by Hydrometer Method<br />

Pilot Version, September 2009 B-10


ASTM D1657<br />

ASTM D4052<br />

ASTM D4002<br />

ASTM D473<br />

ASTM D4006<br />

ASTM D4007<br />

ASTM D95<br />

ASTM D1796<br />

ASTM D4377<br />

ASTM D4807<br />

ASTM D4928<br />

ASTM D6304<br />

ASTM D71<br />

ASTM D287<br />

ASTM D1070<br />

ASTM D1217<br />

ASTM D1480<br />

ASTM D1481<br />

ASTM D1550<br />

ASTM D1555<br />

ASTM D2320<br />

ASTM D2638<br />

ASTM D2962<br />

ASTM D3142<br />

ASTM D3505<br />

ASTM D4311<br />

St<strong>and</strong>ard Test Method for Density or Relative Density of Light Hydrocarbons by Pressure<br />

Hydrometer<br />

St<strong>and</strong>ard Test Method for Density <strong>and</strong> Relative Density of Liquids by Digital Density<br />

Meter<br />

St<strong>and</strong>ard Test Method for Density <strong>and</strong> Relative Density of Crude Oils by Digital Density<br />

Analyzer<br />

St<strong>and</strong>ard Test Method for Sediment <strong>in</strong> Crude Oils <strong>and</strong> Fuel Oils by the Extraction Method<br />

St<strong>and</strong>ard Test Method for Water <strong>in</strong> Crude Oil by Distillation<br />

St<strong>and</strong>ard Test Method for Water <strong>and</strong> Sediment <strong>in</strong> Crude Oil by the Centrifuge Method<br />

(Laboratory Procedure)<br />

St<strong>and</strong>ard Test Method for Water <strong>in</strong> Petroleum Products <strong>and</strong> Bitum<strong>in</strong>ous Materials by<br />

Distillation<br />

St<strong>and</strong>ard Test Method for Water <strong>and</strong> Sediment <strong>in</strong> Fuel Oils by the Centrifuge Method<br />

(Laboratory Procedure)<br />

St<strong>and</strong>ard Test Method for Water <strong>in</strong> Crude Oils by Potentiometric Karl Fischer Titration<br />

St<strong>and</strong>ard Test Method for Sediment <strong>in</strong> Crude Oil by Membrane Filtration<br />

St<strong>and</strong>ard Test Methods for Water <strong>in</strong> Crude Oils by Coulometric Karl Fischer Titration<br />

St<strong>and</strong>ard Test Method for Determ<strong>in</strong>ation of Water <strong>in</strong> Petroleum Products, Lubricat<strong>in</strong>g<br />

Oils, <strong>and</strong> Additives by Coulometric Karl Fischer Titration<br />

St<strong>and</strong>ard Test Method for Relative Density of Solid Pitch <strong>and</strong> Asphalt (Displacement<br />

Method)<br />

St<strong>and</strong>ard Test Method for API Gravity of Crude Petroleum <strong>and</strong> Petroleum Products<br />

(Hydrometer Method)<br />

St<strong>and</strong>ard Test Methods for Relative Density of Gaseous Fuels<br />

St<strong>and</strong>ard Test Method for Density <strong>and</strong> Relative Density (Specific Gravity) of Liquids by<br />

B<strong>in</strong>gham Pycnometer<br />

St<strong>and</strong>ard Test Method for Density <strong>and</strong> Relative Density (Specific Gravity) of Viscous<br />

Materials by B<strong>in</strong>gham Pycnometer<br />

St<strong>and</strong>ard Test Method for Density <strong>and</strong> Relative Density (Specific Gravity) of Viscous<br />

Materials by Lipk<strong>in</strong> Bicapillary Pycnometer<br />

St<strong>and</strong>ard ASTM Butadiene Measurement Tables<br />

St<strong>and</strong>ard Test Method for Calculation of Volume <strong>and</strong> Weight of Industrial Aromatic<br />

Hydrocarbons <strong>and</strong> Cyclohexane<br />

St<strong>and</strong>ard Test Method for Density (Relative Density) of Solid Pitch (Pycnometer Method)<br />

St<strong>and</strong>ard Test Method for Real Density of Calc<strong>in</strong>ed Petroleum Coke by Helium<br />

Pycnometer<br />

St<strong>and</strong>ard Test Method for Calculat<strong>in</strong>g Volume-Temperature Correction for Coal-Tar<br />

Pitches<br />

St<strong>and</strong>ard Test Method for Specific Gravity, API Gravity, or Density of Cutback Asphalts<br />

by Hydrometer Method<br />

St<strong>and</strong>ard Test Method for Density or Relative Density of Pure Liquid Chemicals<br />

St<strong>and</strong>ard Practice for Determ<strong>in</strong><strong>in</strong>g Asphalt Volume Correction to a Base Temperature<br />

Pilot Version, September 2009 B-11


ASTM D4292<br />

ASTM D4892<br />

ASTM D5002<br />

ASTM D5004<br />

ASTM D7042<br />

ASTM D7454<br />

St<strong>and</strong>ard Test Method for Determ<strong>in</strong>ation of Vibrated Bulk Density of Calc<strong>in</strong>ed Petroleum<br />

Coke<br />

St<strong>and</strong>ard Test Method for Density of Solid Pitch (Helium Pycnometer Method)<br />

St<strong>and</strong>ard Test Method for Density <strong>and</strong> Relative Density of Crude Oils by Digital Density<br />

Analyzer<br />

St<strong>and</strong>ard Test Method for Real Density of Calc<strong>in</strong>ed Petroleum Coke by Xylene<br />

Displacement<br />

St<strong>and</strong>ard Test Method for Dynamic Viscosity <strong>and</strong> Density of Liquids by Stab<strong>in</strong>ger<br />

Viscometer (<strong>and</strong> the Calculation of K<strong>in</strong>ematic Viscosity)<br />

St<strong>and</strong>ard Test Method for Determ<strong>in</strong>ation of Vibrated Bulk Density of Calc<strong>in</strong>ed Petroleum<br />

Coke us<strong>in</strong>g a Semi-Automated Apparatus<br />

B.4 Gas Processors Association (GPA)<br />

GPA Technical St<strong>and</strong>ards Manual<br />

GPA RB 101-43 Compression <strong>and</strong> Charcoal Tests for Determ<strong>in</strong><strong>in</strong>g the Natural Gasol<strong>in</strong>e Content of Natural<br />

Gas<br />

GPA RB 181-86 Heat<strong>in</strong>g Value-Basis for Custody Transfer<br />

GPA RB 194-94 Tentative NGL Load<strong>in</strong>g Practices<br />

GPA 1167 GPA Glossary—Def<strong>in</strong>ition of Words <strong>and</strong> Terms Used <strong>in</strong> the Gas Process<strong>in</strong>g Industry<br />

GPA 2103 Tentative Method for the Analysis of Natural Gas Condensate Mixtures Conta<strong>in</strong><strong>in</strong>g<br />

Nitrogen <strong>and</strong> Carbon Dioxide by Gas Chromatography<br />

GPA 2145 Table of Physical Properties for Hydrocarbons <strong>and</strong> Other Compounds of Interest to the<br />

Natural Gas Industry<br />

GPA 2166 Obta<strong>in</strong><strong>in</strong>g Natural Gas Samples for Analysis by Gas Chromatography<br />

GPA 2172 Calculation of Gross Heat<strong>in</strong>g Value, Relative Density, Compressibility <strong>and</strong> Theoretical<br />

Hydrocarbon Liquid Content for Natural Gas Mixtures for Custody Transfer<br />

GPA 2174 Obta<strong>in</strong><strong>in</strong>g Liquid Hydrocarbon Samples for Analysis by Gas Chromatography<br />

GPA 2177 Analysis of Natural Gas Liquid Mixtures Conta<strong>in</strong><strong>in</strong>g Nitrogen <strong>and</strong> Carbon Dioxide by Gas<br />

Chromatography<br />

GPA 2186 Method for the Extended Analysis of Hydrocarbon Liquid Mixtures Conta<strong>in</strong><strong>in</strong>g Nitrogen<br />

<strong>and</strong> Carbon Dioxide by Temperature Programmed Gas Chromatography<br />

GPA 2377 Test for Hydrogen Sulfide & Carbon Dioxide <strong>in</strong> Natural Gas Us<strong>in</strong>g Sta<strong>in</strong> Tubes<br />

GPA 8173 Methods for Convert<strong>in</strong>g Mass Natural Gas Liquids <strong>and</strong> Vapor to Equivalent Liquid<br />

Volumes<br />

GPA 8182 St<strong>and</strong>ard for Mass Measurement of Natural Gas Liquids<br />

GPA 8186 Measurement of Liquid Hydrocarbon by Truck Scales<br />

GPA 8195 Tentative St<strong>and</strong>ard for Convert<strong>in</strong>g Net Vapor Space Volumes to Equivalent Liquid<br />

Volumes<br />

GPA TP-27 Temperature Correction for the Volume of NGL <strong>and</strong> LPG Tables 23E, 24E, 53E, 54E, 59E<br />

& 60E<br />

Pilot Version, September 2009 B-12


B.4 American Gas Association (AGA)<br />

AGA Report No. 3 Orifice Meter<strong>in</strong>g of Natural Gas, Part 1: General Equations & Uncerta<strong>in</strong>ty Guidel<strong>in</strong>es<br />

AGA Report No. 3 Orifice Meter<strong>in</strong>g of Natural Gas, Part 2: Specification <strong>and</strong> Installation Requirements<br />

AGA Report No. 3 Orifice Meter<strong>in</strong>g of Natural Gas, Part 3: Natural Gas Applications<br />

AGA Report No. 3 Orifice Meter<strong>in</strong>g of Natural Gas, Part 4: Background, Development Implementation<br />

Procedure<br />

AGA Report No. 4A Natural Gas Contract Measurement <strong>and</strong> Quality Clauses<br />

AGA Report No. 5 Fuel Gas Energy Meter<strong>in</strong>g<br />

AGA Report No. 7 Measurement of Natural Gas by Turb<strong>in</strong>e Meter<br />

AGA Report No. 8 Compressibility Factor of Natural Gas <strong>and</strong> Related Hydrocarbon Gases<br />

AGA Report No. 9 Measurement of Gas by Multipath Ultrasonic Meters<br />

AGA Report No. 10 Speed of Sound <strong>in</strong> Natural Gas <strong>and</strong> Other Related Hydrocarbon Gases<br />

AGA Report No. 11 Measurement of Natural Gas by Coriolis Meter<br />

Pilot Version, September 2009 B-13


APPENDIX C<br />

OPERATING CONDITIONS, INSPECTION, CALIBRATION<br />

AND EXPECTED UNCERTAINTIES FOR COMMON FLOW METERS


Appendix C<br />

OPERATING CONDITIONS, INSPECTION, CALIBRATION<br />

AND EXPECTED UNCERTAINTIES FOR COMMON FLOW METERS a<br />

METER TYPE MEDIUM OPERATING CONDITIONS INSPECTION & CALIBRATION RANDOM ERROR b<br />

Rotary meter<br />

Gas − Application filter for polluted<br />

<strong>gas</strong> streams<br />

− Clean<strong>in</strong>g: once per 10 years,<br />

recalibration <strong>and</strong> if necessary<br />

− 0-20% of the measurement<br />

range: 3%<br />

(Expected life span: 25<br />

adjust<strong>in</strong>g<br />

− 20-100% of the<br />

years)<br />

− Annual <strong>in</strong>spection: <strong>oil</strong> level of measurement range: 1.5%<br />

the carter<br />

Turb<strong>in</strong>e flow meter Gas − Application filter for polluted<br />

<strong>gas</strong> streams<br />

− Clean<strong>in</strong>g: once per 5 year,<br />

recalibration <strong>and</strong> adjust<strong>in</strong>g, if<br />

− 0-20% of the measurement<br />

range: 3%<br />

(Expected life span: 25<br />

− No pulsat<strong>in</strong>g <strong>gas</strong> stream<br />

necessary<br />

− 20-100% of the<br />

years)<br />

− No overload of longer than 30 − Visual <strong>in</strong>spection: annual<br />

measurement range: 1.5%<br />

m<strong>in</strong>utes › 120% of maximum<br />

measurement range<br />

− Lubrication of bear<strong>in</strong>gs: once<br />

per three months (not for<br />

Bellows meter<br />

(Expected life span: 25<br />

years)<br />

Orifice meter<br />

(Expected life span: 30<br />

years)<br />

permanent lubricated bear<strong>in</strong>gs)<br />

Gas − Clean<strong>in</strong>g: once per 10 year,<br />

recalibration <strong>and</strong> adjust<strong>in</strong>g, if<br />

necessary<br />

Gas <strong>and</strong><br />

Liquid<br />

−<br />

−<br />

−<br />

No corrosive <strong>gas</strong>es <strong>and</strong> liquids<br />

Orifice placement guidel<strong>in</strong>es:<br />

o M<strong>in</strong>imum of 4D free <strong>in</strong>put<br />

flow length before the orifice<br />

o M<strong>in</strong>imum of 2D after the<br />

orifice<br />

Smooth surface of <strong>in</strong>ner wall<br />

−<br />

−<br />

−<br />

−<br />

−<br />

Annual ma<strong>in</strong>tenance: accord<strong>in</strong>g<br />

to general <strong>in</strong>structions for<br />

measurement pr<strong>in</strong>ciple<br />

Annual calibration: pressure<br />

transmitter<br />

Calibration of the orifice meter:<br />

once <strong>in</strong> 5 years<br />

Annual <strong>in</strong>spection: abrasion<br />

orifice <strong>and</strong> foul<strong>in</strong>g<br />

Annual ma<strong>in</strong>tenance accord<strong>in</strong>g<br />

to general <strong>in</strong>structions for<br />

measurement pr<strong>in</strong>ciple<br />

− 0-20% of the measurement<br />

range: 6%<br />

− 20-100% of the range: 4%<br />

−<br />

30-100% of the<br />

measurement range: 1.5%<br />

Pilot Version, September 2009 C-1


Appendix C<br />

OPERATING CONDITIONS, INSPECTION, CALIBRATION<br />

AND EXPECTED UNCERTAINTIES FOR COMMON FLOW METERS (cont<strong>in</strong>ued) a<br />

METER TYPE MEDIUM OPERATING CONDITIONS INSPECTION & CALIBRATION UNCERTAINTY b<br />

Venturi meter<br />

Gas <strong>and</strong><br />

Liquid<br />

− No corrosive <strong>gas</strong>es <strong>and</strong> liquids − Annual calibration: pressure<br />

transmitter<br />

− 20-100% of the<br />

measurement range: 1.5%<br />

(Expected life span: 30<br />

years)<br />

− Calibration: entire measurement<br />

<strong>in</strong>strument – once per 5 year<br />

− Annual: visual <strong>in</strong>spection<br />

− Annual ma<strong>in</strong>tenance accord<strong>in</strong>g to<br />

general <strong>in</strong>structions for<br />

measurement pr<strong>in</strong>ciple<br />

Ultrasonic meter<br />

(Expected life span: 15<br />

Gas <strong>and</strong><br />

Liquid<br />

− Transducer assembly to be<br />

replaced accord<strong>in</strong>g to the<br />

manufacturer’s specifications<br />

− Clean<strong>in</strong>g: once per 5 years,<br />

recalibration <strong>and</strong> adjust<strong>in</strong>g, if<br />

necessary<br />

− 1-100% of the measurement<br />

range: 0.5%<br />

years)<br />

− No disturbances <strong>in</strong> frequencies − Annual <strong>in</strong>spection<br />

− Composition of flow<strong>in</strong>g<br />

medium should be known<br />

o Contact between transducer<br />

<strong>and</strong> tube wall<br />

− Ultrasonic meters guidel<strong>in</strong>es: o Wall corrosion<br />

Vortex meter<br />

(Expected life span: 10<br />

years)<br />

o<br />

M<strong>in</strong>imum of 10D free <strong>in</strong>put<br />

flow length before the<br />

meter, <strong>and</strong><br />

o M<strong>in</strong>imum of 5D after the<br />

meter<br />

Gas − Set-up is free of vibration<br />

− Avoid compressive shocks<br />

− Vortex meters guidel<strong>in</strong>es:<br />

o M<strong>in</strong>imum of 15D free <strong>in</strong>put<br />

flow length before the<br />

meter, <strong>and</strong><br />

o<br />

M<strong>in</strong>imum of 5D after the<br />

meter<br />

−<br />

−<br />

−<br />

−<br />

o Transducers<br />

Annual ma<strong>in</strong>tenance accord<strong>in</strong>g to<br />

<strong>in</strong>structions of manufacturer/<br />

general <strong>in</strong>structions measurement<br />

pr<strong>in</strong>ciples<br />

Clean<strong>in</strong>g: once per 5 years,<br />

recalibration <strong>and</strong> adjust<strong>in</strong>g, if<br />

needed<br />

Annual <strong>in</strong>spection of: sensors,<br />

bluff body, <strong>and</strong> wall corrosion,<br />

Annual ma<strong>in</strong>tenance accord<strong>in</strong>g to<br />

general <strong>in</strong>structions for<br />

measurement pr<strong>in</strong>ciple<br />

a Based on material presented <strong>in</strong> the ETSG, July 2007 document <strong>and</strong> the sources cited with<strong>in</strong><br />

b<br />

R<strong>and</strong>om errors are based on experience of operat<strong>in</strong>g the respective flowmeters under designated <strong>in</strong>stallation, operation, calibration, <strong>in</strong>spection <strong>and</strong> ma<strong>in</strong>tenance procedures.<br />

−<br />

10-100% of the<br />

measurement range: 2%<br />

Pilot Version, September 2009 C-2


APPENDIX D<br />

SELECT MEASUREMENT METHODS SUMMARIES


Appendix D<br />

SELECT MEASUREMENT METHODS SUMMARIES<br />

D.1 Carbon Content Measurement Methods<br />

a. ASTM Test Method 1945-03, Analysis of Natural Gas by Gas Chromatography (July 2003)<br />

This test method covers the determ<strong>in</strong>ation of the chemical composition of <strong>natural</strong> <strong>gas</strong>es <strong>and</strong> similar <strong>gas</strong>eous<br />

mixtures with<strong>in</strong> the range of composition shown <strong>in</strong> Table D-1. This test method may be abbreviated for the<br />

analysis of lean <strong>natural</strong> <strong>gas</strong>es conta<strong>in</strong><strong>in</strong>g negligible amounts of hexanes <strong>and</strong> higher hydrocarbons, or for the<br />

determ<strong>in</strong>ation of one or more components, as required.<br />

Table D-1. Natural Gas Components <strong>and</strong> Range of Composition Covered<br />

COMPONENT MOL %<br />

Helium 0.01 to 10<br />

Hydrogen 0.01 to 10<br />

Oxygen 0.01 to 20<br />

Nitrogen 0.01 to 100<br />

Carbon dioxide 0.01 to 20<br />

Methane 0.01 to 100<br />

Ethane 0.01 to 100<br />

Hydrogen sulfide 0.3 to 30<br />

Propane 0.01 to 100<br />

Isobutane 0.01 to 10<br />

n-Butane 0.01 to 10<br />

Neopentane 0.01 to 2<br />

Isopentane 0.01 to 2<br />

n-Pentane 0.01 to 2<br />

Hexane isomers 0.01 to 2<br />

Heptanes+ 0.01 to 1<br />

Components <strong>in</strong> a representative sample are physically separated by <strong>gas</strong> chromatography (GC) <strong>and</strong> compared<br />

to calibration data obta<strong>in</strong>ed under identical operat<strong>in</strong>g conditions from a reference st<strong>and</strong>ard mixture of known<br />

composition. The numerous heavy-end components of a sample can be grouped <strong>in</strong>to irregular peaks by<br />

revers<strong>in</strong>g the direction of the carrier <strong>gas</strong> through the column at such time as to group the heavy ends either<br />

as C5 <strong>and</strong> heavier, C6 <strong>and</strong> heavier, or C7 <strong>and</strong> heavier. The composition of the sample is calculated by<br />

compar<strong>in</strong>g either the peak heights, or the peak areas, or both, with the correspond<strong>in</strong>g values obta<strong>in</strong>ed with<br />

the reference st<strong>and</strong>ard. This test method is of significance for provid<strong>in</strong>g data for calculat<strong>in</strong>g physical<br />

properties of the sample, such as heat<strong>in</strong>g value <strong>and</strong> relative density, or for monitor<strong>in</strong>g the concentrations of<br />

one or more of the components <strong>in</strong> a mixture.<br />

Pilot Version, September 2009 D-1


For <strong>natural</strong> <strong>gas</strong> samples that meet the US pipel<strong>in</strong>e quality specifications (1000 Btu/scf, or 38 MJ/m 3 ), the<br />

precision of this test method has been determ<strong>in</strong>ed by the statistical exam<strong>in</strong>ation of the <strong>in</strong>terlaboratory test<br />

results, as documented <strong>in</strong> Table D-2.<br />

Table D-2. ASTM D1945-03 Precision for Natural Gas Samples 1<br />

COMPONENT<br />

(MOLE %) REPEATABILITY REPRODUCIBILITY<br />

0 to 0.09 0.01 0.02<br />

0.1 to 0.9 0.04 0.07<br />

1.0 to 4.9 0.07 0.10<br />

5.0 to 10 0.08 0.12<br />

Over 10 0.10 0.15<br />

1 ASTM 1945-03, July 2003<br />

b. ASTM D1946-90, Analysis of Reformed Gas by Gas Chromatography, (Reapproved 2006)<br />

This practice covers the determ<strong>in</strong>ation of the chemical composition of reformed <strong>gas</strong>es <strong>and</strong> similar <strong>gas</strong>eous<br />

mixtures conta<strong>in</strong><strong>in</strong>g the follow<strong>in</strong>g components: hydrogen, oxygen, nitrogen, carbon monoxide, carbon<br />

dioxide, methane, ethane, <strong>and</strong> ethylene.<br />

Components <strong>in</strong> a sample of reformed <strong>gas</strong> are physically separated by <strong>gas</strong> chromatography <strong>and</strong> compared to<br />

correspond<strong>in</strong>g components of a reference st<strong>and</strong>ard separated under identical operat<strong>in</strong>g conditions, us<strong>in</strong>g a<br />

reference st<strong>and</strong>ard mixture of known composition. The composition of the reformed <strong>gas</strong> is calculated by<br />

comparison of either the peak height or area response of each component with the correspond<strong>in</strong>g value of<br />

that component <strong>in</strong> the reference st<strong>and</strong>ard.<br />

The chemical composition data can be used to calculate physical properties of the <strong>gas</strong> <strong>and</strong> its<br />

<strong>in</strong>terchangeability with other fuel <strong>gas</strong>es. The quality of data obta<strong>in</strong>ed by this method depends on the<br />

preparation of moisture-free <strong>and</strong> homogenous mixtures of known composition for comparison with the test<br />

sample. The fraction of a component <strong>in</strong> the reference st<strong>and</strong>ard should not be < 0.5 mole%, nor differ by<br />

more than 10 mole%, from the fraction of the correspond<strong>in</strong>g component <strong>in</strong> the tested sample, <strong>and</strong> its<br />

composition should be known to with<strong>in</strong> 0.01 mole% for any component.<br />

Method precision <strong>in</strong> terms of reproducibility <strong>and</strong> repeatability are provided <strong>in</strong> Table D-3 below.<br />

Table D-3. ASTM D1946-90 Precision for Reformed Gas Samples<br />

COMPONENT<br />

(MOLE %) REPEATABILITY REPRODUCIBILITY<br />

0 to 1 0.05 0.1<br />

1 to 5 0.1 0.2<br />

5 to 25 0.3 0.5<br />

Over 25 0.5 1.0<br />

Pilot Version, September 2009 D-2


c. ASTM UOP539-97, Ref<strong>in</strong>ery Gas Analysis by Gas Chromatography<br />

This method is for determ<strong>in</strong><strong>in</strong>g the composition of ref<strong>in</strong>ery <strong>gas</strong> samples or exp<strong>and</strong>ed liquefied petroleum <strong>gas</strong><br />

(LPG) samples that are obta<strong>in</strong>ed from ref<strong>in</strong><strong>in</strong>g processes or <strong>natural</strong> sources. It provides <strong>in</strong>dividual results<br />

for non-condensable <strong>gas</strong>es, hydrogen sulfide, C1 through C4 hydrocarbons <strong>and</strong> C5 paraff<strong>in</strong>s, while C5<br />

olef<strong>in</strong>s <strong>and</strong> C6+ hydrocarbons are provided as a composite. The method yields quantitative results from 0.1<br />

to 99.9 mole% for a s<strong>in</strong>gle component or composite, except for hydrogen sulfide that yields quantitative<br />

results between 0.1 <strong>and</strong> 25 mole%.<br />

d. ISO 6974, Natural Gas - Determ<strong>in</strong>ation of composition with def<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> by <strong>gas</strong> chromatography<br />

(October 2002)<br />

ISO 6974 consists of the follow<strong>in</strong>g six parts:<br />

Part 1: Guidel<strong>in</strong>es for tailored analysis.<br />

Part 2: Measur<strong>in</strong>g-system characteristics <strong>and</strong> statistics for process<strong>in</strong>g of data.<br />

Part 3: Determ<strong>in</strong>ation of hydrogen, helium, oxygen, nitrogen, carbon dioxide <strong>and</strong> hydrocarbons up to C8<br />

us<strong>in</strong>g two packed columns.<br />

Part 4: Determ<strong>in</strong>ation of nitrogen, carbon dioxide <strong>and</strong> C1 to C5 <strong>and</strong> C6+ hydrocarbons for a laboratory <strong>and</strong><br />

on-l<strong>in</strong>e measur<strong>in</strong>g system us<strong>in</strong>g two columns.<br />

Part 5: Determ<strong>in</strong>ation of nitrogen, carbon dioxide <strong>and</strong> C1 to C5 <strong>and</strong> C6+ hydrocarbons for a laboratory <strong>and</strong><br />

on-l<strong>in</strong>e process application us<strong>in</strong>g three columns.<br />

Part 6: Determ<strong>in</strong>ation of hydrogen, helium, oxygen, nitrogen, carbon dioxide, <strong>and</strong> C1 to C8 hydrocarbons<br />

us<strong>in</strong>g three capillary columns.<br />

ISO 6974 describes a <strong>gas</strong> chromatographic methods for the quantitative determ<strong>in</strong>ation of the content of<br />

hydrogen, helium, oxygen, nitrogen, carbon dioxide, <strong>and</strong> C1 to C8 hydrocarbons <strong>in</strong> <strong>natural</strong> <strong>gas</strong> samples<br />

us<strong>in</strong>g two or three packed or capillary columns comb<strong>in</strong>ations. They are applicable to the analysis of <strong>gas</strong>es<br />

conta<strong>in</strong><strong>in</strong>g constituents with<strong>in</strong> the mole fraction ranges given <strong>in</strong> the respective parts of the st<strong>and</strong>ard, <strong>and</strong> is<br />

commonly used for laboratory applications. These ranges do not represent the limits of detection, but the<br />

limits with<strong>in</strong> which the stated precision of the method applies. Although one or more components <strong>in</strong> a<br />

sample may not be present at detectable levels, the method can still be applicable. This method can also be<br />

applicable to the analysis of <strong>natural</strong> <strong>gas</strong> substitutes.<br />

For example, the set-up for the determ<strong>in</strong>ation of hydrogen, helium, oxygen, nitrogen, carbon dioxide, <strong>and</strong><br />

hydrocarbons from C1 to C8 by <strong>gas</strong> chromatography us<strong>in</strong>g three capillary columns (part 6 of the st<strong>and</strong>ard) is<br />

as follows:<br />

− A PLOT precolumn is used for the separation of carbon dioxide (CO 2 ) <strong>and</strong> ethane (C 2 H 6 );<br />

Pilot Version, September 2009 D-3


−<br />

−<br />

A molecular sieve PLOT column is used for the separation of the permanent <strong>gas</strong>es helium (He),<br />

hydrogen (H 2 ), oxygen (O 2 ), nitrogen (N 2 ), <strong>and</strong> methane (CH 4 ).<br />

A thick film WCOT2) column coated with an apolar phase is used for the separation of the C3 to C8<br />

(<strong>and</strong> heavier) hydrocarbons.<br />

The permanent <strong>gas</strong>es helium (He), hydrogen (H 2 ), oxygen (O 2 ), nitrogen (N 2 ), <strong>and</strong> methane (CH 4 ) are<br />

detected with a thermal conductivity detector (TCD). The C2 to C8 hydrocarbons are detected with a flame<br />

ionization detector (FID).<br />

For the analysis of <strong>natural</strong> <strong>gas</strong> substitutes, carbon monoxide (CO) <strong>and</strong> carbon dioxide (CO 2 ) are detected<br />

us<strong>in</strong>g an FID after reduction of the components to CH 4 by a methanizer. Use of a methanizer makes it<br />

possible to detect CO <strong>and</strong> CO 2 at mole fractions greater than 0,001%. If the samples do not <strong>in</strong>clude CO or<br />

CO 2 , or if the CO <strong>and</strong>/or the CO 2 mole fraction exceeds 0,02%, a methanizer is not required. CO <strong>and</strong> CO 2<br />

may then alternatively be detected with the TCD.<br />

When analyz<strong>in</strong>g <strong>natural</strong> <strong>gas</strong> substitutes, the PLOT column described <strong>in</strong> 3.1 can also be used for the<br />

separation of ethyne (C 2 H 2 ) <strong>and</strong> ethene (C 2 H 4 ) <strong>and</strong> the molecular sieve PLOT column can also be used for<br />

the analysis of carbon monoxide (CO).<br />

Typical precision values for this method are provided <strong>in</strong> Table A.1 of the st<strong>and</strong>ard. These values have been<br />

obta<strong>in</strong>ed from practical experience <strong>and</strong> give an <strong>in</strong>dication of the performance of the method. As such, they<br />

cannot be compared with precision values mentioned <strong>in</strong> <strong>in</strong>formative annexes of other parts of ISO 6974, as<br />

they are very much dependent on the quality of the calibration <strong>gas</strong>es used <strong>and</strong> the laboratory skills.<br />

For specifies concentrations < 1.0 mole%, the relative repeatability <strong>and</strong> reproducibility is expected to be 2<br />

<strong>and</strong> 4%, respectively. For higher concentrations, rang<strong>in</strong>g from 1-50 mole%, the relative repeatability <strong>and</strong><br />

reproducibility are around 0.8 <strong>and</strong> 1.6% respectively.<br />

e. ASTM D2650 – 04, St<strong>and</strong>ard Test Method for Chemical Composition of Gases By Mass Spectrometry<br />

(November 2004)<br />

This test method is applicable for the quantitative analysis of <strong>gas</strong>es conta<strong>in</strong><strong>in</strong>g specific comb<strong>in</strong>ations of the<br />

follow<strong>in</strong>g components: hydrogen; hydrocarbons with up to six carbon atoms per molecule; carbon<br />

monoxide; carbon dioxide; mercaptans with one or two carbon atoms per molecule; hydrogen sulfide; <strong>and</strong><br />

air (nitrogen, oxygen, <strong>and</strong> argon). This test method is not applicable for the determ<strong>in</strong>ation of constituents<br />

that are present <strong>in</strong> amounts less than 0.1 mole %. This test method was developed on a specific type of<br />

Mass Spectrometer, thus users of other <strong>in</strong>struments may have to modify operat<strong>in</strong>g parameters <strong>and</strong> the<br />

calibration procedure <strong>and</strong> adapt it to their <strong>in</strong>strument.<br />

The method sets out the experimental procedures, while the calculation procedures will depend on the<br />

knowledge of qualitative mixture composition; errors due to components presumed absent; m<strong>in</strong>imum cross<br />

Pilot Version, September 2009 D-4


<strong>in</strong>terference between known components; maximum sensitivity to known components; low frequency <strong>and</strong><br />

complexity of calibration; <strong>and</strong> type of comput<strong>in</strong>g system available. The st<strong>and</strong>ard <strong>in</strong>cludes a tabulation of<br />

calculation procedures that are recommended for stated applications.<br />

f. ASTM D5291 – 02, St<strong>and</strong>ard Test Methods for Instrumental Determ<strong>in</strong>ation of Carbon, Hydrogen, <strong>and</strong><br />

Nitrogen <strong>in</strong> Petroleum Products <strong>and</strong> Lubricants, (2007)<br />

This ASTM st<strong>and</strong>ard covers the simultaneous determ<strong>in</strong>ation of carbon, hydrogen, <strong>and</strong> nitrogen <strong>in</strong> petroleum<br />

products <strong>and</strong> lubricants. The results, expressed as total carbon, total hydrogen, <strong>and</strong> total nitrogen, are useful<br />

<strong>in</strong> determ<strong>in</strong><strong>in</strong>g the complex nature of sample types covered by this test method, <strong>and</strong> can also be used to<br />

determ<strong>in</strong>e the total carbon content that could be converted to CO 2 upon combustion of the product.<br />

These test methods are applicable to samples such as crude <strong>oil</strong>s, fuel <strong>oil</strong>s, additives, <strong>and</strong> residues for carbon<br />

<strong>and</strong> hydrogen <strong>and</strong> nitrogen analysis. These test methods were tested <strong>in</strong> the concentration range of at least 75<br />

to 87-wt% for carbon, at least 9 to 16-wt% for hydrogen, <strong>and</strong> 0.1 to 2-wt% for nitrogen. These test methods<br />

are not recommended for the analysis of volatile materials such as <strong>gas</strong>ol<strong>in</strong>e, <strong>gas</strong>ol<strong>in</strong>e-oxygenate blends, or<br />

<strong>gas</strong>ol<strong>in</strong>e type aviation turb<strong>in</strong>e fuels.<br />

D.2 Heat<strong>in</strong>g Value Measurement Methods<br />

a. ASTM D4891 – 89, Test Method for Heat<strong>in</strong>g Value of Gases <strong>in</strong> Natural Gas Range by Stoichiometric<br />

Combustion, (Reapproved 2006)<br />

This test method covers the determ<strong>in</strong>ation of the heat<strong>in</strong>g value of <strong>natural</strong> <strong>gas</strong>es <strong>and</strong> similar <strong>gas</strong>eous mixtures<br />

with<strong>in</strong> the range of composition shown <strong>in</strong> Table D-4.<br />

Table D-4. ASTM D4891-89 Range of Composition for Natural Gas Components<br />

COMPOUND CONCENTRATION RANGE (MOLE, %)<br />

Helium 0.01 to 5<br />

Nitrogen 0.01 to 20<br />

Carbon dioxide 0.01 to 10<br />

Methane 50 to 100<br />

Ethane 0.01 to 20<br />

Propane 0.01 to 20<br />

n-butane 0.01 to 10<br />

isobutane 0.01 to 10<br />

n-pentane 0.01 to 2<br />

isopentane 0.01 to 2<br />

Hexanes <strong>and</strong> heavier 0.01 to 2<br />

Pilot Version, September 2009 D-5


In this method air is mixed with the <strong>gas</strong>eous fuel to be tested. The mixture is burned <strong>and</strong> the air-fuel ratio is<br />

adjusted so that essentially a stoichiometric proportion of air is present. The adjustment is made so that the<br />

air-fuel ratio is <strong>in</strong> a constant proportion to the stoichiometric ratio that is a relative measure of the heat<strong>in</strong>g<br />

value. To set this ratio, a characteristic property of the burned <strong>gas</strong> is measured, such as temperature or<br />

oxygen concentration.<br />

This test method provides an accurate <strong>and</strong> reliable procedure to measure the total heat<strong>in</strong>g value of a fuel <strong>gas</strong>,<br />

on a cont<strong>in</strong>uous basis, which is used for regulatory compliance, custody transfer, <strong>and</strong> process control. Some<br />

<strong>in</strong>struments which conform to the requirements set forth <strong>in</strong> this test method can have response times on the<br />

order of 1 m<strong>in</strong> or less <strong>and</strong> can be used for on-l<strong>in</strong>e measurement <strong>and</strong> control. The method is sensitive to the<br />

presence of oxygen <strong>and</strong> unsaturated hydrocarbons. For components not listed <strong>and</strong> composition ranges that<br />

fall outside those <strong>in</strong> Table 7, such as <strong>in</strong> process or ref<strong>in</strong>ery fuel <strong>gas</strong>es, modifications <strong>in</strong> the method may be<br />

required to obta<strong>in</strong> correct results.<br />

In test<strong>in</strong>g the precision <strong>and</strong> accuracy of this method, repeatability with<strong>in</strong> a laboratory was shown to be 0.76<br />

Btu/scf, with the correspond<strong>in</strong>g 95% confidence of the repeatability <strong>in</strong>terval be<strong>in</strong>g 2.1 Btu/scf.<br />

Reproducibility between laboratories was determ<strong>in</strong>ed to be 1.67 Btu/scf with the correspond<strong>in</strong>g 95%<br />

confidence reproducibility <strong>in</strong>terval 5.1 Btu/scf. The average bias of all measurements agreed with the<br />

average reference value to with<strong>in</strong> 0.1%.<br />

b. ASTM D1826 – 94, St<strong>and</strong>ard Test Method for Calorific (Heat<strong>in</strong>g) Value of Gases <strong>in</strong> Natural Gas Range<br />

by Cont<strong>in</strong>uous Record<strong>in</strong>g Calorimeter, (Reapproved 2003)<br />

This test method covers the determ<strong>in</strong>ation – with the cont<strong>in</strong>uous record<strong>in</strong>g calorimeter – of the total calorific<br />

(heat<strong>in</strong>g) value of fuel <strong>gas</strong> produced or sold <strong>in</strong> the <strong>natural</strong> <strong>gas</strong> range from 900 to 1200 Btu/scf. The heat<strong>in</strong>g<br />

value is determ<strong>in</strong>ed by impart<strong>in</strong>g the heat obta<strong>in</strong>ed from the combustion of the test <strong>gas</strong> to a stream of air <strong>and</strong><br />

measur<strong>in</strong>g the rise of the air temperature. The streams of test <strong>gas</strong> <strong>and</strong> heat absorb<strong>in</strong>g air are ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong><br />

fixed volumetric proportion to each other by meter<strong>in</strong>g devices similar to the ord<strong>in</strong>ary wet test meters geared<br />

together <strong>and</strong> driven from a common electric motor. The meters are mounted <strong>in</strong> a tank of water, the level of<br />

which is ma<strong>in</strong>ta<strong>in</strong>ed <strong>and</strong> the temperature of which determ<strong>in</strong>es the temperature of the enter<strong>in</strong>g <strong>gas</strong> <strong>and</strong> air.<br />

The experimental set-up is such that the temperature rise produced <strong>in</strong> the heat-absorb<strong>in</strong>g air is directly<br />

proportional to the heat<strong>in</strong>g value of the <strong>gas</strong>. S<strong>in</strong>ce all the heat from the combustion of the test <strong>gas</strong> sample,<br />

<strong>in</strong>clud<strong>in</strong>g the latent heat of vaporization of the water vapor formed <strong>in</strong> the combustion, is imparted to the<br />

heat-absorb<strong>in</strong>g air, the calorimeter makes a direct determ<strong>in</strong>ation of total heat<strong>in</strong>g value. The temperature rise<br />

is measured by nickel resistance thermometers <strong>and</strong> is translated <strong>in</strong>to Btu/scf.<br />

This test method provides an accurate <strong>and</strong> reliable method to measure the total calorific value of a fuel <strong>gas</strong>,<br />

on a cont<strong>in</strong>uous basis, which is used for regulatory compliance, custody transfer, <strong>and</strong> process control. As<br />

far as precision, the calorimeters tested were st<strong>and</strong>ardized with methane weekly, <strong>and</strong> a rigid control was<br />

Pilot Version, September 2009 D-6


ma<strong>in</strong>ta<strong>in</strong>ed over the room temperature so that no errors were caused by a change <strong>in</strong> the tank water<br />

temperature. The data <strong>in</strong>dicate that one week after st<strong>and</strong>ardization about 95% of the errors were less than<br />

0.3% with a few errors as high as 0.5%. It is expected that errors greater than these may be found if the<br />

period between check<strong>in</strong>g aga<strong>in</strong>st the st<strong>and</strong>ard methane is greater than one week.<br />

c. ASTM D7313 – 08, St<strong>and</strong>ard Practice for Determ<strong>in</strong>ation of the Heat<strong>in</strong>g Value of Gaseous Fuels us<strong>in</strong>g<br />

Calorimetry <strong>and</strong> On-l<strong>in</strong>e/At-l<strong>in</strong>e Sampl<strong>in</strong>g (May 2008)<br />

This practice is used for the determ<strong>in</strong>ation of the heat<strong>in</strong>g value measurement of <strong>gas</strong>eous fuels us<strong>in</strong>g a<br />

calorimeter with at-l<strong>in</strong>e <strong>and</strong> <strong>in</strong>-l<strong>in</strong>e <strong>in</strong>struments that are operated from time to time on a cont<strong>in</strong>uous basis.<br />

This type of near-real time monitor<strong>in</strong>g systems that measure fuel <strong>gas</strong> characteristics such as heat<strong>in</strong>g value<br />

are prevalent <strong>in</strong> various <strong>gas</strong>eous fuel <strong>in</strong>dustries <strong>and</strong> <strong>in</strong> <strong>in</strong>dustries either produc<strong>in</strong>g or us<strong>in</strong>g <strong>gas</strong>eous fuel <strong>in</strong><br />

their <strong>in</strong>dustrial processes. The <strong>in</strong>stallation <strong>and</strong> operation of particular systems would vary depend<strong>in</strong>g on<br />

process type, regulatory requirements, <strong>and</strong> the user’s objectives <strong>and</strong> performance requirements.<br />

In operat<strong>in</strong>g the system, a representative sample of the <strong>gas</strong>eous fuel is extracted from a process pipe, a<br />

pipel<strong>in</strong>e, or other <strong>gas</strong>eous fuel stream <strong>and</strong> is transferred to an analyzer sampl<strong>in</strong>g system. After condition<strong>in</strong>g<br />

that ma<strong>in</strong>ta<strong>in</strong>s the sample <strong>in</strong>tegrity, the sample is <strong>in</strong>troduced <strong>in</strong>to a calorimeter. Excess extracted process or<br />

sample <strong>gas</strong> is vented to the atmosphere, a flare header, or is returned to the process <strong>in</strong> accordance with<br />

applicable economic <strong>and</strong> environmental requirements <strong>and</strong> regulations. Post combustion <strong>gas</strong>ses from the<br />

calorimeter are typically vented to the atmosphere. The heat<strong>in</strong>g value is calculated based upon the<br />

<strong>in</strong>strument’s response to changes <strong>in</strong> the heat<strong>in</strong>g value of the sample <strong>gas</strong> us<strong>in</strong>g an applicable computation<br />

algorithm. This practice is provid<strong>in</strong>g guidance for st<strong>and</strong>ardized start-up procedures, operat<strong>in</strong>g procedures,<br />

<strong>and</strong> quality assurance practices for calorimeter based on-l<strong>in</strong>e, at-l<strong>in</strong>e, <strong>in</strong>-l<strong>in</strong>e <strong>and</strong> other near-real time<br />

heat<strong>in</strong>g-value monitor<strong>in</strong>g systems.<br />

d. ASTM D4809 – 06, St<strong>and</strong>ard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by<br />

Bomb Calorimeter (Precision Method), (2006)<br />

The heat of combustion is a measure of the energy available from a fuel, <strong>and</strong> it is essential when consider<strong>in</strong>g<br />

the thermal efficiency of equipment for produc<strong>in</strong>g either power or heat. This procedure measures the mass<br />

heat of combustion, namely, the heat of combustion per unit mass of fuel. The volumetric heat of<br />

combustion, that is, the heat of combustion per unit volume of fuel, can be calculated by multiply<strong>in</strong>g the<br />

mass heat of combustion by the density of the fuel (mass per unit volume).<br />

This test method covers the determ<strong>in</strong>ation of the heat of combustion of hydrocarbon fuels, <strong>and</strong> is designed<br />

for high precision with the difference between duplicate determ<strong>in</strong>ations <strong>in</strong> the order of 0.2%, for aviation or<br />

turb<strong>in</strong>e fuels, or greater differences for a wide range of volatile <strong>and</strong> nonvolatile materials.<br />

In order to atta<strong>in</strong> this high precision, strict adherence to all details of the procedure is essential s<strong>in</strong>ce the<br />

error contributed by each <strong>in</strong>dividual measurement that affects the precision ought to be kept below 0.04%,<br />

Pilot Version, September 2009 D-7


<strong>in</strong>sofar as possible. Under normal conditions, the method is directly applicable to such fuels as <strong>gas</strong>ol<strong>in</strong>e,<br />

kerosene, Nos. 1 <strong>and</strong> 2 fuel <strong>oil</strong>, Nos. 1-D <strong>and</strong> 2-D diesel fuel, <strong>and</strong> Nos. 0-GT, 1-GT, <strong>and</strong> 2-GT <strong>gas</strong> turb<strong>in</strong>e<br />

fuels.<br />

e. ASTM D5865 – 07a, St<strong>and</strong>ard Test Method for Gross Calorific Value of Coal <strong>and</strong> Coke, (2007)<br />

The gross calorific value can be used to compute the total calorific content of the quantity of coal or coke,<br />

<strong>and</strong> it can also be used for comput<strong>in</strong>g the calorific value versus sulfur content to determ<strong>in</strong>e whether the coal<br />

meets regulatory requirements for <strong>in</strong>dustrial fuels.<br />

This test method perta<strong>in</strong>s to the determ<strong>in</strong>ation of the gross calorific value of coal <strong>and</strong> coke by either an<br />

isoperibol or adiabatic bomb calorimeter. The result<strong>in</strong>g values are to be regarded as st<strong>and</strong>ard, <strong>and</strong> no other<br />

units of measurement are <strong>in</strong>cluded <strong>in</strong> this st<strong>and</strong>ard.<br />

Methods Cited<br />

ASTM 1945 – 03, “Analysis of Natural Gas by Gas Chromatography”, current edition approved May 10, 2003.<br />

Published July 2003. Orig<strong>in</strong>ally approved <strong>in</strong> 1962. Last previous edition approved <strong>in</strong> 2001 as D1945–96(2001).<br />

2ASTM D 1946 – 90 (Reapproved 2006), St<strong>and</strong>ard Practice for Analysis of Reformed Gas by Gas<br />

Chromatography, current edition approved June 1, 2006. Published June 2006 (Orig<strong>in</strong>ally approved <strong>in</strong> 1962)<br />

ASTM UOP UOP539-97, “Ref<strong>in</strong>ery Gas Analysis by Gas Chromatography”<br />

ISO 6974, 2002, “Natural <strong>gas</strong> - Determ<strong>in</strong>ation of composition with def<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> by <strong>gas</strong> chromatography”<br />

(<strong>in</strong> 6 parts); First edition 2002-10-15, Geneva, Switzerl<strong>and</strong><br />

ASTM D2650, 2004, “St<strong>and</strong>ard Test Method for Chemical Composition of Gases by Mass Spectrometry”,<br />

Published November 1, 2004.<br />

ASTM D5291 – 02, (2007) “St<strong>and</strong>ard Test Methods for Instrumental Determ<strong>in</strong>ation of Carbon, Hydrogen, <strong>and</strong><br />

Nitrogen <strong>in</strong> Petroleum Products <strong>and</strong> Lubricants”, Published 2007.<br />

ASTM D 4891 – 89 (Reapproved 2006), St<strong>and</strong>ard Test Method for Heat<strong>in</strong>g Value of Gases <strong>in</strong> Natural Gas<br />

Range by Stoichiometric Combustion, Current edition approved June 1, 2006. Published June 2006. Orig<strong>in</strong>ally<br />

approved <strong>in</strong> 1989. Last previous edition approved <strong>in</strong> 2001 as D4891–89 (2001)<br />

ASTM D 1826 – 94 (Reapproved 2003), “St<strong>and</strong>ard Test Method for Calorific (Heat<strong>in</strong>g) Value of Gases <strong>in</strong><br />

Natural Gas Range by Cont<strong>in</strong>uous Record<strong>in</strong>g Calorimeter”, Current edition approved May 10, 2003. Published<br />

May 2003. Orig<strong>in</strong>ally approved <strong>in</strong> 1961. Last previous edition approved <strong>in</strong> 1998 as D 1826 – 94 (1998).<br />

ASTM D7313 – 08, “St<strong>and</strong>ard Practice for Determ<strong>in</strong>ation of the Heat<strong>in</strong>g Value of Gaseous Fuels us<strong>in</strong>g<br />

Calorimetry <strong>and</strong> On-l<strong>in</strong>e/At-l<strong>in</strong>e Sampl<strong>in</strong>g”, Current edition approved May 1, 2008. Published May 2008.<br />

ASTM D4809 – 06, “St<strong>and</strong>ard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb<br />

Calorimeter (Precision Method)”, Published 2006.<br />

ASTM D4809 – 06, “St<strong>and</strong>ard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb<br />

Calorimeter (Precision Method)”, Published 2007.<br />

Pilot Version, September 2009 D-8


APPENDIX E<br />

UNITS CONVERSION


Energy units<br />

Quantities<br />

• 1.0 calorie = 4.187 J<br />

Appendix E<br />

UNITS CONVERSION 3<br />

• 1.0 gigajoule (GJ) = 10 9 joules = 0.948 million Btu = 239 million calories = 278 kWh<br />

• 1.0 British thermal unit (Btu) = 1055 joules (1.055 kJ)<br />

• 1.0 Quad = One quadrillion Btu (10 15 Btu) = 1.055 exajoules (EJ)<br />

−<br />

Approximately 172 million barrels of <strong>oil</strong> equivalent (boe)<br />

• 1000 Btu/lb = 2.33 gigajoules per tonne (GJ/t)<br />

• 1000 Btu/US gallon = 0.279 megajoules per liter (MJ/l)<br />

Power<br />

• 1.0 watt = 1.0 joule/second = 3.413 Btu/hr<br />

• 1.0 kilowatt (kW) = 3413 Btu/hr = 1.341 horsepower<br />

• 1.0 kilowatt-hour (kWh) = 3.6 MJ = 3413 Btu<br />

• 1.0 horsepower (hp) = 550 foot-pounds per second = 2545 Btu per hour = 745.7watts = 0.746kW<br />

Energy Costs<br />

• $1.00 per million Btu = $0.948/GJ<br />

• $1.00/GJ = $1.055 per million Btu<br />

Common units of measure<br />

• 1.0 U.S. ton (short ton) = 2000 pounds<br />

• 1.0 imperial ton (long ton or shipp<strong>in</strong>g ton) = 2240 pounds<br />

• 1.0 metric tonne (tonne) = 1000 kilograms = 2205 pounds<br />

• 1.0 US gallon = 3.79 liter = 0.833 Imperial gallon<br />

• 1.0 imperial gallon = 4.55 liter = 1.20 US gallon<br />

• 1.0 liter = 0.264 US gallon = 0.220 imperial gallon<br />

Fossil fuels 4<br />

• Barrel of <strong>oil</strong> equivalent (boe) = approx. 6.1 GJ (5.8 million Btu), equivalent to 1700 kWh<br />

−<br />

"Petroleum barrel" is a liquid measure equal to 42 U.S. gallons (35 Imperial gallons or 159 liters);<br />

about 7.2 barrels <strong>oil</strong> are equivalent to one tonne of <strong>oil</strong> (metric) = 42-45 GJ.<br />

• Gasol<strong>in</strong>e: LHV = 115,000 Btu/gallon = 121 MJ/gallon = 32 MJ/liter; HHV: 125,000 Btu/gallon = 132<br />

MJ/gallon = 35 MJ/liter<br />

• Metric tonne <strong>gas</strong>ol<strong>in</strong>e = 8.53 barrels = 1356 liter = 43.5 GJ/t (LHV); 47.3 GJ/t (HHV)<br />

3 Based on data from the ORNL Bioenergy Feedstock Information Network; http://bioenergy.ornl.gov/ma<strong>in</strong>.aspx<br />

4 The energy content (heat<strong>in</strong>g value) of petroleum products per unit mass is fairly constant, but their density differs<br />

significantly, hence their energy content is different<br />

Pilot Version, September 2009 E-1


− Gasol<strong>in</strong>e density (average) = 0.73 g/ml (= metric tonnes/m 3 )<br />

• Petro-diesel = 130,500 Btu/gallon (36.4 MJ/liter or 42.8 GJ/t)<br />

− Petro-diesel density (average) = 0.84 g/ml (= metric tonnes/m 3 )<br />

• Metric tonne ethanol = 7.94 petroleum barrels = 1262 liters<br />

−<br />

Ethanol energy content: LHV = 11,500 Btu/lb = 75,700 Btu/gallon = 26.7 GJ/t = 21.1 MJ/liter;<br />

HHV = 84,000 Btu/gallon = 89 MJ/gallon = 23.4 MJ/liter<br />

− Ethanol density (average) = 0.79 g/ml (= metric tonnes/m 3 )<br />

• Metric tonne biodiesel = 37.8 GJ (33.3 - 35.7 MJ/liter)<br />

− Biodiesel density (average) = 0.88 g/ml (= metric tonnes/m 3 )<br />

• Metric tonne coal 5 = 27-30 GJ (bitum<strong>in</strong>ous/anthracite); 15-19 GJ (lignite/sub-bitum<strong>in</strong>ous) (the above<br />

ranges are equivalent to 11,500-13,000 Btu/lb <strong>and</strong> 6,500-8,200 Btu/lb).<br />

• Natural <strong>gas</strong>: HHV = 1027 Btu/ft 3 = 38.3 MJ/m 3 ; LHV = 930 Btu/ft 3 = 34.6 MJ/m 3<br />

• Therm (used for <strong>natural</strong> <strong>gas</strong>, methane) = 100,000 Btu (= 105.5 MJ)<br />

Carbon content of selected fuels 6<br />

• Coal (average) = 25.4 metric tonnes carbon per terajoule (TJ)<br />

−<br />

1.0 metric tonne coal = 746 kg carbon<br />

• Oil (average) = 19.9 metric tonnes carbon / TJ<br />

• 1.0 US gallon <strong>gas</strong>ol<strong>in</strong>e (0.833 Imperial gallon, 3.79 liter) = 2.42 kg carbon<br />

• 1.0 US gallon diesel/fuel <strong>oil</strong> (0.833 Imperial gallon, 3.79 liter) = 2.77 kg carbon<br />

• Natural <strong>gas</strong> (methane) = 14.4 metric tonnes carbon / TJ<br />

• 1.0 cubic meter <strong>natural</strong> <strong>gas</strong> (methane) = 0.49 kg carbon<br />

5 The energy content (heat<strong>in</strong>g value) per unit mass varies greatly between different "ranks" of coal. "Typical" coal (rank<br />

not specified) usually means bitum<strong>in</strong>ous coal, the most common fuel for power plants (27 GJ/t).<br />

6 The average carbon content values above are <strong>in</strong>dicative only. More accurate determ<strong>in</strong>ations should be sought from fuel<br />

provider, or by test<strong>in</strong>g fuels used.<br />

Pilot Version, September 2009 E-2


APPENDIX F<br />

UNCERTAINTY ESTIMATION DETAILS FOR AN EXAMPLE INVENTORY


Appendix F<br />

UNCERTAINTY ESTIMATION DETAILS FOR AN EXAMPLE INVENTORY<br />

As stated <strong>in</strong> Section 5.0, this Appendix provides the source-by-source calculation <strong>and</strong> aggregation of<br />

<strong>uncerta<strong>in</strong>ty</strong> for a hypothetical facility. 7<br />

The follow<strong>in</strong>g summarizes the characteristics of the onshore <strong>oil</strong> field example facility <strong>in</strong>troduced <strong>in</strong><br />

Section 5. This example field is described <strong>in</strong> detail <strong>in</strong> the API Compendium (API, 2009). The calculation<br />

exhibits that are repr<strong>in</strong>ted directly from the API Compendium but have additional <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong>formation<br />

added, are <strong>in</strong>dicated by the highlighted text. Excerpts of Tables 5-1 <strong>and</strong> 5-2 are provided to reiterate<br />

<strong>in</strong>formation used <strong>in</strong> the <strong>uncerta<strong>in</strong>ty</strong> calculations.<br />

Facility Description: An onshore <strong>oil</strong> field <strong>in</strong> Texas consists of 320 produc<strong>in</strong>g <strong>oil</strong> wells.<br />

Throughput: The average daily <strong>oil</strong> <strong>and</strong> <strong>gas</strong> production rates are 6,100 bbl/day <strong>and</strong> 30×10 6 scf/day,<br />

respectively.<br />

Operations: The facility operates approximately 343 days per year. The facility imports 917 MW-hr from<br />

the eGRID subregion ERCOT all annually. The facility <strong>gas</strong> composition is presented <strong>in</strong> Table F-1 <strong>and</strong><br />

results <strong>in</strong> a heat<strong>in</strong>g value of 928 Btu/scf with an <strong>uncerta<strong>in</strong>ty</strong> of ±4%, based on eng<strong>in</strong>eer<strong>in</strong>g<br />

judgment.<br />

Table F-1. Gas Composition for Onshore Production Platform<br />

(Repr<strong>in</strong>ted from the API Compendium)<br />

Gas Compound Produced Gas Mole %<br />

Uncerta<strong>in</strong>ty a<br />

(±%)<br />

CO 2 12 4<br />

N 2 2.1 4<br />

CH 4 80 4<br />

C 2 H 6 4.2 4<br />

C 3 H 8 1.3 4<br />

C 4 H 10 0.4 4<br />

Footnote:<br />

a Uncerta<strong>in</strong>ty is based on eng<strong>in</strong>eer<strong>in</strong>g judgment at a 95% confidence <strong>in</strong>terval.<br />

Note: the values shown above are for example only. They do not reflect average operations.<br />

7 Note, the calculations shown <strong>in</strong> this Appendix are rounded to three significant figures. Actual calculations were<br />

compiled <strong>in</strong> a spreadsheet with round<strong>in</strong>g reserved for the f<strong>in</strong>al results.<br />

Pilot Version, September 2009 F-1


In this hypothetical example, CO 2 emissions from combustion are calculated us<strong>in</strong>g the <strong>gas</strong> composition<br />

approach as presented <strong>in</strong> the API Compendium. The calculations for CO 2 emissions from combustion are<br />

repr<strong>in</strong>ted directly from the API Compendium. Some <strong>uncerta<strong>in</strong>ty</strong> values were assigned as follows:<br />

• Fuel consumption for b<strong>oil</strong>ers, turb<strong>in</strong>es, <strong>and</strong> flares = ±15% (assigned by expert judgment <strong>in</strong><br />

Table 5-1).<br />

• Heat<strong>in</strong>g Value of Gas Combusted = 928 Btu/scf ±4% (measured <strong>in</strong>dependent of <strong>gas</strong> composition;<br />

assigned by expert judgment here).<br />

• Gas Composition measurement = ±4% (determ<strong>in</strong>ed by analysis of repeat samples us<strong>in</strong>g<br />

techniques from Section 4.0; assigned by expert judgment here).<br />

• Unit Capacity of Heaters <strong>and</strong> Reb<strong>oil</strong>ers = ±6.71% (Calculated for Table 5-1).<br />

F.1 Uncerta<strong>in</strong>ty <strong>in</strong> Natural Gas Combustion Devices – CO 2 Emissions<br />

Carbon dioxide emissions are estimated based on the volume of fuel consumed <strong>and</strong> the fuel carbon<br />

content. B<strong>oil</strong>ers, heater/reb<strong>oil</strong>ers, <strong>and</strong> compressor eng<strong>in</strong>es-turb<strong>in</strong>es use <strong>natural</strong> <strong>gas</strong> at this facility.<br />

However, because CH 4 <strong>and</strong> N 2 O emission factors are based on the type of equipment as well as the fuel<br />

consumed, the CO 2 emission estimates are also calculated for common equipment types.<br />

We will first exam<strong>in</strong>e b<strong>oil</strong>ers <strong>and</strong> heaters/reb<strong>oil</strong>ers. The quantity of <strong>natural</strong> <strong>gas</strong> consumed by this<br />

equipment is based on the parameters shown <strong>in</strong> Table F-2.<br />

Table F-2. Operat<strong>in</strong>g Parameters for B<strong>oil</strong>ers, Heaters <strong>and</strong> Reb<strong>oil</strong>ers<br />

Source<br />

B<strong>oil</strong>ers<br />

Heaters/<br />

reb<strong>oil</strong>ers<br />

Fuel<br />

Produced<br />

Gas<br />

Produced<br />

Gas<br />

(±%) (±%) (±%) Units<br />

(per unit)<br />

per year)<br />

comb<strong>in</strong>ed)<br />

Annual<br />

Average<br />

Activity<br />

No.<br />

Unit<br />

Operation<br />

Factor (all<br />

of Uncerta<strong>in</strong>ty Capacity<br />

a Uncerta<strong>in</strong>ty<br />

(per unit Uncerta<strong>in</strong>ty<br />

units<br />

6 ±0% units N/A N/A<br />

40×10 6<br />

scf/yr<br />

3 ±0% units<br />

2×10 6<br />

343<br />

53.2×10<br />

±5% Btu/hr<br />

±2% days/yr<br />

Btu/hr<br />

days/yr<br />

scf/yr<br />

Uncerta<strong>in</strong>ty<br />

(±%) a<br />

±15% scf/yr<br />

±6.71%<br />

scf/yr<br />

The volume of fuel combusted (V) for B<strong>oil</strong>ers <strong>and</strong> Heaters/Reb<strong>oil</strong>ers is:<br />

6 6<br />

40× 10 scf ⎛ 2×<br />

10 Btu 24hr 343 day scf ⎞<br />

V = + ⎜3 units× × × × ⎟<br />

yr ⎝<br />

hr day yr 928 Btu ⎠<br />

6<br />

V = (40 + 53.2) × 10 scf/yr<br />

V = ×<br />

6<br />

93.2 10 scf/yr<br />

Uncerta<strong>in</strong>ty Estimate of Heater/Reb<strong>oil</strong>ers Activity Data: (Equation 4-6, relative uncerta<strong>in</strong>ties)<br />

The <strong>uncerta<strong>in</strong>ty</strong> for the heaters/reb<strong>oil</strong>ers is exam<strong>in</strong>ed first, then the comb<strong>in</strong>ed <strong>natural</strong> <strong>gas</strong> <strong>uncerta<strong>in</strong>ty</strong> is<br />

estimated.<br />

Pilot Version, September 2009 F-2


The <strong>uncerta<strong>in</strong>ty</strong> for the heaters/reb<strong>oil</strong>ers activity value is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the<br />

relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Urel ( ) = U(rel) +U(rel) +U(rel) +U(rel)<br />

heater<br />

2 2 2 2<br />

Units Capacity Days Heat<strong>in</strong>g Value<br />

( )<br />

2 2 2 2<br />

( )<br />

heater<br />

= 0 + 5 + 2 + 4 =± 6.71% scf/yr<br />

Urel<br />

The <strong>uncerta<strong>in</strong>ty</strong> for the b<strong>oil</strong>ers fuel consumption is 15% based on expert judgment.<br />

Comb<strong>in</strong>ed Uncerta<strong>in</strong>ty for B<strong>oil</strong>ers <strong>and</strong> Heaters/Reb<strong>oil</strong>ers Activity Data: (Equation 4-4, Absolute<br />

Uncerta<strong>in</strong>ties)<br />

The <strong>natural</strong> <strong>gas</strong> usage is summed. Therefore, the <strong>uncerta<strong>in</strong>ty</strong> for the comb<strong>in</strong>ed fuel consumption by the<br />

b<strong>oil</strong>er <strong>and</strong> heaters/reb<strong>oil</strong>er is calculated by apply<strong>in</strong>g Equation 4-4 <strong>and</strong> us<strong>in</strong>g the absolute <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U abs<br />

6 2 6 2 6<br />

( )<br />

B<strong>oil</strong>ers <strong>and</strong> heaters Gas Usage<br />

= (0.150×40×10 ) +(0.0735×53.2×10 ) =6.98×10 scf/y<br />

6<br />

6.98×<br />

10 scf/yr<br />

Urel ( )<br />

B<strong>oil</strong>ers <strong>and</strong> heaters Gas Usage<br />

= =± 7.49% scf/yr<br />

6<br />

93.2×<br />

10 scf/yr<br />

( )<br />

Uncerta<strong>in</strong>ty Estimate of Turb<strong>in</strong>es Activity Data:<br />

The <strong>uncerta<strong>in</strong>ty</strong> associated with the fuel consumed by turb<strong>in</strong>es is assigned by expert judgment, as shown<br />

<strong>in</strong> Table F-3. In this case, no further calculations are required for the turb<strong>in</strong>e activity data.<br />

Table F-3. Operat<strong>in</strong>g Parameters for Turb<strong>in</strong>es<br />

r<br />

Source<br />

Compressor<br />

eng<strong>in</strong>es –<br />

turb<strong>in</strong>es<br />

Fuel<br />

Produced<br />

Gas<br />

No. of<br />

Units<br />

Unit<br />

Uncerta<strong>in</strong>ty Capacity<br />

(±%) a (per unit)<br />

Annual<br />

Activity Factor<br />

Uncerta<strong>in</strong>ty (all units<br />

(±%) a comb<strong>in</strong>ed)<br />

Uncerta<strong>in</strong>ty<br />

(±%) a<br />

11 ±0% units N/A 250×10 6 scf/yr ±15% scf/yr<br />

Fuel Composition <strong>and</strong> Carbon Content:<br />

The carbon content of the <strong>natural</strong> <strong>gas</strong> is needed to complete the estimation of CO 2 emissions from <strong>natural</strong><br />

<strong>gas</strong> combustion. The <strong>gas</strong> composition data for this example are sown <strong>in</strong> Table F-4. Calculation of the<br />

<strong>uncerta<strong>in</strong>ty</strong> values is described below.<br />

Pilot Version, September 2009 F-3


Table F-4. Natural Gas Composition<br />

CO 2<br />

N 2<br />

CH 4<br />

C 2 H 6<br />

C 3 H 8<br />

C 4 H 10<br />

Fuel<br />

Mixture<br />

Mole %<br />

12.0<br />

2.1<br />

80.0<br />

4.2<br />

1.3<br />

0.4<br />

Uncerta<strong>in</strong>ty<br />

%<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

MW<br />

44.01<br />

28.01<br />

16.04<br />

30.07<br />

44.10<br />

58.12<br />

Mole%<br />

×MW<br />

5.28<br />

0.588<br />

12.8<br />

1.26<br />

0.573<br />

0.232<br />

100 MW mixture<br />

20.77 lb/scf<br />

Uncerta<strong>in</strong>ty<br />

%<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

Carbon<br />

Content<br />

(wt%C)<br />

6.94<br />

0<br />

46.3<br />

4.86<br />

2.26<br />

0.925<br />

±2.69% lb/scf 61.24<br />

(lbC/lb total)<br />

Uncerta<strong>in</strong>ty<br />

%<br />

4.82<br />

4.82<br />

4.82<br />

4.82<br />

4.82<br />

4.82<br />

±3.71%<br />

(lbC/lb total)<br />

For simplicity, we assume a 4% <strong>uncerta<strong>in</strong>ty</strong> on the mole% for all of the <strong>natural</strong> <strong>gas</strong> components. In reality,<br />

the <strong>uncerta<strong>in</strong>ty</strong> of the <strong>gas</strong> composition should be determ<strong>in</strong>ed through multiple samples, as shown <strong>in</strong><br />

Section 4.<br />

Uncerta<strong>in</strong>ty Estimate of the Fuel Mixture Mole %:<br />

The relative <strong>uncerta<strong>in</strong>ty</strong> of the mole% × MW for the <strong>in</strong>dividual components is the same as the relative<br />

<strong>uncerta<strong>in</strong>ty</strong> for the mole%, s<strong>in</strong>ce multiplication by a constant does not change the relative <strong>uncerta<strong>in</strong>ty</strong>. The<br />

<strong>uncerta<strong>in</strong>ty</strong> for the sum of the mole% × MW is calculated by apply<strong>in</strong>g Equation 4-4 <strong>and</strong> us<strong>in</strong>g the absolute<br />

uncerta<strong>in</strong>ties.<br />

∑<br />

U ( abs) = U( abs)<br />

∑(mole%×MW)<br />

2<br />

mole%×MW<br />

2 2 2<br />

(0.04× 5.28) + (0.04× 0.588) + (0.04×<br />

12.8)<br />

U ( abs) = = 0.558<br />

∑ (mole%×MW) 2 2 2<br />

+ (0.04× 1.26) + (0.04× 0.573) + (0.04×<br />

0.232)<br />

0.558<br />

Urel ( ) = × 100% =± 2.69% lb/scf<br />

∑(mole%×MW)<br />

20.77<br />

( )<br />

The <strong>uncerta<strong>in</strong>ty</strong> for the wt% C for the <strong>in</strong>dividual components is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong><br />

us<strong>in</strong>g the relative uncerta<strong>in</strong>ties.<br />

wt%C<br />

2 2 2 2<br />

mole%<br />

∑ (Mole%×MW)<br />

( )<br />

Urel ( ) = U( rel) +U( rel) = 4 + 2.69 =± 4.82% wt% C<br />

The <strong>uncerta<strong>in</strong>ty</strong> for the sum of the wt%C is calculated by apply<strong>in</strong>g Equation 4-4 <strong>and</strong> us<strong>in</strong>g the absolute<br />

uncerta<strong>in</strong>ties.<br />

Pilot Version, September 2009 F-4


∑<br />

2<br />

U ( abs) = U( abs)<br />

∑(Wt%C)<br />

Wt%C<br />

2 2 2<br />

(0.0482× 6.94) + (0.0482× 0) + (0.0482×<br />

46.3)<br />

U ( abs) = = 2.27<br />

∑ (Wt%C) 2 2 2<br />

+ (0.0482× 4.86) + (0.0482× 2.26) + (0.0482×<br />

0.925)<br />

2.27<br />

Urel ( ) = × 100% =± 3.71% ( lb C/lb total<br />

∑<br />

)<br />

(Mole%×MW)<br />

61.24<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 Emissions from B<strong>oil</strong>ers <strong>and</strong> Heaters/Reb<strong>oil</strong>ers:<br />

Carbon dioxide emissions can then be calculated us<strong>in</strong>g mass balance approach. Emissions are calculated<br />

below, by equipment type.<br />

B<strong>oil</strong>ers <strong>and</strong> Heaters:<br />

E<br />

CO2<br />

6<br />

93.2×<br />

10 scf fuel lbmole 20.77 lb fuel 0.6124 lb C lbmole C<br />

= × × × ×<br />

yr 379.3 scf fuel lbmole fuel lb fuel 12.01 lb C<br />

lbmole CO 44.01 lb CO tonne<br />

5,200 tonnes CO / yr<br />

2 2<br />

× × × =<br />

lbmole C lbmole CO2<br />

2204.62 lb<br />

As shown earlier, 93.2×10 6 scf/yr has an <strong>uncerta<strong>in</strong>ty</strong> of ±7.49%. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the carbon content of<br />

the fuel mixture is 3.71% <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> of the MW of the mixture is 2.69%. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the<br />

CO 2 emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

2<br />

U ( rel) = U( rel) +U( rel) +U( rel)<br />

Urel<br />

Emissions<br />

2 2 2<br />

B<strong>oil</strong>ers <strong>and</strong> Heaters Gas Usage Carbon Content MW mix<br />

2 2 2<br />

( )<br />

Emissions<br />

= 7.49 + 3.71 + 2.69 =± 8.78% (tonnes CO<br />

2<br />

/ yr)<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 Emissions from Turb<strong>in</strong>es:<br />

The CO 2 emissions from Turb<strong>in</strong>es are:<br />

E<br />

CO<br />

2<br />

6<br />

250×<br />

10 scf fuel lbmole 20.77 lb fuel 0.6124 lb C lbmole C<br />

= × × × ×<br />

yr 379.3 scf fuel lbmole fuel lb fuel 12.01 lb C<br />

lbmole CO 44.01 lb CO tonne<br />

lbmole C lbmole CO 2204.62 lb<br />

2 2<br />

× × × =<br />

2<br />

13,900 tonnes CO / yr<br />

The <strong>uncerta<strong>in</strong>ty</strong> for the activity factor 250×10 6 scf fuel/yr is 15%. Similarly, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the carbon<br />

content of the fuel mixture is 3.71% <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> of the MW of the mixture is 2.67%. The<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CO 2 emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong><br />

values.<br />

2<br />

U( rel) = U( rel) +U( rel) +U( rel)<br />

2 2 2<br />

Emissions AF Carbon Content MW mix<br />

U( rel ) = 15 +3.71 +2.67 = ± 15.7% (tonnes CO /yr)<br />

2 2 2<br />

Emissions 2<br />

Pilot Version, September 2009 F-5


F.2 Uncerta<strong>in</strong>ty <strong>in</strong> Diesel Combustion Devices – CO 2 Emissions<br />

The diesel fir<strong>in</strong>g rate is the sum of the activity factors for the generators <strong>and</strong> pumps as shown <strong>in</strong><br />

Table F-5.<br />

Table F-5. Operat<strong>in</strong>g Parameters for Diesel Eng<strong>in</strong>es<br />

Source<br />

Emergency<br />

generator IC<br />

eng<strong>in</strong>e<br />

Fire water<br />

pump IC<br />

eng<strong>in</strong>e<br />

Fuel<br />

No.<br />

of<br />

Units<br />

Unit<br />

Uncerta<strong>in</strong>ty Capacity<br />

(±%) a (per unit)<br />

Average<br />

Operation<br />

Uncerta<strong>in</strong>ty (per unit<br />

(±%) a per year)<br />

Diesel 1 ±0% units 1800 hp ±5% hr 200 hr/yr<br />

Diesel 1 ±0% units 460 hp ±5% hr<br />

24 hr/yr;<br />

87% load<br />

Annual<br />

Activity<br />

Factor (all<br />

Uncerta<strong>in</strong>ty units<br />

(±%) a comb<strong>in</strong>ed)<br />

±10%<br />

(hr/yr)<br />

±10%<br />

(hr/yr);<br />

±20% (load)<br />

2,912 ×10 6<br />

Btu/yr<br />

77.7 ×10 6<br />

Btu/yr<br />

Uncerta<strong>in</strong>ty<br />

(±%) a<br />

±12.3%<br />

Btu/yr<br />

±13.2%<br />

Btu/yr<br />

Uncerta<strong>in</strong>ty Estimate of Diesel Activity Data:<br />

Because the diesel emission factor is provided on a heat <strong>in</strong>put basis, the equipment rat<strong>in</strong>gs are converted<br />

to volume of fuel consumed (V) on a heat <strong>in</strong>put basis.<br />

⎛ 1,800 hp 8,089 Btu 200 hr ⎞ ⎛ 460 hp 8,089 Btu 24 hr ⎞<br />

V = ⎜1 Unit × × × ⎟+ ⎜1 Unit × × 0.87 × × ⎟<br />

⎝ unit hp-hr yr ⎠ ⎝ unit hp-hr yr ⎠<br />

6 6<br />

V = (2,912+7.77)× 10 =2989.7×10 Btu/yr<br />

We assume there is no <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the number of units, which here is the count of diesel eng<strong>in</strong>es. The<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the unit capacity is 5%, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the energy efficiency of the eng<strong>in</strong>e is 5%, <strong>and</strong> the<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the average hours of operation is 10% based on expert judgment. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CO 2<br />

emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( rel) = U( rel) +U( rel) +U( rel) +U( rel)<br />

2 2 2 2<br />

Activity Factor Number Of Units Unity Capacity Efficiency Average Operations<br />

Urel = + + + =±<br />

( )<br />

2 2 2 2<br />

( )<br />

ActivityFactor<br />

0 5 5 10 12.3% Btu/yr<br />

The <strong>uncerta<strong>in</strong>ty</strong> for pumps <strong>in</strong>cludes one additional term: the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the percent load is 20%,<br />

U( rel) +U( rel) +U( rel) +U( rel)<br />

Urel ( ) =<br />

+U( )<br />

ActivityFactor 2<br />

rel<br />

Average Operations<br />

2 2 2 2<br />

Number Of Units Unity Capacity Efficiency Percent Load<br />

( )<br />

2 2 2 2 2<br />

( )<br />

ActivityFactor<br />

0 5 5 20 10 23.5% Btu/yr<br />

Urel = + + + + =±<br />

Pilot Version, September 2009 F-6


Comb<strong>in</strong><strong>in</strong>g the fuel usage for the two diesel fired equipment, the total <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the diesel fir<strong>in</strong>g rate<br />

is calculated by apply<strong>in</strong>g Equation 4-4 <strong>and</strong> us<strong>in</strong>g the absolute <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( abs) = (U( abs) +U( abs)<br />

2 2<br />

Diesal Fir<strong>in</strong>g Rate Generator Pump<br />

U abs = × × + × × = × Btu yr<br />

6 2 6 2 6<br />

( )<br />

Diesal Fir<strong>in</strong>g Rate<br />

(0.123 2912 10 ) (0.235 77.7 10 ) 356.85 10 /<br />

6<br />

356.85×10 Btu/yr<br />

6<br />

2989.7×10 Btu/yr<br />

( )<br />

Urel ( ) = 100%× = ± 11.9% Btu/yr<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 Emissions from Diesel Combustion:<br />

E<br />

2,989.7×<br />

10 Btu<br />

year<br />

0.0732 tonnes CO<br />

10 Btu<br />

6<br />

2<br />

CO<br />

= × =<br />

2<br />

6<br />

2<br />

219 tonnes CO / yr<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor is determ<strong>in</strong>ed by eng<strong>in</strong>eer<strong>in</strong>g judgment to be 10%. The total<br />

<strong>uncerta<strong>in</strong>ty</strong> for the CO 2 emissions is then is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative<br />

<strong>uncerta<strong>in</strong>ty</strong> values.<br />

2<br />

( )<br />

U ( rel) = U( rel) +U( rel ) = 11.9 + 10.0 =± 15.6% tonnes CO /yr<br />

2 2 2 2<br />

CO AF EF 2<br />

F.3 Uncerta<strong>in</strong>ty <strong>in</strong> Stationary Combustion Devices – CH 4 , N 2 O, <strong>and</strong> CO 2 e Emissions<br />

In this hypothetical example, CH 4 <strong>and</strong> N 2 O emissions from combustion are calculated us<strong>in</strong>g the fuel-based<br />

emission factors presented <strong>in</strong> the API Compendium. The calculations for CH 4 <strong>and</strong> N 2 O emissions from<br />

combustion are repr<strong>in</strong>ted directly from the API Compendium. Some <strong>uncerta<strong>in</strong>ty</strong> values were assigned as<br />

follows:<br />

• Fuel Consumption for B<strong>oil</strong>ers = ±15% (assigned by expert judgment).<br />

• Heat<strong>in</strong>g Value of Gas Combusted = ±4% (measured <strong>in</strong>dependent of <strong>gas</strong> composition; assigned by<br />

expert judgment here).<br />

• Gas Composition measurement = ±4% (determ<strong>in</strong>ed by analysis of repeat samples us<strong>in</strong>g<br />

techniques from Section 4; assigned by expert judgment here).<br />

• The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor for N 2 O is determ<strong>in</strong>ed by eng<strong>in</strong>eer<strong>in</strong>g judgment to be<br />

+150%,–100%. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor for methane is 25% based on expert<br />

judgment.<br />

Uncerta<strong>in</strong>ty Estimate of CH 4 <strong>and</strong> N 2 O Emissions from B<strong>oil</strong>ers <strong>and</strong> Heater/Reb<strong>oil</strong>ers:<br />

Natural <strong>gas</strong> emission factors for CH 4 <strong>and</strong> N 2 O are based on the energy consumed by the equipment. This<br />

differs from the CO 2 emission estimates above, which were based on the volume of <strong>natural</strong> <strong>gas</strong> consumed.<br />

So, the fuel usage <strong>in</strong>formation from Table F-2 must first be converted to an energy <strong>in</strong>put basis.<br />

Pilot Version, September 2009 F-7


6 6<br />

⎛40×10 scf 928 Btu ⎞ ⎛ 2×10 Btu 24 hr 343 days ⎞<br />

V = ⎜ × ⎟+ ⎜3 Units× × × ⎟<br />

⎝ yr scf ⎠ ⎝ hr-unit day yr ⎠<br />

6<br />

V = 86,512 ×10 Btu/yr<br />

The <strong>uncerta<strong>in</strong>ty</strong> for the b<strong>oil</strong>er activity factor is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative<br />

<strong>uncerta<strong>in</strong>ty</strong> values.<br />

2 2 2 2<br />

b<strong>oil</strong>er AF AF Heat<strong>in</strong>g Value<br />

( )<br />

Urel ( ) = U( rel) +U( rel ) = 15 + 4 =± 15.5% Btu/yr<br />

Uncerta<strong>in</strong>ty for heater/reb<strong>oil</strong>ers: (Equation 4-6, relative uncerta<strong>in</strong>ties)<br />

U ( rel) = U( rel) +U( rel) +U( rel)<br />

2 2 2<br />

heater Units Capacity Days<br />

Urel = + + =±<br />

( )<br />

2 2 2<br />

( )<br />

heater<br />

0 5 2 5.39% Btu/yr<br />

The <strong>uncerta<strong>in</strong>ty</strong> for the comb<strong>in</strong>ed activity factor is calculated by apply<strong>in</strong>g Equation 4-4 <strong>and</strong> us<strong>in</strong>g the<br />

absolute <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( abs) = (U( abs) +U( abs)<br />

U abs<br />

2 2<br />

AF B<strong>oil</strong>er Heater<br />

6 2 6 2 6<br />

( )<br />

AF<br />

= (0.155× 37,120× 10 ) + (0.0539× 49,392× 10 ) = 6,347×<br />

10 Btu/yr<br />

6<br />

6,347×10 Btu/yr<br />

AF 6<br />

( )<br />

Urel ( ) = 100% × =± 7.34% Btu/yr<br />

86,512×10 Btu/yr<br />

As stated previously, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor for N 2 O is determ<strong>in</strong>ed by eng<strong>in</strong>eer<strong>in</strong>g judgment<br />

to be 150%. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor for methane is 25% based on expert judgment. The<br />

<strong>uncerta<strong>in</strong>ty</strong> for emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Because it is not possible to have negative emissions, the lower bound <strong>uncerta<strong>in</strong>ty</strong> will be truncated at zero.<br />

As a result, the lower <strong>and</strong> upper bound uncerta<strong>in</strong>ties are estimated separately.<br />

6<br />

-6<br />

86,512 × 10 Btu 1.0 × 10 tonne CH<br />

4<br />

E<br />

CH<br />

: × = 0.0865 tonnes CH<br />

4<br />

6<br />

4<br />

/yr<br />

yr<br />

10 Btu<br />

( )<br />

Urel ( ) = U( rel) +U( rel ) = 7.34 + 25 =± 26.1% tonnes CH /yr)<br />

2 2 2 2<br />

emissions AF EF 4<br />

6<br />

-7<br />

86,512 × 10 Btu 2.8 × 10 tonne N2O<br />

E<br />

NO= × = 0.0242 tonnes N<br />

2<br />

6<br />

2O/yr<br />

yr<br />

10 Btu<br />

( )<br />

U( rel) = U( rel) +U( rel ) = 7.34 + 150 =+ 150%, − 100% tonnes N O/yr<br />

2 2 2 2<br />

emissions AF EF 2<br />

Pilot Version, September 2009 F-8


Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from B<strong>oil</strong>ers <strong>and</strong> Heater/Reb<strong>oil</strong>ers:<br />

The f<strong>in</strong>al step is to convert the emissions of CO 2 , CH 4 , <strong>and</strong> N 2 O to a CO 2 e. Note there are no uncerta<strong>in</strong>ties<br />

for any of the GWPs, so the comb<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> is based on summ<strong>in</strong>g the <strong>in</strong>dividual emissions <strong>and</strong><br />

apply<strong>in</strong>g Equation 4-4 (us<strong>in</strong>g absolute <strong>uncerta<strong>in</strong>ty</strong> values). Also, because the N 2 O <strong>uncerta<strong>in</strong>ty</strong> estimate is<br />

asymmetrical, separate upper <strong>and</strong> lower bound uncerta<strong>in</strong>ties are calculated for the CO 2 e. emissions.<br />

E<br />

CO2e<br />

⎛<br />

= + ⎜<br />

×<br />

yr ⎝ yr tonne CH<br />

5,200 tonne CO2 0.0865 tonne CH4 21 tonne CO2e<br />

⎛0.0242 tonne N2O 310 tonne CO2e<br />

⎞<br />

+ ⎜<br />

× ⎟=<br />

⎝ yr<br />

tonne N2O<br />

⎠<br />

4<br />

⎞<br />

⎟<br />

⎠<br />

5,210 tonne CO2e/yr<br />

U ( abs) = (U( abs) +U( abs) +U( abs)<br />

2 2 2<br />

ECO2e ECO E<br />

2 CH E<br />

4 N2O<br />

U ( abs) E<br />

= (0.0878× 5,200) + (0.261× 21× 0.0865) + (1.50× 310×<br />

0.0242)<br />

CO2e<br />

Upper:<br />

= 456 tonnes CO2e/yr<br />

ECO2e<br />

456 tonnes CO2e/yr<br />

5,210 tonnes CO2e/yr<br />

2 2 2<br />

Urel ( ) 100% 8.77% tonnes CO2e/yr<br />

= × =+ ( )<br />

U ( abs) = (U( abs) +U( abs) +U( abs)<br />

2 2 2<br />

ECO2e ECO E<br />

2 CH E<br />

4 N2O<br />

U ( abs) E<br />

= ( − 0.0878× 5,200) + ( − 0.261× 21× 0.0865) + ( − 1.00× 310×<br />

0.0242)<br />

CO2e<br />

Lower:<br />

= 456 tonnes CO2e/yr<br />

ECO2e<br />

456 tonnes CO2e/yr<br />

5,210 tonnes CO2e/yr<br />

2 2 2<br />

Urel ( ) 100% 8.77% tonnes CO2e/yr<br />

= × =− ( )<br />

Uncerta<strong>in</strong>ty Estimate of CH 4 <strong>and</strong> N 2 O Emissions from Turb<strong>in</strong>es:<br />

Here also, the <strong>natural</strong> <strong>gas</strong> emission factors for CH 4 <strong>and</strong> N 2 O are based on the energy consumed by the<br />

equipment. The fuel usage <strong>in</strong>formation from Table F-3 is first converted to an energy <strong>in</strong>put basis.<br />

V<br />

6<br />

⎛250×<br />

10 scf 928 Btu ⎞<br />

= ⎜<br />

× ⎟ ×<br />

⎝ yr scf ⎠<br />

6<br />

= 232,000 10 Btu/yr<br />

Then the emission factors are applied to estimated CH 4 <strong>and</strong> N 2 O emissions:<br />

Pilot Version, September 2009 F-9


6<br />

-6<br />

232,000×<br />

10 Btu 3.9×<br />

10 tonne CH<br />

4<br />

E<br />

CH<br />

= × = 0.905 tonnes CH<br />

4<br />

6<br />

4<br />

/yr<br />

yr<br />

10 Btu<br />

6<br />

-6<br />

232,000×<br />

10 Btu 1.4×<br />

10 tonne N2O<br />

E<br />

NO= × = 0.325 tonnes N<br />

2<br />

6<br />

2O/yr<br />

yr<br />

10 Btu<br />

The <strong>uncerta<strong>in</strong>ty</strong> for the turb<strong>in</strong>es’ activity factor is 15%. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the heat<strong>in</strong>g values is 5% based<br />

on expert judgment. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CH 4 emissions factor is determ<strong>in</strong>ed by eng<strong>in</strong>eer<strong>in</strong>g judgment to<br />

be 25%, <strong>and</strong> +150%, -100% for the N 2 O emission factor. The <strong>uncerta<strong>in</strong>ty</strong> of the emissions is calculated by<br />

apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Because it is not possible to have negative emissions, the lower bound <strong>uncerta<strong>in</strong>ty</strong> will be truncated at zero.<br />

As a result, the lower <strong>and</strong> upper bound uncerta<strong>in</strong>ties are estimated separately.<br />

U ( rel) = U ( rel) + U ( rel) + U ( rel)<br />

2 2 2<br />

emissions AF Heat<strong>in</strong>gValue EF<br />

( )<br />

For CH : Urel ( ) = 15 + 4 + 25 =± 29.4% tonnes CH /yr<br />

2 2 2<br />

4 4<br />

( )<br />

For N O: Urel ( ) = 15 + 4 + 150 =+ 151%, −100% tonnes N O/yr<br />

2 2 2<br />

2 2<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Turb<strong>in</strong>es:<br />

The f<strong>in</strong>al step is to convert the emissions of CO 2 , CH 4 , <strong>and</strong> N 2 O to a CO 2 e basis. Equation 4-4 is applied<br />

us<strong>in</strong>g absolute <strong>uncerta<strong>in</strong>ty</strong> values. Because the N 2 O <strong>uncerta<strong>in</strong>ty</strong> estimate is asymmetrical, separate upper<br />

<strong>and</strong> lower bound uncerta<strong>in</strong>ties are calculated for the CO 2 e emissions.<br />

13,900 tonneCO ⎛<br />

2<br />

0.905 tonneCH4 21 tonne CO2e<br />

⎞<br />

E<br />

CO2e<br />

= + ⎜<br />

×<br />

⎟<br />

yr ⎝ yr tonneCH4<br />

⎠<br />

⎛0.325 tonneN O 310 tonne CO e ⎞ =<br />

⎝<br />

⎠<br />

2 2<br />

+ ⎜<br />

× ⎟ 14,100 tonne CO2e/yr<br />

yr tonneN2O<br />

U ( abs) = ( U ( abs) + U ( abs) + U ( abs)<br />

2 2 2<br />

ECO 2e ECO E<br />

2 CH E<br />

4 N2O<br />

U ( abs) E<br />

= (0.157× 13,900) + (0.294× 21× 0.905) + (1.51× 310×<br />

0.325)<br />

CO2e<br />

Upper:<br />

U ( abs) = 2,190 tonnes CO e/yr<br />

E<br />

CO2e<br />

( ) 100% 2<br />

ECO 2e<br />

14,100 tonnes CO e/y 2<br />

Urel<br />

2<br />

2 2 2<br />

2,190 tonnes CO e/yr<br />

=+15.6% tonnes CO2e/yr<br />

r<br />

= × ( )<br />

Pilot Version, September 2009 F-10


U ( abs) = ( U ( abs) + U ( abs) + U ( abs)<br />

2 2 2<br />

ECO 2e ECO E<br />

2 CH E<br />

4 N2O<br />

U ( abs) E<br />

= ( − 0.157× 13,900) + ( − 0.294× 21× 0.905) + ( − 1.00× 310×<br />

0.325)<br />

CO2e<br />

Lower:<br />

U ( abs) = 2,190 tonnes CO e/yr<br />

Urel<br />

E<br />

CO2e<br />

( ) 100% 2<br />

ECO 2e<br />

14,100 tonnes CO 2<br />

2<br />

2 2 2<br />

2,190 tonnes CO e/yr<br />

=−15.6% tonnes CO2e/yr<br />

e/yr<br />

= × ( )<br />

Uncerta<strong>in</strong>ty Estimate of CH 4 <strong>and</strong> N 2 O Emissions from Diesel-fired Equipment:<br />

For diesel eng<strong>in</strong>es, the emission factor is provided on a heat <strong>in</strong>put basis. The equipment rat<strong>in</strong>gs provided <strong>in</strong><br />

Table F-5 are converted to volume of fuel consumed on a heat <strong>in</strong>put basis us<strong>in</strong>g the conversion factor 8,089<br />

Btu/hp-hr (from API Compendium Table 4-2). An <strong>uncerta<strong>in</strong>ty</strong> of 5% is assumed based on eng<strong>in</strong>eer<strong>in</strong>g<br />

judgment for this conversion factor.<br />

Diesel eng<strong>in</strong>e >600 hp:<br />

-6<br />

1,800 hp 8,089 Btu 200 hr 3.7×<br />

10 tonne CH4<br />

E<br />

CH<br />

= 1 Unit × × × × = 0.0108 tonnes CH<br />

4<br />

6<br />

4<br />

/yr<br />

unit hp-hr yr 10 Btu<br />

-7<br />

1,800 hp 8,089 Btu 200 hr 6.01 × 10 tonne N2O<br />

E<br />

NO<br />

= 1 Unit × × × × = 0.00175 tonnes N<br />

2<br />

6<br />

2O/yr<br />

unit hp-hr yr 10 Btu<br />

As discussed earlier, we assume there is no <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the number of units, the count of diesel eng<strong>in</strong>es.<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the unit capacity is 5%, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the hp-hr to Btu conversion factor is 5%, <strong>and</strong><br />

the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the average hours of operation is 10% based on expert judgment. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the<br />

emissions factors are determ<strong>in</strong>ed by eng<strong>in</strong>eer<strong>in</strong>g judgment to be 25% for CH 4 <strong>and</strong> +150%, –100% for N 2 O.<br />

The <strong>uncerta<strong>in</strong>ty</strong> of the emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong><br />

values.<br />

Because it is not possible to have negative emissions, the lower bound <strong>uncerta<strong>in</strong>ty</strong> will be truncated at zero.<br />

As a result, the lower <strong>and</strong> upper bound uncerta<strong>in</strong>ties are estimated separately.<br />

U ( rel) = U(rel) +U( rel) +U( rel) +U( rel) +U( rel)<br />

2 2 2 2 2<br />

emissions NumberOfUnits UnityCapacity Btu/hp-hr conv OperationHours EF<br />

( )<br />

For CH : Urel ( ) = 0 + 5 + 5 + 10 + 25 =± 27.8% tonnes CH /yr<br />

2 2 2 2 2<br />

4 4<br />

Urel<br />

= + + + + =+ , −100%<br />

( tonnes N O/yr)<br />

2 2 2 2 2<br />

For N20 : ( ) 0 5 5 10 150 151%<br />

2<br />

Pilot Version, September 2009 F-11


Diesel eng<strong>in</strong>e


E<br />

E<br />

CO2e<br />

219 tonne CO ⎛<br />

2<br />

0.0108 tonne CH4 21 tonne CO2e ⎞ ⎛0.00112 tonne CH4 21 tonne CO2e<br />

⎞<br />

= + ⎜ × ⎟+ ⎜ ×<br />

⎟<br />

yr yr tonne CH yr tonne CH<br />

⎝ 4 ⎠ ⎝ 4 ⎠<br />

⎛0.00175 tonne N2O 310 tonne CO2e ⎞ ⎛0.0000467 tonne N2O<br />

310 tonne CO2e<br />

⎞<br />

+ ⎜<br />

×<br />

⎟+<br />

⎜<br />

×<br />

⎟<br />

⎝ yr<br />

tonne N2O<br />

⎠ ⎝ yr<br />

tonne N2O<br />

⎠<br />

= 220 tonne CO e/yr<br />

CO2e 2<br />

Upper:<br />

U ( abs) = (U( abs) +U( abs) +U( abs) +U( abs) +U( abs)<br />

2 2 2 2 2<br />

ECO e ECO E<br />

2 2 CH4-Diesel>600hp ECH4-Diesel600hp EN2O-Diesel600hp ECH4-Diesel600hp EN2O-Diesel


Uncerta<strong>in</strong>ty Estimate of CH 4 Emissions from Flares:<br />

E =<br />

CH4<br />

×<br />

6<br />

500 10 scf <strong>gas</strong> lbmole <strong>gas</strong><br />

0.80 lbmole CH 16.04 lb CH<br />

× × ×<br />

yr 379.3 scf <strong>gas</strong> lbmole <strong>gas</strong> lbmole CH<br />

0.02 lb noncombusted CH tonne<br />

lb CH<br />

2204.62 lb<br />

4<br />

× × =<br />

4<br />

4 4<br />

153 tonnes CH /yr<br />

4<br />

4<br />

For CH 4 , the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the activity factor is 15%, <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the noncombusted methane is<br />

20%, both assigned by expert judgment. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the mole % of CH 4 is 4%. The <strong>uncerta<strong>in</strong>ty</strong> of<br />

the emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( rel) = U( rel) +U( rel) +U( rel)<br />

2 2 2<br />

emissions AF mole% Noncombusted Methane<br />

( )<br />

U( rel ) = 15 + 4 + 20 =± 25.3% tonnes CH /yr<br />

2 2 2<br />

emissions 4<br />

Uncerta<strong>in</strong>ty Estimate of N 2 O Emissions from Flares:<br />

N 2 O emissions from flares are estimated based on the volume of crude produced.<br />

−4<br />

6,100 bbl 365 days 1.0×<br />

10 tonnes N2O<br />

E<br />

NO<br />

= × × = 0.223 tonnes N<br />

2<br />

2O/yr<br />

day yr 1,000 bbl<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the activity factor is 5% based on expert judgment. There is no <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the number<br />

of days of operation. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor is +200%,–100% based on expert judgment.<br />

The <strong>uncerta<strong>in</strong>ty</strong> of the emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong><br />

values.<br />

Because it is not possible to have negative emissions, the lower bound <strong>uncerta<strong>in</strong>ty</strong> will be truncated at zero.<br />

As a result, the lower <strong>and</strong> upper bound uncerta<strong>in</strong>ties are estimated separately.<br />

Urel ( ) = U(rel) +U(rel) +U(rel)<br />

2 2 2<br />

emissions AF AverageOperations EF<br />

( )<br />

Urel ( ) = 5 + 0 + 200 =+ 200%, −100% tonnes N O/yr<br />

2 2 2<br />

emissions 2<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 Emissions from Flares:<br />

CO 2 emissions result from CO 2 present <strong>in</strong> the <strong>gas</strong> <strong>and</strong> CO 2 formed through combustion.<br />

The flare emissions for CO 2 <strong>in</strong> <strong>gas</strong> <strong>and</strong> CO 2 formed are correlated, s<strong>in</strong>ce they both use the same activity<br />

factor. To calculate the <strong>uncerta<strong>in</strong>ty</strong>, first rearrange the CO 2 flare emissions as follows to elim<strong>in</strong>ate the<br />

correlation.<br />

Pilot Version, September 2009 F-14


E CO<br />

2<br />

6<br />

500×<br />

10 scf <strong>gas</strong> lbmole <strong>gas</strong> 44.01 lb CO2<br />

tonne<br />

= × × × ×<br />

yr 379.3 scf <strong>gas</strong> lbmole CO 2204.62 lb<br />

⎡⎛0.80 lbmole CH4<br />

1 lbmole C 0.042 lbmole C2H6<br />

2 lbmole C<br />

⎢⎜<br />

× + ×<br />

⎢<br />

lbmole <strong>gas</strong> lbmole CH4 lbmole <strong>gas</strong> lbmole C2H<br />

⎜<br />

6<br />

⎢⎜<br />

0.013 lbmole C3H8<br />

3 lbmole C 0.004 lbmole C4H10<br />

4 lbmole C<br />

⎢⎜+<br />

× + ×<br />

⎢⎝<br />

lbmole <strong>gas</strong> lbmole C H lbmole <strong>gas</strong> lbmole C H<br />

⎢ 0.98 lbmole CO<br />

2<br />

formed 0.12 lbmole CO2<br />

⎢× +<br />

⎣ lbmole C combusted lbmole <strong>gas</strong><br />

27,400 tonnes CO /yr<br />

E CO<br />

2<br />

=<br />

2<br />

2<br />

3 8 4 10<br />

⎞⎤<br />

⎟⎥<br />

⎟⎥<br />

⎟⎥<br />

⎟⎥<br />

⎠⎥<br />

⎥<br />

⎥<br />

⎦<br />

For the <strong>uncerta<strong>in</strong>ty</strong> aggregation, start first with the <strong>uncerta<strong>in</strong>ty</strong> for the moles of carbon <strong>in</strong> the flared <strong>gas</strong><br />

stream (the terms <strong>in</strong> parenthesis) by apply<strong>in</strong>g Equation 4-4 <strong>and</strong> us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties. The<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the <strong>gas</strong> stream composition is 4%.<br />

∑<br />

U ( abs) = U ( abs)<br />

∑lbmoleC<br />

2<br />

mole%<br />

U ( abs) = (0.04× 0.80× 1) + (0.04× 0.042× 2) + (0.04× 0.013× 3) + (0.04× 0.004×<br />

4)<br />

∑lbmoleC<br />

U ( abs) = 0.0322<br />

∑lbmoleC<br />

0.0322<br />

Urel ( ) = 100% = 3.43%<br />

∑lbmoleC<br />

0.939<br />

2 2 2 2<br />

Then calculate the <strong>uncerta<strong>in</strong>ty</strong> of the product of the composition <strong>and</strong> the combustion efficiency by apply<strong>in</strong>g<br />

Equation 4-4 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong>.<br />

U rel U rel U rel<br />

2 2 2 2<br />

( )<br />

1<br />

= ( )<br />

composition<br />

+ ( )<br />

CombustionEff<br />

= 3.43 + 20 = 20.3%<br />

Next, account for the <strong>uncerta<strong>in</strong>ty</strong> of the CO 2 present <strong>in</strong> the <strong>gas</strong> by apply<strong>in</strong>g Equation 4-4 <strong>and</strong> us<strong>in</strong>g the<br />

absolute <strong>uncerta<strong>in</strong>ty</strong> values. This will aggregate <strong>uncerta<strong>in</strong>ty</strong> for all the terms <strong>in</strong> the brackets.<br />

U ( abs) = U ( abs) + U ( abs) = (0.203× 0.939× 0.98) + (0.04× 0.120) = 0.187<br />

2 2 2 2<br />

2 1 mole%<br />

0.187<br />

Urel ( )<br />

2<br />

= 100% × = 18.0%<br />

0.939× 0.98 + 0.120<br />

( )<br />

F<strong>in</strong>ally the <strong>uncerta<strong>in</strong>ty</strong> of the emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative<br />

<strong>uncerta<strong>in</strong>ty</strong> values. For the CO 2 that is <strong>in</strong> the flared <strong>gas</strong>, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the activity factor is 15% based<br />

on expert judgment.<br />

Urel ( ) = Urel ( ) + Urel ( ) = 15 + 18.0 = 23.4%<br />

emissions<br />

2 2 2 2<br />

AF<br />

2<br />

Pilot Version, September 2009 F-15


Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Flares:<br />

The f<strong>in</strong>al step is to convert the emissions of CO 2 , CH 4 , <strong>and</strong> N 2 O to a CO 2 e. Equation 4-4 is applied us<strong>in</strong>g<br />

absolute <strong>uncerta<strong>in</strong>ty</strong> values. Because the N 2 O <strong>uncerta<strong>in</strong>ty</strong> estimate is asymmetrical, separate upper <strong>and</strong><br />

lower bound uncerta<strong>in</strong>ties are calculated for the CO 2 e emissions.<br />

E<br />

CO2e<br />

27,400 tonne CO ⎛<br />

2<br />

153 tonne CH4 21 tonne CO2e<br />

⎞<br />

= + ⎜<br />

×<br />

⎟<br />

yr ⎝ yr tonne CH4<br />

⎠<br />

⎛0.223 tonne N O 310 tonne CO e ⎞<br />

2 2<br />

+ ⎜<br />

× ⎟=<br />

30,700 tonne CO2e/yr<br />

yr tonne N2O<br />

⎝<br />

⎠<br />

Upper:<br />

U ( abs) = (U( abs) +U( abs) +U( abs)<br />

2 2 2<br />

ECO2e ECO E<br />

2 CH E<br />

4 N2O<br />

U ( abs) = (0.234× 27,400) + (0.253× 21× 153) + (2.00× 310× 0.233) = 6,460 tonnes CO e/yr<br />

Urel<br />

2 2 2<br />

ECO2e<br />

2<br />

6,460 tonnes CO e/yr<br />

= × =+ ( s CO e/yr )<br />

2<br />

( )<br />

E<br />

100% 21.1% tonne<br />

CO2e<br />

30,700 tonnes CO2e/yr<br />

2<br />

Lower:<br />

U ( abs) = (U( abs) +U( abs) +U( abs)<br />

U abs<br />

2 2 2<br />

ECO2e ECO E<br />

2 CH E<br />

4 N2O<br />

2 2 2<br />

( )<br />

E<br />

= ( − 0.234× 27, 400) + ( − 0.253× 21× 153) + ( − 1.00× 310× 0.233) = 6,460 tonnes CO2e/yr<br />

CO2e<br />

6,460 tonnes CO2e/yr<br />

( )<br />

E<br />

= 100% × =− 21.1% ( tonnes CO2e/yr<br />

)<br />

CO2e<br />

2<br />

Urel<br />

30,700 tonnes CO e/yr<br />

F.5 Uncerta<strong>in</strong>ty <strong>in</strong> Combustion Sources – Fleet Vehicles<br />

Table F-7 summarizes the operat<strong>in</strong>g parameters for the flares.<br />

Table F-7. Operat<strong>in</strong>g Parameters for Fleet Vehicles<br />

Source<br />

Fleet<br />

Vehicles<br />

(Trucks)<br />

Fuel<br />

No. of<br />

Units<br />

Uncerta<strong>in</strong>ty<br />

(±%) a Average Operation<br />

(per unit per year)<br />

Uncerta<strong>in</strong>ty (±%) a<br />

Gasol<strong>in</strong>e 5 ±0% units 40,000 mi/yr ea. ±15.0% mi/yr<br />

The calculations for fleet vehicle emissions are repr<strong>in</strong>ted directly from the API Compendium. Some<br />

<strong>uncerta<strong>in</strong>ty</strong> values were assigned as follows:<br />

• Miles Driven per Vehicle = ±15% (assigned by expert judgment, based upon uncerta<strong>in</strong>ties <strong>in</strong> the<br />

vehicle logs gathered by the company).<br />

Pilot Version, September 2009 F-16


• Fuel Economy (miles per gallon) = ±5% (assigned by expert judgment, based on some fuel<br />

economy data for similar vehicle types).<br />

• Heat Value of Gasol<strong>in</strong>e = ±5% (determ<strong>in</strong>ed by expert judgment).<br />

• The number of trucks = ±0% (expert judgment determ<strong>in</strong>ed that this count is perfectly known <strong>and</strong><br />

discreet).<br />

• The CO 2 emission factor for this category, expressed <strong>in</strong> tonne CO 2 /MMBtu, has a provided<br />

<strong>uncerta<strong>in</strong>ty</strong> of ±10%. The reference source CH 4 <strong>and</strong> N 2 O emission factors, while small, have<br />

much larger uncerta<strong>in</strong>ties of +150%,–100%. Because it is not possible to have negative<br />

emissions, the lower bound <strong>uncerta<strong>in</strong>ty</strong> will be truncated at zero. As a result, the lower <strong>and</strong> upper<br />

bound uncerta<strong>in</strong>ties are estimated separately.<br />

The energy content of the fuel consumed by the vehicles (V) must first be converted to an energy <strong>in</strong>put<br />

basis <strong>and</strong> is determ<strong>in</strong>ed based on the annual miles <strong>and</strong> an average fuel economy.<br />

6<br />

40,000 mi gal bbl 5.25 × 10 Btu<br />

V = × × ×<br />

yr-truck 14 mi 42 gal bbl<br />

6<br />

V=1,790×<br />

10 Btu/yr-truck<br />

Uncerta<strong>in</strong>ty Estimate for Fleet Activity Data:<br />

Equation 4-6 is applied us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( rel) = U( rel) +U( rel) +U( rel)<br />

2 2 2<br />

Energy of Fuel AF fuel economy Heat value of <strong>gas</strong>ol<strong>in</strong>e<br />

Urel = + + =±<br />

( )<br />

2 2 2<br />

( )<br />

Energy of Fuel<br />

15 5 5 16.6% Btu/yr-truck<br />

Uncerta<strong>in</strong>ty Estimate for CO 2 Emissions from Fleet:<br />

Carbon dioxide emissions are then calculated by apply<strong>in</strong>g the emission factor for vehicles.<br />

6<br />

1,790 × 10 Btu 0.0709 tonne CO<br />

E<br />

CO<br />

= 5 trucks ×<br />

×<br />

2<br />

6<br />

yr-truck 1×10 Btu<br />

E<br />

CO 2<br />

2<br />

= 127 tonnes CO /yr<br />

2<br />

Equation 4-6 is applied us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( rel) = U( rel) +U( rel) +U( rel)<br />

2 2 2<br />

CO Emissions Vehicle Energy of Fuel EF<br />

2<br />

2<br />

( )<br />

Urel ( ) = 0 + 16.6 + 10 =± 19.4% tonnes CO /yr<br />

2 2 2<br />

CO Emissions<br />

2<br />

Uncerta<strong>in</strong>ty Estimate for CH 4 Emissions from Fleet:<br />

Methane emissions are then calculated by apply<strong>in</strong>g the emission factor for vehicles.<br />

Pilot Version, September 2009 F-17


E<br />

E<br />

CH<br />

CH<br />

4<br />

4<br />

-4<br />

40,000 mi gal 4.5×<br />

10 tonne CH4<br />

Mgal<br />

= 5 trucks× × × ×<br />

yr-truck 14 mi Mgal 1000 gal<br />

=<br />

0.00643 tonnes CH 4/yr<br />

Equation 4-6 is applied us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Urel ( ) = U( rel) +U( rel) +U( rel)<br />

2 2 2<br />

CH Emissions Vehicle Fuel Economy EF<br />

4<br />

4<br />

( )<br />

Urel ( ) = 0 + 5 + 150 =+ 151%, −100% tonnes CH /yr<br />

2 2 2<br />

CH Emissions 4<br />

Uncerta<strong>in</strong>ty Estimate for N 2 O Emissions from Fleet:<br />

Nitrous oxide emissions are then calculated by apply<strong>in</strong>g the emission factor for vehicles.<br />

E<br />

E<br />

NO<br />

2<br />

NO<br />

2<br />

-4<br />

40,000 mi gal 6.1×<br />

10 tonne CH4<br />

Mgal<br />

= 5 trucks× × × ×<br />

yr-truck 14 mi Mgal 1000 gal<br />

=<br />

0.00871 tonnes N2O/yr<br />

Equation 4-6 is applied us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( rel) = U( rel) +U( rel) +U( rel)<br />

2 2 2<br />

N OEmissions Vehicle Fuel Economy EF<br />

2<br />

2<br />

( )<br />

Urel ( ) = 0 + 5 + 150 =+ 151%, −100% tonnes N O/yr<br />

2 2 2<br />

N OEmissions 2<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Fleet:<br />

The f<strong>in</strong>al step is to convert the emissions of CO 2 , CH 4 , <strong>and</strong> N 2 O to a CO 2 e. Equation 4-4 is applied us<strong>in</strong>g<br />

absolute <strong>uncerta<strong>in</strong>ty</strong> values. Both CH 4 <strong>and</strong> N 2 O <strong>uncerta<strong>in</strong>ty</strong> estimates are asymmetrical, so both upper <strong>and</strong><br />

lower bound uncerta<strong>in</strong>ties are calculated for the CO 2 e emissions.<br />

127 tonne CO ⎛<br />

2<br />

0.00643 tonne CH4 21 tonne CO2e<br />

⎞<br />

E<br />

CO2e<br />

= + ⎜<br />

×<br />

⎟<br />

yr ⎝ yr tonne CH4<br />

⎠<br />

⎛<br />

+ ⎜<br />

×<br />

⎝ yr<br />

0.00871 tonne N2O 310 tonne CO2e ⎟ =129 tonne CO<br />

2 e/yr<br />

2<br />

tonne N O<br />

⎞<br />

⎠<br />

Pilot Version, September 2009 F-18


Upper:<br />

U ( abs) = (U( abs) +U( abs) +U( abs)<br />

2 2 2<br />

ECO2e ECO E<br />

2 CH E<br />

4 N2O<br />

U ( abs) = (0.194× 127) + (1.51× 21× 0.00643) + (1.51× 310× 0.00871) = 24.8 tonnes CO e/yr<br />

Urel<br />

2 2 2<br />

ECO2e<br />

2<br />

24.8 tonnes CO e/yr<br />

= × =+ ( Oe/yr)<br />

2<br />

( )<br />

E<br />

100% 19.2% tonnes C<br />

CO2e<br />

129 tonnes CO2e/yr<br />

Lower:<br />

U ( abs) = (U( abs) +U( abs) +U( abs)<br />

2 2 2<br />

ECO2e ECO E<br />

2 CH E<br />

4 N2O<br />

U ( abs) = ( − 0.194× 127) + ( − 1.00× 21× 0.00643) + ( − 1.00× 310× 0.00871) = 24.7 tonnes CO e/yr<br />

2 2 2<br />

ECO2e<br />

2<br />

24.7 tonnes CO e/yr<br />

2<br />

( )<br />

E<br />

100% 19.1% tonne<br />

CO2e<br />

129 tonnes CO2e/yr<br />

Urel<br />

= × =− ( s CO e/yr )<br />

F.6 Uncerta<strong>in</strong>ty <strong>in</strong> Vented Sources – Gas Dehydration<br />

2<br />

2<br />

Table F-8 provides the operat<strong>in</strong>g parameters for <strong>gas</strong> dehydration at the example facility.<br />

Table F-8. Operat<strong>in</strong>g Parameters for Dehydration<br />

Source<br />

Dehydration<br />

vents (also<br />

has Kimray<br />

pump<br />

emissions)<br />

Fuel<br />

Produced<br />

Gas<br />

No.<br />

of<br />

Units<br />

Unit<br />

Uncerta<strong>in</strong>ty Capacity<br />

(±%) a (per unit)<br />

1 ±0% units<br />

30×10 6<br />

scf/day<br />

Average<br />

Operation<br />

Uncerta<strong>in</strong>ty (per unit<br />

(±%) a per year)<br />

±5% scf/day<br />

343<br />

days/yr<br />

Annual<br />

Activity<br />

Factor (all<br />

Uncerta<strong>in</strong>ty units<br />

(±%) a comb<strong>in</strong>ed)<br />

±2% days/yr<br />

10,290×10 6<br />

scf/yr<br />

Uncerta<strong>in</strong>ty<br />

(±%) a<br />

±5.39%<br />

scf/yr<br />

Uncerta<strong>in</strong>ty Estimate for CH 4 Emissions from Dehydration:<br />

Methane emissions from the <strong>gas</strong> dehydrator vents <strong>and</strong> for Kimray pumps are estimated us<strong>in</strong>g the production<br />

segment emission factors provided <strong>in</strong> the API Compendium. For both of these sources, emissions are based<br />

on the quantity of <strong>gas</strong> processed. Carbon dioxide emissions are estimated us<strong>in</strong>g the facility CO 2 <strong>and</strong> default<br />

CH 4 concentrations <strong>in</strong> the <strong>gas</strong>.<br />

( ) ( )<br />

EF = EF + EF<br />

EF<br />

EF<br />

CH4<br />

Dehydrator vents Kimray pumps<br />

⎛0.0052859 tonnes CH ⎞ ⎛0.01903 tonnes CH ⎞<br />

= ⎜ ⎟+<br />

⎜ ⎟<br />

⎝ 10 scf ⎠ ⎝ 10 scf ⎠<br />

4 4<br />

CH4<br />

6 6<br />

6<br />

CH<br />

= 0.024326 tonnes CH<br />

4<br />

4<br />

/10 scf<br />

For the <strong>uncerta<strong>in</strong>ty</strong> estimate, the emission factors should be comb<strong>in</strong>ed to elim<strong>in</strong>ate the correlation associated<br />

with the common activity data. The <strong>uncerta<strong>in</strong>ty</strong> of the emissions factor is calculated by apply<strong>in</strong>g<br />

Pilot Version, September 2009 F-19


Equation 4-4 <strong>and</strong> us<strong>in</strong>g the absolute <strong>uncerta<strong>in</strong>ty</strong> values. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor for the<br />

dehydrator is 191% from Table 5-2 of the API Compendium <strong>and</strong> 82.8% for the Kimray pump based on<br />

Table 5-4 of the API Compendium.<br />

U ( abs) = (1.91×0.0052859) +(0.828×0.01903) =0.0187 tonnes CH /10 scf<br />

2 2 6<br />

Emission factors 4<br />

6<br />

0.0187 tonnes CH<br />

4<br />

/10 scf<br />

Emission factors 6<br />

4<br />

0.024326 tonnes CH<br />

4<br />

/10 scf<br />

6<br />

( )<br />

Urel ( ) =100%× = ± 77.0% tonnes CH /10 scf<br />

E<br />

30×<br />

10 scf 343 day<br />

0.80 tonne mole CH (facility) 0.024326 tonne CH<br />

6<br />

4 4<br />

CH<br />

= × × ×<br />

4<br />

6<br />

day <strong>gas</strong> processed yr 0.788 tonne mole CH<br />

4<br />

(default) 10 scf<br />

E<br />

= 254 tonnes CH /yr<br />

CH4<br />

4<br />

The <strong>uncerta<strong>in</strong>ty</strong> of the emissions can be calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative<br />

<strong>uncerta<strong>in</strong>ty</strong> values. As noted <strong>in</strong> Table 5-1, there is no <strong>uncerta<strong>in</strong>ty</strong> associated with the count of equipment.<br />

The <strong>uncerta<strong>in</strong>ty</strong> associated with the volume of <strong>gas</strong> is 5% <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> associated with the days of<br />

operation is 2%. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CH 4 content for the facility <strong>gas</strong> is 4%. The <strong>uncerta<strong>in</strong>ty</strong> for the<br />

default CH 4 content is 5.53% from the GRI/EPA Methane Study (Shires <strong>and</strong> Harrison, Volume 6,<br />

Tables A-1, A-2, A-3, 1996), which is provided <strong>in</strong> Table E-4 of the API Compendium.<br />

U( rel) +U( rel) +U( rel) +U( rel)<br />

Urel ( ) =<br />

+U( ) +U( )<br />

2 2 2 2<br />

Dehydrator units Gas processed Days Facility mole%<br />

emissions 2 2<br />

rel<br />

Default mole%<br />

rel<br />

Emission factors<br />

( )<br />

Urel ( ) = 0 + 5 + 2 + 4 + 5.53 + 77.0 =± 77.5% tonnes CH /yr<br />

2 2 2 2 2 2<br />

emissions 4<br />

Uncerta<strong>in</strong>ty Estimate for CO 2 Emissions from Dehydration:<br />

6<br />

30×<br />

10 scf 343 day 0.024326 tonne CH<br />

4<br />

tonne mole CH4 0.80 tonne mole CH<br />

4<br />

(facility)<br />

E<br />

CO<br />

= × × × ×<br />

2<br />

6<br />

day <strong>gas</strong> processed yr 10 scf 16.04 tonne CH 0.788 tonne mole CH (default)<br />

tonne mole <strong>gas</strong> 0.12 tonne mole CO 44.01 tonne CO<br />

×<br />

× ×<br />

0.8 tonne mole CH tonne mole <strong>gas</strong> tonne mole CO<br />

2 2<br />

4 2<br />

4 4<br />

E<br />

=105 tonnes CO /yr<br />

CO2<br />

2<br />

The <strong>uncerta<strong>in</strong>ty</strong> of the CO 2 emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative<br />

<strong>uncerta<strong>in</strong>ty</strong> values. As noted <strong>in</strong> Table 5-1, there is no <strong>uncerta<strong>in</strong>ty</strong> associated with the count of equipment.<br />

The <strong>uncerta<strong>in</strong>ty</strong> associated with the volume of <strong>gas</strong> is 5% <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> associated with the days of<br />

operation is 2%. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CO 2 content for the facility <strong>gas</strong> is 4%. The <strong>uncerta<strong>in</strong>ty</strong> for the<br />

Pilot Version, September 2009 F-20


default CH 4 content is 5.53% from the GRI/EPA Methane Study (Shires <strong>and</strong> Harrison, 1996), which is also<br />

provided <strong>in</strong> Table E-4 of the API Compendium. This equates to the same result as shown above for CH 4 .<br />

Note, the uncerta<strong>in</strong>ties for the CH 4 <strong>and</strong> CO 2 emissions would be different if different <strong>uncerta<strong>in</strong>ty</strong> values<br />

were associated with the respective molar compositions.<br />

U( rel) +U( rel) +U( rel) +U( rel)<br />

Urel ( ) =<br />

+U( ) +U( )<br />

2 2 2 2<br />

Dehydrator units Gas processed Days Facility mole%<br />

emissions 2 2<br />

rel<br />

Default mole%<br />

rel<br />

Emission factors<br />

( )<br />

Urel ( ) = 0 + 5 + 2 + 4 + 5.53 + 77.0 =± 77.5% tonnes CO /yr<br />

2 2 2 2 2 2<br />

emissions 2<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Dehydration:<br />

E<br />

106 tonne CO ⎛254 tonne CH 21 tonne CO e ⎞<br />

= + × = 5,440 tonne CO e/yr<br />

yr ⎝ yr tonne CH ⎠<br />

2 4 2<br />

CO2e ⎜<br />

⎟<br />

2<br />

4<br />

The <strong>uncerta<strong>in</strong>ty</strong> of the CO 2 e emissions is calculated by apply<strong>in</strong>g Equation 4-4, us<strong>in</strong>g the absolute<br />

<strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( abs) = (U( abs) +U( abs)<br />

2 2<br />

ECO2e ECO E<br />

2 CH4<br />

U ( abs) = (0.775× 106) + (0.775× 21× 254) = 4,130 tonnes CO e/yr<br />

2 2<br />

ECO2e<br />

2<br />

4,130 tonnes CO e/yr<br />

Urel ( ) = 100% × =± 76.0% tonnes CO e/yr<br />

( )<br />

2<br />

ECO2e<br />

2<br />

5,440 tonnes CO2e/yr<br />

F.7 Uncerta<strong>in</strong>ty <strong>in</strong> Vented Sources – Storage Tanks<br />

Table F-9 summarizes the operat<strong>in</strong>g parameters for storage tanks at the example facility.<br />

Table F-9. Operat<strong>in</strong>g Parameters for Storage Tanks<br />

Source<br />

Central<br />

tank<br />

battery<br />

Storage<br />

tanks<br />

Fuel<br />

No.<br />

of<br />

Units<br />

Crude Oil 1 ±0% units<br />

Unit<br />

Uncerta<strong>in</strong>ty Capacity<br />

(±%) a (per unit)<br />

6,100<br />

bbl/day<br />

Average<br />

Operation<br />

Uncerta<strong>in</strong>ty (per unit<br />

(±%) a per year)<br />

±5% bbl/day<br />

343<br />

days/yr<br />

Annual<br />

Activity<br />

Factor<br />

Uncerta<strong>in</strong>ty (all units<br />

(±%) a comb<strong>in</strong>ed)<br />

±2% days/yr<br />

2,092,300<br />

bbl/yr<br />

Chemical 1 ±0% units N/A N/A N/A<br />

Naphtha 1 ±0% units N/A N/A N/A<br />

Glycol 1 ±0% units N/A N/A N/A<br />

Uncerta<strong>in</strong>ty<br />

(±%) a<br />

±5.39%<br />

bbl/yr<br />

Pilot Version, September 2009 F-21


Uncerta<strong>in</strong>ty Estimate for CH 4 Emissions from Storage Tanks:<br />

Methane emissions from flash<strong>in</strong>g losses are estimated us<strong>in</strong>g the simple emission factor provided <strong>in</strong> the API<br />

Compendium. (Note that this simple emission factor approach is used <strong>in</strong> absence of the more detailed<br />

<strong>in</strong>formation necessary for the other calculation approaches provided <strong>in</strong> the API Compendium).<br />

-4<br />

6,100 bbl 343 day 8.86 × 10 tonne CH ⎛<br />

4<br />

0.80mole CH<br />

4(facility)<br />

⎞<br />

E<br />

CH<br />

= × ×<br />

4<br />

×⎜ ⎟<br />

day yr bbl ⎝0.788 mole CH<br />

4<br />

(default EF) ⎠<br />

E = 1,880 tonnes CH /yr<br />

CH4<br />

4<br />

As noted <strong>in</strong> Table 5-1, there is no <strong>uncerta<strong>in</strong>ty</strong> associated with the count of equipment. The <strong>uncerta<strong>in</strong>ty</strong><br />

associated with the volume of <strong>gas</strong> is 5% <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> associated with the days of operation is 2%.<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor is 90% based on expert judgment <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the site<br />

specific CH 4 mole % is 4 % based on Exhibit 5-1. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CH 4 content is 5.53% from the<br />

GRI/EPA Methane Study (Shires <strong>and</strong> Harrison), which is provided <strong>in</strong> Table E-4 of the API Compendium.<br />

The <strong>uncerta<strong>in</strong>ty</strong> of the emissions is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong><br />

values.<br />

Urel ( )<br />

=<br />

U( rel) +U( rel) +U( rel) +U( rel) +U( rel)<br />

emissions 2<br />

+U( rel)<br />

Default mole%<br />

2 2 2 2 2<br />

Number of Units Gas processed Days EF Facility mole%<br />

( )<br />

Urel ( ) = 0 + 5 + 2 + 90 + 4 + 5.53 =± 90.4% tonnes CH /yr<br />

2 2 2 2 2 2<br />

emissions 4<br />

Uncerta<strong>in</strong>ty Estimate for CO 2 Emissions from Storage Tanks:<br />

E =<br />

CO2<br />

4<br />

-4<br />

8.86 × 10 tonne CH4 tonne mole CH4 0.80 mole CH<br />

4<br />

(facility)<br />

6,100 bbl 343 day<br />

× × × ×<br />

day yr bbl 16.04 tonne CH 0.788 mole CH (default EF)<br />

4 4<br />

tonne mole <strong>gas</strong> 0.12 tonne mole CO2 44.01 tonne CO2<br />

× × × = 775 tonnes CO<br />

2<br />

/yr<br />

0.80 tonne mole CH tonne mole <strong>gas</strong> tonne mole CO<br />

2<br />

The same approach applies to estimat<strong>in</strong>g the <strong>uncerta<strong>in</strong>ty</strong> for the CO 2 emissions. The <strong>uncerta<strong>in</strong>ty</strong> associated<br />

with the mole% of CO 2 is 4%, so the results are the same as for CH 4 .<br />

Urel ( )<br />

=<br />

U( rel) +U( rel) +U( rel) +U( rel) +U( rel)<br />

emissions 2<br />

+U( rel)<br />

Default mole%<br />

2 2 2 2 2<br />

Number of Units Gas processed Days EF Facility mole%<br />

( )<br />

Urel ( ) = 0 + 5 + 2 + 90 + 4 + 5.53 =± 90.4% tonnes CO /yr<br />

2 2 2 2 2 2<br />

emissions 2<br />

Pilot Version, September 2009 F-22


Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Storage Tanks:<br />

E<br />

775 tonneCO<br />

=<br />

⎛1,880 tonne CH<br />

+<br />

21 tonne CO e ⎞<br />

× = 40,300 tonne CO e/yr<br />

⎝<br />

⎠<br />

2 4 2<br />

CO2e ⎜<br />

⎟<br />

2<br />

yr yr tonne CH4<br />

U ( abs) = (U( abs) +U( abs)<br />

2 2<br />

ECO2e ECO E<br />

2 CH4<br />

U ( abs) = (0.775× 775) + (0.775× 21× 1,880) = 35,700 tonnes CO e/yr<br />

2 2<br />

ECO2e<br />

2<br />

35,700 tonnes CO e/yr<br />

Urel ( ) = 100% × =± 88.7% tonnes CO e/yr<br />

( )<br />

2<br />

ECO2e<br />

2<br />

40,300 tonnes CO2e/yr<br />

F.8 Uncerta<strong>in</strong>ty <strong>in</strong> Vented Sources – Acid Gas Removal (Am<strong>in</strong>e Unit Emissions)<br />

Table F-10 summarizes the operat<strong>in</strong>g parameters for acid <strong>gas</strong> removal at the example facility.<br />

Table F-10. Operat<strong>in</strong>g Parameters for Storage Tanks<br />

(±%) (±%) Source Fuel (per unit)<br />

year)<br />

comb<strong>in</strong>ed)<br />

Annual<br />

Unit Capacity Uncerta<strong>in</strong>ty<br />

Average<br />

Operation<br />

(per unit per Uncerta<strong>in</strong>ty<br />

Activity<br />

Factor (all<br />

units<br />

Inlet Produced Gas 30×10 6 ±5% scf/day 343 days/yr ±2% days/yr 10,290×10 6<br />

scf/day<br />

scf/yr<br />

Outlet Outlet Gas<br />

N/A N/A 8,997×10 6<br />

(0.5 mole% CO 2 )<br />

scf/yr<br />

Uncerta<strong>in</strong>ty<br />

(±%) a<br />

±5.39%<br />

scf/yr<br />

±5% scf/yr<br />

Uncerta<strong>in</strong>ty Estimate for CH 4 Emissions from Acid Gas Removal:<br />

Methane emissions from the am<strong>in</strong>e unit are estimated based on the emission factor provided <strong>in</strong> the API<br />

Compendium <strong>and</strong> the quantity of <strong>gas</strong> processed.<br />

6<br />

30×<br />

10 scf 343 day<br />

CH4<br />

6<br />

E<br />

0.0185 tonne CH<br />

4<br />

0.80 tonne mole CH<br />

4<br />

(facility)<br />

= × × ×<br />

day processed yr 10 scf 0.788 tonne mole CH (default)<br />

E = 193 tonnes CH /yr<br />

CH4<br />

4<br />

4<br />

We assume there is no <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the number of units. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the daily volume of <strong>gas</strong><br />

processed is 5% <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the days of operation is 2% based on expert judgment. The<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emission factor is 119% based on Table 5-5 of the API Compendium. Because it is not<br />

possible to have negative emissions, the lower bound <strong>uncerta<strong>in</strong>ty</strong> will be truncated at zero. As a result, the<br />

lower <strong>and</strong> upper bound uncerta<strong>in</strong>ties are estimated separately.<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the facility mole% is 4%, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the default mole% is 5.53% from the<br />

GRI/EPA Methane Study (Shires <strong>and</strong> Harrison, 1996), which is also provided <strong>in</strong> Table E-4 of the API<br />

Pilot Version, September 2009 F-23


Compendium. The <strong>uncerta<strong>in</strong>ty</strong> of the activity factor is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the<br />

relative uncerta<strong>in</strong>ties.<br />

Upper:<br />

Urel ( )<br />

=<br />

U( rel) +U( rel) +U( rel) +U( rel) +U( rel)<br />

emissions 2<br />

+U( rel)<br />

Default mole%<br />

2 2 2 2 2<br />

Number of Units Daily Volume Days of Operation EF Facility mole%<br />

( )<br />

Urel ( ) = 0 + 5 + 2 + 119 + 4 + 5.53 =+ 119% tonnes CH /yr<br />

Lower:<br />

Urel ( )<br />

2 2 2 2 2 2<br />

emissions 4<br />

=<br />

U( rel) +U( rel) +U( rel) +U( rel) +U( rel)<br />

emissions 2<br />

+U( rel)<br />

Default mole%<br />

2 2 2 2 2<br />

Number of Units Daily Volume Days of Operation EF Facility mole%<br />

2 2 2 2 2<br />

( ) ( ) ( ) ( ) ( ) ( )<br />

Urel ( ) = 0 + − 5 + − 2 + − 100 + − 4 + − 5.53 =−100% tonnes CH /yr<br />

2<br />

emissions 4<br />

Uncerta<strong>in</strong>ty Estimate for CO 2 Emissions from Acid Gas Removal:<br />

CO 2 emissions are calculated based on a material balance approach.<br />

E<br />

⎡ ⎛ ×<br />

×12 mole% CO<br />

⎞ ⎛<br />

- ×0.5 mole% CO<br />

⎞<br />

⎣<br />

lbmole lb tonne<br />

× × 44 ×<br />

379.3 scf lbmole 2204.62 lb<br />

6 6<br />

30 10 scf 343 day 8,997×10 scf<br />

CO<br />

= ⎢<br />

2<br />

⎜ ×<br />

2⎟ ⎜ 2⎟<br />

⎢ ⎝day processed yr ⎠ yr<br />

sour ⎝ ⎠sweet<br />

⎤<br />

⎥<br />

⎥⎦<br />

CO2<br />

[ ]<br />

E = 1,234.8 − 44.985 × 10<br />

E<br />

= 62,620 tonneCO /yr<br />

CO2<br />

2<br />

6<br />

scf mole% CO2<br />

lbmole 44.01 lb tonne<br />

× × ×<br />

yr 379.3 scf lbmole 2204.62 lb<br />

To calculate the <strong>uncerta<strong>in</strong>ty</strong> for the CO 2 emissions, first calculate the <strong>uncerta<strong>in</strong>ty</strong> of the sour <strong>and</strong> sweet <strong>gas</strong><br />

components <strong>and</strong> then aggregate those uncerta<strong>in</strong>ties. For the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the sour <strong>gas</strong> flow rate we assume<br />

there is no <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the number of units, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the daily volume of <strong>gas</strong> processed is 5%,<br />

<strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the days of operation is 2% based on expert judgment. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the sweet<br />

<strong>gas</strong> flow rate scf/yr is 5% based on expert judgment. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CO 2 concentrations for both the<br />

sour <strong>and</strong> sweet <strong>gas</strong>es are assumed to be 4%. The uncerta<strong>in</strong>ties of the first <strong>and</strong> second terms of the emissions<br />

equation are calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( rel) = U ( rel) = U( rel) +U( rel) +U( rel) +U( rel)<br />

2 2 2 2<br />

1 Sour Number of Units Daily Volume Days of Operation %Mole<br />

( )<br />

Urel ( ) = 0 + 5 + 2 + 4 =± 6.71% scf mole% CO /yr<br />

2 2 2 2<br />

Sour 2<br />

Pilot Version, September 2009 F-24


( )<br />

Urel ( ) = Urel ( ) = Urel ( ) + Urel ( ) = 5 + 4 =± 6.40% scf mole% CO /yr<br />

2 2 2 2<br />

2 Sweet Flow % Mole<br />

2<br />

The aggregated <strong>uncerta<strong>in</strong>ty</strong> of the emissions is then calculated by apply<strong>in</strong>g Equation 4-4 <strong>and</strong> us<strong>in</strong>g the<br />

absolute <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( abs) − U ( abs) = U ( abs) + U ( abs)<br />

2 2<br />

1 2 1 2<br />

U ( abs) − U ( abs) = (0.0671× 1,234.8× 10 ) + (0.0640× 44.985× 10 ) = 82.9×10 scf CO<br />

6 2 6 2 6<br />

1 2 2<br />

×<br />

Urel ( ) = =± 6.97% scf CO<br />

1,189.8 10 scf CO<br />

6<br />

82.9 10 scf CO2<br />

6<br />

×<br />

2<br />

( )<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Acid Gas Removal:<br />

2<br />

E<br />

CO e 2<br />

2<br />

⎛190 tonne CH4 21 tonne CO2e<br />

⎞<br />

= 62,600 tonne CO /yr + ⎜<br />

×<br />

⎟<br />

⎝ yr tonne CH4<br />

⎠<br />

E<br />

CO e 2<br />

2<br />

= 66,700 tonne CO e/yr<br />

Upper:<br />

U ( abs) = ( U ( abs) + U ( abs)<br />

U abs<br />

2 2<br />

ECO 2e ECO E<br />

2 CH4<br />

2 2<br />

( )<br />

E<br />

= (0.0697× 62,600) + (1.19× 21× 190) = 6,510 tonnes CO2e/yr<br />

CO2e<br />

Urel<br />

6,510 tonnes CO e/yr<br />

( )<br />

2<br />

( )<br />

E<br />

= 100% × =+ 9.77% tonnes CO2e/yr<br />

CO2e<br />

66,700 tonnes CO2e/yr<br />

U( abs) = U ( abs) + U ( abs)<br />

2 2<br />

ECO 2e ECO E<br />

2 CH4<br />

Lower: abs ( ) ( )<br />

ECO 2e<br />

2 2<br />

U( ) = − 0.0697× 62,600 + − 1.00× 21× 190 = 5,960 tonnes CO e/yr<br />

rel<br />

5,960 tonnes CO e/yr<br />

( )<br />

2<br />

U( )<br />

E<br />

= 100% × =−8.94% tonnes CO2e/yr<br />

CO2<br />

e<br />

66,700 tonnes CO2e/yr<br />

F.9 Uncerta<strong>in</strong>ty <strong>in</strong> Vented Sources – Pneumatics Devices <strong>and</strong> Chemical Injection Pumps<br />

Table F-11 summarizes the operat<strong>in</strong>g parameters for acid <strong>gas</strong> removal at the example facility.<br />

Table F-11. Operat<strong>in</strong>g Parameters for Pneumatic Devices <strong>and</strong> Chemical Injection Pumps<br />

Source<br />

Fuel<br />

Annual Activity Factor<br />

(all units comb<strong>in</strong>ed)<br />

Uncerta<strong>in</strong>ty<br />

(±%) a<br />

Pneumatic devices Produced Gas 64 pneumatic devices ±5% devices<br />

Chemical <strong>in</strong>jection pumps (CIPs) Produced Gas 67 CIPs ±5% pumps<br />

2<br />

Pilot Version, September 2009 F-25


The pneumatic devices <strong>and</strong> chemical <strong>in</strong>jection pumps (CIPs) at the facility are actuated by <strong>natural</strong> <strong>gas</strong>.<br />

Methane emissions from pneumatic device <strong>and</strong> CIP vents are estimated us<strong>in</strong>g CH 4 emission factors<br />

presented <strong>in</strong> API Compendium Tables 5-15 <strong>and</strong> 5-16, respectively. The type of pneumatic device <strong>and</strong> CIP<br />

are not specified, so the “Production Average” device <strong>and</strong> the "Average Pump" emission factor are used.<br />

Carbon dioxide emissions from pneumatic devices <strong>and</strong> chemical <strong>in</strong>jection pumps are estimated us<strong>in</strong>g the<br />

ratio of CO 2 to CH 4 <strong>in</strong> the <strong>gas</strong>.<br />

Uncerta<strong>in</strong>ty Estimate for CH 4 <strong>and</strong> CO 2 Emissions from Pneumatic Devices:<br />

E (64 pneumatic devices)<br />

E<br />

CH4<br />

4 4<br />

= × ×⎜ ⎟<br />

device - yr 0.788 tonne mole CH<br />

4<br />

(default EF)<br />

= 157 tonnes CH /yr<br />

CH4<br />

4<br />

2.415 tonne CH ⎛ 0.80 tonne mole CH (facility)<br />

⎝<br />

⎞<br />

⎠<br />

2.415 tonne CH<br />

4<br />

tonne mole CH ⎛<br />

4<br />

0.80 tonne mole CH<br />

4<br />

(facility) ⎞<br />

E<br />

CO<br />

= (64 pneumatic devices) × ×<br />

2<br />

×⎜ ⎟<br />

device - yr 16.04 tonne CH4 ⎝0.788 tonne mole CH<br />

4<br />

(default) ⎠<br />

tonne mole <strong>gas</strong> 0.12 tonne mole CO2 44.01 tonne CO2<br />

× × × = 64.6 tonnes CO<br />

2<br />

/yr<br />

0.8 tonne mole CH tonne mole <strong>gas</strong> tonne mole CO<br />

4<br />

2<br />

E<br />

64.6 tonne CO<br />

=<br />

⎛157 tonne CH<br />

+<br />

21 tonne CO e ⎞<br />

× = 3,360 tonne CO e/yr<br />

⎝<br />

⎠<br />

2 4 2<br />

CO2e ⎜<br />

⎟<br />

2<br />

yr yr tonne CH4<br />

A 5% <strong>uncerta<strong>in</strong>ty</strong> was assigned to the count of pneumatic devices based on expert judgment. The<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emission factor is 49.5% per Table 5-15 of the API Compendium. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the<br />

default methane content is 5.53% from the GRI/EPA Methane Study (Shires <strong>and</strong> Harrison), which is also<br />

provided <strong>in</strong> Table E-4 of the API Compendium. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the site specific mole % is 4%. The<br />

<strong>uncerta<strong>in</strong>ty</strong> of both the CO 2 <strong>and</strong> CH 4 emissions are calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the<br />

relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U ( rel) = U( rel) +U( rel) +U( rel) +U( rel)<br />

2 2 3 3<br />

E ,E AF EF Facility mole% Default mole%<br />

CO2 CH4<br />

CO2 CH4<br />

( )<br />

2 2 2 2<br />

( )<br />

E ,E<br />

5 49.5 4 5.53 50.2% tonnes/yr<br />

Urel = + + + =±<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Pneumatic Devices:<br />

U ( abs) = ( U ( abs) + U ( abs)<br />

U abs<br />

2 2<br />

ECO 2e ECO E<br />

2 CH4<br />

2 2<br />

( )<br />

E<br />

= (0.502× 64.6) + (0.502× 21× 157) = 1,650 tonnes CO2e/yr<br />

CO2e<br />

Urel<br />

1,650 tonnes CO e/yr<br />

( )<br />

2<br />

( )<br />

E<br />

= 100% × =± 49.2% tonnes CO2e/yr<br />

CO2e<br />

3,360 tonnes CO2e/yr<br />

Pilot Version, September 2009 F-26


Uncerta<strong>in</strong>ty Estimate for CH 4 <strong>and</strong> CO 2 Emissions from Chemical Injection Pumps:<br />

1.737 tonne CH ⎛<br />

4<br />

0.80 tonne mole CH<br />

4(facility)<br />

⎞<br />

E<br />

CH<br />

= (67 CIPs) × × 118 tonnes CH<br />

4<br />

⎜<br />

⎟=<br />

4<br />

/yr<br />

CIP - yr ⎝0.788 tonne mole CH<br />

4<br />

(default EF) ⎠<br />

1.737 tonne CH<br />

4<br />

tonne mole CH4 0.80 tonne mole CH<br />

4<br />

(facility)<br />

E<br />

CO<br />

= (67 CIPs) × × ×<br />

2<br />

CIP - yr 16.04 tonne CH 0.788 tonne mole CH (default)<br />

tonne mole <strong>gas</strong> 0.12 tonne mole CO<br />

0.8 tonne mole CH tonne mole <strong>gas</strong><br />

4 4<br />

2<br />

2<br />

× ×<br />

4<br />

44.01 tonne CO<br />

× = 48.6 tonnes CO<br />

2<br />

/yr<br />

tonne mole CO<br />

2<br />

E<br />

48.6 tonne CO<br />

=<br />

⎛118 tonne CH<br />

+<br />

21 tonne CO e ⎞<br />

× = 2,530 tonne CO e/yr<br />

⎝<br />

⎠<br />

2 4 2<br />

CO∂e ⎜<br />

⎟<br />

2<br />

yr yr tonne CH4<br />

A 5% <strong>uncerta<strong>in</strong>ty</strong> was assigned to the count of chemical <strong>in</strong>jection pumps based on expert judgment. The<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor is 108% per Table 5-16 of the API Compendium. Because it is not<br />

possible to have negative emissions, the lower bound <strong>uncerta<strong>in</strong>ty</strong> will be truncated at zero. As a result, the<br />

lower <strong>and</strong> upper bound uncerta<strong>in</strong>ties are estimated separately.<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the default methane content is 5.53% from the GRI/EPA Methane Study (Shires <strong>and</strong><br />

Harrison), which is provided <strong>in</strong> Table E-4 of the API Compendium. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the site specific<br />

mole % is 4%. The <strong>uncerta<strong>in</strong>ty</strong> of both the CO 2 <strong>and</strong> CH 4 emissions are calculated by apply<strong>in</strong>g Equation 4-6<br />

<strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

( ) ( )<br />

2 2<br />

U ( rel) = U( rel) +U( rel) +U rel +U rel<br />

CO2 CH4<br />

Upper:<br />

2 2 2 2<br />

Urel ( ) = 5.00 + 108 + 4.00 + 5.53 =+ 108% tonnes/yr<br />

CO2 CH4<br />

2 2<br />

E ,E AF EF Facility mole% Default mole%<br />

E ,E<br />

( )<br />

2 2 2 2<br />

U(rel)<br />

E CO & E<br />

= U( rel) 2 CH<br />

AF<br />

+ U( rel) EF<br />

+ U( rel) Facility mole%<br />

+ U( rel)<br />

Default mole%<br />

4<br />

Lower:<br />

2 2 2 2<br />

U(rel) = − 5.00 + − 100 + − 4.00 + − 5.52 =−100% tonnes/yr<br />

E CO & E<br />

2 CH4<br />

( ) ( ) ( ) ( ) ( )<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Chemical Injection Pumps:<br />

U ( abs) = U ( abs) + U ( abs)<br />

2 2<br />

ECO2e ECO E<br />

2 CH4<br />

Upper:<br />

2 2<br />

U ( abs) = (1.08× 48.6) + (1.08× 21× 118) = 2,690 tonnes CO e/yr<br />

ECO2e<br />

2<br />

2,690 tonnes CO e/yr<br />

Urel ( ) = 100% × =+ 106% tonnes CO e/yr<br />

( )<br />

2<br />

ECO2e<br />

2<br />

2,530 tonnes CO2e/yr<br />

Pilot Version, September 2009 F-27


U( abs) = U ( abs) + U ( abs)<br />

2 2<br />

ECO 2e ECO E<br />

2 CH4<br />

Lower: abs ( ) ( )<br />

ECO 2e<br />

2 2<br />

U( ) = − 1.00× 48.6 + − 1.00× 21× 118 = 2,480 tonnes CO e/yr<br />

2,480 tonnes CO e/yr<br />

( )<br />

2<br />

U( rel) E<br />

= 100% × =−98.1% tonnes CO2e/yr<br />

CO2<br />

e<br />

2,530 tonnes CO2e/yr<br />

F.10 Uncerta<strong>in</strong>ty <strong>in</strong> Vented Sources – Ma<strong>in</strong>tenance/Turnaround Emissions <strong>and</strong> Pressure<br />

Relief Valves<br />

Table F-12 summarizes the equipment parameters for PRVs <strong>and</strong> other equipment contribut<strong>in</strong>g to<br />

ma<strong>in</strong>tenance/turnaround emissions at the example facility.<br />

Table F-12. Operat<strong>in</strong>g Parameters for Ma<strong>in</strong>tenance/Turnaround Emissions <strong>and</strong> PRVs<br />

Source<br />

Fuel<br />

Annual Activity<br />

Factor (all units<br />

comb<strong>in</strong>ed) Uncerta<strong>in</strong>ty (±%) a<br />

Vessel blowdowns (non-rout<strong>in</strong>e) Produced Gas 112 vessels ±0% vessels<br />

Compressor starts (non-rout<strong>in</strong>e) Produced Gas 11 compressors ±0% compressors<br />

Compressor blowdowns (non-rout<strong>in</strong>e) Produced Gas 11 compressors ±0% compressors<br />

Well workovers (non-rout<strong>in</strong>e) Produced Gas 24 well workovers ±0% well workovers<br />

Pressure relief valves Produced Gas 482 PRVs ±1% PRVs<br />

2<br />

Methane emissions from vessel blowdowns, compressor starts, compressor blowdowns, <strong>and</strong> <strong>oil</strong> well<br />

workovers are estimated us<strong>in</strong>g the emission factors presented <strong>in</strong> API Compendium Table 5-23. Methane<br />

emissions from PRVs are estimated us<strong>in</strong>g an emission factor from API Compendium Table 5-24. Carbon<br />

dioxide emissions are estimated us<strong>in</strong>g the ratio of the facility <strong>gas</strong> CO 2 to the default composition.<br />

There is no <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the count of the major equipment (vessels, compressors, <strong>and</strong> wells). An<br />

<strong>uncerta<strong>in</strong>ty</strong> of 1% was assigned to the count of PRVs based on expert judgment. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the<br />

emissions factor for vessel blowdowns is 326% based on Table 5-23 of the API Compendium. The<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor for PRVs is 310% based on Table 5-24 of the Compendium. The<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor for compressor starts is 190% based on Table 5-23 of the API<br />

Compendium. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emissions factor of <strong>oil</strong> well workovers is 300% based on expert<br />

judgment. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emission factor of compressor blowdowns is 179% based on Table 5-23 of<br />

the API Compendium. Because it is not possible to have negative emissions, the lower bound uncerta<strong>in</strong>ties<br />

will be truncated at zero. As a result, the lower <strong>and</strong> upper bound uncerta<strong>in</strong>ties are estimated separately.<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the default methane content is 5.53% based on the GRI/EPA Methane Study (Shires <strong>and</strong><br />

Harrison, 1996), which is also provided <strong>in</strong> Table E-4 of the API Compendium. The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the site<br />

Pilot Version, September 2009 F-28


specific mole % for CH 4 <strong>and</strong> CO 2 is 4%. The <strong>uncerta<strong>in</strong>ty</strong> of both the CO 2 <strong>and</strong> CH 4 emissions are calculated<br />

by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Uncerta<strong>in</strong>ty Estimate for CH 4 <strong>and</strong> CO 2 Emissions from Vessel Blowdowns:<br />

E = (112 vessels)<br />

CH4<br />

E = 0.171 tonnes CH /yr<br />

CH4<br />

4<br />

0.0015 tonne CH ⎛ 0.80 tonne mole CH (facility)<br />

4 4<br />

× ×⎜ ⎟<br />

vessel - yr 0.788tonne mole CH<br />

4<br />

(default EF)<br />

⎝<br />

⎞<br />

⎠<br />

0.0015 tonne CH<br />

4<br />

tonne mole CH4 0.80 tonne mole CH<br />

4<br />

(facility)<br />

E<br />

CO<br />

= (112 vessels) × × ×<br />

2<br />

vessel - yr 16.04 tonne CH 0.788 tonne mole CH (default)<br />

E<br />

4<br />

4 4<br />

tonne mole <strong>gas</strong> 0.12 tonne mole CO2 44.01 tonne CO<br />

2<br />

× × ×<br />

= 0.0702 tonnes CO<br />

2 /yr<br />

0.8 tonne mole CH tonne mole <strong>gas</strong> tonne mole CO<br />

0.0702 tonne CO<br />

=<br />

⎛0.171 tonne CH<br />

+<br />

21 tonne CO e ⎞<br />

× = 3.65 tonne CO e/yr<br />

⎝<br />

⎠<br />

2 4 2<br />

CO2e ⎜<br />

⎟<br />

2<br />

yr yr tonne CH4<br />

2<br />

U ( rel) = U( rel) +U( rel) +U( rel) +U( rel)<br />

2 2 2 2<br />

E CO ,E<br />

2 CH4<br />

AF EF Facility mole% Default mole%<br />

Urel = + + + =+ −<br />

( )<br />

2 2 2 2<br />

( )<br />

E CO ,E<br />

0 326 4 5.53 326%, 100% tonnes/yr<br />

2 CH4<br />

Because the emissions cannot be less than zero, the lower bound <strong>uncerta<strong>in</strong>ty</strong> value for this emission source<br />

is truncated at 100%. Therefore, separate upper <strong>and</strong> lower bound uncerta<strong>in</strong>ties are estimated for the CO 2 e<br />

emissions.<br />

U ( abs) = ( U ( abs) + U ( abs)<br />

2 2<br />

ECO 2e ECO E<br />

2 CH4<br />

Upper:<br />

2 2<br />

U ( abs) = (3.26× 0.0702) + (3.26× 21× 0.171) = 11.7 tonnes CO e/yr<br />

ECO 2e<br />

11.7 tonnes CO e/yr<br />

( )<br />

2<br />

( )<br />

E<br />

= 100% × =+ 319% tonnes CO2e/yr<br />

CO2e<br />

3.65 tonnes CO2e/yr<br />

Urel<br />

U( abs) = U ( abs) + U ( abs)<br />

2 2<br />

ECO 2e ECO E<br />

2 CH4<br />

Lower: abs ( ) ( )<br />

ECO 2e<br />

2 2<br />

U( ) = − 1.00× 0.0702 + − 1.00× 21× 0.171 = 3.58 tonnes CO e/yr<br />

rel<br />

3.58tonnes CO e/y<br />

= × =−<br />

( )<br />

2<br />

U( )<br />

E<br />

100% 98.1% tonnes CO2e/yr<br />

CO2<br />

e<br />

3.65tonnes CO2e/y<br />

2<br />

2<br />

Pilot Version, September 2009 F-29


Uncerta<strong>in</strong>ty Estimate for CH 4 <strong>and</strong> CO 2 Emissions from Compressor Starts:<br />

CH4<br />

4 4<br />

= × ×⎜ ⎟<br />

compressor - yr 0.788 tonne mole CH<br />

4<br />

(default EF)<br />

E (11 compressors)<br />

E = 1.81 tonnes CH /yr<br />

CH4<br />

4<br />

0.1620 tonne CH ⎛ 0.80 tonne mole CH (facility)<br />

⎝<br />

⎞<br />

⎠<br />

E<br />

E<br />

CO2<br />

0.1620 tonne CH<br />

4<br />

tonne mole CH4 0.80 tonne mole CH<br />

4<br />

(facility)<br />

= (11 compressors) × × ×<br />

compressor - yr 16.04 tonne CH 0.788 tonne mole CH (default)<br />

4<br />

4 4<br />

tonne mole <strong>gas</strong> 0.12 tonne mole CO2 44.01 tonne CO2<br />

× × × = 0.745 tonnes CO<br />

2<br />

/yr<br />

0.8 tonne mole CH tonne mole <strong>gas</strong> tonne mole CO<br />

0.745 tonne CO<br />

=<br />

⎛1.81 tonne CH<br />

+<br />

21 tonne CO e ⎞<br />

× = 38.7 tonne CO e/yr<br />

⎝<br />

⎠<br />

2 4 2<br />

CO2e ⎜<br />

⎟<br />

2<br />

yr yr tonne CH4<br />

2<br />

Urel ( ) = Urel ( ) + Urel ( ) + Urel ( ) + U<br />

Urel<br />

2 2 2 2<br />

ECO<br />

, E<br />

2 CH4<br />

AF EF Facility mole% Default mole%<br />

( )<br />

2 2 2 2<br />

( )<br />

E ,<br />

0 190 4 5.53 190%, 100% tonnes/yr<br />

CO E<br />

= + + + =+ −<br />

2 CH4<br />

Because the emissions cannot be less than zero, the lower bound <strong>uncerta<strong>in</strong>ty</strong> value for this emission source<br />

is truncated at 100%. Therefore, separate upper <strong>and</strong> lower bound uncerta<strong>in</strong>ties are estimated for the CO 2 e<br />

emissions.<br />

U ( abs) = (U( abs) +U( abs)<br />

2 2<br />

ECO2e ECO2 ECH4<br />

Upper:<br />

2 2<br />

Uabs ( ) = (1.90× 0.745) + (1.90× 21× 1.81) = 72.3 tonnes CO e/yr<br />

ECO2e<br />

2<br />

72.3 tonnes CO e/yr<br />

Urel ( ) = 100% × =+ 187% tonnes CO e/yr<br />

( )<br />

2<br />

ECO2e<br />

2<br />

38.7 tonnes CO2e/yr<br />

U( abs) = U ( abs) + U ( abs)<br />

2 2<br />

ECO 2e ECO E<br />

2 CH4<br />

Lower: abs ( ) ( )<br />

ECO 2e<br />

2 2<br />

U( ) = − 1.00× 0.745 + − 1.00× 21× 1.81 = 38.0 tonnes CO e/yr<br />

rel<br />

38.0 tonnes CO e/y<br />

= × =−<br />

( )<br />

2<br />

U( )<br />

E<br />

100% 98.1% tonnes CO2e/yr<br />

CO2<br />

e<br />

38.7 tonnes CO2e/y<br />

Uncerta<strong>in</strong>ty Estimate for CH 4 <strong>and</strong> CO 2 Emissions from Compressor Blowdowns:<br />

2<br />

E (11 compressors)<br />

CH4<br />

4 4<br />

= × ×⎜ ⎟<br />

compressor - yr 0.788 tonne mole CH<br />

4<br />

(default EF)<br />

E = 0.808 tonnes CH /yr<br />

CH4<br />

4<br />

0.07239 tonne CH ⎛ 0.80 tonne mole CH (facility)<br />

⎝<br />

⎞<br />

⎠<br />

Pilot Version, September 2009 F-30


E<br />

CO2<br />

0.07239 tonne CH<br />

4<br />

tonne mole CH4 0.80 tonne mole CH<br />

4<br />

(facility)<br />

= (11 compressors) × × ×<br />

compressor - yr 16.04 tonne CH 0.788 tonne mole CH (default)<br />

4<br />

4 4<br />

tonne mole <strong>gas</strong> 0.12 tonne mole CO2 44.01 tonne CO2<br />

× × × = 0.333 tonnes CO<br />

2<br />

/yr<br />

0.8 tonne mole CH tonne mole <strong>gas</strong> tonne mole CO<br />

2<br />

E<br />

0.333 tonne CO<br />

=<br />

⎛0.808 tonne CH<br />

+<br />

21 tonne CO e ⎞<br />

× = 17.3 tonne CO e/yr<br />

⎝<br />

⎠<br />

2 4 2<br />

CO2e ⎜<br />

⎟<br />

2<br />

yr yr tonne CH4<br />

U ( rel) = U( rel) +U( rel) +U( rel) +U( rel)<br />

2 2 2 2<br />

E CO ,E<br />

2 CH4<br />

AF EF Facility mole% Default mole%<br />

Urel = + + + =+ −<br />

( )<br />

2 2 2 2<br />

( )<br />

E CO ,E<br />

0 179 4 5.53 179%, 100% tonnes/yr<br />

2 CH4<br />

Because the emissions cannot be less than zero, the lower bound <strong>uncerta<strong>in</strong>ty</strong> value for this emission source<br />

is truncated at 100%. Therefore, separate upper <strong>and</strong> lower bound uncerta<strong>in</strong>ties are estimated for the CO 2 e<br />

emissions.<br />

U ( abs) = ( U ( abs) + U ( abs)<br />

2 2<br />

ECO 2e ECO E<br />

2 CH4<br />

Upper:<br />

2 2<br />

U ( abs) = (1.79× 0.333) + (1.79× 21× 0.808) = 30.4 tonnes CO e/yr<br />

Urel<br />

ECO 2e<br />

30.4 tonnes CO e/yr<br />

( )<br />

2<br />

( )<br />

E<br />

= 100% × =+ 175% tonnes CO2e/y<br />

CO2e<br />

17.3 tonnes CO2e/yr<br />

U( abs) = U ( abs) + U ( abs)<br />

2 2<br />

ECO 2e ECO E<br />

2 CH4<br />

Lower: abs ( ) ( )<br />

ECO 2e<br />

2 2<br />

U( ) = − 1.00× 0.333 + − 1.00× 21× 0.808 = 17.0 tonnes CO e/yr<br />

17.0 tonnes CO e/y<br />

= × =−<br />

( )<br />

2<br />

U( rel) E<br />

100% 98.1% tonnes CO2e/yr<br />

CO2e<br />

17.3tonnes CO2e/y<br />

2<br />

2<br />

Uncerta<strong>in</strong>ty Estimate for CH 4 <strong>and</strong> CO 2 Emissions from Oil Well Workovers:<br />

E<br />

CH4<br />

24 well workovers<br />

4 4<br />

= × ×⎜ ⎟<br />

yr workovers 0.788 tonne mole CH<br />

4<br />

(default EF)<br />

E = 0.0439 tonnes CH /yr<br />

E<br />

CH4<br />

4<br />

CO2<br />

0.0018 tonne CH ⎛ 0.80 tonne mole CH (facility)<br />

4<br />

⎝<br />

24 well workovers 0.0018 tonne CH<br />

4<br />

tonne mole CH4 0.80 tonne mole CH<br />

4<br />

(facility)<br />

= × × ×<br />

yr workovers 16.04 tonne CH 0.788 tonne mole CH (default)<br />

4 4<br />

tonne mole <strong>gas</strong> 0.12 tonne mole CO2 44.01 tonne CO2<br />

× × × = 0.0181 tonnes CO<br />

2<br />

/yr<br />

0.8 tonne mole CH tonne mole <strong>gas</strong> tonne mole CO<br />

2<br />

⎞<br />

⎠<br />

Pilot Version, September 2009 F-31


E<br />

0.0181 tonne CO<br />

=<br />

⎛0.0439 tonne CH<br />

+<br />

21 tonne CO e ⎞<br />

× = 0.939 tonne CO e/yr<br />

⎝<br />

⎠<br />

2 4 2<br />

CO2e ⎜<br />

⎟<br />

2<br />

yr yr tonne CH4<br />

U ( rel) = U( rel) +U( rel) +U( rel) +U( rel)<br />

2 2 2 2<br />

E CO ,E<br />

2 CH4<br />

AF EF Facility mole% Default mole%<br />

Urel = + + + =+ −<br />

( )<br />

2 2 2 2<br />

( )<br />

E CO ,E<br />

0 300 4 5.53 300%, 100% tonnes/yr<br />

2 CH4<br />

Because the emissions cannot be less than zero, the lower bound <strong>uncerta<strong>in</strong>ty</strong> value for this emission source<br />

is truncated at 100%. Therefore, separate upper <strong>and</strong> lower bound uncerta<strong>in</strong>ties are estimated for the CO 2 e<br />

emissions.<br />

U ( abs) = (U( abs) +U( abs)<br />

2 2<br />

ECO2e ECO2 ECH4<br />

Upper:<br />

2 2<br />

Uabs ( ) = (3.00× 0.0181) + (3.00× 21× 0.0439) = 2.77 tonnes CO e/yr<br />

ECO2e<br />

2<br />

2.77 tonnes CO e/yr<br />

Urel ( ) = 100% × =+ 294% tonnes CO e/yr<br />

( )<br />

2<br />

ECO2e<br />

2<br />

0.939 tonnes CO2e/yr<br />

U( abs) = U( abs) + U( abs)<br />

2 2<br />

ECO2e ECO E<br />

2 CH4<br />

Lower: abs ( ) ( )<br />

2 2<br />

U( ) = − 1.00× 0.0181 + − 1.00× 21× 0.0439 = 0.921 tonnes CO e/yr<br />

ECO2e<br />

2<br />

0.921tonnes CO e/yr<br />

U( rel) = 100% × =−98.1% tonnes CO e/yr<br />

( )<br />

2<br />

ECO2e<br />

2<br />

0.939 tonnes CO2e/yr<br />

Uncerta<strong>in</strong>ty Estimate for CH 4 <strong>and</strong> CO 2 Emissions from Pressure Relief Valves:<br />

E (482 PRVs)<br />

CH4<br />

4 4<br />

= × ×⎜ ⎟<br />

PRV - yr 0.788 tonne mole CH<br />

4<br />

(default EF)<br />

E = 0.318 tonnes CH /yr<br />

CH4<br />

4<br />

0.00065 tonne CH ⎛ 0.80 tonne mole CH (facility)<br />

⎝<br />

⎞<br />

⎠<br />

E<br />

CO2<br />

0.00065 tonne CH<br />

4<br />

tonne mole CH4 0.80 tonne mole CH<br />

4<br />

(facility)<br />

= (482 PRVs) × × ×<br />

PRV - yr 16.04 tonne CH 0.788 tonne mole CH (default)<br />

tonne mole <strong>gas</strong> 0.12 tonne mole CO<br />

0.8 tonne mole CH tonne mole <strong>gas</strong><br />

2<br />

2<br />

× ×<br />

4<br />

4 4<br />

44.01 tonne CO<br />

× = 0.131 tonnes CO<br />

2<br />

/yr<br />

tonne mole CO<br />

2<br />

⎛0.318 tonne CH4 21 tonne CO2e<br />

⎞<br />

ECO2e = 0.131 tonne CO<br />

2<br />

/yr + ⎜<br />

× ⎟=<br />

6.81 tonne CO2e/yr<br />

⎝ yr tonne CH4<br />

⎠<br />

Pilot Version, September 2009 F-32


U ( rel) = U( rel) +U( rel) +U( rel) +U( rel)<br />

2 2 2 2<br />

E CO ,E<br />

2 CH4<br />

AF EF Facility mole% Default mole%<br />

Urel = + + + =+ −<br />

( )<br />

2 2 2 2<br />

( )<br />

E CO ,E<br />

1.00 310 4.00 5.53 310%, 100% tonnes/yr<br />

2 CH4<br />

Because the emissions cannot be less than zero, the lower bound <strong>uncerta<strong>in</strong>ty</strong> value for this emission source<br />

is truncated at 100%. Therefore, separate upper <strong>and</strong> lower bound uncerta<strong>in</strong>ties are estimated for the CO 2 e<br />

emissions.<br />

U ( abs) = (U( abs) +U( abs)<br />

2 2<br />

ECO2e ECO2 ECH4<br />

Upper:<br />

2 2<br />

Uabs ( ) = (3.10× 0.131) + (3.10× 21× 0.318) = 20.7 tonnes CO e/yr<br />

ECO2e<br />

2<br />

20.7 tonnes CO e/yr<br />

Urel ( ) = 100% × =+ 304% tonnes CO e/yr<br />

( )<br />

2<br />

ECO2e<br />

2<br />

6.81 tonnes CO2e/yr<br />

U( abs) = U( abs) + U( abs)<br />

2 2<br />

ECO2e ECO E<br />

2 CH4<br />

Lower: abs ( ) ( )<br />

2 2<br />

U( ) = − 1.00× 0.131 + − 1.00× 21× 0.318 = 6.68 tonnes CO e/yr<br />

ECO2e<br />

2<br />

6.68 tonnes CO e/yr<br />

U( rel) = 100% × =−98.1% tonnes CO e/y<br />

( )<br />

2<br />

ECO2e<br />

2<br />

6.81tonnes CO2e/yr<br />

F.11 Uncerta<strong>in</strong>ty <strong>in</strong> Fugitive Sources - Equipment Leaks<br />

Table F-13 provides fugitive component counts associated with the high CO 2 content onshore <strong>oil</strong> field<br />

facility. The correspond<strong>in</strong>g average component emission factors are also provided based on the API<br />

average <strong>oil</strong> <strong>and</strong> <strong>gas</strong> production emission factors given <strong>in</strong> Table 6-14 of the API Compendium for light crude.<br />

Because the emission factors are taken from API 4615, the weight fraction of CH 4 is taken from the<br />

“Generic” weight fraction for light crude give <strong>in</strong> the API Compendium, Table C-6, which assigns<br />

composition by facility type for an aggregate of all streams associated with that facility. Note that the API<br />

Compendium Table C-6 does not provide CO 2 speciation data; therefore, these emissions are not calculated.<br />

Table F-13. Onshore Oil Field (High CO 2 Content) Fugitive Emission Factors<br />

Average Uncerta<strong>in</strong>ty b Component EF, tonnes Uncerta<strong>in</strong>ty b<br />

Component Service Component Count % TOC/comp./hr a %<br />

Valves Liquid <strong>and</strong> Gas 2,740 75.0 1.32E-06 100<br />

Pump Seals Liquid <strong>and</strong> Gas 185 75.0 3.18E-07 100<br />

Connectors Gas 110 75.0 1.64E-07 100<br />

Flanges Liquid <strong>and</strong> Gas 10,000 75.0 7.69E-08 100<br />

OELs Gas 6 75.0 1.21E-06 100<br />

Others Liquid <strong>and</strong> Gas 710 75.0 7.50E-06 100<br />

Footnotes:<br />

a Note that for this example, the TOC weight fraction of the <strong>gas</strong> stream is not 100%. However, the TOC emissions are not adjusted here s<strong>in</strong>ce<br />

such an adjustment cancels out when calculat<strong>in</strong>g CH 4 emissions as shown <strong>in</strong> Equation 6-9 of the API Compendium.<br />

b Uncerta<strong>in</strong>ty based on eng<strong>in</strong>eer<strong>in</strong>g judgment at a 95% confidence <strong>in</strong>terval.<br />

Pilot Version, September 2009 F-33


Methane <strong>and</strong> CO 2 emissions are calculated for each component by multiply<strong>in</strong>g the component emission<br />

factor by the component count, the annual hours of operation (8760 hours/year, assum<strong>in</strong>g the equipment<br />

rema<strong>in</strong>s pressurized year-round), <strong>and</strong> the weight fraction of CH 4 . The results for these calculations are<br />

shown below. The total fugitive emissions are then the sum of each of the component emissions.<br />

The <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the number of devices is 75.0%, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the emission factors is 100%, <strong>and</strong> the<br />

<strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the weight fraction of CH 4 is 15% based on expert judgment. The <strong>uncerta<strong>in</strong>ty</strong> of the<br />

emissions estimate is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values. The<br />

calculation is demonstrated for the liquid <strong>and</strong> <strong>gas</strong> pump seals.<br />

-7<br />

3.18×<br />

10 tonne TOC 8,760 hr 0.613 tonne CH<br />

E<br />

CH<br />

= (185 seals) × × ×<br />

4<br />

seal - hr yr tonne TOC<br />

E = 0.316 tonnes CH /yr<br />

CH4<br />

4<br />

4<br />

E<br />

= 0.316 tonne CH × 21 tonne CO e<br />

= 6.63 tonne CO e/yr<br />

4 2<br />

CO2e 2<br />

yr tonne CH4<br />

Urel ( ) = Urel ( ) + Urel ( ) + Urel ( ) + Urel ( )<br />

Urel<br />

2 2 2 2<br />

ECH4<br />

Devices EF hr / yr Weight%<br />

( )<br />

2 2 2 2<br />

( )<br />

E<br />

= 75 + 100 + 0 + 15 =+ 126%, −100% tonnes/yr<br />

CH4<br />

Because the emissions cannot be less than zero, the lower bound <strong>uncerta<strong>in</strong>ty</strong> value for this emission source<br />

is truncated at 100%. Therefore, separate upper <strong>and</strong> lower bound uncerta<strong>in</strong>ties are estimated for the CO 2 e<br />

emissions.<br />

U ( abs) = U( abs)<br />

2<br />

ECO2e<br />

ECH4<br />

Upper:<br />

2<br />

U ( abs) = (1.26× 21× 0.316) = 8.36 tonnes CO e/yr<br />

ECO 2 e<br />

2<br />

8.36 tonnes CO e/yr<br />

Urel ( ) = 100% × =+ 126% tonnes CO e/yr<br />

( )<br />

2<br />

ECO2e<br />

2<br />

6.63 tonnes CO2e/yr<br />

U ( abs) = U( abs)<br />

2<br />

ECO2e<br />

ECH4<br />

Lower:<br />

2<br />

U ( abs) = ( − 1.00× 21× 0.316) = 6.64 tonnes CO e/yr<br />

ECO2e<br />

2<br />

6.64 tonnes CO e/yr<br />

Urel ( ) = 100% × =−100% tonnes CO e/y<br />

( )<br />

2<br />

ECO2e<br />

2<br />

6.63 tonnes CO2e/yr<br />

The <strong>uncerta<strong>in</strong>ty</strong> of total fugitive emission estimate is calculated by apply<strong>in</strong>g Equation 4-4 us<strong>in</strong>g the absolute<br />

uncerta<strong>in</strong>ties. This is demonstrated for the upper bound <strong>uncerta<strong>in</strong>ty</strong> of CH 4 below.<br />

Pilot Version, September 2009 F-34


Table F-14. Fugitive Emission <strong>and</strong> Uncerta<strong>in</strong>ty Estimates<br />

Component Service<br />

CH 4<br />

Emissions<br />

(tonnes/yr)<br />

Lower<br />

Uncerta<strong>in</strong>ty<br />

%<br />

Upper<br />

Uncerta<strong>in</strong>ty<br />

%<br />

CO 2 e<br />

Emissions<br />

(tonnes/yr)<br />

Lower<br />

Uncerta<strong>in</strong>ty<br />

%<br />

Upper<br />

Uncerta<strong>in</strong>ty<br />

%<br />

Valves<br />

Liquid<br />

<strong>and</strong> Gas<br />

19.4 -100 126 408 -100 126<br />

Pump seals<br />

Liquid<br />

<strong>and</strong> Gas<br />

0.316 -100 126 6.63 -100 126<br />

Connectors Gas 0.0969 -100 126 2.03 -100 126<br />

Flanges<br />

Liquid<br />

<strong>and</strong> Gas<br />

4.13 -100 126 86.7 -100 126<br />

OELs Gas 0.0390 -100 126 0.819 -100 126<br />

Others<br />

Liquid<br />

<strong>and</strong> Gas<br />

28.6 -100 126 600 -100 126<br />

52.6 66.2 83.3 1,105 66.2 83.3<br />

R−134a<br />

∑<br />

CH<br />

4<br />

: U ( abs) = U ( abs)<br />

∑( Fugitive)<br />

2<br />

Fugitive<br />

2 2 2<br />

(1.26× 19.4) + (1.26× 0.316) + (1.26×<br />

0.0969)<br />

CH 4 Upper Bound Uncerta<strong>in</strong>ty = = 43.8<br />

2 2 2<br />

+ (1.26× 4.13) + (1.26× 0.0390) + (1.26×<br />

28.6)<br />

43.8<br />

Urel ( ) = 100% = 83.3%<br />

∑( Wt%)<br />

52.6<br />

F.12 Propagat<strong>in</strong>g Uncerta<strong>in</strong>ty <strong>in</strong> Vented Sources – Fleet Vehicle Refrigerants<br />

Emissions associated with the air condition<strong>in</strong>g units <strong>in</strong> fleet vehicles for this example are calculated based<br />

assum<strong>in</strong>g the refrigerant is R-134a. As stated <strong>in</strong> Section F.5, the <strong>uncerta<strong>in</strong>ty</strong> associated with the count of<br />

vehicles is 0%. The uncerta<strong>in</strong>ties associated with the refrigerant capacity <strong>and</strong> the emission factor are<br />

assumed to be 100% <strong>and</strong> 50%, respectively. The calculations for fleet vehicle refrigeration emissions are<br />

shown below.<br />

1.0 kg tonne R-134a<br />

ER−<br />

134a= 5 vehicles× × 20% ×<br />

vehicle 1000 kg<br />

E<br />

= 0.00100 tonne R-134a/yr<br />

U ( rel) = U( rel) +U( rel) +U( rel)<br />

2 2 2<br />

emissions Vehicles Capacity EF<br />

Urel = + + =±<br />

( )<br />

2 2 2<br />

( )<br />

emissions<br />

0 100 50 112% tonnes R-134a/yr<br />

E<br />

E<br />

CO2e<br />

0.00100 tonne R-134a 1300 tonne CO2e<br />

= ×<br />

yr<br />

tonne R-135a<br />

= 1.30 tonne CO e/yr<br />

CO2e 2<br />

Pilot Version, September 2009 F-35


Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Fleet Vehicle Refrigerants:<br />

The global warm<strong>in</strong>g potential for R-134a is treated as a constant, so the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CO 2 e emissions is<br />

the same as for the refrigerant emissions.<br />

Urel ( ) = U( rel)<br />

CO2e emissions<br />

2<br />

R-134a emissions<br />

( )<br />

Urel ( ) = 112 =± 112% tonnes CO e/yr<br />

2<br />

CO2e emissions 2<br />

F.13 Uncerta<strong>in</strong>ty <strong>in</strong> Indirect Sources – Electricity Consumption<br />

Emissions associated with the electricity purchased by the facility are calculated us<strong>in</strong>g emission factors <strong>in</strong><br />

the API Compendium.<br />

917 MW-hr 0.601 tonne CO2<br />

E<br />

CO<br />

= × = 551 tonnes CO<br />

2<br />

2<br />

/yr<br />

yr MW-hr<br />

-6<br />

917 MW-hr 8.46×<br />

10 tonne CH4<br />

E<br />

CH<br />

= × = 0.00776 tonnes CH<br />

4<br />

4<br />

/yr<br />

yr<br />

MW-hr<br />

-6<br />

917 MW-hr 6.85×<br />

10 tonne N2O<br />

E<br />

NO= × = 0.00628 tonnes N<br />

2<br />

2O/yr<br />

yr<br />

MW-hr<br />

551 tonne CO ⎛<br />

2<br />

0.00776 tonne CH4 21 tonne CO2e<br />

⎞<br />

E<br />

CO2e<br />

= + ⎜ ×<br />

⎟<br />

yr ⎝ yr tonne CH4<br />

⎠<br />

⎛0.00628 tonne N O 310 tonne CO e ⎞<br />

2 2<br />

+ ⎜<br />

× ⎟=<br />

553 tonne CO2e/yr<br />

yr<br />

tonne N2O<br />

⎝<br />

⎠<br />

Based on expert judgment, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the activity factor is 2%, the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CO 2 emission<br />

factor is 10.0%, <strong>and</strong> the <strong>uncerta<strong>in</strong>ty</strong> <strong>in</strong> the CH 4 <strong>and</strong> N 2 O emission factors is 100%. The <strong>uncerta<strong>in</strong>ty</strong> of the<br />

emissions estimate is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

2 2 2 2<br />

CO2<br />

AF EF<br />

2 2 2 2<br />

CH4 <strong>and</strong> N2O AF EF<br />

( )<br />

Urel ( ) = Urel ( ) + Urel ( ) = 2 + 10 =± 10.2% tonnes CO /yr<br />

2<br />

( )<br />

Urel ( ) = Urel ( ) + Urel ( ) = 2 + 100 =± 100% tonnes/yr<br />

Uncerta<strong>in</strong>ty Estimate of CO 2 e Emissions from Purchased Electricity:<br />

The f<strong>in</strong>al step is to convert the emissions of CO 2 , CH 4 , <strong>and</strong> N 2 O to a CO 2 e. Note there are no uncerta<strong>in</strong>ties<br />

for any of the GWPs, so the comb<strong>in</strong>ed <strong>uncerta<strong>in</strong>ty</strong> is based on summ<strong>in</strong>g the <strong>in</strong>dividual emissions <strong>and</strong><br />

apply<strong>in</strong>g Equation 4-4 (us<strong>in</strong>g absolute <strong>uncerta<strong>in</strong>ty</strong> values).<br />

Pilot Version, September 2009 F-36


U ( abs) = (U( abs) +U( abs) +U( abs)<br />

2 2 2<br />

ECO2e ECO E<br />

2 CH E<br />

4 N2O<br />

U ( abs) = (0.102× 551) + (1.00× 21× 0.00776) + (1.00× 310× 0.00628) = 56.2 tonnes CO e/yr<br />

2 2 2<br />

ECO2e<br />

2<br />

56.2 tonnes CO e/yr<br />

2<br />

( )<br />

E<br />

100% 10.2% tonnes C<br />

CO2e<br />

553 tonnes CO2e/yr<br />

Urel<br />

= × =± ( Oe/yr)<br />

2<br />

F.14 SUMMARY UNCERTAINTY – Propagat<strong>in</strong>g Uncerta<strong>in</strong>ty for the Example Facility<br />

Total emissions for this facility are summarized <strong>in</strong> Table F-15, along with the summary <strong>uncerta<strong>in</strong>ty</strong><br />

propagation. The <strong>uncerta<strong>in</strong>ty</strong> of the total emissions is calculated by apply<strong>in</strong>g Equation 4-4 <strong>and</strong> us<strong>in</strong>g the<br />

absolute <strong>uncerta<strong>in</strong>ty</strong> values. In practice, <strong>uncerta<strong>in</strong>ty</strong> values are usually displayed <strong>in</strong> relative terms, which are<br />

provided <strong>in</strong> terms of upper <strong>and</strong> lower % <strong>uncerta<strong>in</strong>ty</strong> values <strong>in</strong> Table F-15 for those emissions sources with<br />

an asymmetrical <strong>uncerta<strong>in</strong>ty</strong>.<br />

As an example, the summed upper bound uncerta<strong>in</strong>ties for N 2 O combustion emissions for the facility are<br />

calculated as follows, us<strong>in</strong>g absolute uncerta<strong>in</strong>ties:<br />

U ( abs) = U ( abs) + U ( abs) + U ( abs) + U ( abs) + U ( abs)<br />

U ( abs)<br />

2 2 2 2 2<br />

N2O CombustionTotal B<strong>oil</strong>ers<strong>and</strong>Heaters Turb<strong>in</strong>es Flare IC Fleet<br />

N2O CombustionTotal<br />

(0.0242× 1.50) + (0.325× 1.51) + (0.223× 2.00) + (0.00175×<br />

1.51)<br />

=<br />

+ (0.0000467 ×<br />

2 2<br />

1.51) + (0.00871×<br />

1.51)<br />

0.663<br />

Urel ( )<br />

N<br />

100% 114%<br />

2O Combustion Total<br />

= × =<br />

0.582<br />

2 2 2 2<br />

= 0.663<br />

U ( abs) = U ( abs) + U ( abs) + U ( abs) + U ( abs)<br />

U abs<br />

2 2 2 2<br />

N2OTotal Combustion Vented Fugitive Indirect<br />

= × + + + × =<br />

2 2 2 2<br />

( )<br />

NOTotal<br />

(0.582 1.14) 0 0 (0.00628 1.00) 0.663<br />

2<br />

0.663<br />

Urel ( )<br />

NOTotal= 100% × = 113%<br />

2<br />

0.582<br />

This calculation was repeated for the sum of each category, <strong>and</strong> for the totals <strong>in</strong> that GHG <strong>gas</strong> type. The<br />

<strong>gas</strong>es were each converted to CO 2 e us<strong>in</strong>g the GWPs. As was stated previously, for the purpose of compil<strong>in</strong>g<br />

a facility-level GHG <strong>in</strong>ventory, the GWP’s are assumed to have no <strong>uncerta<strong>in</strong>ty</strong>. The bottom row of<br />

Table F-15 shows the emissions <strong>in</strong> CO 2 e.<br />

Pilot Version, September 2009 F-37


Table F-15. Onshore Oil Field (High CO 2 Content) Emissions<br />

CO 2 CH 4 N 2 O <strong>and</strong> Other GHG Total Emissions, CO 2 Eq<br />

Source Type<br />

Combustion<br />

Sources<br />

Vented sources<br />

Uncerta<strong>in</strong>ty<br />

Emissions %<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions %<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions %<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions %<br />

(tonnes/yr) Lower Upper<br />

Source<br />

B<strong>oil</strong>er/heaters 5,200 8.78 8.78 0.0865 26.1 26.1 0.0242 100 150 5,210 8.77 8.77<br />

Natural <strong>gas</strong> eng<strong>in</strong>es 13,900 15.7 15.7 0.904 29.4 29.4 0.325 100 151 14,100 15.6 15.6<br />

Emergency generator IC<br />

eng<strong>in</strong>e<br />

219 15.6 15.6<br />

0.0108 27.8 27.8 0.00175 100 151<br />

220 15.5 15.5<br />

Fire water pump IC eng<strong>in</strong>e<br />

0.00112 100 106 0.0000467 100 151<br />

Flares 27,400 23.4 23.4 153 25.3 25.3 0.223 100 200 30,700 21.1 21.1<br />

Fleet vehicles 127 19.4 19.4 0.00643 100 151 0.00871 100 151 129 19.1 19.2<br />

Combustion Total 46,800 14.5 14.5 154 25.2 25.2 0.582 68.9 114 49,900 13.7 13.7<br />

Dehydration <strong>and</strong> Kimray<br />

pump vents<br />

105 77.5 77.5 254 77.5 77.5 NA NA NA 5,440 76.0 76.0<br />

Tanks – flash<strong>in</strong>g losses 775 90.4 90.4 1,880 90.4 90.4 NA NA NA 40,300 88.7 88.7<br />

Am<strong>in</strong>e unit 62,600 6.97 6.97 193 100 119 NA NA NA 66,700 8.94 9.77<br />

Pneumatic devices 64.6 50.2 50.2 157 50.2 50.2 NA NA NA 3,360 49.2 49.2<br />

Chemical <strong>in</strong>jection pumps 48.6 100 108 118 100 108 NA NA NA 2,530 98.1 106<br />

Vessel blowdowns 0.0702 100 326 0.171 100 326 NA NA NA 3.65 98.1 319<br />

Compressor starts 0.745 100 190 1.81 100 190 NA NA NA 38.7 98.1 187<br />

Compressor blowdowns 0.333 100 179 0.808 100 179 NA NA NA 17.3 98.1 175<br />

Well workovers 0.0181 100 300 0.0439 100 300 NA NA NA 0.939 98.1 294<br />

Other non-rout<strong>in</strong>e (PRVs) 0.131 100 310 0.318 100 310 NA NA NA 6.81 98.1 319<br />

Vented Total 63,600 6.95 6.95 2,610 66.3 66.5 NA NA NA 118,000 30.9 31.0<br />

Pilot Version, September 2009 F-38


Table F-15. Onshore Oil Field (High CO 2 Content) Emissions, cont<strong>in</strong>ued<br />

CO 2 CH 4 N 2 O <strong>and</strong> Other GHG Total Emissions, CO 2 Eq<br />

Uncerta<strong>in</strong>ty<br />

Emissions %<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions %<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions %<br />

(tonnes/yr) Lower Upper<br />

Uncerta<strong>in</strong>ty<br />

Emissions %<br />

(tonnes/yr) Lower Upper<br />

Source Type<br />

Source<br />

Fugitive Sources Fugitive components NA NA NA 52.6 66.2 83.3 NA NA NA 1,100 66.2 83.3<br />

Fleet vehicle<br />

refrigeration, R-314a<br />

NA NA NA NA NA NA 0.00100 100 112 1.30 100 112<br />

Fugitive Total NA NA NA 52.6 66.2 83.3 0.00100 100 112 1,100 66.1 83.2<br />

Indirect Sources Electricity consumed 551 10.2 10.2 0.00776 100 100 0.00628 100 100 553 10.2 10.2<br />

Indirect Total 551 10.2 10.2 0.00890 100 100 0.00628 100 100 553 10.2 10.2<br />

TOTAL (tonnes of each <strong>gas</strong>) 111,000 7.29 7.29 2,820 61.4 61.7 N 2 O:0.588 67.1 113<br />

R134a:<br />

0.00100 100 112<br />

TOTAL (CO 2 Equivalents) 111,000 7.29 7.29 59,100 61.4 61.7 184 66.6 112 170,300 21.9 21.9<br />

Values may not sum due to round<strong>in</strong>g.<br />

Pilot Version, September 2009 F-39


INTERNATIONAL PETROLEUM INDUSTRY<br />

ENVIRONMENTAL CONSERVATION ASSOCIATION

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!