13.04.2014 Views

Download complete journal in PDF form - Academy Publish

Download complete journal in PDF form - Academy Publish

Download complete journal in PDF form - Academy Publish

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Academy</strong><strong>Publish</strong>.org<br />

Volume 2<br />

Issue 2<br />

ISSN: 2161-7155<br />

Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology<br />

October, 2012


TABLE OF CONTENTS<br />

Table of Contents<br />

PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE<br />

BLADES<br />

Shicong Miao, Steven Donaldson, Elias Toubia……………………………………………………………………….….……3<br />

A STUDY OF SIMPLIFIED SHALLOW WATER WAVES: ASSESSMENT OF ADOMIAN’S<br />

DECOMPOSITION METHOD FOR THE ANALYTICAL SOLUTION<br />

Mehdi Safari……………………………………………………………………………………….……………………..….…….16<br />

ON BICRITERIA LARGE SCALE TRANSSHIPMENT PROBLEMS<br />

Dr. Jasem M.S. Alrajhi, Dr. Hilal A. Abdelwali, Dr. Mohsen S. Alardhi, Eng. Rafik El Shiaty…….…………..…..….21<br />

TRIBOLOGY OF HIGH SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS -<br />

TRIBOLOGICAL ISSUES<br />

K. Sathyan……………………………………………………………………………………………………..…………..……....27<br />

THE USE OF IRON IN PEAT WATER FOR FENTON PROCESS<br />

Mirna Apriani, Ali Masduqi……………………………………………………………………………………..……….……..35<br />

TRIBOLOGY OF HIGH-SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS:<br />

LUBRICATION SYSTEMS OF BALL BEARINGS<br />

K. Sathyan………………………………………………………………………………………………………………………..39<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 2


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

Parametric Study of Sandwich Panel Buckl<strong>in</strong>g <strong>in</strong> Composite W<strong>in</strong>d Turb<strong>in</strong>e Blades<br />

Shicong Miao, Steven Donaldson * , and Elias Toubia<br />

*Correspond<strong>in</strong>g author: steven.donaldson@notes.udayton.edu<br />

Department of Civil and Environmental Eng<strong>in</strong>eer<strong>in</strong>g, University of Dayton, Dayton, OH 45469. USA<br />

ABSTRACT: A parametric study of the buckl<strong>in</strong>g per<strong>form</strong>ance of composite w<strong>in</strong>d turb<strong>in</strong>e blade regions with th<strong>in</strong> symmetric lam<strong>in</strong>ated sandwich<br />

rectangular panels, subjected to uni<strong>form</strong> axial shell edge compression loads is presented. The research focused on the critical buckl<strong>in</strong>g load and stra<strong>in</strong><br />

levels with core material parameters, such as transverse core shear modulus and core thickness, for rectangular sandwich strips with long aspect ratios.<br />

Both flat and curved-section models were considered. The buckl<strong>in</strong>g design plots generated provide an <strong>in</strong>sight <strong>in</strong>to optimal core solutions for efficient<br />

designs.<br />

NOMENCLATURE<br />

a = length of the panel, m<br />

b = width of the panel, m<br />

c = core thickness, m<br />

k = panel curvature ratio, % (arc height divided by the panel width)<br />

l = curve length, m<br />

r = radius, m<br />

t = fac<strong>in</strong>g thickness on one surface, m<br />

h = overall thickness of sandwich<br />

C 0 = normalized core thickness (core thickness divided by total fac<strong>in</strong>g<br />

sheet thickness)<br />

1, 2, 3 = general coord<strong>in</strong>ates. (1:longitud<strong>in</strong>al direction; 2: width<br />

direction; 3: direction normal to the panel plan<strong>form</strong>)<br />

r, t, z = cyl<strong>in</strong>drical coord<strong>in</strong>ates. (r: radial direction normal to panel; t:<br />

curve angle direction; z: longitud<strong>in</strong>al direction)<br />

U 1, U 2 , U 3 = displacement <strong>in</strong> 1, 2, 3 direction<br />

U r, U z , U t = displacement <strong>in</strong> r, z, t direction<br />

P cr = critical buckl<strong>in</strong>g end load (=eigenvalue), N/m<br />

ε cr = critical buckl<strong>in</strong>g end stra<strong>in</strong>, %<br />

E 1 , E 2 , E 3 = Moduli of elasticity<br />

G 13 = Core transverse shear modulus <strong>in</strong> 1-3 plane, Pa<br />

G 23 = Core transverse shear modulus <strong>in</strong> 2-3 plane, Pa<br />

ν 12 , ν 21, ν 23 = Poisson's ratios<br />

N 1 = Uni<strong>form</strong> compressive end load, N/m<br />

INTRODUCTION<br />

Renewable energy sources cont<strong>in</strong>ue to <strong>in</strong>crease as a percentage of<br />

global energy production. This trend is dom<strong>in</strong>ated by w<strong>in</strong>d energy and<br />

is the result of both an <strong>in</strong>crease <strong>in</strong> the number of turb<strong>in</strong>es <strong>in</strong>stalled, as<br />

well as the <strong>in</strong>creas<strong>in</strong>g diameter of turb<strong>in</strong>e rotors with the correspond<strong>in</strong>g<br />

energy output per turb<strong>in</strong>e (Roczek, 2010). As a consequence of this<br />

design strategy, the blade structures are becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly th<strong>in</strong>walled,<br />

such that buckl<strong>in</strong>g problems <strong>in</strong> the blade panels must be<br />

addressed (Lund, Johansen, 2008).<br />

In general, the w<strong>in</strong>d turb<strong>in</strong>e blade works <strong>in</strong> much the same way as the<br />

steel I-beam, except that there are shells around the outside that <strong>form</strong><br />

the aerodynamic shape and resist buckl<strong>in</strong>g and torsional loads (WE<br />

Handbook- 3- Structural Design). Utility-scale w<strong>in</strong>d turb<strong>in</strong>e blades use<br />

extensive sandwich construction, <strong>in</strong> both the aerodynamic shells and<br />

shear webs. To meet stiffness constra<strong>in</strong>ts such as deflection limits, the<br />

fiber composite materials <strong>in</strong> the broad unsupported spans of shell and<br />

shear web lam<strong>in</strong>ates are stiffened through the use of sandwich<br />

construction to prevent local de<strong>form</strong>ation and buckl<strong>in</strong>g. In blade<br />

structures, the largest s<strong>in</strong>gle role of the sandwich core is to assure<br />

adequate stability of the large panel regions aga<strong>in</strong>st buckl<strong>in</strong>g. As such,<br />

the most significant attributes of the core materials are the transverse<br />

shear modulus and the core thickness. S<strong>in</strong>ce core materials are<br />

generally available <strong>in</strong> a wide range of weights, mechanical properties,<br />

and cost, a study focused on the shell core is appropriate.<br />

Several related and valuable plate buckl<strong>in</strong>g studies and w<strong>in</strong>d turb<strong>in</strong>e<br />

blade prelim<strong>in</strong>ary design studied have been done <strong>in</strong> this area. General<br />

w<strong>in</strong>d turb<strong>in</strong>e blade optimization methods are discussed and presented <strong>in</strong><br />

(Roczek, 2010, Lund, Johansen, 2008 and Lund, 2005). Structural<br />

reliability and mechanical behavior predictions for blade materials are<br />

reported <strong>in</strong> reference (Mishnaevsky et al., 2011). A prelim<strong>in</strong>ary design<br />

study of an advanced 50 m blade for utility w<strong>in</strong>d turb<strong>in</strong>es is presented<br />

<strong>in</strong> reference (Jackson et al., 2005) Closed <strong>form</strong>, exact solutions for the<br />

buckl<strong>in</strong>g of simply supported, rectangular, orthotropic plates under<br />

different load conditions are given <strong>in</strong> (Narita, Leissa, 1990, Leissa,<br />

1985). Many nondimensional buckl<strong>in</strong>g parameters were generated by<br />

Nemeth and Weaver ( Nemeth, 1995, Nemeth 2004, Weaver, Nemeth,<br />

2007) for long or <strong>in</strong>f<strong>in</strong>itely long symmetrically lam<strong>in</strong>ated anisotropic<br />

rectangular plates subjected to various comb<strong>in</strong>ed load conditions.<br />

Theoretical prediction of buckl<strong>in</strong>g loads for cyclic sandwich shells<br />

under axial compression with lam<strong>in</strong>ated fac<strong>in</strong>gs and foam core is<br />

presented <strong>in</strong> (Morovvati, 2011). Although many researchers have<br />

<strong>in</strong>vestigated the buckl<strong>in</strong>g of simply supported lam<strong>in</strong>ated composite<br />

plates, the early buckl<strong>in</strong>g analysis works focused on anisotropic plate<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 3


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

exclud<strong>in</strong>g sandwich plates or shells. Therefore, it is useful to per<strong>form</strong> a<br />

parametric study of both flat and curved section strips represent<strong>in</strong>g<br />

different characteristic regions of sandwich lam<strong>in</strong>ates <strong>in</strong> blades.<br />

A parametric study of the buckl<strong>in</strong>g per<strong>form</strong>ance of core materials on<br />

the basis of transverse shear modulus and thickness, with<strong>in</strong> a given<br />

design doma<strong>in</strong> (a fixed set of lam<strong>in</strong>ate designs and critical buckl<strong>in</strong>g<br />

loads) is presented. This will provide <strong>in</strong>sight <strong>in</strong>to optimal core<br />

solutions. This study considers both flat and curved-section rectangular<br />

sandwich strip models with long aspect ratios, which provide close<br />

approximations to the buckl<strong>in</strong>g loads and mode shapes (wavelengths)<br />

expected <strong>in</strong> the sandwich panel regions of the blades. Consider<strong>in</strong>g the<br />

design process and the characteristic stra<strong>in</strong>s <strong>in</strong> axial compression<br />

conditions, the buckl<strong>in</strong>g trends are on the basis of both critical buckl<strong>in</strong>g<br />

load and stra<strong>in</strong>.<br />

A <strong>complete</strong> parametric study us<strong>in</strong>g practical design properties does not<br />

appear to exist <strong>in</strong> the literature, and was therefore the goal of this study.<br />

The results of the present work <strong>in</strong> practical design optimization studies<br />

would then <strong>in</strong>volve assess<strong>in</strong>g the cost and weight of various core<br />

products as an <strong>in</strong>dication of optimal thickness values, then compar<strong>in</strong>g<br />

the cost and weight of the various solutions.<br />

ANALYSIS AND DESCRIPTION<br />

F<strong>in</strong>ite Element Analysis<br />

In sett<strong>in</strong>g up the model, two panel models (flat and curved -section)<br />

were considered to represent different regions of the blade shell. It was<br />

assumed that all layers of the panel were perfectly bonded together and<br />

thus the displacements were cont<strong>in</strong>uous throughout the thickness.<br />

The model of the panel strips were built <strong>in</strong> ABAQUS 6.10 with<br />

elements of S4R (ABAQUS User’s Manuals, Version 6.10). For the<br />

flat-section model, there were a total of 1111 nodes and 1000 elements<br />

used. The curved section model used 1313 nodes and 1200 elements.<br />

This mesh density was established <strong>in</strong> a prior convengence study by<br />

Toubia (Toubia, 2008).<br />

The general boundary condidtions of the sandwich panel models are<br />

shown <strong>in</strong> Figure 1. In the flat-section model, on the loaded edge, U 2 =<br />

U 3 = 0. The long edges have U 2 = U 3 = 0, and the far end has U 1 = U 2 =<br />

U 3 = 0. In the curved-section model, on the loaded edge, U t = U r = 0.<br />

In this <strong>in</strong>itial study, the load profile was assumed to be uni<strong>form</strong> across<br />

the ends (later studies to exam<strong>in</strong>e non-uni<strong>form</strong> load<strong>in</strong>g are appropriate).<br />

The long edges have U t = U r = 0, and the far end has U t = U r = U z = 0.<br />

The analyzed material data and panel model <strong>in</strong><strong>form</strong>ation can be found<br />

<strong>in</strong> Table 1 and Table 2. The fac<strong>in</strong>g material used <strong>in</strong> this study is E_TLX<br />

5500 ( E_TLX5500, 15 December 2011.) which is [0/45/-45] E-glass<br />

material commonly used as composite re<strong>in</strong>forcement <strong>in</strong> w<strong>in</strong>d turb<strong>in</strong>e<br />

blade shell regions. Four representative core materials (M1 to M4) are<br />

selected to cover the prevalent material shear modulus range. The<br />

critical buckl<strong>in</strong>g eigenvalues were found by buckl<strong>in</strong>g analysis us<strong>in</strong>g<br />

ABAQUS, and then applied <strong>in</strong> the l<strong>in</strong>ear analysis approach to obta<strong>in</strong><br />

the critical buckl<strong>in</strong>g stra<strong>in</strong>s. Sample dom<strong>in</strong>ant buckl<strong>in</strong>g mode shapes<br />

are shown <strong>in</strong> Figure 2 and Figure 3.<br />

Figure 1. General bounduary conditions of the <strong>in</strong>f<strong>in</strong>itely long strip of the panel (1, 2, 3) and shell (r, t, z)<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 4


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

Figure 2. ABAQUS buckl<strong>in</strong>g wavelength result for flat-section sandwich panel model<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 5


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

Figure 3. ABAQUS result for high aspect ratio curved-section sandwich panel model a) with no rigid ends and b) rigid ends <strong>in</strong>cluded<br />

Closed Form Solution Validation<br />

The flat-section model result was validated by the closed <strong>form</strong> solutions<br />

provided by Allen(Allen, 1969) for orthotropic sandwich panels(valid<br />

for flat plates only). The <strong>in</strong>f<strong>in</strong>itely long curved plate solution for<br />

isotropic plates was found <strong>in</strong> Gambhir (Gambhir, 2004).<br />

S<strong>in</strong>ce the S4R element <strong>in</strong> ABAQUS is a soft shell element, rigid ends<br />

were required <strong>in</strong> the sandwich panel models to get more accurate<br />

buckl<strong>in</strong>g eigenvalues. The validated results can be seen <strong>in</strong> Figure 4.<br />

The core transverse shear moduli, G 13 and G 23 , are studied because they<br />

are the core properties that have the most significant effect on panel<br />

buckl<strong>in</strong>g (Toubia, 2008). As shown <strong>in</strong> Figure 4, for a core with high<br />

transverse shear modulus G 13 , the FEA result and analytical solutions<br />

converge. When the core shear modulus is too low, the local sk<strong>in</strong><br />

buckl<strong>in</strong>g wr<strong>in</strong>kl<strong>in</strong>g mode is dom<strong>in</strong>ant. As shown <strong>in</strong> Table 1, the lowest<br />

shear modulus studied has a value of G 13 of 20 MPa (less than a 5%<br />

deviation from the closed <strong>form</strong> solution), while the highest had a value<br />

of 250 (essentially no deviation).<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 6


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

Figure 4. Flat model FEA result compare with the closed <strong>form</strong> solution<br />

RESULTS AND DISCUSSION<br />

Critical Buckl<strong>in</strong>g Load Nx*10 9<br />

(N/m)<br />

FEA compare with closed <strong>form</strong> solution<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

The local buckl<strong>in</strong>g phenomenon, such as core shear crimp<strong>in</strong>g and sk<strong>in</strong><br />

wr<strong>in</strong>kl<strong>in</strong>g, are discussed <strong>in</strong> references (Er<strong>in</strong>gen, 1952, V<strong>in</strong>son, 1999).<br />

The core thickness and shear modulus must be adequate to prevent the<br />

panel from buckl<strong>in</strong>g or fail<strong>in</strong>g under end compression loads. The<br />

compressive modulus of the fac<strong>in</strong>g sk<strong>in</strong> and the core compression<br />

strength must both be high enough to prevent a sk<strong>in</strong> wr<strong>in</strong>kl<strong>in</strong>g failure.<br />

S<strong>in</strong>ce the anayzed sk<strong>in</strong> material is sufficently stiff, local sk<strong>in</strong> failure<br />

was not taken <strong>in</strong>to consideration here<strong>in</strong> (Toubia, 2008). Each of the<br />

curves <strong>in</strong> the subsequent plots were created from five or six <strong>in</strong>dividual<br />

calculation po<strong>in</strong>ts. S<strong>in</strong>ce no dramatic shape variations were observed<br />

<strong>in</strong> the results, for clarity the <strong>in</strong>dividual data po<strong>in</strong>ts are not shown, but<br />

smoothed l<strong>in</strong>es are presented.<br />

0 20 40 60 80 100 120<br />

G 13 (MPa)<br />

FEA S4R<br />

ANALYTIC<br />

AL<br />

Flat Panel Core Thickness Study<br />

Figure 5 shows the effects of <strong>in</strong>creas<strong>in</strong>g the core transverse shear<br />

modulus (M1 through M4), <strong>in</strong>creas<strong>in</strong>g the number of fac<strong>in</strong>g layers (1<br />

layer fac<strong>in</strong>g to 5), and <strong>in</strong>creas<strong>in</strong>g the core thickness (C 0 is the core<br />

thickness divided by the fac<strong>in</strong>g thickness) on the critical buckl<strong>in</strong>g load,<br />

N 1 . Figure 5 illustrates that a higher transverse shear modulus <strong>in</strong>creases<br />

critical buckl<strong>in</strong>g load. It is also clear that both <strong>in</strong>creas<strong>in</strong>g the number of<br />

fac<strong>in</strong>g layers, as well as <strong>in</strong>creas<strong>in</strong>g the core thickness lead to <strong>in</strong>creases<br />

<strong>in</strong> the critical buckl<strong>in</strong>g load. Note that while <strong>in</strong>creas<strong>in</strong>g the thickness of<br />

the core, the critical buckl<strong>in</strong>g loads <strong>in</strong>crease faster <strong>in</strong> the cases with<br />

higher transverse core shear modulus. Also, for <strong>in</strong>creased core<br />

thickness, a higher number of layer fac<strong>in</strong>g results <strong>in</strong> rapid <strong>in</strong>creases <strong>in</strong><br />

critical buckl<strong>in</strong>g load. Figure 6 depicts similar trends for the lam<strong>in</strong>ate<br />

critical stra<strong>in</strong> values: transverse shear modulus of the core, core<br />

thickness, and number of fac<strong>in</strong>g layers are the dom<strong>in</strong>ant aspects <strong>in</strong><br />

sandwich panel buckl<strong>in</strong>g resistance.<br />

Figure 5. Critical buckl<strong>in</strong>g load versus normalized core thickness C 0 for all five fac<strong>in</strong>g layers and all four core materials. Flat-section. 1m width<br />

sandwich panel.<br />

Critical Buckl<strong>in</strong>g Load N 1 *10 5 (N/m)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1 3 5 7 9 11 13 15<br />

Normalized core thickness C 0<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 7


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

Figure 6. Critical buckl<strong>in</strong>g stra<strong>in</strong> versus core thickness for all five fac<strong>in</strong>g layers and all four core materials. Flat-section. 1m width sandwich panel.<br />

Note that the stra<strong>in</strong> is dependent on N cr /2t (assum<strong>in</strong>g half of the load is<br />

carried by top and bottom sk<strong>in</strong>, t is the thickness of each the sk<strong>in</strong>, N cr is<br />

N/m per l<strong>in</strong>ear width b). For a low modulus core, core shear <strong>in</strong>stability<br />

(shear crimp<strong>in</strong>g) governs the buckl<strong>in</strong>g load. The shear modulus is not<br />

stiff enough to engage the top and bottom sk<strong>in</strong>. So if we look at the<br />

<strong>form</strong>ula: cr =G*h/(2t) ( core shear <strong>in</strong>stability <strong>form</strong>ula for isotropic<br />

core), and = (str a<strong>in</strong>, )*E, and = (Ncr/2(b t))= (stra<strong>in</strong>, )*E, then<br />

N cr /2t decreases as stra<strong>in</strong> decreases. S<strong>in</strong>ce N cr <strong>in</strong>creases as the sk<strong>in</strong><br />

thickness <strong>in</strong>creases, N cr is divided by the number of plies, this number<br />

decreases for the low modulus core. As for the stiffer core, the shear<br />

modulus is high enough that the core is coupl<strong>in</strong>g and engag<strong>in</strong>g the sk<strong>in</strong>s<br />

to effectively carry the buckl<strong>in</strong>g load, therefore global buckl<strong>in</strong>g occurs.<br />

The more the number of plies is <strong>in</strong>creased, the more the structure is<br />

stra<strong>in</strong><strong>in</strong>g, until an asymptotic l<strong>in</strong>e is reached that the buckl<strong>in</strong>g cannot go<br />

beyond, until the shear modulus is <strong>in</strong>creased.Figure 7 separates the<br />

results by core type (M1-M4).<br />

Figure 7. Critical buckl<strong>in</strong>g stra<strong>in</strong> versus core thickness for core material M1, M2, M3, M4. Flat-section. 1m width sandwich panel<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

20 25 30 35 40 45<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

20 25 30 35 40 45<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 8


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

20 25 30 35 40 45<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

20 25 30 35 40 45<br />

In Figure 8, the width of the panel was <strong>in</strong>creased from 1m to 5m to<br />

depict the panel width effect. For each core thickness, the upper curve<br />

is 5 layers, the lowest is 1 layer. Note the critical buckl<strong>in</strong>g loads drop<br />

faster with <strong>in</strong>creas<strong>in</strong>g core shear modulus. The trends level off as the<br />

width <strong>in</strong>creases to around 3m due to global flexibility. Stra<strong>in</strong> is not<br />

shown because, for the flat panel, the critical buckl<strong>in</strong>g stra<strong>in</strong> is the same<br />

regardless of panel width.<br />

Figure 8. Critical buckl<strong>in</strong>g load versus panel width for material M1, M2, M3 M4 <strong>in</strong> 20, 30, 40mm core thickness. Flat-section. 1m, 3m, 5m width<br />

sandwich panel. For each core thickness, the upper curve is 5 layers, the lowest is 1 layer.<br />

12<br />

25<br />

10<br />

20<br />

8<br />

6<br />

15<br />

4<br />

10<br />

2<br />

5<br />

0<br />

1 2 3 4 5<br />

0<br />

1 2 3 4 5<br />

30<br />

35<br />

25<br />

20<br />

15<br />

30<br />

25<br />

20<br />

15<br />

10<br />

10<br />

5<br />

5<br />

0<br />

1 2 3 4 5<br />

0<br />

1 2 3 4 5<br />

To ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the critical buckl<strong>in</strong>g stra<strong>in</strong> versus core transverse<br />

shear modulus relationship, additional hypothetical core materials (see<br />

Table 3) are <strong>in</strong>troduced <strong>in</strong> Figure 9. Note core material M3 is an<br />

unbalanced core with a shear modulus G 13 =108 Mpa and G 23 =72 Mpa.<br />

All other core materials are balanced (G 13 = G 23 ). Compared with core<br />

material Q1, M3 has an 8% <strong>in</strong>crease <strong>in</strong> G 13 and 28% decrease <strong>in</strong> G 23 ,<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 9


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

the result is approximately 9.6% maximum decrease <strong>in</strong> buckl<strong>in</strong>g stra<strong>in</strong>.<br />

For core material Q5, the shear modulus is the same as Q4 but up to<br />

28.6% decrease <strong>in</strong> material elastic modulus. The result is only<br />

maximum 3.3% decreased <strong>in</strong> buckl<strong>in</strong>g stra<strong>in</strong>. The results <strong>in</strong>dicate that<br />

<strong>in</strong> sandwich buckl<strong>in</strong>g resistance, the core transverse shear modulus is a<br />

major characteristic aspect, while the material elastic modulus has<br />

negligible effect on the critical stra<strong>in</strong> level.The trends are almost<br />

constant when the core shear modulus <strong>in</strong>creases. Critical buckl<strong>in</strong>g<br />

stra<strong>in</strong>s are proportional with the <strong>in</strong>crease <strong>in</strong> core thickness. As such,<br />

core thickness is another major aspect <strong>in</strong> sandwich buckl<strong>in</strong>g<br />

resistance.The results are expanded <strong>in</strong> Figure 10 to <strong>in</strong>clude additional<br />

face sheet layer comb<strong>in</strong>ations.<br />

Figure 9. Critical buckl<strong>in</strong>g stra<strong>in</strong> versus core transverse shear modulus <strong>in</strong> 20, 30, 40mm core. 1 fac<strong>in</strong>g layer. Flat-section sandwich panel.<br />

Critical buckl<strong>in</strong>g stra<strong>in</strong> ε (%)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

M<br />

1<br />

M<br />

1<br />

M<br />

1<br />

M<br />

2<br />

M<br />

2<br />

M<br />

2<br />

Q1<br />

Q1<br />

Q1<br />

1 fac<strong>in</strong>g<br />

M<br />

M<br />

M<br />

20 40 60 80 100 120 140 160 180 200 220 240<br />

Transverse shear modulus<br />

Q5<br />

Q2 Q3 Q4<br />

Q3<br />

Q3<br />

Q5<br />

Q4<br />

Q5<br />

Q4<br />

M<br />

4<br />

M<br />

4<br />

M<br />

4<br />

40m<br />

30mm<br />

20mm<br />

Figure 10. Critical buckl<strong>in</strong>g stra<strong>in</strong> versus core transverse shear modulus <strong>in</strong> 20, 30, 40mm core. All 5 fac<strong>in</strong>g layers. Flat panel. 1m width<br />

Critical buckl<strong>in</strong>g stra<strong>in</strong> ε (%)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

40mm<br />

30mm<br />

20mm<br />

5 layer<br />

4 layer<br />

3 layer<br />

2 layer<br />

1 layer<br />

5 layer<br />

4 layer<br />

3 layer<br />

2 layer<br />

1 layer<br />

5 layer<br />

4 layer<br />

3 layer<br />

2 layer<br />

1 layer<br />

0.1<br />

0<br />

20 70 120 170 220<br />

Transverse shear modulus (Mpa)<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 10


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

Curved Panel Curvature Ratio and Core Thickness Study<br />

In the curved-section sandwich panel models (see Figure 11), the<br />

results clearly <strong>in</strong>dicate that the buckl<strong>in</strong>g loads <strong>in</strong>crease quickly with<br />

curvature of the plate, core thickness, and number of fac<strong>in</strong>g layers. It is<br />

also shown that the ‘critical curvature ratio’ exists for a fixed core<br />

material and thickness, where the trends of the critical buckl<strong>in</strong>g loads<br />

reach a high po<strong>in</strong>t and then level off. Local buckl<strong>in</strong>g occurs after that.<br />

For the lower shear modulus core materials, the ‘critical curvature<br />

ratio’ occurs earlier than those with high shear modulus. In the practical<br />

design, it reveals those sandwich panels made of lower shear modulus<br />

core materials are not suitable to be made with large curvature ratio to<br />

resist buckl<strong>in</strong>g. Alternatively, when the core shear modulus is high, the<br />

trend is still upward (no critical po<strong>in</strong>t is reached).<br />

For the critical buckl<strong>in</strong>g stra<strong>in</strong>s <strong>in</strong> the curved-section panel models<br />

(Figure 12), the plots show that the stra<strong>in</strong>s decrease and then <strong>in</strong>crease<br />

as the curvature of the plate <strong>in</strong>creases. The results of variations <strong>in</strong> the<br />

transverse shear modulus <strong>in</strong> curved-section sandwich panel models are<br />

shown <strong>in</strong> Figure 13. The critical buckl<strong>in</strong>g stra<strong>in</strong> <strong>in</strong>creases when the<br />

core thickness and section curvature ratio <strong>in</strong>creases<br />

Figure 11. Critical buckl<strong>in</strong>g load versus panel curvature ratio for core material M1, M2, M3, M4 <strong>in</strong> 20, 30, 40mm core thickness and all five fac<strong>in</strong>g<br />

layers. Curved-section panel.<br />

14<br />

30<br />

12<br />

10<br />

8<br />

6<br />

25<br />

20<br />

15<br />

4<br />

10<br />

2<br />

5<br />

0<br />

0 5 10 15 20 25<br />

0<br />

0 5 10 15 20 25<br />

45<br />

140<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 11


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

Figure 12. Critical buckl<strong>in</strong>g stra<strong>in</strong> versus panel curvature ratio for core material M1, M2, M3, M4 <strong>in</strong> 20, 30, 40mm core thickness and all five fac<strong>in</strong>g<br />

layers. Curved-section panel.<br />

0.7<br />

1.2<br />

0.6<br />

1<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.8<br />

0.6<br />

0.4<br />

0.1<br />

0.2<br />

0<br />

0 10 20<br />

0<br />

0 5 10 15 20 25<br />

1.4<br />

1.6<br />

1.2<br />

1.4<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 5 10 15 20 25<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 5 10 15 20 25<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 12


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

Figure 13. Critical buckl<strong>in</strong>g stra<strong>in</strong> versus transverse shear modulus <strong>in</strong> 5%, 10%, 25% curvature, 20mm core, Curved panel, all 5 layers.<br />

Critical buckl<strong>in</strong>g stra<strong>in</strong> ε (%)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

20mm Core<br />

25%<br />

10%<br />

5%<br />

20 70 120 170 220<br />

Transverse shear modulus (Mpa)<br />

5 layer<br />

4 layer<br />

3layer<br />

2 layer<br />

5 layer<br />

4 layer<br />

3layer<br />

2 layer<br />

1 layer<br />

5 layer<br />

4 layer<br />

3layer<br />

2 layer<br />

1 layer<br />

PRELIMINARY DESIGN EXAMPLE<br />

Figure 14 shows a repeat of Figure 6 to be used as a design example.<br />

In this example, the critical buckl<strong>in</strong>g design stra<strong>in</strong> has been previously<br />

chosen based on other factors ( maximum blade deflection, jo<strong>in</strong><strong>in</strong>g,<br />

damage tolerance, etc.), and required to be equal to or greater than<br />

0.5%. Several comb<strong>in</strong>ations of core selection, core thickness, and<br />

fac<strong>in</strong>g thickness are depicted <strong>in</strong> Figure 14 (only three are shown of a<br />

possible 12 curve <strong>in</strong>tersections):<br />

A. approximately 27mm thickness of core M4 with 5 fac<strong>in</strong>g layers;<br />

B. approximately 33mm thickness of core M3 with 1 fac<strong>in</strong>g layers;<br />

C. approximately 41mm thickness of core M4 with 2 fac<strong>in</strong>g layers;<br />

Based on the cost and weight of fac<strong>in</strong>g materials and core materials, the<br />

optimal choice can be made to m<strong>in</strong>imize or balance the cost and the<br />

weight of the structure.<br />

Figure 14. Critical buckl<strong>in</strong>g stra<strong>in</strong> versus core thickness for all five fac<strong>in</strong>g layers and all four core materials. Flat-section. 1m width sandwich panel.<br />

Critical buckl<strong>in</strong>g stra<strong>in</strong> ε<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.5<br />

0.4<br />

0.2<br />

M<br />

1<br />

M<br />

2<br />

b=1m<br />

A B<br />

0<br />

20 25 30 35 40 45<br />

Core thickness<br />

5<br />

layer<br />

4<br />

layer<br />

1 layer<br />

2 layer<br />

3 layer<br />

4 layer<br />

5 layer<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 13


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

CONCLUSIONS<br />

A f<strong>in</strong>ite element based study of the buckl<strong>in</strong>g of composite sandwich<br />

panels (as seen <strong>in</strong> w<strong>in</strong>d turb<strong>in</strong>e blade shells) was conducted to exam<strong>in</strong>e<br />

the sensitivity of critical buckl<strong>in</strong>g load and stra<strong>in</strong> levels to multiple<br />

design parameters, <strong>in</strong>clud<strong>in</strong>g the core transverse modulus, core<br />

thickness, number of fac<strong>in</strong>g layers, panel width, and panel curvature.<br />

The results of this project provide a more efficient prelim<strong>in</strong>ary design<br />

method to assess sandwich panel buckl<strong>in</strong>g <strong>in</strong> w<strong>in</strong>d turb<strong>in</strong>e blade design.<br />

The results from this study <strong>in</strong> practical design optimization would<br />

<strong>in</strong>volve assess<strong>in</strong>g the variables listed above, then compar<strong>in</strong>g the cost<br />

and weight of the various solutions toward the design objectives such<br />

as m<strong>in</strong>imiz<strong>in</strong>g cost or weight.<br />

ACKNOWLEDGEMENT<br />

The discussions with Fred Stoll of Milliken & Co. are gratefully<br />

appreciated.<br />

REFERENCES<br />

ABAQUS User’s Manuals, Version 6.10 ( Volume I-III, Hibbitt:<br />

Karlson and Sorensen, Inc., Pawtucket, RI.)<br />

Allen HG. Analysis and design of structural sandwich panels.<br />

Pergamon Press, Oxford 1969.<br />

E_TLX5500. http://www.vectorply.com/pdf/e-tlx%205500.pdf.<br />

Accessed 15 December 2011.<br />

Er<strong>in</strong>gen AC. Bend<strong>in</strong>g and buckl<strong>in</strong>g of rectangular plates. Proceed<strong>in</strong>gs<br />

of the first U.S. National congress of applied mechanics, ASME, New<br />

York 1952. 381-390.<br />

Gambhir ML. Stability analysis and design of structure. Spr<strong>in</strong>ger 2004.<br />

http://proquest.umi.com/pqdl<strong>in</strong>k?did=1537815401&Fmt=7&clientI%2<br />

0d=79356&RQT=309&VName=PQD. Accessed 15 December 2011.<br />

http://www.gurit.com/files/documents/3_Blade_Structure.pdf<br />

Jackson, K, Zuteck, M, van Dam, C, Standish, ., Berry, D. Innovative<br />

Design Approaches for Large W<strong>in</strong>d Turb<strong>in</strong>e Blades. W<strong>in</strong>d Energy<br />

2005; 8:141–171.<br />

Leissa AW. Buckl<strong>in</strong>g of lam<strong>in</strong>ated composite plates and shell panels.<br />

Air Force Wright Aeronautical Laboratories 1985, F<strong>in</strong>al Report, No.<br />

AFWAL-TR-85-3069.<br />

Lund E, Johansen LS, On Buckl<strong>in</strong>g Optimization of a W<strong>in</strong>d Turb<strong>in</strong>e<br />

Blade. Mechanical Response of Composites, Computational Methods <strong>in</strong><br />

Applied Sciences 2008, Volume 10, 243-260.<br />

Lund E. On Structural Optimization of Composite Shell Structures<br />

Us<strong>in</strong>g a Discrete Constitutive Parametrization. W<strong>in</strong>d Energy 2005;<br />

8:109–124.<br />

Mishnaevsky, L., Brøndsted, P., Nijssen, R., Lekou, D. and Philippidis,<br />

T. Materials of large w<strong>in</strong>d turb<strong>in</strong>e blades: recent results <strong>in</strong> test<strong>in</strong>g and<br />

model<strong>in</strong>g. W<strong>in</strong>d Energy 2011.<br />

Morovvati MR. Buckl<strong>in</strong>g of Generally Anisotropic Sandwich Shells.<br />

American Society of Composites 26th Annual Technical Conference<br />

2011, 1143.<br />

Narita Y, Leissa AW. Buckl<strong>in</strong>g studies for simply supported<br />

symmetrically lam<strong>in</strong>ated rectangular plates. Int. J. Mech. Science 1990,<br />

Volume 32, No. 11, 909-924.<br />

Nemeth MP. Buckl<strong>in</strong>g Behavior of Long Anisotropic Plates Subjected<br />

to Comb<strong>in</strong>ed Loads. National Aeronautics and Space Adm<strong>in</strong>istration<br />

Langley Research Center 1995, 1-37.<br />

Nemeth MP. Buckl<strong>in</strong>g of long compression-loaded anisotropic plates<br />

restra<strong>in</strong>ed aga<strong>in</strong>st <strong>in</strong>plane lateral and shear de<strong>form</strong>ations. Th<strong>in</strong>-Walled<br />

Structures 2004. Volume 42 639–685.<br />

Roczek A. Optimization of trail<strong>in</strong>g edge sandwich panels for a w<strong>in</strong>d<br />

turb<strong>in</strong>e blade. 9th International Conference on Sandwich Structures<br />

2010.<br />

Toubia EA. Web buckl<strong>in</strong>g behavior under <strong>in</strong>-plane compression and<br />

shear loads for web re<strong>in</strong>forced composite sandwich core, Ph.D.<br />

dissertation, University of Dayton 2008, available at:<br />

V<strong>in</strong>son JR. The behavior of sandwich structures of isotropic and<br />

composite materials. TECHNOMIC <strong>Publish</strong><strong>in</strong>g Company, Inc 1999.<br />

WE Handbook- 3- Structural Design. Available at:<br />

Weaver PM, Nemeth MP. Bounds on Flexural Properties and Buckl<strong>in</strong>g<br />

Response for Symmetrically Lam<strong>in</strong>ated Composite Plates. Journal of<br />

Eng<strong>in</strong>eer<strong>in</strong>g Mechanics 2007, 1178-1191<br />

Table 1: Candidate Material Properties<br />

Face/Core E 1 E 2 E 3 ν 12 ν 13 ν 23 G 12 G 13 (G 1 ) G 23 (G 2 )<br />

MPa MPa MPa MPa MPa Mpa<br />

E_TLX 5500 21400 10000 0.4 6000 3740 3740<br />

(face sheet)<br />

M1 50 50 50 0.33 0.22 0.1 20 20 20<br />

M2 100 100 100 0.2 0.2 0.2 30 50 50<br />

M3 284 250 210 0.39 0.25 0 146 108 72<br />

M4 400 400 400 0.2 0.2 0.2 250 250 250<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 14


PARAMETRIC STUDY OF SANDWICH PANEL BUCKLING IN COMPOSITE WIND TURBINE BLADES<br />

Shicong Miao, Steven Donaldson, and Elias Toubia<br />

Table 2: Panel Model <strong>in</strong><strong>form</strong>ation<br />

Variables Range Description<br />

Number of fac<strong>in</strong>g layers analyzed 1~5 Increased by 1<br />

Thickness of each layer (m) 0.0015 Increased by 0.0015<br />

Range of core thickness (m) 0.02~0.045 Increased by 0.005<br />

Range of panel width b (m) 1~5 1m, 3m, 5m<br />

Range of panel curvature ratio (%) 0~25% Flat, 5%, 10%, 25%<br />

Aspect ratio (length/width; a/b) 5 Constant<br />

Shell edge load (N/m) 1 Uni<strong>form</strong>ly distributed<br />

Table 3: Additional Core Material Properties<br />

Face/Core E 1 E 2 E 3 ν 12 ν 13 ν 23 G 12 G 13 (G 1 ) G 23 (G 2 )<br />

MPa MPa MPa MPa MPa Mpa<br />

Q1 150 150 150 0.2 0.2 0.2 100 100 100<br />

Q2 200 200 200 0.2 0.2 0.2 120 120 120<br />

Q3 250 250 250 0.2 0.2 0.2 150 150 150<br />

Q4 350 350 350 0.2 0.2 0.2 200 200 200<br />

Q5 250 250 250 0.2 0.2 0.2 200 200 200<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 15


A STUDY OF SIMPLIFIED SHALLOW WATER WAVES: ASSESSMENT OF ADOMIAN’S DECOMPOSITION METHOD<br />

FOR THE ANALYTICAL SOLUTION<br />

Mehdi Safari<br />

A Study of Simplified Shallow Water Waves: Assessment of Adomian’s Decomposition Method for the<br />

Analytical Solution<br />

Mehdi Safari, ms_safari2005@yahoo.com<br />

Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Aligoodarz Branch, Islamic Azad University, P. O. Box 159, Aligoodarz, Iran.<br />

Correspond<strong>in</strong>g author: Tel/Fax: +98 861 3672399<br />

ABSTRACT<br />

In this paper, we consider two model equations for shallow water waves. Shallow water waves were <strong>in</strong>troduced as a model equation which reduces to<br />

the KdV equation <strong>in</strong> the long small amplitude limit. Large classes of l<strong>in</strong>ear and nonl<strong>in</strong>ear differential equations, both ord<strong>in</strong>ary as well as partial, can be<br />

solved by the ADM.The decomposition method provides an effective procedure for analytical solution of a wide and general class of dynamical<br />

systems represent<strong>in</strong>g real physical problems.This method efficiently works for <strong>in</strong>itial- value or boundary-value problems and for l<strong>in</strong>ear or nonl<strong>in</strong>ear,<br />

ord<strong>in</strong>ary or partial differential equations and even for stochastic systems. Moreover, we have the advantage of a s<strong>in</strong>gle global method for solv<strong>in</strong>g<br />

ord<strong>in</strong>ary or partial differential equations as well as many types of other equations. We use Adomian’s decomposition method (ADM) to solve them.<br />

The results show that Adomian's decomposition method is a powerful method for solv<strong>in</strong>g these equations and the obta<strong>in</strong>ed solutions are shown<br />

graphically.<br />

Keywords: Adomian’s decomposition method; Shallow water wave equation<br />

INTRODUCTION<br />

Clarkson et.al (Clarkson, Mansfield, 1994) <strong>in</strong>vestigated the generalized<br />

short water wave (GSWW) equation<br />

u<br />

t<br />

uxxt<br />

uut<br />

ux utdx<br />

ux<br />

0,<br />

x<br />

(1)<br />

where and are non-zero constants.<br />

Ablowitz et. al. (Ablowitz et al., 1974) studied the specific case<br />

where Eq. (1) is reduced to<br />

4 and 2<br />

t<br />

uxxt<br />

4uut<br />

2u<br />

x utdx<br />

ux<br />

0,<br />

x<br />

u (2)<br />

This equation was <strong>in</strong>troduced as a model equation which reduces to the<br />

KdV equation <strong>in</strong> the long small amplitude limit (Ablowitz et al., 1974,<br />

Hirota, Satsuma, 1976). However, Hirota et.al. (Hirota, Satsuma, 1976)<br />

exam<strong>in</strong>ed the model equation for shallow water waves<br />

t<br />

uxxt<br />

3uut<br />

3u<br />

x utdx<br />

ux<br />

0,<br />

x<br />

u (3)<br />

obta<strong>in</strong>ed by substitut<strong>in</strong>g 3 <strong>in</strong> (1).<br />

Equation (2) can be trans<strong>form</strong>ed to the bil<strong>in</strong>ear <strong>form</strong>s<br />

<br />

<br />

D<br />

<br />

( D D D<br />

D<br />

1<br />

) Dt<br />

( D<br />

3<br />

D<br />

<br />

)<br />

<br />

f . f<br />

<br />

0,<br />

2<br />

3<br />

x t t x x<br />

s x<br />

(4)<br />

where s is an auxiliary variable, and f satisfies the bil<strong>in</strong>ear equation<br />

D ( D<br />

D<br />

) f . f<br />

0,<br />

3<br />

x s x<br />

(5)<br />

However, Eq.(3) can be trans<strong>form</strong>ed to the bil<strong>in</strong>ear <strong>form</strong><br />

D ( D D D<br />

D<br />

) f . f<br />

0,<br />

2<br />

x t t x x<br />

(6)<br />

and the solution of the equation is<br />

u x,<br />

t)<br />

2(ln f ) ,<br />

(7)<br />

(<br />

xx<br />

where f(x, t) is given by the perturbation expansion<br />

<br />

n1<br />

n<br />

f ( x,<br />

t)<br />

1<br />

f ( x,<br />

t),<br />

(8)<br />

n<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 16


A STUDY OF SIMPLIFIED SHALLOW WATER WAVES: ASSESSMENT OF ADOMIAN’S DECOMPOSITION METHOD<br />

FOR THE ANALYTICAL SOLUTION<br />

Mehdi Safari<br />

here is a bookkeep<strong>in</strong>g non-small parameter, and ( x,<br />

t)<br />

f n , n = 1,<br />

2,…are unknown functions that will be determ<strong>in</strong>ed by substitut<strong>in</strong>g<br />

the last equation <strong>in</strong>to the bil<strong>in</strong>ear <strong>form</strong> and solv<strong>in</strong>g the result<strong>in</strong>g<br />

equations by equat<strong>in</strong>g different powers of to zero.<br />

The customary def<strong>in</strong>ition of the Hirota’s bil<strong>in</strong>ear operators are given by<br />

n m n m<br />

Dt<br />

Dx<br />

a. b ( ) ( ) a(<br />

x,<br />

t)<br />

b(<br />

x',<br />

t') | x'<br />

x,<br />

t'<br />

t.<br />

(9)<br />

t<br />

t'<br />

x<br />

x'<br />

Some of the properties of the D-operators are as follows<br />

2<br />

Dt<br />

f . f<br />

<br />

2<br />

f<br />

Dt<br />

D<br />

f<br />

3<br />

x<br />

2<br />

2<br />

Dx<br />

f . f<br />

2<br />

f<br />

4<br />

Dx<br />

f . f<br />

2<br />

f<br />

6<br />

Dx<br />

f . f<br />

2<br />

f<br />

f . f<br />

u,<br />

u<br />

Dt<br />

Dx<br />

f . f<br />

2<br />

f<br />

Where<br />

<br />

u<br />

u dxdx,<br />

u<br />

2x<br />

3u<br />

ln( f<br />

4x<br />

tt<br />

xt<br />

3u<br />

2<br />

2<br />

)<br />

,<br />

xt<br />

15uu<br />

<br />

,<br />

2x<br />

xu dx',<br />

t<br />

15u<br />

3<br />

,<br />

(10)<br />

u x,<br />

t)<br />

2(ln f ( x,<br />

t))<br />

,<br />

(11)<br />

(<br />

xx<br />

Also extended model of Eq.(2) is obta<strong>in</strong>ed by the operator<br />

bil<strong>in</strong>ear <strong>form</strong>s (4)<br />

and (5)<br />

<br />

<br />

D<br />

<br />

( D D D<br />

D<br />

3 1<br />

Dx<br />

) Dt<br />

( Ds<br />

D<br />

3<br />

4<br />

Dx<br />

<br />

)<br />

<br />

f . f 0,<br />

<br />

to the<br />

2<br />

3<br />

x t t x x<br />

x<br />

(12)<br />

where s is an auxiliary variable, and f satisfies the bil<strong>in</strong>ear equation<br />

D ( D<br />

D<br />

) f . f<br />

0,<br />

3<br />

x s x<br />

(13)<br />

Us<strong>in</strong>g the properties of the D operators given above, and differentiat<strong>in</strong>g<br />

with respect to x we obta<strong>in</strong> the extended model for Eq.(2) given by<br />

t<br />

x<br />

u (14)<br />

uxxt<br />

4uut<br />

2u<br />

x utdx<br />

ux<br />

uxxx<br />

6uux<br />

0,<br />

In a like manner, we extend Eq.(3) by add<strong>in</strong>g the operator<br />

bil<strong>in</strong>ear <strong>form</strong>s (6) to obta<strong>in</strong><br />

D ( D D D<br />

D<br />

D<br />

) f . f<br />

0,<br />

4<br />

Dx<br />

to the<br />

2<br />

3<br />

x t t x x x<br />

(15)<br />

Us<strong>in</strong>g the properties of the D operators given above we obta<strong>in</strong> the<br />

extended model for Eq.(3) given by<br />

t<br />

x<br />

u (16)<br />

uxxt<br />

3uut<br />

3u<br />

x utdx<br />

ux<br />

uxxx<br />

6uu<br />

x<br />

0,<br />

In this paper, we use the Adomian’s decomposition method (ADM) to<br />

obta<strong>in</strong> the solution of two considered equations above for shallow water<br />

waves. Large classes of l<strong>in</strong>ear and nonl<strong>in</strong>ear differential equations, both<br />

ord<strong>in</strong>ary as well as partial, can be solved by the ADM (Adomian, 1991,<br />

Adomian, Rach, 1991, Adomian 1994, Adomian, 1998, Abbaoui,<br />

Cherruault, 1999, Kaya, Yokus, 2002, Wazwaz, 2002, Wazwaz, 1997,<br />

Wazwaz, 2000, Wazwaz 1999, Ganji et al., 2011, Safari et al., 2009). A<br />

reliable modification of ADM has been done by Wazwaz (Ganji et al.,<br />

2009).The decomposition method provides an effective procedure for<br />

analytical solution of a wide and general class of dynamical systems<br />

represent<strong>in</strong>g real physical problems (Adomian, 1991, Adomian, Rach,<br />

1991, Adomian 1994, Adomian, 1998, Abbaoui, Cherruault, 1999,<br />

Kaya, Yokus, 2002, Wazwaz, 2002, Wazwaz, 1997, Wazwaz, 2000,<br />

Wazwaz 1999, Ganji et al., 2011).This method efficiently works for<br />

<strong>in</strong>itial- value or boundary-value problems and for l<strong>in</strong>ear or nonl<strong>in</strong>ear,<br />

ord<strong>in</strong>ary or partial differential equations and even for stochastic<br />

systems. Moreover, we have the advantage of a s<strong>in</strong>gle global method<br />

for solv<strong>in</strong>g ord<strong>in</strong>ary or partial differential equations as well as many<br />

types of other equations.<br />

BASIC IDEA OF ADOMIAN’S DECOMPOSITION<br />

METHOD<br />

We beg<strong>in</strong> with the equation<br />

Lu R()()()<br />

u F u g t , (17)<br />

where L is the operator of the highest-ordered derivatives with respect<br />

to t and R is the rema<strong>in</strong>der of the l<strong>in</strong>ear operator. The nonl<strong>in</strong>ear term is<br />

represented by F (u). Thus we get<br />

Lu g ()()() t R u F u , (18)<br />

The <strong>in</strong>verse<br />

L<br />

1<br />

t<br />

t<br />

1<br />

L <br />

dt<br />

0<br />

is assumed an <strong>in</strong>tegral operator given by<br />

, (19)<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 17


A STUDY OF SIMPLIFIED SHALLOW WATER WAVES: ASSESSMENT OF ADOMIAN’S DECOMPOSITION METHOD<br />

FOR THE ANALYTICAL SOLUTION<br />

Mehdi Safari<br />

The operat<strong>in</strong>g with the operator<br />

1<br />

0<br />

(()()())<br />

1<br />

L on both sides of Eq. (18) we have<br />

u f L g t R u F u , (20)<br />

where f<br />

0<br />

is the solution of homogeneous equation<br />

Lu 0 , (21)<br />

<strong>in</strong>volv<strong>in</strong>g the constants of <strong>in</strong>tegration. The <strong>in</strong>tegration constants<br />

<strong>in</strong>volved <strong>in</strong> the solution of homogeneous equation ( 21) are to be<br />

determ<strong>in</strong>ed by the <strong>in</strong>itial or boundary condition accord<strong>in</strong>g as the<br />

problem is <strong>in</strong>itial-value problem or boundary-value problem.<br />

The ADM assumes that the unknown function u ( x ,) t can be<br />

expressed by an <strong>in</strong>f<strong>in</strong>ite series of the <strong>form</strong><br />

<br />

u ( x ,)( t ,) u<br />

n<br />

x t , (22)<br />

n 0<br />

and the nonl<strong>in</strong>ear operator F () u can be decomposed by an <strong>in</strong>f<strong>in</strong>ite<br />

series of polynomials given by<br />

<br />

F () u An<br />

, (23)<br />

n 0<br />

where u<br />

n<br />

( x ,) t will be determ<strong>in</strong>ed recurrently, and An<br />

are the socalled<br />

polynomials of u<br />

0, u1,..., u<br />

n<br />

def<strong>in</strong>ed by<br />

n<br />

1 d <br />

An F () , u 0,1, n2...<br />

<br />

n<br />

n ! d <br />

<br />

<br />

<br />

i<br />

<br />

i <br />

n 0 <br />

0<br />

(24)<br />

ADM IMPLEMENT FOR FIRST MODEL OF SHALLOW<br />

WATER WAVE EQUATION<br />

We first consider the application of ADM to first model of shallow<br />

water wave equation. If Eq. (2) is dealt with this method, it is <strong>form</strong>ed as<br />

L u L u 4uL u 2L u L udx L u,<br />

(25)<br />

t<br />

where<br />

xxt<br />

t<br />

3<br />

<br />

<br />

L t<br />

, L x<br />

, L xxt<br />

,<br />

2<br />

t x x<br />

t<br />

If the <strong>in</strong>vertible operator<br />

L<br />

1<br />

t<br />

x<br />

t<br />

x<br />

t<br />

dt<br />

0<br />

x<br />

(26)<br />

is applied to Eq. 25, then<br />

L L u L<br />

1<br />

t<br />

t<br />

1<br />

t<br />

( L<br />

is obta<strong>in</strong>ed. By this<br />

xxt<br />

u(<br />

x,<br />

t)<br />

u(<br />

x,0)<br />

L<br />

u 4uL u 2L u<br />

1<br />

t<br />

( L<br />

xxt<br />

t<br />

x<br />

<br />

x<br />

u 4uL u 2L u<br />

t<br />

x<br />

L udx L u),<br />

<br />

x<br />

t<br />

x<br />

L udx L u),<br />

t<br />

x<br />

(27)<br />

(28)<br />

is found. Here the ma<strong>in</strong> po<strong>in</strong>t is that the solution of the decomposition<br />

method is <strong>in</strong> the <strong>form</strong> of<br />

u ( x,<br />

t)<br />

un<br />

( x,<br />

t)<br />

, (29)<br />

n0<br />

Substitut<strong>in</strong>g from Eq. 29 <strong>in</strong> 28, we f<strong>in</strong>d<br />

<br />

<br />

n0<br />

<br />

<br />

<br />

<br />

L ( , ) 4 ( , ) ( , )<br />

1<br />

0<br />

0<br />

0<br />

( , ) ( ,0)<br />

<br />

<br />

<br />

xxt <br />

un<br />

x t <br />

un<br />

x t Lt<br />

<br />

un<br />

x t <br />

n<br />

n<br />

n<br />

<br />

u<br />

n<br />

x t u x Lt<br />

<br />

, (30)<br />

<br />

x<br />

<br />

<br />

<br />

2 ( , )<br />

( , )<br />

( , ) <br />

Lx<br />

<br />

un<br />

x t <br />

Lt<br />

<br />

un<br />

x t dx<br />

Lx<br />

<br />

un<br />

x t <br />

n0<br />

n0<br />

n0<br />

<br />

is found.<br />

Accord<strong>in</strong>g to Eq.19 approximate solution can be obta<strong>in</strong>ed as follows:<br />

<br />

2 1 c 1<br />

<br />

( c 1)sech<br />

x<br />

2 c<br />

u0<br />

( x,<br />

t)<br />

<br />

<br />

,<br />

2c<br />

1 c 1<br />

c 1<br />

( c 1)s<strong>in</strong>h<br />

<br />

x<br />

2<br />

t<br />

1(<br />

, )<br />

c c<br />

x t <br />

,<br />

<br />

3 1 c 1<br />

<br />

2c<br />

cosh <br />

x<br />

2<br />

c <br />

(31)<br />

u (32)<br />

t<br />

<br />

(33)<br />

u2( x,<br />

t)<br />

( Lxxtu1<br />

4u1Lt<br />

u1<br />

2Lxu1<br />

Lt<br />

u1dx<br />

Lxu1<br />

) dt,<br />

0<br />

Thus the approximate solution for first model of shallow water wave<br />

equation is obta<strong>in</strong>ed as<br />

u x,<br />

t)<br />

u ( x,<br />

t)<br />

u ( x,<br />

t)<br />

u ( x,<br />

) , (34)<br />

(<br />

0 1<br />

2<br />

t<br />

The terms u0 ( x,<br />

t),<br />

u1(<br />

x,<br />

t),<br />

u2<br />

( x,<br />

t)<br />

<strong>in</strong> Eq.34, obta<strong>in</strong>ed from<br />

Eqs.31, 32, 33. In Fig.1 the first model of shallow water wave equation<br />

with the first <strong>in</strong>itial condition (31) of Eq. (2) when c=2 has been shown.<br />

ADM IMPLEMENT FOR SECOND MODEL OF SHALLOW<br />

WATER WAVE EQUATION<br />

Now we consider the application of ADM to second model of shallow<br />

water wave equation. If Eq. (3) is dealt with this method, it is <strong>form</strong>ed as<br />

x<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 18


A STUDY OF SIMPLIFIED SHALLOW WATER WAVES: ASSESSMENT OF ADOMIAN’S DECOMPOSITION METHOD<br />

FOR THE ANALYTICAL SOLUTION<br />

Mehdi Safari<br />

L u L u 3uL u 3L u L udx L u,<br />

(35)<br />

t<br />

where<br />

xxt<br />

t<br />

3<br />

<br />

<br />

L t<br />

, L x<br />

, L xxt<br />

,<br />

2<br />

t x x<br />

t<br />

x<br />

x<br />

t<br />

x<br />

(36)<br />

The terms u0 ( x,<br />

t),<br />

u1(<br />

x,<br />

t),<br />

u2<br />

( x,<br />

t)<br />

<strong>in</strong> Eq.44, obta<strong>in</strong>ed from<br />

Eqs.41, 42, 43. If we assume c=2 then by draw<strong>in</strong>g 3-D figures of ADM<br />

solutions. In Fig.2 the second model of shallow water wave equation<br />

with the first <strong>in</strong>itial condition (31) of Eq. (2) when c=2 has been shown.<br />

Fig.1. For the first model of shallow water wave equation with the first<br />

<strong>in</strong>itial condition (31) of Eq. (2), ADM result for u ( x,<br />

t)<br />

, when c=2.<br />

If the <strong>in</strong>vertible operator<br />

L L u L<br />

1<br />

t<br />

t<br />

1<br />

t<br />

( L<br />

xxt<br />

L<br />

1<br />

t<br />

t<br />

dt<br />

u 3uL u 3L u<br />

t<br />

0<br />

x<br />

is applied to Eq. 45, then<br />

<br />

x<br />

L udx L u),<br />

t<br />

x<br />

(37)<br />

is obta<strong>in</strong>ed. By this<br />

u(<br />

x,<br />

t)<br />

u(<br />

x,0)<br />

L<br />

1<br />

t<br />

( L<br />

xxt<br />

u 3uL u 3L u<br />

t<br />

x<br />

<br />

x<br />

L udx L u),<br />

t<br />

x<br />

(38)<br />

is found. Here the ma<strong>in</strong> po<strong>in</strong>t is that the solution of the decomposition<br />

method is <strong>in</strong> the <strong>form</strong> of<br />

u ( x,<br />

t)<br />

un<br />

( x,<br />

t)<br />

, (39)<br />

n0<br />

Substitut<strong>in</strong>g from Eq. 49 <strong>in</strong> 48, we f<strong>in</strong>d<br />

Fig.2. For the second model of shallow water wave equation with the<br />

first <strong>in</strong>itial condition (31) of Eq. (3), ADM result for u ( x,<br />

t)<br />

, when<br />

c=2.<br />

<br />

<br />

n0<br />

<br />

<br />

<br />

<br />

L ( , ) 3 ( , ) ( , )<br />

1<br />

0<br />

0<br />

0<br />

( , ) ( ,0)<br />

<br />

<br />

<br />

xxtun<br />

x t un<br />

x t Lt<br />

un<br />

x t <br />

n<br />

n<br />

n<br />

<br />

u<br />

n<br />

x t u x Lt<br />

<br />

, (40)<br />

<br />

x<br />

<br />

<br />

<br />

3 ( , ) ( , )<br />

( , ) <br />

Lx<br />

un<br />

x t <br />

Lt<br />

un<br />

x t dx<br />

Lx<br />

un<br />

x t <br />

n0<br />

n0<br />

n0<br />

<br />

is found.<br />

Accord<strong>in</strong>g to Eq.19 approximate solution can be obta<strong>in</strong>ed as follows:<br />

<br />

2 1 c 1<br />

<br />

( c 1)sech<br />

x<br />

2 c<br />

u0<br />

( x,<br />

t)<br />

<br />

<br />

,<br />

2c<br />

1 c 1<br />

c 1<br />

( c 1)s<strong>in</strong>h<br />

<br />

x<br />

2<br />

t<br />

1(<br />

, )<br />

c c<br />

x t <br />

,<br />

<br />

3 1 c 1<br />

<br />

2ccosh<br />

<br />

x<br />

2<br />

c <br />

(41)<br />

u (42)<br />

t<br />

<br />

(43)<br />

u2( x,<br />

t)<br />

( Lxxtu1<br />

3u1L tu1<br />

3Lxu1<br />

Lt<br />

u1dx<br />

Lxu1<br />

) dt,<br />

0<br />

Thus the approximate solution for second model of shallow water wave<br />

equation is obta<strong>in</strong>ed as<br />

u( x,<br />

t)<br />

u0 ( x,<br />

t)<br />

u1(<br />

x,<br />

t)<br />

u2<br />

( x,<br />

t)<br />

, (44)<br />

x<br />

CONCLUSION<br />

In this paper, Adomian’s decomposition method has been successfully<br />

applied to f<strong>in</strong>d the solution of two model equations for shallow water<br />

waves. The obta<strong>in</strong>ed results were showed graphically it is proved that<br />

Adomian's decomposition method is a powerful method for solv<strong>in</strong>g<br />

these equations. In our work; we used the Maple Package to calculate<br />

the functions obta<strong>in</strong>ed from the Adomian’s decomposition method.<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 19


A STUDY OF SIMPLIFIED SHALLOW WATER WAVES: ASSESSMENT OF ADOMIAN’S DECOMPOSITION METHOD<br />

FOR THE ANALYTICAL SOLUTION<br />

Mehdi Safari<br />

REFERENCES<br />

K. Abbaoui, Y. Cherruault, "The decomposition method applied to the<br />

Cauchy problem", Kybernetes , Vol.28, 1999, 103.<br />

M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur," The <strong>in</strong>verse<br />

scatter<strong>in</strong>g trans<strong>form</strong>-Fourier analysis for nonl<strong>in</strong>ear problems ", Studies<br />

<strong>in</strong> Applied Mathematics, Vol.53, 1974, pp. 249-315.<br />

G. Adomian, "An analytical solution of the stochastic Navier-Stokes<br />

system ", Foundations of Physics, Vol.21, No.7, 1991, pp.831-843.<br />

G. Adomian, "Solution of physical problems by decomposition",<br />

Computers and Mathematics with Applications, Vol.27, No.9/10, 1994,<br />

pp.145-154.<br />

G. Adomian, "Solutions of nonl<strong>in</strong>ear PDE", Applied<br />

Mathematics Letters, Vol.11, No.3, 1998, pp.121-123.<br />

G. Adomian, R. Rach, " L<strong>in</strong>ear and nonl<strong>in</strong>ear Schröd<strong>in</strong>ger equations ",<br />

Foundations of Physics, Vol.21, 1991, pp.983-991.<br />

P.A. Clarkson and E.L. Mansfield, "on a shallow water wave equation",<br />

Nonl<strong>in</strong>earity, Vol.7, 1994, pp. 975-1000.<br />

D.D. Ganji, M. Safari, R. Ghayor, "Application of He's variational<br />

iteration method and Adomian's decomposition method to Sawada–<br />

Kotera–Ito seventh-order equation", Numerical Methods for Partial<br />

Differential Equations, Vol. 27, No,4,2011, pp: 887-897.<br />

D.D. Ganji, E. M. M. Sadeghi, M. Safari, "Application of He's<br />

variational iteration method and adomian's decomposition method<br />

method to Prochhammer Chree equation", International Journal of<br />

Modern Physics B, Vol. 23, No. 3, 2009, pp.435-446.<br />

R. Hirota and J.Satsuma," N-Soliton solutions of model equations for<br />

shallow water waves", Journal of the Physical Society of Japan, Vol.40,<br />

No.2, 1976, pp.611-612.<br />

D. Kaya, A. Yokus, "A numerical comparison of partial solutions <strong>in</strong><br />

thedecomposition method for l<strong>in</strong>ear and nonl<strong>in</strong>ear partial differential<br />

equations", Mathematics and Computers <strong>in</strong> Simulation, Vol.60, No.6,<br />

2002, pp.507-512.<br />

M. Safari, D.D. Ganji, M. Moslemi , "Application of He's variational<br />

iteration method and Adomian's decomposition method to the fractional<br />

KdV-Burgers-Kuramoto equation", Computers and Mathematics with<br />

Applications, Vol.58, 2009, pp. 2091-2097.<br />

A.M.Wazwaz, "Partial Differential Equations: Methods and<br />

Applications", Balkema, Rottesda 2002.<br />

A.M.Wazwaz, "A First Course <strong>in</strong> Integral Equations", World Scientific,<br />

S<strong>in</strong>gapore, 1997.<br />

A.M.Wazwaz, "A new algorithm for calculat<strong>in</strong>g Adomian polynomials<br />

for nonl<strong>in</strong>ear operators ", Applied Mathematics and Computation,<br />

Vol.111, No.1, 2000, pp.33-51.<br />

A.M.Wazwaz, "A reliable modification of Adomian decomposition<br />

method", Applied Mathematics and Computation, Vol.102, No.1,<br />

1999, pp.77-86.<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 20


ON BICRITERIA LARGE SCALE TRANSSHIPMENT PROBLEMS<br />

Dr. Jasem M.S. Alrajhi, Dr. Hilal A. Abdelwali, Dr. Mohsen S. Al-Ardhi, Eng. Rafik El Shiaty<br />

On Bicriteria Large Scale Transshipment Problems<br />

Dr. Jasem M.S. Al-Rajhi* ajasem@gmail.com<br />

Dr. Hilal A. Abdelwali* haabdelwali@hotmail.com<br />

Dr. Mohsen S. Al-Ardhi* malardhi@hotmail.com<br />

Eng. Rafik El Shiaty** rmshiaty@eng<strong>in</strong>eer.com<br />

* Assistant Professor, Automotive and Mar<strong>in</strong>e Department, College of Technological Studies, PAAET, Kuwait.<br />

**Lecturer, Power and Refrigeration Technology Department, College of Technological Studies, PAAET, Kuwait.<br />

ABSTRACT<br />

In this paper, several bicriteria multistage transportation problems with transshipment (BMTSP) are <strong>form</strong>ulated. An algorithm for solv<strong>in</strong>g a certa<strong>in</strong><br />

class of (BMTSP) is presented. The mathematical <strong>form</strong>ulation of this class does not affect the special structure of the transshipment problem for each<br />

of the <strong>in</strong>dividual stages. The presented algorithm is ma<strong>in</strong>ly based on a fruitful application of the methods of solv<strong>in</strong>g bicriteria s<strong>in</strong>gle stage<br />

transportation problems, available decomposition techniques for solv<strong>in</strong>g large scale l<strong>in</strong>ear programm<strong>in</strong>g problems, and the methods of treat<strong>in</strong>g the<br />

transshipment problems. An illustrative example is <strong>in</strong>cluded.<br />

Keywords: Large Scale Transportation Problem, Transshipment Problem. Multiobjective Decision Mak<strong>in</strong>g, Decomposition Technique of L<strong>in</strong>ear<br />

Programm<strong>in</strong>g.<br />

INTRODUCTION<br />

The classical transportation problems allow only shipments that go<br />

directly from a supply po<strong>in</strong>t to a demand po<strong>in</strong>t, i.e. shipments do not<br />

take place between orig<strong>in</strong>s or between dest<strong>in</strong>ations, nor from<br />

dest<strong>in</strong>ations to orig<strong>in</strong>s. In many situations, shipments are allowed<br />

between supply po<strong>in</strong>ts or between demand po<strong>in</strong>ts. Sometimes there<br />

many also be po<strong>in</strong>ts (called transshipment po<strong>in</strong>ts) through which goods<br />

can be transshipped on their journey from a supply po<strong>in</strong>t to a demand<br />

po<strong>in</strong>t. Shipp<strong>in</strong>g problems with any or all of these characteristics are<br />

transshipment problems. A transshipment problem was first <strong>in</strong>troduced<br />

by Orden (1965) [1]. He <strong>in</strong>troduced an extension of the orig<strong>in</strong>al<br />

transportation problem to <strong>in</strong>clude the possibility of transshipment. The<br />

problem of determ<strong>in</strong><strong>in</strong>g simultaneously the flows of primary products<br />

through processors to the market of f<strong>in</strong>al products has been <strong>form</strong>ulated<br />

alternatively as a transshipment model by K<strong>in</strong>g and Logan [2] and as a<br />

reduced matrix model by Rhody (1963) [3]. An extension of this<br />

problem to a multi regional, multi product, and multi plant problem<br />

<strong>form</strong>ulated <strong>in</strong> the <strong>form</strong> of general l<strong>in</strong>ear programm<strong>in</strong>g model has been<br />

proposed by Judge et al (1965) [4]. Afterwards, various alternative<br />

<strong>form</strong>ulations of the transshipment problem with<strong>in</strong> the framework of the<br />

transportation model that permits solution of problems of the type<br />

discussed by K<strong>in</strong>g and Logan without the need for subtraction of<br />

artificial variables were discussed by Hurt and Tramel (1965) [5]. Grag<br />

and Prakash (1985) [6] studied time m <strong>in</strong>imiz<strong>in</strong>g transshipment<br />

problem. Later dynamic transshipment problem was studied by Herer<br />

and Tzur (2001) [7]. Afterwards multi location transshipment problem<br />

with capacitated production and lost sales was studied by Ozdemir<br />

(2006) [8]. Osman M.S.A. et al (1984) [9] <strong>in</strong>troduced an algorithm for<br />

solv<strong>in</strong>g bicriteria multistage transportation problems. Recently,<br />

Khurana et al (2011) [10] studied a transshipment problem with mixed<br />

constra<strong>in</strong>ts. Also. In (2012) Khurana et al [11] they <strong>in</strong>troduced an<br />

algorithm for solv<strong>in</strong>g time m<strong>in</strong>imiz<strong>in</strong>g capacitated transshipment<br />

problem. Yousria Abo-elnaga et al (2012) [12] <strong>in</strong>troduced a trust region<br />

globalization strategy to solve multi-objective transportation,<br />

assignment, and transshipment problems. In this paper <strong>form</strong>ulation of<br />

different structures of bicriteria large scale transshipment problems, and<br />

an algorithm for solv<strong>in</strong>g a class of them which can be solved us<strong>in</strong>g the<br />

decomposition technique of l<strong>in</strong>ear programm<strong>in</strong>g utiliz<strong>in</strong>g the special<br />

nature of transshipment problems are presented. The presented<br />

algorithm determ<strong>in</strong>es the po<strong>in</strong>ts of the non-dom<strong>in</strong>ated set <strong>in</strong> the<br />

objective space. The method consists of solv<strong>in</strong>g the same multistage<br />

transshipment problem repeatedly but with different objectives and<br />

each iteration gives either a new non dom<strong>in</strong>ated extreme po<strong>in</strong>t or<br />

changes the direction of search <strong>in</strong> the objective space. An illustrative<br />

example is presented <strong>in</strong> this paper.<br />

Formulation of Bicriteria Multistage Transshipment Problems<br />

The <strong>form</strong>ulation of different bicriteria multistage transportation<br />

problems with transshipment presented <strong>in</strong> this paper covers several real<br />

situations.<br />

Bicriteria Multistage Transportation Problem with Transshipment<br />

of the First k<strong>in</strong>d (BMTSP 1)<br />

This case represents multistage transshipment problems without any<br />

restrictions on <strong>in</strong>termediate stages.<br />

In order to obta<strong>in</strong> the mathematical <strong>form</strong>ulation of the problems<br />

represent<strong>in</strong>g this case let us assume that the availabilities are (a j ), j= 1,<br />

2, 3, …., n; n is the number of (sources + dest<strong>in</strong>ations); the<br />

requirements are (b j ), j= 1, 2, 3, ….., n; the m<strong>in</strong>imum transportation<br />

costs and deteriorations from i to j are (c ij ),(d ij) i= 1, 2, 3, …., n; j= 1, 2,<br />

3, …., n; (x ij ) denotes the quatity shipped from i to j; and (x jj ) is the neat<br />

amount transshipped through po<strong>in</strong>t j, x ij ≥0. Then the problem takes the<br />

<strong>form</strong>:<br />

n n<br />

M<strong>in</strong>.<br />

Z<br />

1<br />

<br />

<br />

i 1 j 1<br />

c ij<br />

x ij<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 21


ON BICRITERIA LARGE SCALE TRANSSHIPMENT PROBLEMS<br />

Dr. Jasem M.S. Alrajhi, Dr. Hilal A. Abdelwali, Dr. Mohsen S. Al-Ardhi, Eng. Rafik El Shiaty<br />

Z<br />

<br />

n<br />

n<br />

<br />

d ij<br />

x ij<br />

2<br />

i 1 j 1<br />

With c ij = 0 for the quantity shipped from the source (S i ) to itself and<br />

from dest<strong>in</strong>ation (D j ) to itself.<br />

Subject to:<br />

n<br />

<br />

i1<br />

i<br />

j<br />

n<br />

<br />

i1<br />

i<br />

j<br />

x<br />

x<br />

ji<br />

ij<br />

x<br />

x<br />

x ij ≥ 0 for all i, j.<br />

ij<br />

ji<br />

a<br />

b<br />

j<br />

j<br />

, j 1,2,...,<br />

n.<br />

, j 1,2,...,<br />

n.<br />

Bicriteria Multistage Transportation Problem with Transshipment<br />

of the Second K<strong>in</strong>d (BMTSP 2):<br />

This case represents bicriteria multistage transshipment problems <strong>in</strong><br />

which the transportation at any stage is <strong>in</strong>dependent of the<br />

transportation at the other stages.<br />

In order to obta<strong>in</strong> the mathematical <strong>form</strong>ulation of the problem<br />

represent<strong>in</strong>g this case let us assume that for k th stage, k= 1, 2, 3, …., N;<br />

k<br />

the availabilities are: ( a<br />

jk<br />

), jk<br />

1,2,3 ,... nk<br />

, n k is the number of<br />

(sources + dest<strong>in</strong>ations) at the k th stage; the requirements are:<br />

k<br />

( b<br />

jk<br />

), jk<br />

1,2,3,...<br />

nk<br />

; the transportation costs and deteriorations<br />

are c k i j , d k<br />

i j i = 1, 2, 3, ., n ; j = 1, 2, 3, ., n ;<br />

k k k k<br />

k k<br />

k<br />

quantity shipped from i k<br />

k<br />

to j k ; and<br />

k<br />

transshipped through po<strong>in</strong>t j k , x<br />

j k j<br />

0 .<br />

k<br />

Then the problem takes the <strong>form</strong>:<br />

M<strong>in</strong>.<br />

Z<br />

Z<br />

k<br />

2<br />

k<br />

1<br />

<br />

<br />

n<br />

n<br />

n<br />

<br />

k k<br />

ik<br />

1 jk<br />

1<br />

n<br />

k k<br />

<br />

ik<br />

1 jk<br />

1<br />

d<br />

c<br />

k<br />

ik<br />

jk<br />

k<br />

ik<br />

jk<br />

x<br />

x<br />

k<br />

ik<br />

jk<br />

k<br />

ik<br />

jk<br />

x<br />

k<br />

j k j k<br />

x<br />

k<br />

i j denotes the<br />

k k<br />

is the net amount<br />

k<br />

With ci<br />

j<br />

0 for the quantity shipped from the source (S i ) to itself<br />

k k<br />

and from the dest<strong>in</strong>ation (D j ) to itself.<br />

Subject to:<br />

k<br />

<br />

ik<br />

1<br />

i j<br />

k<br />

n<br />

k<br />

k<br />

<br />

ik<br />

1<br />

i j<br />

k<br />

n<br />

k<br />

x<br />

x<br />

k<br />

j i<br />

k k<br />

k<br />

i j<br />

k k<br />

x<br />

x<br />

k<br />

j j<br />

k k<br />

k<br />

j j<br />

k k<br />

a<br />

b<br />

k<br />

j<br />

k<br />

k<br />

j<br />

k<br />

, j<br />

, j<br />

k<br />

k<br />

1,2,...,<br />

n.<br />

1,2,...,<br />

n.<br />

x ij ≥ 0 for all i k , j k.<br />

and the m<strong>in</strong>imum transportation cost is given by:<br />

M<strong>in</strong>Z <br />

n<br />

<br />

k1<br />

M<strong>in</strong>Z<br />

k<br />

Bicriteria Multistage Transportation Problem with Transshipment<br />

of the Third K<strong>in</strong>d (BMTSP 3):<br />

This case represents bicriteria multistage transshipment problems with<br />

some additional transportation restrictions on the <strong>in</strong>termediate stages<br />

which does not affect the transshipment problem <strong>form</strong>ulation at each<br />

stage.<br />

The mathematical <strong>form</strong>ulation of the problem represent<strong>in</strong>g this case is<br />

given as:<br />

M<strong>in</strong>.<br />

Z<br />

...<br />

n<br />

N<br />

1<br />

<br />

n<br />

N<br />

<br />

iN<br />

1 jN<br />

1<br />

Z<br />

2<br />

<br />

n1<br />

n1<br />

<br />

i1<br />

1 j1<br />

1<br />

c i<br />

x<br />

N<br />

N jN<br />

n1<br />

n1<br />

<br />

i1<br />

1 j1<br />

1<br />

...<br />

n<br />

N<br />

n<br />

k k<br />

<br />

1 1<br />

k k<br />

ci<br />

... <br />

...<br />

1 j<br />

x<br />

1 i1<br />

j<br />

c<br />

1<br />

ik<br />

j<br />

x<br />

k ik<br />

jk<br />

N<br />

iN<br />

jN<br />

n<br />

ik<br />

1 jk<br />

1<br />

n<br />

k k<br />

<br />

1 1<br />

k k<br />

di<br />

... <br />

...<br />

1 j<br />

x<br />

1 i1<br />

j<br />

d<br />

1<br />

ik<br />

j<br />

x<br />

k ik<br />

jk<br />

n<br />

N<br />

<br />

iN<br />

1 jN<br />

1<br />

d i<br />

x<br />

N<br />

N jN<br />

N<br />

iN<br />

jN<br />

n<br />

ik<br />

1 jk<br />

1<br />

k<br />

with ci<br />

k j and d k<br />

k ik<br />

j = 0 for the quantity shipped from the source ( k<br />

S<br />

k<br />

i )<br />

k<br />

k<br />

to itself and from the dest<strong>in</strong>ation ( D<br />

j ) to itself: k = 1, 2, …, N subject<br />

k<br />

to:<br />

n1<br />

1 1 1<br />

x<br />

j<br />

,<br />

1<br />

1,2,...,<br />

1i<br />

x a j n<br />

1 j1<br />

j<br />

<br />

1 j<br />

<br />

1<br />

1<br />

i1<br />

1<br />

i j<br />

1<br />

n<br />

1<br />

1<br />

<br />

i1<br />

j<br />

i1<br />

1<br />

.<br />

.<br />

.<br />

n<br />

i<br />

i<br />

1<br />

k<br />

<br />

k<br />

k<br />

j<br />

1<br />

n<br />

k<br />

k<br />

<br />

ik<br />

j<br />

ik<br />

1<br />

.<br />

.<br />

k<br />

x<br />

1 1 1<br />

i<br />

,<br />

1<br />

1,2,...,<br />

1 j<br />

x b j n<br />

1 j1<br />

j<br />

<br />

1 j<br />

<br />

1<br />

1<br />

x<br />

x<br />

k k k<br />

j j<br />

x<br />

j j<br />

a<br />

j<br />

, j<br />

k k k k k k<br />

1,2,...,<br />

k k k<br />

i j<br />

x<br />

j j<br />

bj<br />

, j<br />

k k k k k k<br />

1,2,...,<br />

n<br />

n<br />

k<br />

k<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 22


ON BICRITERIA LARGE SCALE TRANSSHIPMENT PROBLEMS<br />

Dr. Jasem M.S. Alrajhi, Dr. Hilal A. Abdelwali, Dr. Mohsen S. Al-Ardhi, Eng. Rafik El Shiaty<br />

Z<br />

.<br />

i<br />

i<br />

n<br />

N<br />

<br />

N<br />

N<br />

i<br />

i<br />

j<br />

1<br />

n<br />

j<br />

1<br />

N<br />

N<br />

<br />

N<br />

N<br />

F<br />

x<br />

N<br />

x<br />

x<br />

N N N<br />

j i<br />

x<br />

j j<br />

a<br />

j<br />

, j<br />

N N N N<br />

N N<br />

1,2,...,<br />

N N N<br />

i j<br />

x<br />

j j<br />

bj<br />

, j<br />

N N N N N N<br />

1,2,...,<br />

k1<br />

k k1<br />

( xi<br />

, , ) 0,<br />

1 j<br />

x<br />

1<br />

i j<br />

x<br />

k k k k ik<br />

1<br />

jk<br />

1<br />

k<br />

N<br />

0,.., x<br />

k<br />

0,.. x 0<br />

rk<br />

1<br />

i<br />

<br />

1 j1<br />

i jk<br />

iN<br />

jN<br />

For all i1,..., iK<br />

,..., iN<br />

; j1,...,<br />

jK<br />

,..., jN<br />

;<br />

where:<br />

F<br />

k<br />

r<br />

, k 1,2,...,<br />

N are l<strong>in</strong>ear functions represent<strong>in</strong>g the<br />

additional transportation restrictions and r k is the number of this l<strong>in</strong>ear<br />

functions at the k th stage.<br />

Bicriteria Multistage Transportation Problem with Transshipment<br />

of the Fourth K<strong>in</strong>d (BMTSP 4)<br />

This case represents bicriteria multistage transshipment problems <strong>in</strong><br />

which the difference between the <strong>in</strong>put and output transportation<br />

commodity is known at the sources (dest<strong>in</strong>ations) of each <strong>in</strong>termediate<br />

stage. The assumed transportation restrictions <strong>in</strong> this case affect the<br />

transshipment <strong>form</strong>ulation <strong>in</strong> each <strong>in</strong>dividual stage.<br />

The mathematical <strong>form</strong>ulation of the problem represent<strong>in</strong>g this case is<br />

given as:<br />

2<br />

M<strong>in</strong>.<br />

Z<br />

...<br />

<br />

...<br />

1<br />

n<br />

N<br />

<br />

n<br />

N<br />

<br />

iN<br />

1 jN<br />

1<br />

n1<br />

n1<br />

<br />

i1<br />

1 j1<br />

1<br />

n<br />

N<br />

N<br />

<br />

iN<br />

1 jN<br />

1<br />

n1<br />

n1<br />

<br />

i1<br />

1 j1<br />

1<br />

c i<br />

x<br />

N<br />

N jN<br />

n<br />

k k<br />

<br />

1 1<br />

k k<br />

ci<br />

... <br />

...<br />

1 j<br />

x<br />

1 i1<br />

j<br />

c<br />

1<br />

ik<br />

j<br />

x<br />

k ik<br />

jk<br />

N<br />

iN<br />

jN<br />

n<br />

k k<br />

<br />

n<br />

n<br />

n<br />

ik<br />

1 jk<br />

1<br />

1 1<br />

k k<br />

di<br />

... <br />

...<br />

1 j<br />

x<br />

1 i1<br />

j<br />

d<br />

1<br />

ik<br />

j<br />

x<br />

k ik<br />

jk<br />

n<br />

d i<br />

x<br />

N<br />

N jN<br />

N<br />

iN<br />

jN<br />

n<br />

ik<br />

1 jk<br />

1<br />

k<br />

with ci<br />

k j and d k<br />

k ik<br />

j = 0 for the quantity shipped from the source ( k<br />

S<br />

k<br />

i )<br />

k<br />

k<br />

to itself and from the dest<strong>in</strong>ation ( D<br />

j ) to itself: k = 1, 2, …, N subject<br />

k<br />

to:<br />

n1<br />

1 1 1<br />

x<br />

j<br />

,<br />

1<br />

1,2,...,<br />

1i<br />

x a j n<br />

1 j1<br />

j<br />

<br />

1 j<br />

<br />

1<br />

1<br />

i1<br />

j1<br />

i 1<br />

1<br />

n1<br />

<br />

i1<br />

j1<br />

i1<br />

1<br />

.<br />

.<br />

n<br />

1 1<br />

( 2<br />

2 2 1<br />

i<br />

) ,<br />

1<br />

1,2,...,<br />

1;<br />

2<br />

1,2,...<br />

1 j<br />

x<br />

1 j1<br />

j<br />

<br />

1 x<br />

j<br />

x b j n j n<br />

2i<br />

<br />

2 j2<br />

j<br />

<br />

2 j<br />

<br />

1<br />

2<br />

i2<br />

j2<br />

i2<br />

1<br />

x<br />

N<br />

N<br />

.<br />

nk<br />

1<br />

nk<br />

k1<br />

k1<br />

k k k1<br />

xi<br />

j<br />

x<br />

j j<br />

( x<br />

j i<br />

x<br />

j j<br />

) bj<br />

, jk<br />

1,2,..., nk<br />

; jk<br />

1,2,...<br />

n<br />

k k<br />

k k<br />

k k k k<br />

k 1<br />

<br />

1<br />

<br />

1 1<br />

1<br />

1<br />

<br />

1<br />

<br />

<br />

k<br />

ik<br />

1<br />

jk<br />

1<br />

ik<br />

jk<br />

ik<br />

1<br />

ik<br />

1<br />

i<br />

i<br />

j<br />

n<br />

N 1<br />

<br />

N 1<br />

N 1<br />

i<br />

i<br />

j<br />

1<br />

N 1<br />

n<br />

N<br />

<br />

N<br />

N<br />

x<br />

j<br />

1<br />

k<br />

i j<br />

k<br />

k<br />

x<br />

N 1<br />

N<br />

N 1<br />

i j<br />

N 1<br />

N 1<br />

x<br />

1,2,...,<br />

n<br />

x<br />

N 1<br />

j j<br />

N 1<br />

N 1<br />

N 1<br />

; j<br />

N<br />

(<br />

i<br />

i<br />

n<br />

N<br />

<br />

N<br />

N<br />

j<br />

1<br />

N<br />

x<br />

1,2,...<br />

n<br />

N<br />

j i<br />

N N<br />

N<br />

x<br />

N N N<br />

i j<br />

x<br />

j j<br />

bj<br />

, j<br />

N N N N N N<br />

1,2,...,<br />

0<br />

for all i k , j k ; k=1, 2, …, N<br />

n<br />

N<br />

j j<br />

N N<br />

N<br />

) b<br />

N 1<br />

j<br />

N 1<br />

(BMTSP 1) is solved as a bicriteria s<strong>in</strong>gle stage transshipment problem.<br />

(BMTSP 2) can be solved as N s<strong>in</strong>gle stage biceriteria transshipment<br />

problems and the m<strong>in</strong>imum value of the total transport costs and<br />

deteriorations are obta<strong>in</strong>ed as the sum of the m<strong>in</strong>imum transportation<br />

costs and deteriorations for each <strong>in</strong>dividual stage.<br />

(BMTST3) can be solved us<strong>in</strong>g the decomposition technique utiliz<strong>in</strong>g<br />

the special nature of transshipment problems. The next section will be<br />

devoted to the solution of this type of problems.<br />

(BMTSP4) is solved us<strong>in</strong>g any method for solv<strong>in</strong>g bicriteria l<strong>in</strong>ear<br />

programm<strong>in</strong>g problems.<br />

An Algorithm for Solv<strong>in</strong>g BMTSP 3<br />

The decomposition technique of l<strong>in</strong>ear programm<strong>in</strong>g can be used to<br />

solve the bicriteria multistage transshipment problems especially that of<br />

the (BMTSP 3) type.<br />

This type of bicriteria multistage transshipment problems decomposed<br />

<strong>in</strong>to [2, 3, 5, 8]:<br />

a) Sub problems correspond<strong>in</strong>g to every stage.<br />

b) A master program which ties together the sub problems.<br />

Let:<br />

Dk be the matrix consist<strong>in</strong>g of the coefficients of k the<br />

subproblem constra<strong>in</strong>ts.<br />

Ak be the matrix consist<strong>in</strong>g of the coefficients of k th stage tie<strong>in</strong><br />

constra<strong>in</strong>ts.<br />

b be the vector of constant coefficients <strong>in</strong> the tie-<strong>in</strong><br />

constra<strong>in</strong>ts.<br />

bk be the vector consist<strong>in</strong>g of the availabilities and<br />

requirements of kth sub-problem .<br />

Ro be the matrix consist<strong>in</strong>g of the first mo columns of B-1, mo<br />

denotes the number of elements of b, B be the current basis<br />

matrix.<br />

ck be the vector of first objective coefficients of kth subproblem<br />

.<br />

dk be the vector of second objective coefficients of kth subproblem<br />

.<br />

cB be the correspond<strong>in</strong>g vector of basic variables coefficients.<br />

N be the number of sub- problems.<br />

,<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 23


ON BICRITERIA LARGE SCALE TRANSSHIPMENT PROBLEMS<br />

Dr. Jasem M.S. Alrajhi, Dr. Hilal A. Abdelwali, Dr. Mohsen S. Al-Ardhi, Eng. Rafik El Shiaty<br />

In the follow<strong>in</strong>g we will present an algorithm for determ<strong>in</strong><strong>in</strong>g all<br />

nondom<strong>in</strong>ated extreme po<strong>in</strong>ts of the (BMTSP3) model from which the<br />

solution of the (BMTSP1) and the (BMTSP2) models can be deduced<br />

as special cases from it.<br />

Let: for <strong>in</strong>dependent constra<strong>in</strong>ts:<br />

D k , k= 1,2,…,N be the technological matrix of the k th stage activity, D k<br />

is (m k + n k ) * (m k + n k ) matrix, N is the number of stages, m k is the<br />

number of sources at k th stage, n k is the number of dest<strong>in</strong>ations.<br />

b k be the column vector consist<strong>in</strong>g of the availabilities and<br />

requirements of the k th subproblem, b k is (m k + n k ) * 1 column vector.<br />

It follows that each set of <strong>in</strong>dependent constra<strong>in</strong>ts can be written as:<br />

D k x k = b k , k = 1,2,…,N<br />

x k represent the vector of the correspond<strong>in</strong>g variables, x k is (m k + n k ) *1<br />

column vector.<br />

Let: For the common constra<strong>in</strong>ts:<br />

A k be the technogical matrix of k th stage activity, A k is m 0 * (m k * n k )<br />

matrix, m 0 be the number of common constra<strong>in</strong>ts.<br />

b 0 be its correspond<strong>in</strong>g common resources vector, b 0 is (m 0 * 1) column<br />

vector.<br />

This gives: A 1 x 1 + A 2 x 2 + …….+ A k x k + ……. +A N x N = b 0<br />

Let: for the objective functions:<br />

c K represent the vector of the first criterion coefficients for the k th stage<br />

activity, c k is 1*(m k *n k ) row vector.<br />

d k represent the vector of the second criterion coefficients for the k th<br />

stage activity, d k is 1*(m k *n k ) row vector.<br />

Let: For the master program:<br />

B be the basic matrix associated with the current basic solution, B is<br />

(m o *N) * (m o +N) matrix.<br />

C B be the row vector of the correspond<strong>in</strong>g coefficients <strong>in</strong> the objective<br />

function, C B is 1*(m o +N) row vector.<br />

R o is the matrix of size (m o + N)*m o consist<strong>in</strong>g of the first m o columns<br />

of B -1 , and<br />

v j is the (m o + j) th column of the same matrix B -1<br />

The algorithm presented here is divided <strong>in</strong>to two phases.<br />

Phase 1: Determ<strong>in</strong>e the nondom<strong>in</strong>ated extreme po<strong>in</strong>ts <strong>in</strong> the objective<br />

space. And the algorithm is validated by the follow<strong>in</strong>g theorem [1].<br />

Theorem:<br />

A po<strong>in</strong>t z (q) q<br />

q<br />

= z1 , z2<br />

is a nondom<strong>in</strong>ated extreme po<strong>in</strong>t is the<br />

objective space if and only if z(q) is recorded by the algorithm.<br />

Phase II: Is the decomposition algorithm which can be found <strong>in</strong> [7].<br />

S<strong>in</strong>ce the special structure of the (BMTSP3) model may allow the<br />

determ<strong>in</strong>ation of the optimal solution by, first decompos<strong>in</strong>g the<br />

problem <strong>in</strong>to small subproblems and then solv<strong>in</strong>g those subproblems<br />

almost <strong>in</strong>dependently, then the decomposition algorithm for solv<strong>in</strong>g<br />

large scale l<strong>in</strong>ear programm<strong>in</strong>g problems utiliz<strong>in</strong>g the special nature of<br />

transshipment problem can be used to solve it.<br />

Phase I:<br />

Step 1: Go to phase II, f<strong>in</strong>d<br />

z<br />

(1 ) M<strong>in</strong> z / x M <br />

1<br />

<br />

And f<strong>in</strong>d<br />

.<br />

1<br />

(1)<br />

(1)<br />

z<br />

2<br />

M<strong>in</strong> . z<br />

2<br />

/ z<br />

1<br />

z<br />

1<br />

and x M .<br />

Step 2:<br />

(1) (1)<br />

Record ( z<br />

1 , z<br />

2 ) and set q = 1.<br />

Similarly, go to phase II, f<strong>in</strong>d<br />

z<br />

( 2 )<br />

2<br />

<br />

And f<strong>in</strong>d<br />

<br />

M<strong>in</strong> . z<br />

2<br />

/ x <br />

( 2 )<br />

( 2 )<br />

z<br />

1<br />

M<strong>in</strong> . z<br />

1<br />

/ z<br />

2<br />

z<br />

2<br />

and x M .<br />

( 2 ) ( 2 ) (1) (1)<br />

( z<br />

1<br />

, z<br />

2<br />

) ( z<br />

1<br />

, z<br />

2<br />

), stop<br />

M<br />

If .<br />

(2) (2)<br />

Otherwise record ( z<br />

1 , z<br />

2 ) and set q = q+1<br />

Def<strong>in</strong>es sets L = {(1,2)} and E = , and go to step 2.<br />

Choose an element (r,s) L and set<br />

( r , s ) ( s ) ( r )<br />

a z z and<br />

a<br />

1<br />

( r , s )<br />

2<br />

<br />

z<br />

2<br />

( s )<br />

1<br />

<br />

z<br />

2<br />

( r )<br />

1<br />

k<br />

Go to phase II to obta<strong>in</strong> the optimal solution ( x , k=1,2,..,N) to the<br />

multistage transshipment problem.<br />

M<strong>in</strong>imize<br />

x<br />

k<br />

N<br />

<br />

k 1<br />

<br />

ik<br />

, jk<br />

and<br />

( r,<br />

s)<br />

k<br />

( r,<br />

s)<br />

k<br />

(e<br />

1<br />

cik<br />

j<br />

a d<br />

k 2 ik<br />

j<br />

)<br />

k<br />

Subject to<br />

k<br />

M , x o , k 1,2 ,.., N<br />

<br />

x<br />

k<br />

ik<br />

jk<br />

If there are alternative optima, choose an optimal solution<br />

k=1,2,.,N, for which<br />

N<br />

<br />

k 1<br />

<br />

ik<br />

, jk<br />

Let z<br />

1<br />

=<br />

z<br />

2<br />

=<br />

N<br />

<br />

k1<br />

( c<br />

N<br />

<br />

k1<br />

k<br />

ik<br />

jk<br />

<br />

i , j<br />

k<br />

x<br />

<br />

ik<br />

, jk<br />

k<br />

k<br />

ik<br />

jk<br />

d<br />

c<br />

k<br />

ik<br />

jk<br />

k<br />

i j<br />

k k<br />

m<strong>in</strong>.)<br />

x<br />

x<br />

k<br />

ik<br />

jk<br />

k<br />

i j<br />

k k<br />

; and<br />

( r ) ( r )<br />

If ( z<br />

1<br />

,<br />

2<br />

( z<br />

1<br />

, z<br />

2<br />

)<br />

Set E = E {(r,s)} and go to step 3.<br />

( q)<br />

( q)<br />

Otherwise record ( z<br />

1<br />

, z<br />

2 ) such that<br />

z<br />

( s ) ( s )<br />

z ) is equal to or ( z , z )<br />

( q )<br />

( q )<br />

1<br />

z1<br />

, z<br />

2<br />

z 2 and set q q <br />

Step 3:<br />

L = L {(r,q)}, (q,s)} and go to step 3.<br />

Set L = L - {(r-s)}. If L = , stop.<br />

Otherwise go to step 2.<br />

1<br />

1,<br />

2<br />

k<br />

x ,<br />

Phase II:<br />

Step 1: Reduce the orig<strong>in</strong>al problem to the modified <strong>form</strong> <strong>in</strong> terms of<br />

the new variables k<br />

Step 2: F<strong>in</strong>d an <strong>in</strong>itial basic feasible solution to the modified problem.<br />

Step 3: Solve the subproblems<br />

k k<br />

k<br />

k k<br />

w ( c OR d c<br />

B<br />

R<br />

o<br />

A ) x<br />

Subject to<br />

k k k<br />

D x b ,<br />

x k<br />

o , k 1,2,..., N .<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 24


ON BICRITERIA LARGE SCALE TRANSSHIPMENT PROBLEMS<br />

Dr. Jasem M.S. Alrajhi, Dr. Hilal A. Abdelwali, Dr. Mohsen S. Al-Ardhi, Eng. Rafik El Shiaty<br />

Note: c k will be used with first criteria, and d k will be used with the<br />

second criteria.<br />

Obta<strong>in</strong><strong>in</strong>g<br />

xˆ<br />

k<br />

l<br />

and optimal objective values<br />

transportation technique, Go to step 4.<br />

Step 4: For the current iteration, f<strong>in</strong>d<br />

* k<br />

k<br />

k<br />

w c<br />

B<br />

v , k <br />

k<br />

Then determ<strong>in</strong>e M<strong>in</strong> ( )<br />

k<br />

1,2,..., N ,<br />

k<br />

w *<br />

, by us<strong>in</strong>g the<br />

If o , the current solution is optimal and the process is<br />

term<strong>in</strong>ated, the optimal solution to multistage transportation problem is:<br />

x<br />

k<br />

<br />

L<br />

<br />

<br />

K<br />

L<br />

K<br />

xl ,<br />

k<br />

1,2 ,...,<br />

L 1<br />

Otherwise, go to step 5.<br />

k<br />

Step 5: Introduce the variable <br />

L correspond<strong>in</strong>g to <strong>in</strong>to the basic<br />

solution. Determ<strong>in</strong>e the leav<strong>in</strong>g variable us<strong>in</strong>g the feasibility condition<br />

and compute the next B -1 us<strong>in</strong>g the revised simplex method technique,<br />

go to step 3.<br />

Illustrative Example<br />

The suggested algorithm for solv<strong>in</strong>g problem of the type BMTSP 3 will<br />

be illustrated <strong>in</strong> the follow<strong>in</strong>g example:<br />

Consider the follow<strong>in</strong>g bicriteria two stage transshipment problem. For<br />

each stage the availabilities, requirements, costs and deteriorations for<br />

each stage are given as:<br />

1<br />

a<br />

1 = 6,<br />

2<br />

b<br />

1 = 6,<br />

1<br />

a<br />

2 = 4,<br />

a = 2,<br />

1<br />

3<br />

2 2<br />

b<br />

2 = 2, b<br />

3<br />

= 4<br />

1<br />

b<br />

1 =<br />

N<br />

2<br />

a<br />

1 = 9,<br />

1<br />

b<br />

2 =<br />

Table 1. Transportation cost at stages (1) and (2).<br />

D 1 1 D 1 2 S 1 1 S 1 2 S 1 3<br />

S 1 1 5 4 0 2 1<br />

S 1 2 10 8 1 0 4<br />

S 1 3 9 9 3 2 0<br />

D 1 1 0 1 5 9 9<br />

D 1 2 3 0 4 6 7<br />

D 2 1 D 2 2 D 2 3 S 2 1 S 2 2<br />

S 2 1 4 3 3 0 3<br />

S 2 2 8 4 7 2 0<br />

D 2 1 0 2 4 8 7<br />

D 2 2 4 0 3 3 5<br />

D 2 3 3 4 0 4 9<br />

Table 2. Deterioration cost at stages (1) and (2).<br />

D 1 1 D 1 2 S 1 1 S 1 2 S 1 3<br />

S 1 1 3 6 0 1 4<br />

S 1 2 7 9 3 0 6<br />

S 1 3 12 11 4 6 0<br />

D 1 1 0 3 7 11 12<br />

D 1 2 5 0 7 8 8<br />

2<br />

a<br />

2 = 3,<br />

D 2 1 D 2 2 D 2 3 S 2 1 S 2 2<br />

S 2 1 6 5 5 0 6<br />

S 2 2 11 6 9 5 0<br />

D 2 1 0 4 6 11 9<br />

D 2 2 6 0 5 4 7<br />

D 2 3 5 7 0 6 11<br />

One requirement is added to the above problem:<br />

It is required that the quantity shipped from the first source to the first<br />

dest<strong>in</strong>ation <strong>in</strong> the first stage is equal to the quantity shipped from the<br />

first source to the first dest<strong>in</strong>ation <strong>in</strong> the second stage.<br />

The mathematical model is given as follows:<br />

M<strong>in</strong>imize z 1 = 5x 1 11 + 4x 1 12 + 0x 1 13 + 2x 1 14 + x 1 15<br />

+ 10x 1 21 + 8x 1 22 + x 1 23 + 0x 1 24 + 4x 1 25<br />

+ 9x 1 31 + 9x 1 32 + 3x 1 33 + 2x 1 34 + 0x 1 35<br />

+ 0x 1 41 + x 1 42 + 5x 1 43 + 9x 1 44 + 9x 1 45<br />

+ 3x 1 51 + 0x 1 52 + 4x 1 53 + 6x 1 54 + 7x 1 55<br />

+ 4x 2 11 + 3x 2 12 + 2x 2 13 + 0x 2 14 + 3x 2 15<br />

+ 8x 2 21 + 4x 2 22 + 7x 2 23 + 2x 2 24 + 0x 2 25<br />

+ 0x 2 31 + 2x 2 32 + 4x 2 33 + 8x 2 34 + 7x 2 35<br />

+ 4x 2 41 + 0x 2 42 + 3x 2 43 + 3x 2 44 + 5x 2 45<br />

+ 3x 2 51 + 4x 2 52 + 0x 2 53 + 4x 2 54 + 9x 2 55<br />

Subject to:<br />

Z 2 = 3x 1 11 + 6x 1 12 + 0x 1 13 + 1x 1 14 + 4x 1 15<br />

+ 7x 1 21 + 9x 1 22 + 3x 1 23 + 0x 1 24 + 6x 1 25<br />

+ 12x 1 31 + 11x 1 32 + 4x 1 33 + 6x 1 34 + 0x 1 35<br />

+ 0x 1 41 + 3x 1 42 + 7x 1 43 + 11x 1 44 + 12x 1 45<br />

+ 5x 1 51 + 0x 1 52 + 7x 1 53 + 8x 1 54 + 8x 1 55<br />

+ 6x 2 11 + 5x 2 12 + 5x 2 13 + 0x 2 14 + 6x 2 15<br />

+ 11x 2 21 + 6x 2 22 + 9x 2 23 + 5x 2 24 + 0x 2 25<br />

+ 0x 2 31 + 4x 2 32 + 6x 2 33 + 11x 2 34 + 9x 2 35<br />

+ 6x 2 41 + 0x 2 42 + 5x 2 43 + 4x 2 44 + 7x 2 45<br />

+ 5x 2 51 + 7x 2 52 + 0x 2 53 + 6x 2 54 + 11x 2 55<br />

x 1 11 = x 2 11<br />

x 1 11 + x 1 12 + x 1 13 + x 1 14 + x 1 15 = 18<br />

x 1 21 + x 1 22 + x 1 23 + x 1 24 + x 1 25 = 16<br />

x 1 31 + x 1 32 + x 1 33 + x 1 34 + x 1 35 = 14<br />

x 1 41 + x 1 42 + x 1 43 + x 1 44 + x 1 45 = 12<br />

x 1 51 + x 1 52 + x 1 53 + x 1 54 + x 1 55 = 12<br />

x 1 11 + x 1 21 + x 1 31 + x 1 41 + x 1 51 = 21<br />

x 1 12 + x 1 22 + x 1 32 + x 1 42 + x 1 52 = 15<br />

x 1 13 + x 1 23 + x 1 33 + x 1 43 + x 1 53 = 12<br />

x 1 14 + x 1 24 + x 1 34 + x 1 44 + x 1 54 = 12<br />

x 1 15 + x 1 25 + x 1 35 + x 1 45 + x 1 55 = 12<br />

x 2 11 + x 2 12 + x 2 13 + x 2 14 + x 2 15 = 21<br />

x 2 21 + x 2 22 + x 2 23 + x 2 24 + x 2 25 = 15<br />

x 2 31 + x 2 32 + x 2 33 + x 2 34 + x 2 35 = 12<br />

x 2 41 + x 2 42 + x 2 43 + x 2 44 + x 2 45 = 12<br />

x 2 51 + x 2 52 + x 2 53 + x 2 54 + x 2 55 = 12<br />

x 2 11 + x 2 21 + x 2 31 + x 2 41 + x 2 51 = 18<br />

x 2 12 + x 2 22 + x 2 32 + x 2 42 + x 2 52 = 14<br />

x 2 13 + x 2 23 + x 2 33 + x 2 43 + x 2 53 = 16<br />

x 2 14 + x 2 24 + x 2 34 + x 2 44 + x 2 54 = 12<br />

x 2 15 + x 2 25 + x 2 35 + x 2 45 + x 2 55 = 12<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 25


ON BICRITERIA LARGE SCALE TRANSSHIPMENT PROBLEMS<br />

Dr. Jasem M.S. Alrajhi, Dr. Hilal A. Abdelwali, Dr. Mohsen S. Al-Ardhi, Eng. Rafik El Shiaty<br />

and all x 1 0,<br />

2<br />

i<br />

0<br />

1 j<br />

x <br />

1 i2<br />

j for all i 1 = 1, 2, ……, 5;<br />

2<br />

j 1 = 1, 2, …., 5 ; i 2 = 1, 2, …….., 5 ; j 2 = 1, 2, ….., 5.<br />

The problem can be decomposed <strong>in</strong>to two sub problems, k = 1, 2.<br />

9 Z 9 =<br />

(113,156)<br />

CONCLUSION<br />

X 1 11=6, X 1 12=4, X 1 13=8, X 1 23=4, X 1 24=12, X 1 31=2,<br />

X 1 35=12, X 1 41=12, X 1 51=1, X 1 52=11, X 2 11=6,<br />

X 2 13=4, X 2 14=11, X 2 22=2, X 2 24=1, X 2 25=12,<br />

X 2 31=12, X 2 42=12, X 2 53=12.<br />

The follow<strong>in</strong>g Table (3) gives phase 1 iterations (solution of bicriteria <strong>in</strong> the<br />

objective space).<br />

Table 3. Set of non dom<strong>in</strong>ated extreme po<strong>in</strong>ts.<br />

Iteration L E Recorded<br />

Po<strong>in</strong>t<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

{(1,2)}<br />

{(1,2)}<br />

{(1,3),(3,2)}<br />

{(3,2), (1,4), (4,3)}<br />

{(1,4), (4,3), (3,5),<br />

(5,2)}<br />

{(1,4), (4,3), (3,5)}<br />

{(1,4), (4,3)}<br />

{(1,4)}<br />

<br />

<br />

<br />

<br />

<br />

<br />

{(5,2)}<br />

{(5,2), (3,5)}<br />

{(5,2), (3,5), (4,3)}<br />

{(5,2), (3,5), (4,3),<br />

(1,4)}<br />

Table 4. Non zero value of X ij for each non dom<strong>in</strong>ated po<strong>in</strong>t<br />

Iteration Non<br />

Non zero value of X ij<br />

dom<strong>in</strong>ated<br />

(Z 1 , Z 2 )<br />

1 Z 1 =<br />

(113,156)<br />

Z 1 = (113,156)<br />

Z 2 =(127,140)<br />

Z 3 = (121,141)<br />

Z 4 = (115,149)<br />

Z 5 = (124,140)<br />

Z 6 = (124,140)<br />

Z 7 = (124,140)<br />

Z 8 = (115,149)<br />

Z 9 = (113,156)<br />

X 1 11=6, X 1 12=4, X 1 13=8, X 1 23=4, X 1 24=12, X 1 31=2,<br />

X 1 35=12, X 1 41=12, X 1 51=1, X 1 52=11, X 2 11=6,<br />

X 2 13=4, X 2 14=11, X 2 22=2, X 2 24=1, X 2 25=12,<br />

X 2 31=12, X 2 42=12, X 2 53=12.<br />

2 Z 2 =(127,140) X 1 11=6, X 1 12=2, X 1 13=10, X 1 21=3, X 1 22=1, X 1 24=12,<br />

X 1 33=2, X 1 35=12, X 1 41=12, X 1 52=12, X 2 11=6,<br />

X 2 13=3, X 2 14=12, X 2 22=2, X 2 23=1, X 2 25=12,<br />

X 2 31=12, X 2 42=12, X 2 53=12.<br />

3 Z 3 =<br />

(121,141)<br />

4 Z 4 =<br />

(115,149)<br />

5 Z 5 =<br />

(124,140)<br />

6 Z 6 =<br />

(124,140)<br />

7 Z 7 =<br />

(124,140)<br />

8 Z 8 =<br />

(115,149)<br />

X 1 11=6, X 1 12=3, X 1 13=9, X 1 21=3, X 1 23=1, X 1 24=12,<br />

X 1 33=2, X 1 35=12, X 1 41=12, X 1 52=12, X 2 11=6,<br />

X 2 13=4, X 2 14=11, X 2 22=2, X 2 24=1, X 2 25=12,<br />

X 2 31=12, X 2 42=12, X 2 53=12.<br />

X 1 11=6, X 1 12=3, X 1 13=9, X 1 21=1, X 1 23=3, X 1 24=12,<br />

X 1 31=2, X 1 35=12, X 1 41=12, X 1 52=12, X 2 11=6,<br />

X 2 13=4, X 2 14=11, X 2 22=2, X 2 24=1, X 2 25=12,<br />

X 2 31=12, X 2 42=12, X 2 53=12.<br />

X 1 11=6, X 1 12=3, X 1 13=9, X 1 21=3, X 1 23=1, X 1 24=12,<br />

X 1 33=2, X 1 35=12, X 1 41=12, X 1 52=12, X 2 11=6,<br />

X 2 13=3, X 2 14=12, X 2 22=2, X 2 23=1, X 2 25=12,<br />

X 2 31=12, X 2 42=12, X 2 53=12.<br />

X 1 11=6, X 1 12=3, X 1 13=9, X 1 21=3, X 1 23=1, X 1 24=12,<br />

X 1 33=2, X 1 35=12, X 1 41=12, X 1 52=12, X 2 11=6,<br />

X 2 13=3, X 2 14=12, X 2 22=2, X 2 23=1, X 2 25=12,<br />

X 2 31=12, X 2 42=12, X 2 53=12.<br />

X 1 11=6, X 1 12=3, X 1 13=9, X 1 21=3, X 1 23=1, X 1 24=12,<br />

X 1 33=2, X 1 35=12, X 1 41=12, X 1 52=12, X 2 11=6,<br />

X 2 13=3, X 2 14=12, X 2 22=2, X 2 23=1, X 2 25=12,<br />

X 2 31=12, X 2 42=12, X 2 53=12.<br />

X 1 11=6, X 1 12=3, X 1 13=9, X 1 21=1, X 1 23=3, X 1 24=12,<br />

X 1 31=2, X 1 35=12, X 1 41=12, X 1 52=12, X 2 11=6,<br />

X 2 13=4, X 2 14=11, X 2 22=2, X 2 24=1, X 2 25=12,<br />

X 2 31=12, X 2 42=12, X 2 53=12.<br />

In certa<strong>in</strong> situations, two objectives are relevant <strong>in</strong> transshipment problems. Also,<br />

the goods transportation may not operate always directly among suppliers and<br />

customers. In such problems, it is possible to optimize the transshipment problem<br />

<strong>in</strong>to two stages. The presented algorithm <strong>in</strong> this paper enables solv<strong>in</strong>g such<br />

problems more realistically. It can be used for determ<strong>in</strong><strong>in</strong>g all efficient extreme<br />

po<strong>in</strong>ts.<br />

The ma<strong>in</strong> advantage of this approach is that the bicriteria two stage transshipment<br />

problem can be solved us<strong>in</strong>g the standard <strong>form</strong> of a transshipment problem at each<br />

iteration.<br />

From the application, decision maker will have all efficient extreme po<strong>in</strong>ts and<br />

their related distributions. Therefore, he can choose any po<strong>in</strong>t which provides his<br />

policy.<br />

REFERENCES<br />

1. Orden, A. (1956). “Transshipment problem”, Management Science,<br />

(3): 276-285.<br />

2. K<strong>in</strong>g, G. Logan, S. (1964). “Optimum location, number, and size of<br />

process<strong>in</strong>g plants with raw product and f<strong>in</strong>al product shipments”,<br />

Journal of Farm Economics, 46: 94-108.<br />

3. Rhody, D. (1963). “Interregional competitive position of the hogpork<br />

<strong>in</strong>dustry <strong>in</strong> the southeast United States”, Ph.D. thesis, Iowa State<br />

University.<br />

4. Judge, G., Hsvlicek J., and Rizek, R. (1965). “An <strong>in</strong>terregional<br />

model: Its <strong>form</strong>ulation and application to the live-stock <strong>in</strong>dustry”,<br />

Agriculture and Economy and Revision, 7 :1-9.<br />

5. Hurt, V. and Tramel, T. (1965). “Alternative <strong>form</strong>ulation of the<br />

transshipment problem”, Journal of Farm Economics, 47 (3): 763-773.<br />

6. Grag, R. and Parakash, S. (1985). “Time m<strong>in</strong>imiz<strong>in</strong>g transshipment<br />

problem”, Indian Journal of Pure and Applied Mathematics, 16 (5):<br />

449-460.<br />

7. Here, Y. and Tzura, M. (2001). “The dynamic transshipment<br />

problem”, Naval Research Logistics Quarterly, 48: 386-408.<br />

8. Ozdemir, D. Yucesan, E and Here, Y. (2006). “Multi location<br />

transshipment problem with capacitated production and lost sales”,<br />

Proceed<strong>in</strong>g of the 2006 W<strong>in</strong>ter Simulation Conference, Pages 1470-<br />

1476.<br />

9. Osma, M.S.A. and Ellaimony, E.E.M. (1984). “On bicriteria<br />

multistage transportation problems”, First Conference on Operations<br />

Research and its Military Applications, Page 143-157.<br />

10. Khurana A. and Arora S. (2011). “Solv<strong>in</strong>g transshipment problems<br />

with mixed constra<strong>in</strong>ts”, International Journal of Management Science<br />

and Eng<strong>in</strong>eer<strong>in</strong>g Management, 6 (4): Page 292-297.<br />

11. Khurana A., Tripti V. and Arora S. (2012). “An algorithm for<br />

solv<strong>in</strong>g time m<strong>in</strong>imiz<strong>in</strong>g capacitated transshipment problem”,<br />

International Journal of Management Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />

Management, 7 (3): Page 192-199.<br />

12. Yousria A., Both<strong>in</strong>a E. and Hanadi Z. (2012). “Trust region<br />

algorithm for multi-objective transportation, assignment, and<br />

transshipment problems”, Life Science Journal, 9 (3): Page 1765 -177<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 26


TRIBOLOGY OF HIGH SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS - TRIBOLOGICAL ISSUES<br />

K. Sathyan<br />

Tribology of High Speed Mov<strong>in</strong>g Mechanical Systems for Spacecrafts - Tribological Issues<br />

K. Sathyan*<br />

E-mail: krishnan.sathyan@gmail.com<br />

* Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Pr<strong>in</strong>ce Mohammed B<strong>in</strong> Fahd University, Po Box:1664, Al-Khobar- 31952, KSA<br />

Tel.: +966 38498532; +966 505181702<br />

ABSTRACT<br />

Spacecraft regardless of size, type and purpose, usually conta<strong>in</strong>s a number of mov<strong>in</strong>g mechanical systems (MMS). Cont<strong>in</strong>ual per<strong>form</strong>ance of these<br />

systems only can guarantee the <strong>in</strong>tended functions that are essential for successful operation of the spacecraft. Most of the problems encountered with<br />

these mov<strong>in</strong>g systems are perta<strong>in</strong> to tribology. Space tribology is a subset of the lubrication field deal<strong>in</strong>g with the reliable per<strong>form</strong>ance of satellites and<br />

spacecraft <strong>in</strong>clud<strong>in</strong>g the space station. Lubrication of space system is still a challeng<strong>in</strong>g task before the tribologists due to the unique factors<br />

encountered <strong>in</strong> space such as near zero gravity, hard vacuum, weight restriction and attention free operation. Ever s<strong>in</strong>ce the space exploration, a<br />

number of mission failures reported emanate from bear<strong>in</strong>g system malfunction. A bear<strong>in</strong>g <strong>in</strong> a mov<strong>in</strong>g mechanical assembly can fail due to multiple<br />

reasons such as degradation of lubricant, loss of lubricant from the work<strong>in</strong>g zone by surface migration and evaporation, and reta<strong>in</strong>er <strong>in</strong>stability. Unlike<br />

yester years, space missions of today are planned to last for 30 years or more. To achieve such long-term missions, tribologically efficient mov<strong>in</strong>g<br />

mechanical systems are essential. This review briefs space tribology and tribological requirements of spacecraft mov<strong>in</strong>g mechanical systems.<br />

Keywords: spacecraft, momentum wheel, tribology, lubrication, attitude control<br />

INTRODUCTION<br />

More than 50 years have passed s<strong>in</strong>ce the beg<strong>in</strong>n<strong>in</strong>g of the space<br />

exploration. Still, malfunction<strong>in</strong>g of spacecraft components have been<br />

observed throughout the world. In many cases, these component<br />

failures lead to partial or total failure of the spacecraft mission. Dur<strong>in</strong>g<br />

these years, tremendous growth has been observed <strong>in</strong> the electrical,<br />

electronic and electromechanical components through discipl<strong>in</strong>ed<br />

design, standardization and quality assurance practices. This progress<br />

has helped <strong>in</strong> the m<strong>in</strong>iaturization and hybridization of spacecraft<br />

systems and the development of cost effective spacecraft missions.<br />

However, notwithstand<strong>in</strong>g the progresses made <strong>in</strong> the mechanical<br />

eng<strong>in</strong>eer<strong>in</strong>g, spacecraft designers are still striv<strong>in</strong>g to develop efficient<br />

mechanical systems that can cope with long-term requirements. Dur<strong>in</strong>g<br />

mid-1960’s mission life requirements were 3 to 5 years and by the mid-<br />

1970’s life requirements of 7 to 10 years were common [1]. But today,<br />

attention is focused on the development of subsystems for spacecrafts<br />

with longer mission duration of more than 30 years, a typical case<br />

be<strong>in</strong>g the space exploration <strong>in</strong>itiative (SEI) of NASA [2]. These<br />

missions will require mechanical systems that operate for 30 years.<br />

These long life requirements br<strong>in</strong>g a lot of challenges with them,<br />

especially <strong>in</strong> the area of mov<strong>in</strong>g mechanical systems.<br />

Spacecraft <strong>in</strong>corporate a wide variety of mov<strong>in</strong>g mechanical systems<br />

which must operate with total reliability <strong>in</strong> space environment. These<br />

mov<strong>in</strong>g systems can be broadly classified as high speed systems which<br />

<strong>in</strong>clude gyroscopes, momentum/reaction wheels etc., and low speed<br />

systems that encompass the h<strong>in</strong>ges, scanners, solar array drive etc. The<br />

mov<strong>in</strong>g mechanical systems conta<strong>in</strong> slid<strong>in</strong>g or roll<strong>in</strong>g contacts that are<br />

required to operate with least frictional power loss, <strong>in</strong> view of limited<br />

power availability on board the spacecraft. Each of these systems is<br />

designed to per<strong>form</strong> some def<strong>in</strong>ite task. For example, gyroscopes are<br />

used <strong>in</strong> the attitude control system (ACS) as an <strong>in</strong>ertial sensor to detect<br />

the attitude error of the spacecraft with respect to a reference object<br />

(stars, sun, earth etc.). Similarly, momentum/reaction wheels are used<br />

<strong>in</strong> the attitude control system as actuators to correct the attitude error<br />

and ma<strong>in</strong>ta<strong>in</strong> the spacecraft attitude. Thus attitude control can be<br />

def<strong>in</strong>ed as the process of achiev<strong>in</strong>g and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a desired<br />

orientation of the spacecraft. This is vital <strong>in</strong> achiev<strong>in</strong>g the mission<br />

objectives. S<strong>in</strong>ce control and ma<strong>in</strong>tenance of spacecraft attitude is a<br />

cont<strong>in</strong>uous process, various elements of the attitude control system<br />

have to work cont<strong>in</strong>uously from the beg<strong>in</strong>n<strong>in</strong>g to end of the mission.<br />

Moreover, high speed mechanical systems <strong>in</strong>volved <strong>in</strong> this process are<br />

prone to degradation failure. In these systems, failures are mostly<br />

related to tribology. A number of mission failures are reported due to<br />

the tribological malfunction of attitude control systems. Skylab and<br />

Insat-1D are typical examples [3-5] and the most recent is the bear<strong>in</strong>g<br />

failure <strong>in</strong> the control moment gyro (CMG) of the <strong>in</strong>ternational space<br />

station on July 2002 [6]. Therefore, the development of high speed<br />

attitude control systems for the future requires advancement of<br />

tribology technology. Hence, by highlight<strong>in</strong>g the tribological issues of<br />

spacecraft attitude control systems here, possible tribological solutions<br />

for the development of attitude control systems for future long-term<br />

applications are elaborated.<br />

SPACE TRIBOLOGY –OVERVIEW<br />

Tribology is def<strong>in</strong>ed as the science and technology of <strong>in</strong>teract<strong>in</strong>g<br />

surfaces <strong>in</strong> relative motion, or <strong>in</strong> other words, it is the study of friction,<br />

wear and lubrication. It is a truly <strong>in</strong>terdiscipl<strong>in</strong>ary field that<br />

encompasses material science, chemistry, physics, mechanics,<br />

thermodynamics etc. The word “tribology” was <strong>in</strong>troduced <strong>in</strong> 1966 by<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 27


TRIBOLOGY OF HIGH SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS - TRIBOLOGICAL ISSUES<br />

K. Sathyan<br />

“Department of Education and Science Report” from England [7].<br />

However, man’s <strong>in</strong>terest <strong>in</strong> the constituent parts of tribology is older<br />

than recorded history. It is evident from the <strong>in</strong>vention of the wheel that<br />

reduced friction <strong>in</strong> translational motion. It is estimated that<br />

approximately one-third of the world’s energy resources utilization<br />

appear as friction <strong>in</strong> one <strong>form</strong> or another [8]. These frictional losses <strong>in</strong><br />

terms of monetary losses to <strong>in</strong>dustries are enormous. With the evolution<br />

of this <strong>in</strong>terdiscipl<strong>in</strong>ary branch of science, a systematic approach for the<br />

study of friction and methods to reduce its harmful effect on <strong>in</strong>teract<strong>in</strong>g<br />

surfaces are <strong>form</strong>ulated. This has helped the current world to save<br />

considerable energy and thus money through good tribological design<br />

practices.<br />

Space tribology is a subset of the lubrication field deal<strong>in</strong>g with the<br />

reliable per<strong>form</strong>ance of satellites and spacecraft (<strong>in</strong>clud<strong>in</strong>g the space<br />

station) [9]. In a spacecraft, there are a number of mechanisms that<br />

conta<strong>in</strong> mach<strong>in</strong>e elements hav<strong>in</strong>g <strong>in</strong>teract<strong>in</strong>g surfaces. The friction <strong>in</strong><br />

these elements causes excessive wear and tear of the components which<br />

reduce the life and per<strong>form</strong>ance of the spacecraft. One of the major<br />

challenges a design eng<strong>in</strong>eer of spacecraft faces is the design of<br />

mechanical systems which consumes lowest electrical power. This<br />

amounts to a system design with lowest mechanical losses. This is<br />

possible only by reduc<strong>in</strong>g the frictional losses at the <strong>in</strong>teract<strong>in</strong>g surfaces<br />

through tribologically efficient design. S<strong>in</strong>ce the availability of power<br />

<strong>in</strong> a spacecraft is limited, its optimum usage will help <strong>in</strong> mak<strong>in</strong>g the<br />

mission successful. The factor that complicates the space tribology is<br />

the space environment. Unlike terrestrial tribology, the presence of<br />

vacuum and extreme temperatures poses daunt<strong>in</strong>g challenges to the<br />

tribologists. The first challenge is to develop lubricants that can<br />

withstand these extreme conditions. Through concerted research over<br />

the years, a number of lubricants have been developed which have<br />

proved their suitability for extreme operat<strong>in</strong>g environments. The second<br />

challenge is to develop efficient lubrication technique to ensure the<br />

required per<strong>form</strong>ance and desired life. Through rigorous research,<br />

space tribologists have developed various lubrication techniques for<br />

different spacecraft mechanical systems. In spite of the tremendous<br />

progress made <strong>in</strong> the area of lubrication over these years, failure of<br />

spacecraft systems still persists. This shows that there is a considerable<br />

gap between the demand and availability lubrication technology.<br />

Figure 1 shows the growth of space technology, associated tribology<br />

demand and the solutions derived to cope with the demand. It is seen<br />

that the space technology over these years is steadily grow<strong>in</strong>g to fulfill<br />

the needs of the scientific and bus<strong>in</strong>ess world. At the beg<strong>in</strong>n<strong>in</strong>g of the<br />

space exploration, spacecrafts were designed ma<strong>in</strong>ly to study the space<br />

environments and most of these spacecrafts were designed for shorter<br />

life. Later, <strong>in</strong> 1960’s with the advent of communication satellites<br />

(Telstar <strong>in</strong> July 1962 [10]), the mission life became critical. This long<br />

life requirement demanded long last<strong>in</strong>g spacecraft systems. Dur<strong>in</strong>g<br />

these periods, tribology was <strong>in</strong> its <strong>in</strong>fant stage or even not known or<br />

developed. Consequently, the factor which decided the life of<br />

components of the spacecrafts is mostly mechanical failure ow<strong>in</strong>g to<br />

tribological malfunction. The demand for long last<strong>in</strong>g tribo-systems<br />

has grown up as the complexity of the spacecraft <strong>in</strong>creased. Today, it<br />

has reached a state where missions are planned to last for decades, a<br />

typical example be<strong>in</strong>g the <strong>in</strong>ternational space station (ISS). However,<br />

the frequent failures of mov<strong>in</strong>g mechanical systems <strong>in</strong> spacecrafts<br />

reveal that the growth of space tribology is lagg<strong>in</strong>g beh<strong>in</strong>d the demand.<br />

It is imperative to carry out concentrated research and development <strong>in</strong><br />

space tribology.<br />

Fig.1. Growth of spacecraft technology, tribology demand and<br />

solutions<br />

The prime objective of the study of tribology is to understand the<br />

causes of friction and the means to reduce it. The effect of friction can<br />

by reduced by separat<strong>in</strong>g the surfaces <strong>in</strong> relative motion by <strong>in</strong>terpos<strong>in</strong>g<br />

a third body that has a low resistance to shear so that the two surfaces<br />

do not susta<strong>in</strong> serious damage or wear. This third body is called<br />

lubricant and it can be a liquid, solid or gas. In a spacecraft there are<br />

mechanical systems that are lubricated either by liquid lubricants or<br />

solid lubricants. Most of the high speed systems such as gyroscopes,<br />

momentum/reaction wheels use liquid lubricants. All these systems are<br />

sealed to protect them from the space vacuum. Most low-speed systems<br />

like solar array drives, sensors, and antenna scanners use solid or semi<br />

solid lubricants. S<strong>in</strong>ce these systems are exposed to hard vacuum,<br />

liquid lubricants are not suitable due to their proneness to higher<br />

evaporation. In addition, the lubricants used <strong>in</strong> these systems must<br />

withstand exposure to radiation, electrons, protons etc. The nature and<br />

quantity of this flux is dependent upon the orbit [11, 12]. These<br />

requirements favor the use of solid lubricants.<br />

Solid Lubrication<br />

The solid lubricants used <strong>in</strong> spacecraft mechanisms come under three<br />

classes. These are soft metals, lamellar solids and polymers. Soft metals<br />

<strong>in</strong>clude gold (Au), silver (Ag), and <strong>in</strong>dium (In). Lamellar solids <strong>in</strong>clude<br />

transition metal dichalcogenides, like molybdenum disulphide (MoS 2 )<br />

and tungsten disulphide (WS 2 ). These compounds have a layered<br />

structure and low friction properties (typically


TRIBOLOGY OF HIGH SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS - TRIBOLOGICAL ISSUES<br />

K. Sathyan<br />

<strong>in</strong> high friction. However, this method is still used <strong>in</strong> some components<br />

where friction is not so critical such as <strong>in</strong> clamps, release mechanisms<br />

etc. Vacuum deposition technique is used to give a th<strong>in</strong> uni<strong>form</strong> coat<strong>in</strong>g<br />

of lubricant to bear<strong>in</strong>gs used <strong>in</strong> precision mechanisms such as solar<br />

array drive, slip r<strong>in</strong>gs and brushes, scanner bear<strong>in</strong>gs etc. In this process,<br />

the film thickness can be accurately controlled. The film thickness is<br />

dependent on the surface roughness and cleanl<strong>in</strong>ess of the substrate.<br />

Therefore, before the coat<strong>in</strong>g process, the bear<strong>in</strong>g surfaces are cleaned<br />

by the sputter<strong>in</strong>g technique. Usually, the thickness of the lubricant film<br />

will be less than a micron. Sputter<strong>in</strong>g and ion-beam techniques are used<br />

to give uni<strong>form</strong> coat<strong>in</strong>g. This method is widely used to plate MoS 2 and<br />

lead (Pb) ion on precision bear<strong>in</strong>gs that are exposed to hard vacuum. Of<br />

these two commonly used solid lubricants (MoS 2 and Pb [11, 13-15]),<br />

the lead ion has limited life <strong>in</strong> the presence of air due to the <strong>form</strong>ation<br />

of oxides. Therefore the spacecraft systems with lead ion plated<br />

bear<strong>in</strong>gs are to be protected with <strong>in</strong>ert gas dur<strong>in</strong>g test<strong>in</strong>g phase. In the<br />

space environment, these films show extremely low friction. Gold and<br />

silver are plated to tribological surfaces function as electrical<br />

conductors such as the slip r<strong>in</strong>gs and brushes <strong>in</strong> a solar array drive<br />

mechanism.<br />

Liquid Lubrication<br />

As mentioned above, most of the high speed systems used <strong>in</strong> spacecraft<br />

are lubricated by liquid lubricants. The primary advantage obta<strong>in</strong>ed<br />

with liquid lubricants is that the bear<strong>in</strong>g surfaces separated by the<br />

hydrodynamic film of the lubricant, have virtually no wear, and thereby<br />

have potentially <strong>in</strong>f<strong>in</strong>ite lives. Depend<strong>in</strong>g upon the thickness of<br />

lubricant film present between the <strong>in</strong>teract<strong>in</strong>g surfaces, four well<br />

def<strong>in</strong>ed lubrication regimes are identified, such as hydrodynamic,<br />

elastohydrodynamic (EHD), mixed and boundary lubrication regimes<br />

[9,16-19]. These four regimes are clearly understood from the<br />

Stribeck/Hersey curve (Stribeck per<strong>form</strong>ed a series of <strong>journal</strong> bear<strong>in</strong>g<br />

experiments <strong>in</strong> the early 1900's [20]. He measured the coefficient of<br />

friction as a function of load, speed, and temperature. Later, Hersey<br />

per<strong>form</strong>ed similar experiments and devised a plott<strong>in</strong>g <strong>form</strong>at based on a<br />

dimensionless parameter, ZN/P [21].), which shows the coefficient of<br />

friction as a function of dimensionless bear<strong>in</strong>g parameter (ZN/P), where<br />

Z is the lubricant viscosity, N is the velocity and P is the bear<strong>in</strong>g load.<br />

These regimes are depicted <strong>in</strong> Figure 2 [18]. A space bear<strong>in</strong>g with<br />

liquid lubrication undergoes the last three regimes namely EHD, mixed<br />

and boundary before it fails due to lubricant starvation. The<br />

characteristics of these regimes are briefly presented here.<br />

Hydrodynamic lubrication: In hydrodynamic lubrication, the thickness<br />

of the lubricant film is sufficiently thick to separate the <strong>in</strong>teract<strong>in</strong>g<br />

surfaces. This will occur when the lubricant viscosity and or speed are<br />

sufficiently high and the load on the bear<strong>in</strong>g is low. The film thickness<br />

will be greater than 0.25 µm and no metal to metal contact occurs. This<br />

k<strong>in</strong>d of lubrication is not suitable for space bear<strong>in</strong>g because it is not<br />

possible to store and supply such a high quantity of lubricant required<br />

for longer periods.<br />

Fig.2. Stribeck / Hersey curve [18]<br />

Moreover, the liquid lubricants are prone to contam<strong>in</strong>ation by<br />

evaporation, and this will have harmful effect on other components. For<br />

this reason, the space bear<strong>in</strong>gs are lubricated by m<strong>in</strong>imum quantity and<br />

the bear<strong>in</strong>g systems are hermetically sealed.<br />

Elastohydrodynamic lubrication (EHL): In EHL [19,22-24] the bear<strong>in</strong>g<br />

pressure <strong>in</strong>creases to a level where the lubricant viscosity provides<br />

higher shear strength than the <strong>in</strong>teract<strong>in</strong>g metal surfaces. Here, the<br />

lubricant is carried <strong>in</strong>to the convergent zone approach<strong>in</strong>g the contact<br />

area. As a result, the metal surfaces de<strong>form</strong> elastically <strong>in</strong> preference to<br />

the highly pressurized lubricant, which <strong>in</strong>creases the contact area<br />

(Figure 3). In other words, the load is carried by the elastic de<strong>form</strong>ation<br />

of the bear<strong>in</strong>g material together with the hydrodynamic action of the<br />

lubricant. A bear<strong>in</strong>g operat<strong>in</strong>g <strong>in</strong> EHD region shows an <strong>in</strong>def<strong>in</strong>ite life<br />

with least friction torque (Figure 2). The most <strong>in</strong>terest<strong>in</strong>g practical<br />

aspect of the EHL theory is the determ<strong>in</strong>ation of lubricant film<br />

thickness which separates the ball and the races. The generally used<br />

equation for calculat<strong>in</strong>g the film thickness is the one developed by<br />

Hamrock and Dowson [19]:<br />

0.68<br />

0.49 -0.073 -0.68k<br />

H<br />

m<strong>in</strong><br />

= 3.63 U<br />

s<br />

G W 1 - e<br />

[1]<br />

and<br />

H = m<strong>in</strong><br />

h<br />

m<strong>in</strong><br />

R x<br />

<br />

, [2]<br />

where, H m<strong>in</strong> is dimensionless m<strong>in</strong>imum film thickness, U s is the<br />

dimensionless speed parameter, G is the dimensionless material<br />

parameter, W is the dimensionless load parameter, k is the ellipticity<br />

parameter, h m<strong>in</strong> is the m<strong>in</strong>imum film thickness and R x is the effective<br />

radius.<br />

The effectiveness of EHL is described by the film parameter or λ ratio,<br />

which is the ratio of central film thickness at the hertz contact zone to<br />

the r.m.s surface f<strong>in</strong>ish of the roll<strong>in</strong>g element surface;<br />

<br />

h m<strong>in</strong><br />

=<br />

1<br />

[3]<br />

2 2 2<br />

s r + s<br />

b<br />

<br />

<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 29


TRIBOLOGY OF HIGH SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS - TRIBOLOGICAL ISSUES<br />

K. Sathyan<br />

where, s r and s b are the r.m.s surface f<strong>in</strong>ish of races and balls. The EHL<br />

regime is characterized by λ ratio between 3 and 10 which corresponds<br />

to a film thickness between 0.1 and 1 μm. It has been po<strong>in</strong>ted out that a<br />

full film can be obta<strong>in</strong>ed with no asperity contact only when λ > 3. If λ<br />

< 3, it will lead to mixed lubrication with some asperity contacts [22].<br />

The concentrated research on EHL resulted <strong>in</strong> the identification of three<br />

subdivisions <strong>in</strong> EHL, namely starved EHL, parched EHL and<br />

transient/non - steady state EHL [25]. In starved EHL, the pressure<br />

build-up at the <strong>in</strong>let contact region is low due to restricted oil supply.<br />

As a result the lubricant film will be th<strong>in</strong>ner than calculated by EHL<br />

theory [22]. In parched EHL, the lubricant film is so th<strong>in</strong> that they are<br />

immobile outside the contact zone [26, 27] and this regime is<br />

particularly important for spacecraft systems bear<strong>in</strong>gs operat<strong>in</strong>g at high<br />

speeds. In the transient/non-steady state EHL, the load, speed and<br />

contact geometry are not constant with time. The theoretical behavior<br />

of this regime <strong>in</strong> po<strong>in</strong>t contact bear<strong>in</strong>gs is not well understood [25] but<br />

it is studied experimentally by Sugimura et al. [23].<br />

Fig.3. Elastohydrodynamic lubrication<br />

Mixed lubrication: If the bear<strong>in</strong>g pressure <strong>in</strong> an elastohydrodynamically<br />

lubricated bear<strong>in</strong>g is too high or the runn<strong>in</strong>g speed is too low, the<br />

lubricant film will be penetrated. The asperities of the bear<strong>in</strong>g surfaces<br />

will come <strong>in</strong>to contact and partial lubrication results. The behavior of<br />

the conjunction <strong>in</strong> a mixed lubrication regime is governed by a<br />

comb<strong>in</strong>ation of boundary and fluid film effects [24]. The value of λ <strong>in</strong><br />

this case is between 1 and 5. In spacecraft bear<strong>in</strong>gs mixed lubrication<br />

will occur when there is <strong>in</strong>sufficient supply (starvation) of lubricant to<br />

the work<strong>in</strong>g zone.<br />

Boundary lubrication: In boundary lubrication, the <strong>in</strong>teract<strong>in</strong>g surfaces<br />

are not separated by the lubricant film. The lubricant film thickness is<br />

so narrow that direct metal to metal contact occurs. The coefficient of<br />

friction is high (0.15) and the resultant heat generation also high. The<br />

frictional characteristics are determ<strong>in</strong>ed by the properties of the<br />

<strong>in</strong>teract<strong>in</strong>g surfaces and the lubricant film present. The high pressure<br />

and temperature at the contact surfaces causes the <strong>form</strong>ation of a<br />

reactive film (called boundary film) which is capable of support<strong>in</strong>g the<br />

load without major wear or breakdown. To impart boundary lubrication<br />

properties, most space lubricant are processed with boundary additives.<br />

The commonly used <strong>in</strong>organic additives are compounds of chlor<strong>in</strong>e,<br />

sulfur, phosphorus and iod<strong>in</strong>e [24]. The value of film parameter (λ) at<br />

boundary lubrication is less than 1 and the lubricant film thickness is<br />

less than 2.5 nm. The high speed space mechanism bear<strong>in</strong>gs are not<br />

preferred to operate <strong>in</strong> the boundary regime due to high friction.<br />

PROPERTIES OF LIQUID LUBRICANTS<br />

S<strong>in</strong>ce no s<strong>in</strong>gle lubricant can meet the often conflict<strong>in</strong>g requirements of<br />

various applications for liquids, hundreds of specialty lubricants have<br />

been developed for aerospace applications [28]. There are a number of<br />

factors to be considered while select<strong>in</strong>g a lubricant for space<br />

application such as operat<strong>in</strong>g temperature range, work<strong>in</strong>g environment,<br />

load on the bear<strong>in</strong>gs, speed of operation, bear<strong>in</strong>g frictional torque etc.<br />

A space lubricant should have the follow<strong>in</strong>g essential properties:<br />

Viscosity <strong>in</strong>dex: S<strong>in</strong>ce the system has to work over a wide temperature<br />

range (typically between 15 and 85 °C) the change <strong>in</strong> viscosity with<br />

temperature should be the m<strong>in</strong>imum to ma<strong>in</strong>ta<strong>in</strong> the EHD film. A space<br />

bear<strong>in</strong>g is required to work with steady friction torque; otherwise the<br />

torque noise will act as a disturbance torque on the spacecraft.<br />

Therefore to ma<strong>in</strong>ta<strong>in</strong> the viscous friction of the bear<strong>in</strong>g constant at the<br />

work<strong>in</strong>g temperature range, high viscosity <strong>in</strong>dex lubricant is to be<br />

selected.<br />

Vapor pressure: The volatilization of lubricant contam<strong>in</strong>ates the system<br />

and may have harmful effects; therefore the vapor pressure should be<br />

low <strong>in</strong> order to m<strong>in</strong>imize losses by evaporation and to limit the<br />

pollution due to degass<strong>in</strong>g. Figure 4 [25] shows the relative evaporation<br />

rates of various aerospace lubricants.<br />

Pressure–viscosity coefficient (α): The pressure-viscosity coefficient is<br />

important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the EHD film thickness at the ball-race<br />

contact <strong>in</strong>let. It is observed that the fluid viscosity is an exponential<br />

function of pressure such that between the contact<strong>in</strong>g surfaces <strong>in</strong> a<br />

loaded roll<strong>in</strong>g bear<strong>in</strong>g assembly, viscosity is likely to be 10,000 times<br />

its base value at zero pressure [29]. Also, from EHL theory, the<br />

lubricant with the largest α value should yield the thickest film at room<br />

temperature [25]. S<strong>in</strong>ce the bear<strong>in</strong>gs will subject to severe loads dur<strong>in</strong>g<br />

the launch phase of the spacecraft, lubricants with high α values are to<br />

be selected.<br />

Creep: All liquid lubricants have a tendency to creep or migrate over<br />

bear<strong>in</strong>g surfaces. It has previously been demonstrated by Fote et al. [30,<br />

31] that small temperature gradients cause a rapid and <strong>complete</strong><br />

migration of oil films toward the regions of lower temperature. The<br />

migration was <strong>in</strong>duced by capillary forces, temperature gradients and<br />

gravity. The creep is <strong>in</strong>versely related to lubricant’s surface tension,<br />

i.e., if the lubricant surface tension is low, there is more chance of its<br />

migrat<strong>in</strong>g from the work<strong>in</strong>g zone of the bear<strong>in</strong>g. Hence, lubricants with<br />

high surface tension are selected for space application.<br />

Fig.4. Evaporation rates of various aerospace liquid lubricants [25]<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 30


TRIBOLOGY OF HIGH SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS - TRIBOLOGICAL ISSUES<br />

K. Sathyan<br />

There are a number of liquid lubricants that have been used <strong>in</strong> high<br />

speed mov<strong>in</strong>g mechanical systems. These lubricants fall under different<br />

classes based on their chemical structure such as m<strong>in</strong>eral oils, silicon<br />

fluids, esters, synthetic hydrocarbons, perfluoropolyethers (PFPE) and<br />

silahydrocarbons.<br />

Table 1 [32] shows the property data of some of these lubricants.<br />

M<strong>in</strong>eral oils are natural hydrocarbons with a wide range of molecular<br />

weights. The paraff<strong>in</strong>ic base oils are commonly used for space<br />

applications. These are available <strong>in</strong> a wide viscosity ranges, for<br />

example SRG-40 and SRG-60. Silicon lubricants were used <strong>in</strong> the early<br />

spacecrafts. Most of this oil has a very low vapor pressure and excellent<br />

low temperature properties. But it degrades quickly under boundary<br />

lubrication conditions [33], thus its application is discont<strong>in</strong>ued <strong>in</strong> many<br />

apace systems. Esters are <strong>in</strong>herently good boundary lubricants and are<br />

available <strong>in</strong> a wide range of viscosities. Diesters and triesters are the<br />

commonly used lubricants. A series of esters are marketed by Nye<br />

Lubricants namely UC 4, UC 7 and UC 9 . The ISOFLEX PDP65, diester<br />

oil produced by Kluber Lubrication is used as a momentum wheel<br />

lubricant. Synthetic hydrocarbons are of two groups, polyalphaolef<strong>in</strong>s<br />

(PAO) and multiply alkylated cyclopentanes (MACs). The PAO is<br />

made by oligomerization of l<strong>in</strong>ear α-olef<strong>in</strong>s hav<strong>in</strong>g six or more carbon<br />

atoms, for example: Nye 186A, 3001A. MACs are synthesized by<br />

react<strong>in</strong>g cyclopentadiene with various alcohols <strong>in</strong> the presence of a<br />

strong base [33]. The products are hydrogenated to produce the f<strong>in</strong>al<br />

products, which is a mixture of di-, tri-, tetra- or penta- alkylated<br />

cyclopentanes [9,25]. These lubricants are known as Pennzane ® and the<br />

Table.1. Properties of commonly used space lubricants [32]<br />

These are high density lubricants, and because of this property, yield<br />

EHD film thickness twice that of other lubricant hav<strong>in</strong>g the same<br />

k<strong>in</strong>ematic viscosity [25,35]. However, it has been reported that<br />

viscosity loss, both temporary and permanent, occurred under EHL<br />

conditions due to high contact pressure [34]. Silahydrocarbons are<br />

relatively new class of lubricant with great potential for use <strong>in</strong> space<br />

mechanisms. They are unimolecular species consist<strong>in</strong>g of silicon,<br />

carbon and hydrogen and posses unique tribological properties. These<br />

are available as tri-, tetra- and penta- silahydrocarbons based on the<br />

number of silicon atoms present <strong>in</strong> their molecules. Silahydrocarbons<br />

are compatible with conventional lubricant additives.<br />

TRIBOLOGICAL ASPECTS OF MMS<br />

In this section, the tribological aspects of high speed MMS are<br />

reviewed. As mentioned previously, the high speed systems <strong>form</strong> part<br />

of the attitude control system (ACS) of a spacecraft. Most spacecrafts<br />

use momentum wheels, reaction wheels and control moment gyros for<br />

the attitude control process. Momentum/reaction wheels are spacecraft<br />

actuators used for control and stabilization of spacecraft attitude to the<br />

required level. A momentum wheel mounted <strong>in</strong> gimbals is known as<br />

control moment gyro (CMG). These are momentum exchange device<br />

that works by the pr<strong>in</strong>ciple of conservation of angular momentum.<br />

Conservation of angular momentum states that the angular momentum<br />

of a system without external torques is constant <strong>in</strong> the <strong>in</strong>ertial frame.<br />

The satellite and the momentum wheel system have an angular<br />

momentum equal to the sum of <strong>in</strong>dividual angular momentum and it is<br />

constant at all times provided there are no external disturbances on the<br />

Lubricant<br />

Properties<br />

KG 80<br />

M<strong>in</strong>eral Oils<br />

SRG 60<br />

Kluber<br />

PDP 65<br />

Esters<br />

BP 135<br />

Silico<br />

n<br />

fluids<br />

Versilub<br />

e-F 50<br />

Synthetic Hydrocarbons<br />

Nye<br />

186A<br />

(POA)<br />

Nye<br />

3001A<br />

pennzane<br />

® SHFX-<br />

2000<br />

Fombl<strong>in</strong><br />

Z-25<br />

PFPE<br />

Krytox <br />

143 AB<br />

Demnum<br />

Silahydrocarbons<br />

SiHC 1 ,<br />

Type 1<br />

SiHC 2 ,<br />

Type 2<br />

Viscosity,<br />

cSt<br />

@100 o C 9.44 15.5 16 14.6 15.75 14.6 49 10.3 15 12<br />

@ 40 o C<br />

Flash Po<strong>in</strong>t<br />

( o C)<br />

520<br />

(20 o C)<br />

77.6 73<br />

55<br />

(20 o C)<br />

52 103 127.5 108 159 85 500±25 94 79<br />

Index 101 106 235 128 146 130 137 335 113 210 170 169<br />

232 230 248 300<br />

Pour Po<strong>in</strong>t ( o C) -9 -12 -60 -45 -73 -48 -48 -55 -66 -43 -53 -50 -15<br />

Sp. Gravity<br />

( g/cc)<br />

Vapour<br />

Pressure<br />

(Torr) @100 o C<br />

Surface tension<br />

(mN/m)<br />

1x10 -6<br />

(20 o C)<br />

0.88 0.915 1.045<br />

0.85<br />

(15 o C)<br />

0.83<br />

(100 o C)<br />

0.85<br />

1.85<br />

(20 o C)<br />

10 -8 7x10 -4 10 -6 5x10 -8 2.4x10 -7 1.4x10 -10 1.3x10 -<br />

30 30 25 18.5<br />

8<br />

1.89<br />

1.5x10 -<br />

4 10 -5<br />

two types which are currently <strong>in</strong> use are SHF X1000 and SHF X 2000.<br />

The perfluoropolyether lubricants have been <strong>in</strong> use for over 30 years.<br />

This is a well-known ball bear<strong>in</strong>g lubricant for the <strong>in</strong>ternational space<br />

station [34]. These are made by polymerization of perfluor<strong>in</strong>ated<br />

monomers. There a number of perfluoropolyether lubricants available<br />

for space applications such as Krytox , Fombl<strong>in</strong> , Demnum etc.<br />

satellite. The torque produced by chang<strong>in</strong>g the angular momentum of<br />

the wheel is used to turn the satellite to the required direction. S<strong>in</strong>ce the<br />

<strong>in</strong>ertia of the satellite is large compared to that of the momentum<br />

wheels, a very precise control of the satellite orientation is possible<br />

with momentum wheels [32]. Typically, a momentum wheel consists of<br />

a flywheel which is driven by an electric motor (generally, a brushless<br />

dc motor) as shown <strong>in</strong> Figure 5 [36].<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 31


TRIBOLOGY OF HIGH SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS - TRIBOLOGICAL ISSUES<br />

K. Sathyan<br />

Its precise rotation about a fixed axis is ensured by mount<strong>in</strong>g it over a<br />

bear<strong>in</strong>g unit consist<strong>in</strong>g of a pair of high precision angular contact ball<br />

bear<strong>in</strong>gs. The normal operat<strong>in</strong>g speeds of momentum wheels are <strong>in</strong> the<br />

range of 4000–6000 rpm. The flywheel and the rotor of the motor are<br />

mounted on the bear<strong>in</strong>g unit hous<strong>in</strong>g. The speed of the fly wheel is<br />

controlled through a drive electronics circuit. To protect from the<br />

outside environment, all these components are enclosed <strong>in</strong> a<br />

hermetically sealed metal cas<strong>in</strong>g purged with an <strong>in</strong>ert gas. Usually the<br />

<strong>in</strong>ternal pressure is less than atmospheric, typically 375torr [32, 36].<br />

Fig.5. Momentum wheel assembly [36]<br />

The bear<strong>in</strong>g unit is the most critical component of a<br />

momentum/reaction wheels. The life and per<strong>form</strong>ance of the wheel<br />

greatly depend on the bear<strong>in</strong>g unit. Unlike electronic circuits, it is not<br />

possible to design a momentum/reaction wheel with redundant bear<strong>in</strong>g<br />

units. Therefore, utmost care is taken <strong>in</strong> the design, manufactur<strong>in</strong>g and<br />

process<strong>in</strong>g of bear<strong>in</strong>g units. There are two different designs of bear<strong>in</strong>g<br />

units available such as rotat<strong>in</strong>g shaft design and rotat<strong>in</strong>g hous<strong>in</strong>g<br />

design. Figure 6 [37] shows a typical rotat<strong>in</strong>g hous<strong>in</strong>g type bear<strong>in</strong>g unit<br />

used <strong>in</strong> a momentum wheel [37]. The bear<strong>in</strong>g unit is generally made of<br />

high quality steel (AISI 440C) to ensure high strength and dimensional<br />

stability. Usually the bear<strong>in</strong>gs and the bear<strong>in</strong>g unit components are<br />

made of the similar material to elim<strong>in</strong>ate the effects of thermal stresses,<br />

because <strong>in</strong> service the wheels are subjected to a wide range of<br />

temperatures.<br />

Fig.6. Momentum wheel bear<strong>in</strong>g unit [37]<br />

The bear<strong>in</strong>gs typically used <strong>in</strong> a momentum wheel are of light series<br />

high precision angular contact ball bear<strong>in</strong>gs (ABEC - 9) with nonmetallic<br />

reta<strong>in</strong>ers (cages). Momentum wheels with reta<strong>in</strong>erless ball<br />

bear<strong>in</strong>gs are also now available [38]. The size of the bear<strong>in</strong>gs is<br />

determ<strong>in</strong>ed based on the angular momentum required. Typically, for a<br />

60 N.m.s wheel operat<strong>in</strong>g <strong>in</strong> a speed range 3000–6000 rpm, bear<strong>in</strong>g of<br />

20 mm bore is common (104 size). Cotton based phenolic reta<strong>in</strong>ers are<br />

commonly used <strong>in</strong> these bear<strong>in</strong>gs. These reta<strong>in</strong>ers act as a primary<br />

source of lubricant when it is impregnated with the lubricant. A<br />

phenolic reta<strong>in</strong>er for 104 size bear<strong>in</strong>g, when properly impregnated and<br />

soaked for 60 days <strong>in</strong> oil, holds approximately 90mg of oil <strong>in</strong> its body.<br />

Dur<strong>in</strong>g impregnation and soak<strong>in</strong>g, the oil penetrates <strong>in</strong>to the cotton<br />

layer and is later available for lubrication. Also the metal parts of the<br />

bear<strong>in</strong>g can hold approximately 15–20 mg of oil after it is centrifuged<br />

to the operat<strong>in</strong>g speed. Hence, altogether, about 100 mg of oil per<br />

bear<strong>in</strong>g is available <strong>in</strong>itially. With this <strong>in</strong>itial lubrication, the bear<strong>in</strong>gs<br />

can per<strong>form</strong> up to 3–4 years normally, provided the reta<strong>in</strong>er is runn<strong>in</strong>g<br />

stable [32]. However, with reta<strong>in</strong>erless bear<strong>in</strong>gs (full complement<br />

bear<strong>in</strong>g), the reta<strong>in</strong>er oil is absent and the bear<strong>in</strong>g surface oil is about<br />

20 mg (addition of more balls) and the author have experience up to 13<br />

months at 5000 rpm with no extra oil added. However, the current life<br />

requirement for the wheels and other high speed space systems are<br />

more than 20 years or even up to 30 years [39]. Accord<strong>in</strong>g to Auer [40,<br />

41], ‘‘the ball bear<strong>in</strong>g lubrication rema<strong>in</strong>s the pr<strong>in</strong>cipal life-limit<strong>in</strong>g<br />

problem on momentum and reaction wheels’’. This tells us about the<br />

need for the development of efficient supplementary lubrication<br />

systems to achieve the future long-term space missions. Moreover,<br />

s<strong>in</strong>ce it is not possible to service the spacecrafts once it is launched, <strong>in</strong>situ,<br />

remote lubrication systems are employed <strong>in</strong> momentum/reaction<br />

wheels. Also, the bear<strong>in</strong>gs are required to operate with the m<strong>in</strong>imum<br />

frictional power loss, therefore it is preferred to operate <strong>in</strong> the<br />

elastohydrodynamic lubrication (EHL) regime.<br />

Tribological failures of high speed MMS are related to lubricant<br />

breakdown, loss of lubricant due to evaporation and surface migration<br />

(<strong>in</strong>sufficient lubricant) and reta<strong>in</strong>er <strong>in</strong>stability. Lubricant breakdown<br />

failure occurs when the orig<strong>in</strong>al liquid lubricant is chemically changed<br />

to solid friction polymer [42]. K<strong>in</strong>gsbury [43] has shown that the rate of<br />

lubricant polymerization is determ<strong>in</strong>ed by the thickness of the EHD<br />

film - larger rate for th<strong>in</strong>ner films and negligible for thicker films. Loss<br />

of lubricant <strong>in</strong> momentum/reaction wheels occurs ma<strong>in</strong>ly due to<br />

evaporation, surface migration and centrifugal action. The work<strong>in</strong>g<br />

temperature, which is also a function of bear<strong>in</strong>g friction torque, causes<br />

the lubricant to evaporate. The oil loss by migration is <strong>in</strong>duced by<br />

temperature gradients and capillary forces. It was demonstrated that a<br />

small temperature gradient leads to the rapid and <strong>complete</strong> migration of<br />

th<strong>in</strong> oil films to the colder regions [44]. The capillary migration<br />

describes the tendency of oil to flow along surface scratches and<br />

corners and is driven by pressure gradient <strong>in</strong> the radius of curvature of<br />

the oil–vapor <strong>in</strong>terface. Reta<strong>in</strong>er <strong>in</strong>stability is the most dangerous mode<br />

of failure <strong>in</strong> momentum wheel bear<strong>in</strong>gs. It is characterized by large<br />

variation <strong>in</strong> bear<strong>in</strong>g friction torque associated with severe audible noise.<br />

Uneven cage wear, lubricant degradation and <strong>in</strong>sufficient lubrication<br />

are the prime causes for it. The reta<strong>in</strong>er <strong>in</strong>stability is related to number<br />

of factors like geometry and mass of the reta<strong>in</strong>er, operat<strong>in</strong>g speed,<br />

lubricant quantity, etc., [45-47]. Momentum/reaction wheels with<br />

reta<strong>in</strong>erless ball bear<strong>in</strong>gs will overcomes the most devastat<strong>in</strong>g problem<br />

observed <strong>in</strong> conventional bear<strong>in</strong>gs. Thus with the selection of proper<br />

lubricant and proven reta<strong>in</strong>er design, lubrication rema<strong>in</strong>s the pr<strong>in</strong>ciple<br />

life limit<strong>in</strong>g problem on high speed MMS.<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 32


TRIBOLOGY OF HIGH SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS - TRIBOLOGICAL ISSUES<br />

K. Sathyan<br />

CONCLUSION<br />

The scientific <strong>in</strong><strong>form</strong>ation provided here gives an overview of the<br />

tribological issues faced by the designers of spacecraft mechanical<br />

system. More than 50 years have now passed s<strong>in</strong>ce the launch of the<br />

first spacecraft. Also, many decades of research and development have<br />

taken place after recogniz<strong>in</strong>g tribology as a special branch of<br />

eng<strong>in</strong>eer<strong>in</strong>g. Yet, tribological failures of spacecraft systems and<br />

resultant mission failures still persist. In many high speed mov<strong>in</strong>g<br />

mechanical systems failures are occurr<strong>in</strong>g ma<strong>in</strong>ly due to <strong>in</strong>sufficient<br />

supply of lubricant. Currently, missions are planned to last for decades<br />

contrary to short missions of the past. Therefore, un<strong>in</strong>terrupted<br />

lubrication of these systems is a challeng<strong>in</strong>g task before tribologists.<br />

REFERENCES<br />

1. Zaretsky, E. V. Liquid Lubrication <strong>in</strong> Space. NASA Reference<br />

Publication-1240, July 1990.<br />

2. Fusaro, R. L. Tribology Needs for Future Space and<br />

AeronauticalSystems. NASA Technical Memorandum 104525,<br />

December 1991.<br />

3. Robertson, B., Stonek<strong>in</strong>g, E. Satellite GN&C Anomaly Trends.<br />

NASAGoddard Space Flight Centre, AAS 03-071.<br />

http://klabs.org/DEI/lessons_learned/satellite_anomaly-.br.pdf.<br />

4. Chronology of satellite failures.<br />

http://sat-nd.com/failures/<strong>in</strong>dex.html?http://sat-nd.com/failures/<br />

timel<strong>in</strong>e.html.<br />

5. K<strong>in</strong>gsbury, E. P., Hanson, R. A., Jones, W. R, Mohr, T. W.<br />

CartridgeBear<strong>in</strong>g System for Space Applications. Proc.33rd<br />

AerospaceMechanisms Symposium, NASA Conf.Publ. 209259, 1999,<br />

137-143.<br />

6. Burt, R. R., Loffi, R. W. Failure Analysis of International Space<br />

Station Control Moment Gyro. Proceed<strong>in</strong>gs, 10 th European Space<br />

Mechanisms and Tribology Symposium, 2003, 13 – 25.<br />

7. Hamrock, B. J., Schmid, S. R., Jacobson, B. O. Fundamentals of<br />

FluidFilm Lubrication. Second edition, Marcel Dekker, Inc. New<br />

York,2004.<br />

8. Moore, D. F. Pr<strong>in</strong>ciples and Applications of Tribology. Pergamon<br />

PressLtd. England, 1975.<br />

9. Jones, W. R, Jr., Janson, M. J. Space Tribology.<br />

NASA/TM--2000-209924. March, 2000.<br />

10. National Aeronautics and Space Adm<strong>in</strong>istration. Space<br />

Communications and Navigation 1958-1964; NASA SP-93; 1966.<br />

11. Hilton, M. R., Fleischauer, P. D. Application of Solid<br />

LubricationFilms <strong>in</strong> Spacecraft. Aerospace Report No. TR-92(2935)-6,<br />

1994.<br />

12. Miyoshi, K. Solid Lubrication Fundamentals and<br />

Application.NASA/TM-1998-107249/CH4, July, 1998.<br />

13. Loewenthal, S. H., Chou, R. G., Hopple, G. B., Wenger,<br />

W. L. Evaluation of ion-sputtered MoS 2 Bear<strong>in</strong>gs for Spacecraft<br />

Gimbals.Tribo. Trans., 37 (3), 505, 1994.<br />

14. Hopple, G. B., Loewenthal, S. H. Development of test<strong>in</strong>g<br />

and characterization of MoS 2 th<strong>in</strong> film bear<strong>in</strong>gs. Surf. Coat. Technol.,<br />

398,1994, 68-69.<br />

15. Jones, W. R, Jr., Jansen, M. J. Tribology for space application.<br />

Journalof Engg. Tribo., 22 (8), 2008, 997-1004.<br />

16. Zaretsky, E. V. Liquid Lubrication <strong>in</strong> Space. NASA<br />

ReferencePublication-1240, July 1990.<br />

17. Fusaro, R. L. Lubrication of Space Systems – Challenges and<br />

PotentialSolutions. NASA Technical Memorandum 105560, 1992.<br />

18. Fusaro, R. L. Prevent<strong>in</strong>g Spacecraft Failures due to<br />

Tribological Problems. NASA Technical Memorandum 210806, April<br />

2001.<br />

19. Dowson, D. Elastohydrodynamic and<br />

Micro-elastohydrodynamicLubrication. Wear, 190, 1995, 125 – 138.<br />

20. Stribeck, R. "Characteristics of Pla<strong>in</strong> and Roller Bear<strong>in</strong>gs," Zeit.<br />

V.D.I.,46, 1902.<br />

21. Hersey, M.D. ("The Laws of Lubrication of Horizontal<br />

JournalBear<strong>in</strong>gs," J. Wash. Acad. Sci, 4, 1914, 542-552.<br />

22. Hamrock, B.J, Dowson, D., Ball Bear<strong>in</strong>g Lubrication: The<br />

Lubricationof Elliptical Contacts, Wiley, New York, 1981<br />

23. Sugimura, J., Jones, W.R., Jr., and Spikes, H.A., "EHD Film<br />

Thickness <strong>in</strong> Non-Steady quite State Contacts", Trans. Of the<br />

ASME, J. ofTrib.,1998, 120, 442,<br />

24. Hamrock, B. J., Schimid, S. R., Jacobson, B. O. Fundamentals of<br />

Fluid Film Lubrication. Second edition, Marcel Dekker, Inc. New<br />

York,USA, 2004.<br />

25. Jones.W.R.Jr, Jansen.M.J. Lubrication for Space Application.<br />

NASAContractor Report-2005-213424, January 2005.<br />

26. K<strong>in</strong>gsbury, E., "Parched Elastohydrodynamic Lubrication", ASME<br />

J. ofTrib., 107, 1985, 229-233.<br />

27. Guangteng.G, Cann.P.M, Spikes.H.A. A Study of Parched<br />

Lubrication.Wear, 153, 1992, 91-105.<br />

28. Durfane, K. F., Kannel, J. W., Lowry, J. A. Space station<br />

long-termlubrication analysis, Phase—1 prelim<strong>in</strong>ary tribological<br />

survey.In:NASA-CR-184365;1990.<br />

29. Harris, T. A. Roll<strong>in</strong>g bear<strong>in</strong>g analysis; John Wiley & Sons, Inc.<br />

NewYork, 1966.<br />

30. Fote, A. A., Dormant, L. M., Feuerste<strong>in</strong>, S. Migration of<br />

hydrocarbon oil on metal substrates under the <strong>in</strong>fluence of<br />

temperature gradients,Lubr. Eng., 32, 1976, 542 -545.<br />

31. Fote, A. A., Slade, R. A., Feuerste<strong>in</strong>, S. Thermally <strong>in</strong>duced<br />

migrationof hydrocarbon oil, J. Lubr. Technol., 99, 1977, 158 - 162.<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 33


TRIBOLOGY OF HIGH SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS - TRIBOLOGICAL ISSUES<br />

K. Sathyan<br />

32. Sathyan, K, Hsu, H.Y., Lee, S.H, Gop<strong>in</strong>ath. K. Long-term<br />

lubrication of momentum wheels used <strong>in</strong> spacecrafts—An<br />

overview.TribologyInternational, 43, 2010, 259–267.<br />

33. Vernier, C.G., Casserly, E.W. "Multiply-Alkylated<br />

Cyclopentanes(MACs): A New Class of Synthesized Hydrocarbon<br />

Fluids,"Lubr.Engr., 47, 7, 1991, 586-591.<br />

34. Mia, S., Komiya, H., Hayashi, S., Morita,S., Ohno, N., Obara,<br />

S. Viscosity Loss <strong>in</strong> PFPE Lubricant for Space Applications under<br />

EHLConditions. Tribology Onl<strong>in</strong>e, 2 , 2, 2007, 54-58.<br />

35. Jones, W. R. The Properties of Perfluoropolyethers Used for<br />

SpaceApplications. NASA Technical Memorandum 106275, July 1993.<br />

36. Sathyan, K. Long-term lubrication systems for momentum wheels<br />

used <strong>in</strong> spacecrafts. MS thesis, Indian Institute of Technology<br />

Madras;September 2003.<br />

37. Sathyan, K. Development of a centrifugal lubricator for<br />

long-term lubrication of momentum wheels used <strong>in</strong> spacecrafts.<br />

PhD thesis,University of South Australia; March 2010.<br />

38. K<strong>in</strong>gsbury, E.P., Hanson, R. A., Jones, W. R., Mohr T. W.<br />

Cartridgebear<strong>in</strong>g system for space applications. In: Proceed<strong>in</strong>gs of<br />

the 33rd aerospace mechanisms symposium. NASA conference<br />

publication, vol.209259, 1999, 137–43.<br />

39. Fusaro, R. L. Space mechanisms needs for future NASA long<br />

duration space missions. In: NASA technical memorandum 105204;<br />

September1991.<br />

40. Space Mechanisms Lessons Learned Study.<br />

http://www.grc.nasa.gov/www/spacemech.<br />

41. Shapiro, W., Murray, F., Howarth, R. Space mechanisms<br />

lessons learned study, Volume II-literature review. In:NASA<br />

technicalmemorandum 107047; September1995.<br />

42. K<strong>in</strong>gsbury, E. P., Hanson, R. A., Jones, W. R., Mohr, T.W.<br />

Cartridge bear<strong>in</strong>g system for space applications. In: Proceed<strong>in</strong>gs of<br />

the 33rd aerospace mechanisms symposium. NASA conference<br />

publication, vol.209259, 1999, 137–43.<br />

43. K<strong>in</strong>gsbury, E.P. Influences on polymer <strong>form</strong>ation rate <strong>in</strong><br />

<strong>in</strong>strumentball bear<strong>in</strong>gs. Tribology Trans; 35, 1992, 84–8.<br />

44. Fote, A. A, Slade, R. A, Feuerste<strong>in</strong>, S. The prevention of<br />

lubricantmigration <strong>in</strong> spacecraft. Wear; 51, 1978, 67–75.<br />

45. Gupta, P. K. Frictional <strong>in</strong>stabilities <strong>in</strong> ball bear<strong>in</strong>gs. Tribology<br />

Trans;31(2): 1988, 258–68.<br />

46. Kannel, J. W., Bupara, S. S. A simplified model of cage<br />

motion <strong>in</strong> angular contact ball bear<strong>in</strong>gs operat<strong>in</strong>g <strong>in</strong> the EHD<br />

region. J LubrTechnol ASME Trans 1977:395–403.<br />

47. Kannel, J. W., Snediker, D. Hidden cause of bear<strong>in</strong>g failure.<br />

Mach<strong>in</strong>eDesign, 1977:78–82.<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 34


THE USE OF IRON IN PEAT WATER FOR FENTON PROCESS<br />

Mirna Apriani, Ali Masduqi<br />

ABSTRACT<br />

The use of Iron <strong>in</strong> Peat Water for Fenton Process<br />

Mirna Apriani & Ali Masduqi, myrna_apriani@yahoo.com, masduqi@its.ac.id<br />

Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia<br />

The scarcity of water sources <strong>in</strong> the dry season caused peat water is still widely used as alternative water <strong>in</strong> peat area such as Kalimantan Island,<br />

Indonesia. Peat water conta<strong>in</strong>s organic matter, acid and iron (Fe 2+ ). For treat<strong>in</strong>g the peat water, advanced oxidation process (AOP) is an alternative<br />

treatment. AOP is an oxidation process that produces hydroxyl radical (OH*) which can oxidize the organic matter. One of AOP method is fenton<br />

process. This process uses Fe 2+ and hydrogen peroxide as oxidizer to produce hydroxyl radical. Fenton process can be run effectively at pH 2 to 4.<br />

Based on the characteristics of peat water, the aim of research is to exam<strong>in</strong>e the possibility us<strong>in</strong>g Fe 2+ <strong>in</strong> the peat water for fenton process. This<br />

research was conducted <strong>in</strong> a batch system with vary<strong>in</strong>g ratio H 2 O 2 /Fe 2+ at 3.5, 4, 4.5, and 5. The oxidation time is 150 m<strong>in</strong>utes and measurement of<br />

iron and organic matter concentration was conducted every 30 m<strong>in</strong>utes. The results of research show that iron <strong>in</strong> peat water can react with H 2 O 2 to<br />

produce OH* for remov<strong>in</strong>g the organic. It is time for 60 m<strong>in</strong>ute to oxidize <strong>in</strong> fenton process us<strong>in</strong>g peat water.<br />

Keywords: fenton process, peat water, hydroxyl radical<br />

INTRODUCTION<br />

Peat is <strong>form</strong>ed from the accumulation of plant organic material on the<br />

condition of the stagnant swamp, so the process of decomposition is<br />

slow then there is the accumulation of organic matter. Organic matter <strong>in</strong><br />

peat soil is a humic acid and fulvic acid. Peat soils are acid and conta<strong>in</strong><br />

cations such as Fe and Mn (Barchia, 2006). So that the peat water has<br />

high organic matter content, colour, are acid and conta<strong>in</strong> high Fe.<br />

Indonesia has peat areas such as Kalimantan, Sumatera and Papua<br />

Island.<br />

Peat is the rema<strong>in</strong><strong>in</strong>g of heap dead plants then decomposed by<br />

anaerobic and aerobic bacteria <strong>in</strong>to a more stable component. It was not<br />

only organic matter which <strong>form</strong>ed peat but also <strong>in</strong>organic matter <strong>in</strong><br />

small amount. The environment of peat deposition is always <strong>in</strong> the<br />

condition of saturation of water (more than 90%). Organic matter of<br />

peat-<strong>form</strong><strong>in</strong>g from plants <strong>in</strong> comparison with the different matter<br />

accord<strong>in</strong>g to the decomposition level. Organic matter is composed of<br />

cellulose, lign<strong>in</strong>, bitumen, humus and others. Peat-<strong>form</strong><strong>in</strong>g elements is<br />

mostly composed of carbon, hydrogen, nitrogen and oxygen. In<br />

addition to the ma<strong>in</strong> elements are also other elements such as Al, Si, S,<br />

P and others (Sukandarrumidi, 1995). The humus process from plant<br />

residu <strong>in</strong>to humus or peat called humification will result <strong>in</strong> humic acid<br />

and fulvic acid. Humic acids conta<strong>in</strong> more aromatic compounds than<br />

the fulvic acids, fulvic acids are aliphatic compounds conta<strong>in</strong><strong>in</strong>g more<br />

than humic acid. Aromatic organic acids characterized by a number of<br />

phenolic-OH functional groups is high, while the aliphatic organic<br />

acids characterized by a number of high-COOH functional groups. Peat<br />

material with relatively high of lign<strong>in</strong>, conta<strong>in</strong>s of humic acids more<br />

than peat material which is relatively high cellulose content. Indonesia<br />

has tropical peat made from woody forest which conta<strong>in</strong>s a high lign<strong>in</strong>,<br />

while non-tropical peat materials are generally made of sphagnum with<br />

high of cellulose and hemicellulose content. The humus process from<br />

plant residu <strong>in</strong>to humus or peat called humification will result <strong>in</strong> humic<br />

acid and fulvic acid. Humic acids conta<strong>in</strong> more aromatic compounds<br />

than the fulvic acids, fulvic acids are aliphatic compounds conta<strong>in</strong><strong>in</strong>g<br />

more than humic acid. Aromatic organic acids characterized by a high<br />

number of phenolic-OH functional groups, while the aliphatic organic<br />

acids characterized by a high number of high-COOH functional groups.<br />

Peat material with relatively high of lign<strong>in</strong>, conta<strong>in</strong>s of humic acids<br />

more than peat material which is relatively high cellulose content.<br />

Indonesia has tropical peat made from woody forest which conta<strong>in</strong>s a<br />

high lign<strong>in</strong>, while non-tropical peat materials are generally made of<br />

sphagnum with high of cellulose and hemicellulose content (Barchia,<br />

2006).<br />

Water conta<strong>in</strong>s natural organic matter (NOM) as a result of the<br />

<strong>in</strong>teraction between the hydrological cycle and the biosphere and<br />

geosphere. These <strong>in</strong>teractions are responsible for the diverse nature of<br />

NOM as the organic content of a particular water body is dependent on<br />

the surround<strong>in</strong>g environments biogeochemical cycles. NOM is a<br />

complex mixture of organic material and has shown to consist of<br />

organics as diverse as humic acids, hydrophilic acids, prote<strong>in</strong>s, lipids,<br />

hydrocarbons and am<strong>in</strong>o acids. The range of organic components <strong>in</strong><br />

NOM varies from water to water and seasonally, this consequently<br />

leads to variations <strong>in</strong> the reactivity of NOM with chemical dis<strong>in</strong>fectants<br />

such as chlor<strong>in</strong>e (Goslan et al, 2003 <strong>in</strong> Murray and Parsons, 2004).<br />

Humic substances (HS) ma<strong>in</strong>ly humic acids represent a major fraction<br />

of natural organic matter <strong>in</strong> ground and surface water and pose a variety<br />

of problems <strong>in</strong> treatment operations and distribution system. HS<br />

contribute to odor, color, taste as well as acidity problems <strong>in</strong> water<br />

supplies (Katsumata, 2008).<br />

Several studies of peat water treatment <strong>in</strong>to clean water and dr<strong>in</strong>k<strong>in</strong>g<br />

water have been carried out. By us<strong>in</strong>g a comb<strong>in</strong>ation of alum coagulant,<br />

peat and lime that is able to neutralize the pH, the color removal<br />

efficiency reached 97.5%, 98.5% removal <strong>in</strong> turbidity and a decrease of<br />

90% organic matter (Karbito, 1999). The decreas<strong>in</strong>g of organic content<br />

us<strong>in</strong>g ultrafiltration membrane with pre-treatment powdered activated<br />

carbon (PAC) which achieved an efficiency of 98.02% color re moval<br />

and 98.54% organic removal (Riduan, 2002). Comb<strong>in</strong>ation of<br />

biological treatment us<strong>in</strong>g upflow anaerobic filter with physical<br />

process<strong>in</strong>g us<strong>in</strong>g slow sand filter can reduce organic matter, color,<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 35


THE USE OF IRON IN PEAT WATER FOR FENTON PROCESS<br />

Mirna Apriani, Ali Masduqi<br />

turbidity, Fe and Mn, but only Fe that meets the requirements as clean<br />

water (Eri, 2009).<br />

Conventional treatment of humic acids can be done us<strong>in</strong>g coagulation<br />

process (Hendricks, 2005 and Wu et al., 2011), precipitation, filtration,<br />

ion exchange, adsorption us<strong>in</strong>g activated carbon and biological<br />

treatment (Wu et al, 2011). Accord<strong>in</strong>g Karbito (1999), coagulation to<br />

reduce the color and turbidity require high doses so it is difficult to<br />

apply at the household scale. Accord<strong>in</strong>g to Murray and Parsons (2004),<br />

the higher the dose of coagulant will <strong>in</strong>crease the organic matter<br />

removal but sludge production will also <strong>in</strong>crease which can cause new<br />

problems <strong>in</strong> its process<strong>in</strong>g.<br />

Accord<strong>in</strong>g to the WEF (2008), Advanced Oxidation Process (AOP) is<br />

the oxidation process that produces reactive oxidants (such as the<br />

hydroxyl radical). Accord<strong>in</strong>g to Parsons (200 4), AOP is one of the<br />

water and waste water treatment technology, which utilizes an oxidant<br />

ability to process organic matter <strong>in</strong>to a more simple <strong>form</strong> and harmless.<br />

Examples of carbon processed <strong>in</strong>to carbon dioxide, hydrogen <strong>in</strong>to<br />

water, nitrogen <strong>in</strong>to nitrate and others. Process<strong>in</strong>g us<strong>in</strong>g AOP has the<br />

ability to <strong>form</strong> strong oxidiz<strong>in</strong>g hydroxyl radicals which can oxidize the<br />

organic material is faster than us<strong>in</strong>g ozone. Oxidiz<strong>in</strong>g strength can be<br />

seen from the oxidation potential value that can be seen <strong>in</strong> Table 1.<br />

Table 1. Oxidation potential for various oxidator<br />

Oxidator<br />

Oxidation potential (V)<br />

Flour<strong>in</strong>e 3.03<br />

Hydroxyl radical 2.80<br />

Atomic oxygen 2.42<br />

Ozone 2.07<br />

Hydrogen peroxide 1.78<br />

Permanganat 1.68<br />

Chlor<strong>in</strong>e 1.36<br />

Process<strong>in</strong>g us<strong>in</strong>g AOP can be process<strong>in</strong>g us<strong>in</strong>g UV-light based<br />

applications (UV/H 2 O 2 and VUV), ozone-based applications (O 3 /H 2 O 2 ,<br />

O 3 /UV, O 3 /H 2 O 2 /UV danO 3 /H 2 O 2 /TiO 2 ), heterogenous photocatalysis<br />

(TiO 2 /UV ), Fenton process, catalytic oxidation, electrochemical<br />

oxidation and oxidation ultrasound ( Matila<strong>in</strong>en and Silanpää, 2011)<br />

Fenton process is one of the AOP which the process us<strong>in</strong>g hydrogen<br />

peroxide oxidizer and a catalyst (iron salt) to produce hydroxyl radicals<br />

(OH*) (Parson, 2004; Jiang et al, 2010). Fenton process can be run<br />

effectively at pH 2-4. Fenton process does not use toxic materials, does<br />

not lead to residues and is simple technology (Parson, 2004). Fenton<br />

process consists of oxidation and coagulation that can occur <strong>in</strong> a s<strong>in</strong>gle<br />

process through pH adjustment. Fenton process does not use toxic<br />

materials, does not lead to residues and simple technology (Wu et al,<br />

2010). Fenton process is the most <strong>in</strong>expensive and easier compared to<br />

other process <strong>in</strong> AOP (Alaton et al, 2008). In an acidic environment,<br />

hydrogen peroxide and ferrous ion react <strong>in</strong> the follow<strong>in</strong>g reaction:<br />

Fe 2+ + H 2 O 2 OH* + OH - + Fe 3+ [1]<br />

Organic + OH* H 2 O + products [2]<br />

Accord<strong>in</strong>g to Wu et al (2011), OH* reacts with organic material and<br />

oxidize Fe 2+ to Fe 3+ which can serve as a coagulant after the pH<br />

adjustment <strong>in</strong>to above 6. The <strong>in</strong>creas<strong>in</strong>g of pH, will stop the oxidation<br />

process and cont<strong>in</strong>ue to coagulation process.<br />

MATERIALS AND METHODS<br />

Peat water taken from Simpang Arja village, Rantau Badauh District of<br />

South Kalimantan - Indonesia. Sampl<strong>in</strong>g would be done at ra<strong>in</strong>y season<br />

(April 2012). Us<strong>in</strong>g hydrogen peroxide solution (H 2 O 2 , 30%, w/w), the<br />

experiments were conducted <strong>in</strong> batch reactor us<strong>in</strong>g 1 L beaker glass.<br />

After hydrogen peroxide solution addition, the sample were stirred<br />

us<strong>in</strong>g the jar test with 50 rpm (Murray and Parsons, 2004) for 150<br />

m<strong>in</strong>utes and measured iron and organic parameters every 30 m<strong>in</strong>utes.<br />

Based on the analysis of the peat water samples characteristics is<br />

known that pH 3.4, the organic content of 63.2 mg / L and iron at 34<br />

mg / L. The <strong>in</strong>itial pH value of sample was acid so it does not need pH<br />

adjustment. The iron concentration was used to determ<strong>in</strong>e the addition<br />

of hydrogen peroxide for each ratio H 2 O 2 /Fe 2+ variation. The optimum<br />

condition of H 2 O 2 /Fe 2+ to remove organic and iron is 3.5 – 4.5 (Wu et<br />

al, 2011) and 5 (Rohmatun et al, 2007).<br />

Analytical methods for <strong>in</strong>itial characteristic and oxidation process us<strong>in</strong>g<br />

permanganate value test for organic parameter and for iron us<strong>in</strong>g<br />

spectrophotometric iron analysis.<br />

RESULT AND DISCUSSION<br />

The oxidation time was tested with<strong>in</strong> the time <strong>in</strong>terval range of 0 – 150<br />

m<strong>in</strong> to determ<strong>in</strong>e whether the iron <strong>in</strong> peat water can be used for fenton<br />

process to oxidize the organic contam<strong>in</strong>ant. The experiment used 34<br />

mg/L (0.61 mM) iron mM and the addition of 73.32 mL hydrogen<br />

peroxide (H 2 O 2 ) 2.14 mM, ratio H 2 O 2 /Fe 2+ is 3.5 for 1000 mL peat<br />

water. After the H 2 O 2 addition, the sample was stirred for 50 rpm.<br />

Analys<strong>in</strong>g of iron and organic started after 30 m<strong>in</strong>ute stirr<strong>in</strong>g and<br />

cont<strong>in</strong>ued every 30 m<strong>in</strong>ute. Fig 1 showed after 30 m<strong>in</strong>ute stirr<strong>in</strong>g iron<br />

and organic concentration is decrease. The percentage of iron<br />

decreas<strong>in</strong>g are 73,42% for 30 m<strong>in</strong>ute ; 57,98% for 60 m<strong>in</strong>ute ; 70,57%<br />

for 90 and 120 m<strong>in</strong>ute ; 75,21% for 150 m<strong>in</strong>ute. The largest decreas<strong>in</strong>g<br />

of iron is 75,21% for 150 m<strong>in</strong>ute. The decreas<strong>in</strong>g iron value is <strong>in</strong> l<strong>in</strong>e<br />

with the decrease of organic. The percentage of organic decreas<strong>in</strong>g are<br />

60% for 30 and 150 m<strong>in</strong>ute ; 55% for 90 and 120 m<strong>in</strong>ute ; 72,5% for 60<br />

m<strong>in</strong>ute. The largest decreas<strong>in</strong>g of iron is 150 m<strong>in</strong>ute however the<br />

decreas<strong>in</strong>g of organic for 150 m<strong>in</strong>ute is only 60% which smaller than<br />

for 60 m<strong>in</strong>ute (72,59%). So the optimum time for ratio H 2 O 2 /Fe 2+ 3.5<br />

was taken for 60 m<strong>in</strong>ute.<br />

Fig.1. The measurement of Fe and organic after the H 2 O 2 addition<br />

(Ratio H 2 O 2 /Fe 2+ = 3.5); (Fe 2+ 0.61 mM; H 2 O 2 2.14 mM)<br />

Fig 2 showed after 30 m<strong>in</strong>ute stirr<strong>in</strong>g, iron and organic concentration is<br />

decrease. The largest decreas<strong>in</strong>g of organic to 34.76 mg/L after 120<br />

m<strong>in</strong>ute stirr<strong>in</strong>g and iron to 9.53 mg/L after 90 m<strong>in</strong>ute. For ratio<br />

H 2 O 2 /Fe 2+ is 4, the addition of H 2 O 2 2.44 mM for 1000 mL peat water<br />

is 83.80 mL. After the H 2 O 2 addition, the sample was stirred for 50<br />

rpm. The percentage of iron decreas<strong>in</strong>g are 59,42% for 30 m<strong>in</strong>ute ;<br />

64,45% for 60 m<strong>in</strong>ute ; 71,98% for 90 m<strong>in</strong>ute ; 59,8% for 120 and 150<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 36


THE USE OF IRON IN PEAT WATER FOR FENTON PROCESS<br />

Mirna Apriani, Ali Masduqi<br />

m<strong>in</strong>ute. The largest decreas<strong>in</strong>g of iron is 71,98% for 90 m<strong>in</strong>ute. The<br />

decreas<strong>in</strong>g iron value is <strong>in</strong> l<strong>in</strong>e with the decrease of organic. The<br />

percentage of organic decreas<strong>in</strong>g are 21,99% for 30 m<strong>in</strong>ute ; 36% for<br />

60 m<strong>in</strong>ute ; 37,5% for 90 m<strong>in</strong>ute ; 45% for 120 m<strong>in</strong>ute and 42,5% for<br />

150 m<strong>in</strong>ute. The largest decreas<strong>in</strong>g of organic is 45% for 120 m<strong>in</strong>ute<br />

however the decreas<strong>in</strong>g of iron for 120 m<strong>in</strong>ute is only 59,8% which<br />

smaller than for 90 m<strong>in</strong>ute (71,98%). So the optimum time ratio<br />

H 2 O 2 /Fe 2+ 4 was taken for 90 m<strong>in</strong>ute.<br />

Fig.2. The measurement of Fe and organic after the H 2 O 2 addition<br />

(Ratio H 2 O 2 /Fe 2+ = 4.0); (Fe 2+ 0.61 mM; H 2 O 2 2.44 mM)<br />

Fig 4 showed after 30 m<strong>in</strong>ute stirr<strong>in</strong>g, iron and organic concentration is<br />

decrease. The largest decreas<strong>in</strong>g of organic to 23.7 mg/L after 90<br />

m<strong>in</strong>ute stirr<strong>in</strong>g and iron to 8.06 mg/L after 90 m<strong>in</strong>ute. For ratio<br />

H 2 O 2 /Fe 2+ is 5.0, the addition of H 2 O 2 3.05 mM for 1000 mL peat water<br />

is 104.75 mL. The percentage of organic decreas<strong>in</strong>g are 16% for 30<br />

m<strong>in</strong>ute ; 56% for 60 m<strong>in</strong>ute ; 62,5% for 90 m<strong>in</strong>ute ; 42,5% for 120 and<br />

50% for 150 m<strong>in</strong>ute. The largest decreas<strong>in</strong>g of organic is 62,5% for 90<br />

m<strong>in</strong>ute. The percentage of iron decreas<strong>in</strong>g are 51,16% for 30 m<strong>in</strong>ute ;<br />

72,71% for 60 m<strong>in</strong>ute ; 76,30% for 90 m<strong>in</strong>ute ; 60.51% for 120 m<strong>in</strong>ute<br />

and 59,78% for 150 m<strong>in</strong>ute. The largest decreas<strong>in</strong>g of organic and iron<br />

happened <strong>in</strong> the same stirr<strong>in</strong>g time is 90 m<strong>in</strong>ute. So the optimum time<br />

ratio H 2 O 2 /Fe 2+ 5 was taken for 90 m<strong>in</strong>ute.<br />

Fig.4. The measurement of Fe and organic after the H 2 O 2 addition<br />

(Ratio H 2 O 2 /Fe 2+ = 5.0); (Fe 2+ 0.61 mM; H 2 O 2 3.05 mM)<br />

The experiment us<strong>in</strong>g ratio H 2 O 2 /Fe 2+ is 4.5, the addition of H 2 O 2 2.75<br />

mM for 1000 mL peat water is 94.27 mL. After the H 2 O 2 addition, the<br />

sample was stirred for 50 rpm. Fig 3 showed after 30 m<strong>in</strong>ute stirr<strong>in</strong>g<br />

iron and organic concentration is decrease. The largest decreas<strong>in</strong>g of<br />

organic to 20.54 mg/L after 60 m<strong>in</strong>ute stirr<strong>in</strong>g and iron to 9.08 mg/L<br />

after 30 m<strong>in</strong>ute. The percentage of iron decreas<strong>in</strong>g are 73,3% for 30<br />

m<strong>in</strong>ute ; 70,18% for 60 m<strong>in</strong>ute ; 59,42% for 90 m<strong>in</strong>ute ; 63,74% for<br />

120 and 72,01% for 150 m<strong>in</strong>ute. The percentage of organic decreas<strong>in</strong>g<br />

are 45% for 30 m<strong>in</strong>ute ; 87,5% for 60 m<strong>in</strong>ute ; 32,5% for 90 m<strong>in</strong>ute ;<br />

50% for 120 m<strong>in</strong>ute and 55,06% for 150 m<strong>in</strong>ute. The largest<br />

decreas<strong>in</strong>g of iron is 73,3% for 30 m<strong>in</strong>ute however the decreas<strong>in</strong>g of<br />

organic for 30 m<strong>in</strong>ute is only 45% which smaller than for 60 m<strong>in</strong>ute<br />

(87,5%). So the optimum time ratio H 2 O 2 /Fe 2+ 4.5 was taken for 60<br />

m<strong>in</strong>ute.<br />

Fig.3. The measurement of Fe and organic after the H 2 O 2 addition<br />

(Ratio H 2 O 2 /Fe 2+ = 4.5); (Fe 2+ 0.61 mM; H 2 O 2 2.75 mM)<br />

From figure 1, 2, 3 and 4 showed that decreas<strong>in</strong>g iron value is <strong>in</strong> l<strong>in</strong>e<br />

with the decrease of organic. The concentration of iron will be decrease<br />

as well as decreas<strong>in</strong>g of organic concentration, means that the iron can<br />

react with hydrogen peroxide to produce hydroxyl radical to oxidize the<br />

organic. The optimum oxidation time happens after 60 m<strong>in</strong>ute for ratio<br />

H 2 O 2 /Fe 2+ 4 and 5 ; and 90 m<strong>in</strong>ute stirr<strong>in</strong>g for ratio H 2 O 2 /Fe 2+ 3.5 and<br />

4.5. In that condition, the decreas<strong>in</strong>g of iron and organic concentration<br />

is the largest.<br />

CONCLUSION<br />

This paper provided the prelim<strong>in</strong>ary research on the removal organic <strong>in</strong><br />

peat water with fenton process. Fenton process needs hydrogen<br />

peroxide oxidizer and a catalyst (iron salt) to produce hydroxyl radicals<br />

(OH*). The characteristic of peat water is acid, high organic and iron.<br />

This prelim<strong>in</strong>ary research conducted <strong>in</strong> the different ratio of H 2 O 2 /Fe is<br />

3.5; 4.0; 4.5; 5 without pH adjustment. To exam<strong>in</strong>e whether iron <strong>in</strong> peat<br />

water has potentially to used for fenton process, the sample only added<br />

H 2 O 2 based on the ratio. After a certa<strong>in</strong> oxidation time, the<br />

concentration of iron is decrease <strong>in</strong> l<strong>in</strong>e with the decreas<strong>in</strong>g of organic<br />

concentration. The iron <strong>in</strong> peat water can react with H 2 O 2 to produce<br />

OH* to remove the organic. For oxidation process <strong>in</strong> fenton process<br />

us<strong>in</strong>g peat water the m<strong>in</strong>imum oxidation time is 60 m<strong>in</strong>ute. For further<br />

research, to treat the peat water us<strong>in</strong>g fenton process does not require<br />

the addition of iron salts.<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 37


THE USE OF IRON IN PEAT WATER FOR FENTON PROCESS<br />

Mirna Apriani, Ali Masduqi<br />

REFERENCES<br />

Alaton, I.D., Gursoy, B.H., and Schmidt, J.E., (2008), “Advanced<br />

oxidation of acid and reactive dyes : Effect of Fenton treatmnent on<br />

aerobic, anoxic and anaerobic processes”, Dyes and pigments, Vol. 78,<br />

117-130<br />

Barchia, M.F., (2006), Gambut (Agroekosistem dan trans<strong>form</strong>asi<br />

karbon), Gadjah Mada University Press, Yogyakarta, Indonesia<br />

Jiang, C., Pang, S., Ouyang, F., and Jiang, J., (2010), “A new <strong>in</strong>sight<br />

<strong>in</strong>to Fenton and Fenton-like processes for water treatment”, Journal of<br />

hazardous materials, Vol. 174, 813-817<br />

Katsumata, K., Sada, M., Kaneco, S., Suzuki, T., Ohta, K., and Yobiko,<br />

Y., (2008), “Humic acid degradation <strong>in</strong> aqueous solution by the photofenton<br />

process”, Journal of chemical eng<strong>in</strong>eer<strong>in</strong>g, Vol. 137, 225-230<br />

Matila<strong>in</strong>en, A., and Sillanpaa, M., (2010), “Review removal of natural<br />

organic matter from dr<strong>in</strong>k<strong>in</strong>g water by advanced oxidation processes”,<br />

Chemosphere, Vol. 80, 351-365<br />

Murray, A.C. and Parsons, S.A., (2004), “Removal of NOM from<br />

dr<strong>in</strong>k<strong>in</strong>g water : Fenton’s and photo-Fenton’s processes”,<br />

Chemosphere, Vol. 54, 1017-1023<br />

Parsons, S., (2004), Advanced oxidation processes for water and<br />

wastewater treatment, IWA publish<strong>in</strong>g, London, UK<br />

Riduan, R., (2002), Penurunan kandungan organik pada air gambut<br />

menggunakan membran ultrafiltrasi dengan pre-treatment PAC<br />

(Powdered Activated Carbon), Master Thesis of Environmental<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Institut Teknologi Sepuluh Nopember (ITS)<br />

Rohmatun, Roosm<strong>in</strong>i, D., and Notodarmojo, S., (2 007), “Studi<br />

penurunan kandungan besi organic dalam air tanah dengan oksidasi<br />

H 2 O 2 –UV”, Proc.ITB Sa<strong>in</strong>s & Tek, Vol. 39 A, No. 1&2, 58-69<br />

Sukandarrumidi, (1995), Batubara dan gambut, Gadjah Mada<br />

University Press, Yogyakarta, Indonesia<br />

Water Environment Federation (WEF), (2008), Manual of practice no.<br />

FD-3 : Industrial wastewater management, treatment and disposal,<br />

WEF press, USA<br />

Wu, Y., Zhou, S., Ye, X., Zhao, R., and Chen, D., (2011), “Oxidation<br />

and coagulation removal of humic acid us<strong>in</strong>g Fenton Process”, Colloids<br />

and surfaces A : Physicochemical and eng<strong>in</strong>eer<strong>in</strong>g aspects, Vol. 379,<br />

151-156<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 38


TRIBOLOGY OF HIGH-SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS: LUBRICATION SYSTEMS<br />

OF BALL BEARINGS<br />

K. Sathyan<br />

Tribology of High-Speed Mov<strong>in</strong>g Mechanical Systems for Spacecrafts: Lubrication Systems of Ball<br />

Bear<strong>in</strong>gs<br />

K Sathyan, krishnan.sathyan@gmail.com<br />

* Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Pr<strong>in</strong>ce Mohammed B<strong>in</strong> Fahd University, Po Box:1664, Al-Khobar- 31952, KSA<br />

Tel.: +966 38498532; +966 505181702<br />

ABSTRACT<br />

The spacecraft attitude control system conta<strong>in</strong>s a number of mov<strong>in</strong>g mechanical systems (MMS). These <strong>in</strong>clude attitude error sen sors such as<br />

gyroscopes and actuators such as momentum wheels and reaction wheels. All these systems are designed to operate cont<strong>in</strong>uously till the end of the<br />

mission at vary<strong>in</strong>g speeds of several thousand rpm. The on-orbit per<strong>form</strong>ance of spacecrafts depends largely on the per<strong>form</strong>ance of the<br />

momentum/reaction wheels which, <strong>in</strong> turn, depend on the bear<strong>in</strong>gs used and its lubrication. The only component which undergoes wear <strong>in</strong> these<br />

systems are the ball bear<strong>in</strong>gs. Currently, the life cycle of spacecrafts are aimed to be around 20–30 years. However, the <strong>in</strong>creases <strong>in</strong> size, complexity<br />

and life expectancy of spacecrafts demand advanced technologies especially <strong>in</strong> tribology and the development of more <strong>in</strong>novative lubrication systems<br />

for long-term operation. This part of the serial review presents an account of different types of lubrication systems commonly used <strong>in</strong> spacecraft highspeed<br />

mov<strong>in</strong>g mechanical systems. The features and work<strong>in</strong>g of active and passive lubrication systems are presented. The merits and demerits of each<br />

system are highlighted.<br />

Keywords: tribology, lubrication, momentum wheel, spacecraft, ball bear<strong>in</strong>g<br />

INTRODUCTION<br />

It is well understood that no bear<strong>in</strong>g can work <strong>in</strong>def<strong>in</strong>itely with the<br />

<strong>in</strong>itial charge of lubricant given to it at the time of assembly. There will<br />

be progressive loss of lubricant from the bear<strong>in</strong>g surface, and the rate is<br />

dependent on the operat<strong>in</strong>g conditions. In a spacecraft system bear<strong>in</strong>g,<br />

it is not possible to provide lubricant <strong>in</strong> excess <strong>in</strong>itially with a view to<br />

extend<strong>in</strong>g its life. To operate bear<strong>in</strong>gs with least frictional torque and<br />

torque variation, they have to work <strong>in</strong> the elastohydrodynamic<br />

lubrication ( EHL) regime. Therefore, bear<strong>in</strong>gs of high speed mov<strong>in</strong>g<br />

mechanical systems ( MMS) are centrifuged to remove the excess oil<br />

before assembl<strong>in</strong>g to the system. The bear<strong>in</strong>g then conta<strong>in</strong>s the surface<br />

oil and the oil absorbed <strong>in</strong> the reta<strong>in</strong>er pores. Thus, <strong>in</strong> order to achieve<br />

long mission life, supplementary lubrication is extremely important.<br />

The function of the supplementary lubrication system is to ma<strong>in</strong>ta<strong>in</strong><br />

right amount of lubricant at the bear<strong>in</strong>g work<strong>in</strong>g surfaces to produce a<br />

th<strong>in</strong> film support<strong>in</strong>g the load. The thickness of the film should be<br />

sufficient to ma<strong>in</strong>ta<strong>in</strong> the bear<strong>in</strong>g <strong>in</strong> the EHL regime of lubrication.<br />

The ultimate aim of a spacecraft system designer is to m<strong>in</strong>imize the size<br />

and weight of the system. Both these factors are critical <strong>in</strong> decid<strong>in</strong>g the<br />

f<strong>in</strong>al weight and size of the spacecraft, which <strong>in</strong> turn <strong>in</strong>fluence the<br />

selection of launch vehicle. Therefore, optimum use of available space<br />

is appreciated. For this reason, the lubrication systems are enclosed<br />

either <strong>in</strong>side the bear<strong>in</strong>g unit or <strong>in</strong>side the system enclosure. Currently,<br />

there are a number of different types of lubrication systems developed<br />

and used by different manufacturers for high speed MMS. However,<br />

accord<strong>in</strong>g to the nature of operation, these lubrication systems used <strong>in</strong><br />

high speed MMS can be broadly classified as passive lubrication<br />

systems and active lubrication systems. Various lubrication systems<br />

which come under these two categories are described <strong>in</strong> the follow<strong>in</strong>g<br />

sections.<br />

PASSIVE LUBRICATION SYSTEMS<br />

The passive lubrication systems, also known as cont<strong>in</strong>uous lubrication<br />

system, supply lubricants cont<strong>in</strong>uously at a controlled rate irrespective<br />

of the requirement. In this class of systems, the lubricant is stored at<br />

ambient pressure <strong>in</strong> a lubricant reservoir located near the bear<strong>in</strong>gs.<br />

From the reservoir, the lubricant is fed cont<strong>in</strong>uously to the bear<strong>in</strong>gs at a<br />

predeterm<strong>in</strong>ed rate. Most of these systems use centrifugal force due to<br />

the rotation of the bear<strong>in</strong>g assembly to deliver the lubricant, while some<br />

use a transfer material such as cotton fiber that rema<strong>in</strong>s <strong>in</strong> touch with<br />

the bear<strong>in</strong>g surface and lubricant <strong>in</strong> the reservoir. Passive type systems<br />

are simple <strong>in</strong> construction, but are difficult to control for the flow rate<br />

to the required level. Different techniques are used to control the flow<br />

rate <strong>in</strong> this type of lubricators. There are a number of designs of passive<br />

lubrication systems used today by different manufacturers of MMS for<br />

spacecrafts. The ooz<strong>in</strong>g flow lubricators (K<strong>in</strong>gsbury et al., 1999,<br />

Hashimoto, 2001, Jones et al., 1997, S<strong>in</strong>ger, Gelotte, 1994), wick feed<br />

systems (Loewenthal et al., 1985), porous lubricant reservoirs (Sathyan,<br />

2003), the centrifugal lubricators (Sathyan, 2003, Sathyan et al., 2008,<br />

Sathyan et al., 2010) etc., come under this classification.<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and In<strong>form</strong>ation Technology Vol.2, No.2 39


TRIBOLOGY OF HIGH-SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS: LUBRICATION SYSTEMS<br />

OF BALL BEARINGS<br />

K. Sathyan<br />

Ooz<strong>in</strong>g Flow Lubricator<br />

The ooze flow lubricator was <strong>in</strong>vented by Fukuo Hashimoto<br />

(Hashimoto, 2001). The lubricator is fitted to the outer spacer of the<br />

bear<strong>in</strong>g unit, the ends of which are <strong>form</strong>ed as the bear<strong>in</strong>g outer race. A<br />

set of precision turned helical grooves are made at the <strong>in</strong>terface of the<br />

<strong>in</strong>ner and outer part of the lubricator. The width of the groove is at least<br />

20 times the depth. The helical grooves run <strong>in</strong> the axial direction and<br />

deliver lubricant to each of the bear<strong>in</strong>gs. The rate of flow is controlled<br />

by the dimensions of the helical groove and the speed of rotation of the<br />

bear<strong>in</strong>g shaft. The mathematically determ<strong>in</strong>ed acceptable flow rate for<br />

the design was 5 – 50 µg/h. With the design goal of 20 µg/h, the<br />

expected life of the system was claimed as 15 years when operat<strong>in</strong>g at<br />

12 000 rpm. The space cartridge bear<strong>in</strong>g system presented by<br />

K<strong>in</strong>gsbury et al. (K<strong>in</strong>gsbury et al., 1999), the ooz<strong>in</strong>g flow lubricator<br />

presented by Jones et al. (Jones et al., 1997), and S<strong>in</strong>ger et al. (S<strong>in</strong>ger,<br />

Gelotte, 1994) resembles the one mentioned above. Figure 1 shows the<br />

space bear<strong>in</strong>g cartridge with ooz<strong>in</strong>g flow lubricator (K<strong>in</strong>gsbury et al.,<br />

1999).<br />

through the bleed path. The oil com<strong>in</strong>g out of the lubricator is guided to<br />

the bear<strong>in</strong>gs mounted on either side of the lubricator.<br />

Fig.2. A typical bear<strong>in</strong>g unit assembly used <strong>in</strong> momentum wheels<br />

(Sathyan, 2003)<br />

Fig.1. Space cartridge bear<strong>in</strong>g system with ooz<strong>in</strong>g flow lubricator<br />

(K<strong>in</strong>gsbury et al., 1999)<br />

Wick Feed Systems<br />

In wick feed lubrication system (Loewenthal et al., 1985) a cotton wick<br />

saturated with oil is cont<strong>in</strong>uously <strong>in</strong> contact with the bear<strong>in</strong>gs. The<br />

frictional contact causes small amount of oil to be deposited on to the<br />

contact surface. From this contact surface, oil migrates to the bear<strong>in</strong>g.<br />

The other end of the wick is <strong>in</strong> contact with oil <strong>in</strong> a reservoir and it<br />

absorbs and ma<strong>in</strong>ta<strong>in</strong>s its saturation level. This system is used <strong>in</strong> early<br />

momentum wheels and with the advent of more robust systems, its use<br />

has been discont<strong>in</strong>ued. The major disadvantage with this system is that<br />

the fibers <strong>in</strong> the wick may contam<strong>in</strong>ate the bear<strong>in</strong>g surfaces.<br />

Centrifugal Lubricator<br />

This is the most common type of lubricator currently used <strong>in</strong><br />

momentum/reaction wheels and control moment gyros (CMG). In this<br />

lubricator, the lubricant (grease or oil) is filled <strong>in</strong> a cyl<strong>in</strong>drical conta<strong>in</strong>er<br />

and is assembled to the rotat<strong>in</strong>g part of the bear<strong>in</strong>g unit (Figure 2). A<br />

lubricant bleed path is provided on the outer surface of the reservoir,<br />

through which the lubricant flows out. When the bear<strong>in</strong>g unit is<br />

rotat<strong>in</strong>g, the lubricator attached to it also rotat<strong>in</strong>g at the same speed.<br />

The centrifugal force thus generated forces the lubricant to flow out<br />

The centrifugal lubricators need to be well characterized under the<br />

operat<strong>in</strong>g environments before it can be used <strong>in</strong> the actual system. The<br />

most promis<strong>in</strong>g advantage of this type of lubricator is that no external<br />

actuators are needed and it assures unattended long-term operation. It<br />

has the drawback of decreas<strong>in</strong>g flow rate gradually, s<strong>in</strong>ce the flow rate<br />

is proportional to the head of oil <strong>in</strong> the reservoir which is progressively<br />

dim<strong>in</strong>ish<strong>in</strong>g with time. Some manufacturers use grease <strong>in</strong>stead of oil to<br />

overcome the difficulty of flow control. But experience shows that the<br />

flow rate decreases drastically <strong>in</strong> this type of systems because of<br />

change <strong>in</strong> consistency of the rema<strong>in</strong><strong>in</strong>g grease <strong>in</strong> addition to the<br />

decrease <strong>in</strong> the head of oil (K<strong>in</strong>gsbury et al., 1999).<br />

Figure 3 shows the centrifugal oil lubricator developed by Sathyan et<br />

al. (Sathyan et al., 2008, Sathyan et al., 2010, Sathyan et al., 2010,<br />

Sathyan, 2010).<br />

In this lubricator, the lubricant oil is filled <strong>in</strong> a metallic reservoir that<br />

conta<strong>in</strong>s an <strong>in</strong>ner sleeve and an outer cup. The capacity of this reservoir<br />

is approximately 5000 cc. On the periphery of the outer cup, a small<br />

hole is drilled through which the lubricant flows out due to the<br />

centrifugal force. The diameter of this hole is about 100 µm. S<strong>in</strong>ce the<br />

pressure developed due to the rotation is sufficiently high, it is only a<br />

matter of hours to empty the reservoir through this hole. Therefore, to<br />

control the flow rate to the lowest possible, a restrictor mechanism is<br />

fitted on the reservoir directly above the hole. The flow is restricted by<br />

means of a micro orifice created on a metal foil of thickness 50 µm.<br />

The diameter of the micro orifice for the required flow rate can be<br />

obta<strong>in</strong>ed from the theoretical model of the lubricator. The flow rate<br />

from the lubricator (Sathyan, 2010) is given by:<br />

2 2 4 2 2<br />

r R3 R <br />

1<br />

q K <br />

8<br />

R3 R2<br />

<br />

where K is the flow coefficient (0.326), ρ is the density of the lubricant<br />

(kg/m 3 ), η is the dynamic viscosity of the lubricant (kg/m-s), ω is the<br />

angular speed (rad/s), r is the radius of the orifice (m), R 1 is the<br />

(1)<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 41


TRIBOLOGY OF HIGH-SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS: LUBRICATION SYSTEMS<br />

OF BALL BEARINGS<br />

K. Sathyan<br />

<strong>in</strong>stantaneous radius of oil <strong>in</strong>ner layer <strong>in</strong> the reservoir (m), R 2 is the<br />

radius at which oil enters the orifice (m) and R 3 is the radius at which<br />

oil leaves the orifice (m). In this case, R 2 and R 3 are constants and the<br />

difference between the two gives thickness of the orifice plate. q is the<br />

mass flow rate (kg/s).<br />

The coefficient K is obta<strong>in</strong>ed from the experimental and CFD<br />

simulation results. Thus, if the flow rate required is f<strong>in</strong>alized, the flow<br />

area can be calculated. It is understood that the lubricant flow rate<br />

required ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g cont<strong>in</strong>uous EHD film is of the order of<br />

micrograms/hour. The diameter of the control orifice required to obta<strong>in</strong><br />

a flow rate of 10 µg/h is obta<strong>in</strong>ed us<strong>in</strong>g Eq. (1) is near to 2.8 µm. The<br />

orifice is created on the copper foil us<strong>in</strong>g a pulsed laser system. The<br />

lubricator assembly consists of two lubricators one for each bear<strong>in</strong>g as<br />

shown <strong>in</strong> Figure 4 (Sathyan, 2010) The lubricator assembly can be<br />

mounted <strong>in</strong> the free spaces available between the bear<strong>in</strong>gs <strong>in</strong> the<br />

bear<strong>in</strong>g unit as shown <strong>in</strong> Figure 2. The lubricant com<strong>in</strong>g out of the<br />

lubricator flows to the bear<strong>in</strong>gs mounted adjacent to it.<br />

The predicted per<strong>form</strong>ance of the centrifugal lubricator is shown <strong>in</strong><br />

Figure 5 (Sathyan, 2010). The diameter of the orifice is selected as 2.5<br />

µm and the operat<strong>in</strong>g speed and temperature are 5000 rpm and 23°C<br />

respectively. The temperature corresponds to the maximum that a<br />

momentum wheel experiences <strong>in</strong> a geostationary satellite. The lubricant<br />

selected for the calculation is KLUBER PDP-65; synthetic diester oil<br />

used <strong>in</strong> high speed MMS (Sathyan et al., 2008, Sathyan et al., 2010). It<br />

can be seen that the <strong>in</strong>itial flow rate is about 6.5 µg/h and the flow rate<br />

at the 50 th year is about 4.36 µg/h. Also, the lubricator has consumed<br />

only 1920 mg oil, i.e. 40% of the total oil filled at the beg<strong>in</strong>n<strong>in</strong>g, for<br />

lubricat<strong>in</strong>g the bear<strong>in</strong>gs. The <strong>in</strong>terest<strong>in</strong>g feature of this lubricator is that<br />

the flow rate can be varied by vary<strong>in</strong>g the quantity of lubricant filled <strong>in</strong><br />

the reservoir. This lubricator is a strong candidate for future spacecraft<br />

requir<strong>in</strong>g longer mission life.<br />

Fig.5. Predicted flow rate and total flow of the centrifugal lubricator<br />

(Sathyan, 2010)<br />

Fig.3. Centrifugal oil lubricator (Sathyan, 2010)<br />

ACTIVE LUBRICATION SYSTEMS<br />

Fig.4. Centrifugal oil lubricator assembly (Sathyan, 2010)<br />

Active lubrication systems, also known as positive lubrication systems,<br />

supply a controlled amount of lubricant to the bear<strong>in</strong>gs when it is<br />

actuated by external commands. The command to actuate the lubricator<br />

is executed when a demand for lubricant arises. The demand for<br />

lubricant is <strong>in</strong>dicated either by an <strong>in</strong>crease <strong>in</strong> power consumption or by<br />

<strong>in</strong>crease <strong>in</strong> bear<strong>in</strong>g temperature as a result of <strong>in</strong>creased bear<strong>in</strong>g friction<br />

torque. Lubricant film thickness sensors are also used to measures the<br />

film thickness at the designated po<strong>in</strong>t. When the film thickness is less<br />

than a predeterm<strong>in</strong>ed value, the lubricator is actuated and supplies<br />

lubricant. This type of systems conta<strong>in</strong>s a lubricant reservoir <strong>in</strong> which<br />

the lubricant is stored mostly under pressure. These systems are static<br />

and are generally mounted external to the bear<strong>in</strong>g assembly. The flow<br />

from the reservoir is controlled by some mechanism that is actuated by<br />

external commands. There are arrangements to deliver the lubricant<br />

directly to the bear<strong>in</strong>gs. Different versions of positive lubrication<br />

systems are available with different actuators such as solenoid valves,<br />

electric heaters etc. The commandable oiler (Glassow, 1976) developed<br />

by the Hughes Aircraft Company, the positive lubrication system<br />

(PLUS) developed by Smith and Hooper (Smith, Hooper, 1990), the<br />

positive–pressure feed system proposed by James (James, 1977) etc.,<br />

are examples of solenoid operated systems. The <strong>in</strong>-situ on demand<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 42


TRIBOLOGY OF HIGH-SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS: LUBRICATION SYSTEMS<br />

OF BALL BEARINGS<br />

K. Sathyan<br />

lubricator developed by Marchetti et al. (Marchetti et al., 2003,<br />

Marchetti et al., 2001), the static lubricant reservoir developed by<br />

Sathyan (Sathyan et al., 2010) etc., are examples of active lubrication<br />

systems us<strong>in</strong>g electric heater. The command lubrication system (CLS)<br />

developed by Sathyan et al., is of a different concept where the actuator<br />

is a stepper motor.<br />

Valve Operated Systems<br />

In valve operated positive lubrication systems, the lubricant is stored<br />

under pressure <strong>in</strong>side a leak proof conta<strong>in</strong>er. The oil is pressurized by<br />

spr<strong>in</strong>gs or by us<strong>in</strong>g compression bellows. The oil pressure is generally<br />

between 0.27 and 0.54 MPa. The oil reservoir and the bear<strong>in</strong>g are<br />

connected by means of narrow steel tubes. One or more solenoid<br />

operated micro valves (normally closed) are connected to the l<strong>in</strong>e and<br />

near to the reservoir. The delivery end of the capillary steel tubes is<br />

placed adjacent to the bear<strong>in</strong>gs and is suitably shaped.<br />

The amount of lubricant delivered is determ<strong>in</strong>ed by the duration of<br />

valve activation which is, depend<strong>in</strong>g on the oil viscosity and pressure,<br />

usually milliseconds or seconds. Figure 6 (Sathyan, 2003) shows the<br />

schematic of a solenoid valve operated active lubrication system<br />

(Sathyan, 2003).<br />

Here, the oil is stored under pressure us<strong>in</strong>g a metallic bellows. Two<br />

solenoid operated micro valves (V 1 and V 2 ) are used to control the<br />

lubricant supply to each bear<strong>in</strong>g <strong>in</strong> the assembly. The capillary tubes<br />

are of 0.5mm <strong>in</strong>ternal diameter. The delivery end of the tubes are<br />

properly shaped and directed towards the outer spacer of the bear<strong>in</strong>g<br />

unit which separates the bear<strong>in</strong>gs.<br />

The ends of the spacer which <strong>in</strong>terface with the bear<strong>in</strong>gs are given a<br />

small taper of 0.5 degrees. When the valve is actuated, the oil flows<br />

through the capillary tube and <strong>in</strong>jected <strong>in</strong> to the tapered surface of the<br />

rotat<strong>in</strong>g spacer. The centrifugal force causes the oil to flow axially <strong>in</strong>to<br />

the bear<strong>in</strong>gs. It is also possible to deliver the oil directly to the bear<strong>in</strong>gs<br />

by plac<strong>in</strong>g the delivery tip of the capillary tube po<strong>in</strong>t<strong>in</strong>g the bear<strong>in</strong>g. In<br />

such a case, there should be a standoff distance between the tip and the<br />

bear<strong>in</strong>g surface.<br />

This distance is generally slightly less than the diameter of the oil drop<br />

<strong>form</strong>ed at the delivery tip as shown <strong>in</strong> Figure 7 (Sathyan, 2003). In this<br />

case, when a drop is developed at the delivery tip, it comes <strong>in</strong> contact<br />

with the mov<strong>in</strong>g bear<strong>in</strong>g reta<strong>in</strong>er surface and is transferred to the<br />

reta<strong>in</strong>er. The oil is distributed to the bear<strong>in</strong>g contact through the<br />

reta<strong>in</strong>er. At the tip of the capillary tube, anti-migration coat<strong>in</strong>g is<br />

provided which helps <strong>in</strong> <strong>form</strong><strong>in</strong>g droplets at the tip.<br />

Fig.6. Schematic of solenoid valve operated active lubrication system<br />

(Sathyan, 2003)<br />

Fig.7. Method of oil delivery and position of delivery tip (Sathyan,<br />

2003)<br />

Electric Heater Operated Systems<br />

This type of system generally conta<strong>in</strong>s a lubricant reservoir made of<br />

porous material. Non-metallic isotropic porous materials such as<br />

s<strong>in</strong>tered nylon, s<strong>in</strong>tered polyimide etc. are generally used. The porosity<br />

and pore connectivity are well controlled by us<strong>in</strong>g spherical particle<br />

dur<strong>in</strong>g s<strong>in</strong>ter<strong>in</strong>g process. The porosity is typically between 15 and 30%<br />

by volume. When vacuum impregnated with oil, the reservoir carries<br />

oil sufficient to lubricate the bear<strong>in</strong>gs for many years. An electric heater<br />

(foil type) is attached to the reservoir. The reservoir with the heater is<br />

placed adjacent to the bear<strong>in</strong>gs. When the bear<strong>in</strong>g oil film thickness<br />

falls below certa<strong>in</strong> limit, the heater is operated for a specified time. The<br />

heater heats up the porous reservoir and oil flows out of the reservoir<br />

pores as a result of differential thermal expansion. The lubrication takes<br />

place by surface migration and vapor condensation.<br />

The <strong>in</strong>-situ on demand lubricator developed by Marchetti et al.,<br />

(Marchetti et al., 2001, Jansen et al., 2002) consists of a porous material<br />

cartridge to which an electric heater is attached. The cartridge is<br />

impregnated with oil and is attached to the stationary race of the<br />

bear<strong>in</strong>g. When the cartridge is heated, oil flows out of the cartridge and<br />

is migrated to the bear<strong>in</strong>g surfaces due to the low surface tension of oil<br />

compared to the bear<strong>in</strong>g metal. It is actuated when the bear<strong>in</strong>g<br />

temperature <strong>in</strong>creases due to higher friction, demand<strong>in</strong>g lubricant. The<br />

system is evaluated us<strong>in</strong>g a spiral orbit tribometer and proved its<br />

feasibility to use <strong>in</strong> long-lived spacecrafts (Jansen et al., 2002).<br />

The static lubricant reservoir developed by Sathyan (Sathyan, 2003)<br />

consists of a porous material (s<strong>in</strong>tered nylon) reservoir mounted on an<br />

alum<strong>in</strong>um sleeve and a foil heater is pasted <strong>in</strong>side the sleeve. The<br />

porosity of the reservoir material is about 30% by volume so that it<br />

carries sufficient amount of lubricant to support for the entire mission<br />

period. The reservoir assembly is mounted on the static part of the<br />

bear<strong>in</strong>g unit. When the heater is turned on, the alum<strong>in</strong>ium sleeve gets<br />

heated up and transfers the heat to the oil <strong>in</strong> the pores of the reservoir.<br />

Due to differential thermal expansion, oil flows out of the reservoir and<br />

<strong>form</strong>s a thick layer at the surface. A portion of the lubricant evaporates<br />

due to the temperature (about 80 °C maximum) and low pressure (the<br />

<strong>in</strong>ternal pressure of momentum/reaction wheels are less than<br />

atmospheric). The lubrication is effected by surface migration and<br />

vapor condensation. Figure 8 (Sathyan, 2003) shows the arrangement<br />

of static lubricant reservoir. The major drawback of this k<strong>in</strong>d of system<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 43


TRIBOLOGY OF HIGH-SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS: LUBRICATION SYSTEMS<br />

OF BALL BEARINGS<br />

K. Sathyan<br />

is the delayed lubrication process ow<strong>in</strong>g to the delay <strong>in</strong> oil gett<strong>in</strong>g<br />

heated and be<strong>in</strong>g ejected out of the system. Moreover, the heater<br />

activation time or heater power should be progressively <strong>in</strong>creased after<br />

each operation to eject the same quantity of oil.<br />

Fig.9. The command lubrication system (Sathyan et al., 2010).<br />

Fig.8. Arrangement of static lubricant reservoir (Sathyan, 2003)<br />

Fig.10. Command lubrication system deliver<strong>in</strong>g oil directly to bear<strong>in</strong>g<br />

cage (Sathyan, 2003)<br />

The command lubrication system (CLS) developed by Sathyan et al.<br />

(Sathyan, 2003, Sathyan et al., 2010) consists of a metallic bellows, a<br />

micro stepp<strong>in</strong>g motor, a low friction ball screw, <strong>in</strong>jection nozzle and<br />

capillary tubes. The sta<strong>in</strong>less steel bellows act as the oil reservoir <strong>in</strong><br />

which the oil is stored under ambient pressure. This pressure is usually<br />

the <strong>in</strong>ternal pressure of the momentum/reaction wheel or CMG, if it is<br />

placed <strong>in</strong>side the system, and is usually varies between 15 and 350 torr.<br />

The bellows is of compression type hav<strong>in</strong>g a swept volume of<br />

approximately 1.5 cc, i.e., the difference between the normal state and<br />

fully compressed state. The micro stepp<strong>in</strong>g motor, which is the<br />

actuator, is a geared motor hav<strong>in</strong>g a torque capacity of 130 mN-m and<br />

is driven through the drive electronics. The motor shaft is connected to<br />

the reservoir bellows through the ball screw. The high precision ball<br />

screw is of m<strong>in</strong>iature type hav<strong>in</strong>g low friction 3 mm screw. It is<br />

properly lubricated with space proven lubricant and protected from<br />

contam<strong>in</strong>ants. One end of the screw is rigidly connected to the motor<br />

shaft. The hous<strong>in</strong>g/nut of the ball screw is attached to the bellows<br />

through the l<strong>in</strong>k. The ball screw converts the rotary motion of the motor<br />

shaft <strong>in</strong>to l<strong>in</strong>er motion and thus actuates the bellow. On the delivery<br />

end of the bellows, a nozzle is attached which connects the capillary<br />

tubes with the bellows as shown <strong>in</strong> Figure 9 (Sathyan et al. 2010). The<br />

sta<strong>in</strong>less steel capillary tubes are of 0.5 mm <strong>in</strong> diameter and are suitably<br />

shaped to reach up to the bear<strong>in</strong>gs as shown <strong>in</strong> Figure 10 (Sathyan,<br />

2003). The delivery end of the tube which acts as the delivery nozzle is<br />

ground and squared and is coated with anti-migration film as shown <strong>in</strong><br />

Figure 7. This coat<strong>in</strong>g will help <strong>in</strong> the <strong>form</strong>ation of oil droplet by<br />

prevent<strong>in</strong>g spread<strong>in</strong>g of oil around the nozzle tip. The reservoir is fully<br />

charged with lubricant before it is assembled with the drive motor. The<br />

total mass of the assembly is approximately 60 gm <strong>in</strong>clud<strong>in</strong>g lubricant.<br />

As mentioned previously, high speed MMS bear<strong>in</strong>gs are assembled<br />

with an <strong>in</strong>itial charge of lubricant. Typically, <strong>in</strong> a momentum wheel<br />

bear<strong>in</strong>g with phenolic reta<strong>in</strong>er, the <strong>in</strong>itial oil is about 60 to 80 mg. This<br />

<strong>in</strong>itial oil is sufficient for normal operation up to three years and it will<br />

then start show<strong>in</strong>g symptoms of abnormality <strong>in</strong>dicat<strong>in</strong>g the demand for<br />

lubricant. In such situation, the drive motor of the CLS is actuated for a<br />

predeterm<strong>in</strong>ed period of time to deliver oil to the bear<strong>in</strong>gs. When the<br />

motor shaft rotates, the ball screw attached to it also rotates. The<br />

hous<strong>in</strong>g/nut of the ball screw which is rigidly mounted on the bellow<br />

moves l<strong>in</strong>early and presses the bellow. As a result, the pressure of oil <strong>in</strong><br />

the reservoir bellows <strong>in</strong>creases and it flows out through the capillary<br />

tubes. At the delivery tip of the tube, oil <strong>form</strong>s a drop and when the size<br />

of the drop is sufficiently large, it touches the mov<strong>in</strong>g component of the<br />

bear<strong>in</strong>g. It is to be noted that the tubes are routed through the stationary<br />

component of the bear<strong>in</strong>g unit and so it is stationery. The set-off<br />

distance i.e., the distance between the nozzle tip and the rotat<strong>in</strong>g<br />

element of the bear<strong>in</strong>g is determ<strong>in</strong>ed from the size of the oil droplet. It<br />

was experimentally determ<strong>in</strong>ed that the weight of a drop of oil (Kluber<br />

PDP-65 oil) is approximately 8 mg and the drop size is about 2.5 mm.<br />

Therefore, the set-off distance <strong>in</strong> this case is taken as 2 mm. The nozzle<br />

tip can be suitably located near the bear<strong>in</strong>g depend<strong>in</strong>g on the design of<br />

the bear<strong>in</strong>g unit to ensure oil discharge to bear<strong>in</strong>gs.<br />

The CLS need to be calibrated before it is be<strong>in</strong>g <strong>in</strong>tegrated to the<br />

system. Calibration is done to determ<strong>in</strong>e the actuation time required to<br />

deliver each drop of oil. The actuation time is depends on the rotational<br />

speed of the motor shaft and the pitch of the screw. The calibration data<br />

of a CLS is shown <strong>in</strong> Figure 11 (Sathyan et al., 2003). The test is done<br />

under a vacuum of 350 torr at 25 o C and the motor <strong>in</strong>put is kept<br />

constant. Dur<strong>in</strong>g calibration, the motor is run for a specific duration<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 44


TRIBOLOGY OF HIGH-SPEED MOVING MECHANICAL SYSTEMS FOR SPACECRAFTS: LUBRICATION SYSTEMS<br />

OF BALL BEARINGS<br />

K. Sathyan<br />

(typically 5 seconds each) and the oil discharge at the delivery tip is<br />

collected and weighed. It can be seen from the figure that the total<br />

discharge <strong>in</strong> 50 cycles is about 750 mg, which is only half of the swept<br />

volume, i.e. oil available for lubrication. It is estimated that the average<br />

loss of lubricant from the bear<strong>in</strong>g of a momentum wheel is about 10<br />

mg/year (Sathyan et al., 2010). This shows that if a quantity slightly <strong>in</strong><br />

excess of this amount is supplied every year, the bear<strong>in</strong>g failure can be<br />

elim<strong>in</strong>ated. Therefore, if one drop (8 mg) oil is supplied every six<br />

months or a maximum of three drops per year, the failure due to<br />

lubricant starvation can be <strong>complete</strong>ly elim<strong>in</strong>ated. From the calibration<br />

data of the CLS, which shows that one operation of duration 5 seconds<br />

deliver approximately 15 mg, even if two operations of 5 seconds each<br />

are planned every year, this system would provide lubrication up to 25<br />

years. The amount oil discharge from the CLS can be varied by vary<strong>in</strong>g<br />

the duration of operation time. The oil discharge can be properly<br />

controlled by select<strong>in</strong>g suitable actuator motor, f<strong>in</strong>e pitch ball screws<br />

and suitable size bellows.<br />

Fig.11. Measured oil discharge from CLS (Sathyan et al., 2010)<br />

Jansen, M. J., Jones, Jr. W. R., Pepper, S. V. Evaluation of an <strong>in</strong>-situ,<br />

liquid lubrication system for space mechanisms us<strong>in</strong>g a vacuum spiral<br />

orbit tribometer. In: NASA-TM-2002-2111683; June 2002.<br />

Jones, W. R. Jr., Shogr<strong>in</strong>, B. A., K<strong>in</strong>gsbury, E. P. “Long –Term<br />

Per<strong>form</strong>ance of a Reta<strong>in</strong>erless Bar<strong>in</strong>g Cartridge with an Ooz<strong>in</strong>g Flow<br />

Lubricator for Space Application”. NASA Technical Memorandum<br />

107492, August 1997.<br />

K<strong>in</strong>gsbury, E.P., Hanson, R. A., Jones, W. R., Mohr T. W. Cartridge<br />

bear<strong>in</strong>g system for space applications. In: Proceed<strong>in</strong>gs of the 33rd<br />

aerospace mechanisms symposium. NASA conference publication, vol.<br />

209259, 1999, 137–43.<br />

Loewenthal, S. H., Scibbe, H. W., Parker, R. J., Zaretsky, E. V.<br />

“Operat<strong>in</strong>g Characteristics of a 0.87 kW-hr Flywheel Energy Storage<br />

Module”. NASA Technical Memorandum 87038, August 1985.<br />

Marchetti, M., Jones, W. R. Jr., Pepper, S. V., Jansen, M. J., Predmore,<br />

R. E. “In-Situ, On-Demand Lubrication System for Space<br />

Mechanisms”. Tribology Transactions, Vol. 46, Issue 3, 2003, 452-459.<br />

Marchetti, M., Meurisse, M. H., Vergne, P., Sicreb, J., Durand, M.<br />

“Analysis of oil supply phenomena by s<strong>in</strong>tered porous reservoirs”.<br />

Tribology Letters Vol. 10, No. 3, 2001, 163-170.<br />

Sathyan, K, Hsu, H.Y., Lee, S.H, Gop<strong>in</strong>ath. K. Long-term lubrication<br />

of momentum wheels used <strong>in</strong> spacecrafts—An overview. Tribology<br />

International, 43, 2010, 259–267.<br />

CONCLUSION<br />

Tribological failures of spacecraft mechanical systems are often s<strong>in</strong>gle<br />

po<strong>in</strong>t failures affect<strong>in</strong>g entire mission. In many high speed mov<strong>in</strong>g<br />

mechanical systems failures occur ma<strong>in</strong>ly due to <strong>in</strong>sufficient supply of<br />

lubricant. Currently, missions are planned to last for decades as<br />

opposed to the short missions of the past. Therefore, provid<strong>in</strong>g<br />

un<strong>in</strong>terrupted lubrication of these systems is a challeng<strong>in</strong>g task before<br />

the tribologists. To help tribologists <strong>in</strong> their design, an account of<br />

different types of lubrication system currently used <strong>in</strong> the space<br />

<strong>in</strong>dustry is presented. The centrifugal lubricator-a passive type<br />

lubricator, and the command lubrication system – an active type<br />

lubricator, presented here are two promis<strong>in</strong>g candidates for lubrication<br />

systems of the future long-term spacecrafts.<br />

REFERENCES<br />

Glassow, F. A. “Assurance of Lubricant Supply <strong>in</strong> Wet-lubricated<br />

Space Bear<strong>in</strong>gs”. Proc.10th Aerospace Mechanisms Symposium,<br />

NASA Technical Memorandum 33-777, 1976, 90-106.<br />

Hashimoto, F. “Ooze Flow Bear<strong>in</strong>g”. United State Patent, Patent no:<br />

6290397, September.18, 2001.<br />

James, G. E. “Positive Commandable Oiler for Satellite Bear<strong>in</strong>g<br />

Lubrication,”11 th Aerospace Mechanisms Symposium, NASA CP-<br />

2038, 1977, 87-95.<br />

Sathyan, K. Development of a centrifugal lubricator for long-term<br />

lubrication of momentum wheels used <strong>in</strong> spacecrafts. PhD thesis,<br />

University of South Australia; March 2010.<br />

Sathyan, K. Long-term lubrication systems for momentum wheels used<br />

<strong>in</strong> spacecrafts. MS thesis, Indian Institute of Technology Madras;<br />

September 2003.<br />

Sathyan, K., Gop<strong>in</strong>ath, K., Hsu, H. Y., Lee S. H. “Development of a<br />

Lubrication System for Momentum Wheels Used <strong>in</strong> Spacecrafts”.<br />

Tribology Letters, 32, 2008, 99–107.<br />

Sathyan, K., Gop<strong>in</strong>ath, K., Hsu, H.Y., and Lee, S.H., Development of a<br />

Positive Lubrication System for Space Application. Tribology Onl<strong>in</strong>e,<br />

5, 1, 2010, 40-45.<br />

Sathyan, K., Gop<strong>in</strong>ath, K., Hsu, H.Y., and Lee, S.H., Long-term<br />

Lubrication System for Space Application. Proceed<strong>in</strong>gs, the 2010<br />

International Conference on Innovation, Management and Services<br />

(ICIMS-2010), S<strong>in</strong>gapore, Feb 26-28, 2010.<br />

S<strong>in</strong>ger, H. B., Gelotte, E. “Design of a High-Speed Reliable Ball<br />

Bear<strong>in</strong>g. Proc.28th Aerospace Mechanisms Symposium”, NASA Conf.<br />

Publ. 3260, 1994, 279-283.<br />

Smith, D. W., Hooper, F. L. “Positive Lubrication System”. Proc.24th<br />

Aerospace Mechanisms Symposium, NASA Conf. Publ. 3062, 1990,<br />

243 – 258.<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 45


Other access free resources from <strong>Academy</strong><strong>Publish</strong>.org<br />

Open Journal of Economic Research,<br />

academypublish.org/<strong>journal</strong>/show/title/open-<strong>journal</strong>-of-economic-research<br />

It tends to publish papers cover<strong>in</strong>g all branches of conceptual, theoretical and practical economics and<br />

wide range of other fields it coats. This <strong>journal</strong> aims to significantly contribute to progress and<br />

understand<strong>in</strong>g of how economic forces allocate scarce resources and services.<br />

Journal of Computer Sciences and In<strong>form</strong>ation Technology,<br />

www.academypublish.org/<strong>journal</strong>/show/title/<strong>journal</strong>-of-computer-and-<strong>in</strong><strong>form</strong>ation-technology<br />

Journal’s heterogeneous scope reaches extended topics of theoretical approach to computer science<br />

that also provide new <strong>in</strong>sights to commercial, social and educational values of software and <strong>in</strong><strong>form</strong>ation<br />

technology.<br />

Journal of Medical Research and Science,<br />

academypublish.org/<strong>journal</strong>/show/title/<strong>journal</strong>-of-medical-research-and-science<br />

One of the goals is to regularly provide plurality of topics <strong>in</strong> each issue. By dispers<strong>in</strong>g the focal po<strong>in</strong>t, the<br />

Journal will be able to publish most recent and most sensational papers, mak<strong>in</strong>g it a reliable and<br />

permanently up-to-date.<br />

Check out our website at www.academypublish.org for more <strong>in</strong>fo regard<strong>in</strong>g publications, sign <strong>in</strong><br />

procedure, benefits and more.<br />

Follow us on twitter and Facebook and do not forget to register to keep be<strong>in</strong>g up to date. We offer great<br />

benefits for <strong>in</strong>vitees and affiliated authors. For more <strong>in</strong><strong>form</strong>ation please follow the l<strong>in</strong>k below.<br />

http://www.academypublish.org/page/show/title/affiliated-author<br />

For all <strong>in</strong>fo regard<strong>in</strong>g the registration process, timel<strong>in</strong>e, <strong>in</strong>structions and guidance, publications and calls<br />

email us at support@academypublish.org<br />

We will gladly assist you with any questions regard<strong>in</strong>g editorial Board, membership or reviews at<br />

board@academypublish.org<br />

Comments? Questions? contact@academypublish.org<br />

<strong>Academy</strong><strong>Publish</strong>.org, 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!