13.04.2014 Views

Download complete journal in PDF form - Academy Publish

Download complete journal in PDF form - Academy Publish

Download complete journal in PDF form - Academy Publish

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A STUDY OF SIMPLIFIED SHALLOW WATER WAVES: ASSESSMENT OF ADOMIAN’S DECOMPOSITION METHOD<br />

FOR THE ANALYTICAL SOLUTION<br />

Mehdi Safari<br />

The operat<strong>in</strong>g with the operator<br />

1<br />

0<br />

(()()())<br />

1<br />

L on both sides of Eq. (18) we have<br />

u f L g t R u F u , (20)<br />

where f<br />

0<br />

is the solution of homogeneous equation<br />

Lu 0 , (21)<br />

<strong>in</strong>volv<strong>in</strong>g the constants of <strong>in</strong>tegration. The <strong>in</strong>tegration constants<br />

<strong>in</strong>volved <strong>in</strong> the solution of homogeneous equation ( 21) are to be<br />

determ<strong>in</strong>ed by the <strong>in</strong>itial or boundary condition accord<strong>in</strong>g as the<br />

problem is <strong>in</strong>itial-value problem or boundary-value problem.<br />

The ADM assumes that the unknown function u ( x ,) t can be<br />

expressed by an <strong>in</strong>f<strong>in</strong>ite series of the <strong>form</strong><br />

<br />

u ( x ,)( t ,) u<br />

n<br />

x t , (22)<br />

n 0<br />

and the nonl<strong>in</strong>ear operator F () u can be decomposed by an <strong>in</strong>f<strong>in</strong>ite<br />

series of polynomials given by<br />

<br />

F () u An<br />

, (23)<br />

n 0<br />

where u<br />

n<br />

( x ,) t will be determ<strong>in</strong>ed recurrently, and An<br />

are the socalled<br />

polynomials of u<br />

0, u1,..., u<br />

n<br />

def<strong>in</strong>ed by<br />

n<br />

1 d <br />

An F () , u 0,1, n2...<br />

<br />

n<br />

n ! d <br />

<br />

<br />

<br />

i<br />

<br />

i <br />

n 0 <br />

0<br />

(24)<br />

ADM IMPLEMENT FOR FIRST MODEL OF SHALLOW<br />

WATER WAVE EQUATION<br />

We first consider the application of ADM to first model of shallow<br />

water wave equation. If Eq. (2) is dealt with this method, it is <strong>form</strong>ed as<br />

L u L u 4uL u 2L u L udx L u,<br />

(25)<br />

t<br />

where<br />

xxt<br />

t<br />

3<br />

<br />

<br />

L t<br />

, L x<br />

, L xxt<br />

,<br />

2<br />

t x x<br />

t<br />

If the <strong>in</strong>vertible operator<br />

L<br />

1<br />

t<br />

x<br />

t<br />

x<br />

t<br />

dt<br />

0<br />

x<br />

(26)<br />

is applied to Eq. 25, then<br />

L L u L<br />

1<br />

t<br />

t<br />

1<br />

t<br />

( L<br />

is obta<strong>in</strong>ed. By this<br />

xxt<br />

u(<br />

x,<br />

t)<br />

u(<br />

x,0)<br />

L<br />

u 4uL u 2L u<br />

1<br />

t<br />

( L<br />

xxt<br />

t<br />

x<br />

<br />

x<br />

u 4uL u 2L u<br />

t<br />

x<br />

L udx L u),<br />

<br />

x<br />

t<br />

x<br />

L udx L u),<br />

t<br />

x<br />

(27)<br />

(28)<br />

is found. Here the ma<strong>in</strong> po<strong>in</strong>t is that the solution of the decomposition<br />

method is <strong>in</strong> the <strong>form</strong> of<br />

u ( x,<br />

t)<br />

un<br />

( x,<br />

t)<br />

, (29)<br />

n0<br />

Substitut<strong>in</strong>g from Eq. 29 <strong>in</strong> 28, we f<strong>in</strong>d<br />

<br />

<br />

n0<br />

<br />

<br />

<br />

<br />

L ( , ) 4 ( , ) ( , )<br />

1<br />

0<br />

0<br />

0<br />

( , ) ( ,0)<br />

<br />

<br />

<br />

xxt <br />

un<br />

x t <br />

un<br />

x t Lt<br />

<br />

un<br />

x t <br />

n<br />

n<br />

n<br />

<br />

u<br />

n<br />

x t u x Lt<br />

<br />

, (30)<br />

<br />

x<br />

<br />

<br />

<br />

2 ( , )<br />

( , )<br />

( , ) <br />

Lx<br />

<br />

un<br />

x t <br />

Lt<br />

<br />

un<br />

x t dx<br />

Lx<br />

<br />

un<br />

x t <br />

n0<br />

n0<br />

n0<br />

<br />

is found.<br />

Accord<strong>in</strong>g to Eq.19 approximate solution can be obta<strong>in</strong>ed as follows:<br />

<br />

2 1 c 1<br />

<br />

( c 1)sech<br />

x<br />

2 c<br />

u0<br />

( x,<br />

t)<br />

<br />

<br />

,<br />

2c<br />

1 c 1<br />

c 1<br />

( c 1)s<strong>in</strong>h<br />

<br />

x<br />

2<br />

t<br />

1(<br />

, )<br />

c c<br />

x t <br />

,<br />

<br />

3 1 c 1<br />

<br />

2c<br />

cosh <br />

x<br />

2<br />

c <br />

(31)<br />

u (32)<br />

t<br />

<br />

(33)<br />

u2( x,<br />

t)<br />

( Lxxtu1<br />

4u1Lt<br />

u1<br />

2Lxu1<br />

Lt<br />

u1dx<br />

Lxu1<br />

) dt,<br />

0<br />

Thus the approximate solution for first model of shallow water wave<br />

equation is obta<strong>in</strong>ed as<br />

u x,<br />

t)<br />

u ( x,<br />

t)<br />

u ( x,<br />

t)<br />

u ( x,<br />

) , (34)<br />

(<br />

0 1<br />

2<br />

t<br />

The terms u0 ( x,<br />

t),<br />

u1(<br />

x,<br />

t),<br />

u2<br />

( x,<br />

t)<br />

<strong>in</strong> Eq.34, obta<strong>in</strong>ed from<br />

Eqs.31, 32, 33. In Fig.1 the first model of shallow water wave equation<br />

with the first <strong>in</strong>itial condition (31) of Eq. (2) when c=2 has been shown.<br />

ADM IMPLEMENT FOR SECOND MODEL OF SHALLOW<br />

WATER WAVE EQUATION<br />

Now we consider the application of ADM to second model of shallow<br />

water wave equation. If Eq. (3) is dealt with this method, it is <strong>form</strong>ed as<br />

x<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!