13.04.2014 Views

Download complete journal in PDF form - Academy Publish

Download complete journal in PDF form - Academy Publish

Download complete journal in PDF form - Academy Publish

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ON BICRITERIA LARGE SCALE TRANSSHIPMENT PROBLEMS<br />

Dr. Jasem M.S. Alrajhi, Dr. Hilal A. Abdelwali, Dr. Mohsen S. Al-Ardhi, Eng. Rafik El Shiaty<br />

In the follow<strong>in</strong>g we will present an algorithm for determ<strong>in</strong><strong>in</strong>g all<br />

nondom<strong>in</strong>ated extreme po<strong>in</strong>ts of the (BMTSP3) model from which the<br />

solution of the (BMTSP1) and the (BMTSP2) models can be deduced<br />

as special cases from it.<br />

Let: for <strong>in</strong>dependent constra<strong>in</strong>ts:<br />

D k , k= 1,2,…,N be the technological matrix of the k th stage activity, D k<br />

is (m k + n k ) * (m k + n k ) matrix, N is the number of stages, m k is the<br />

number of sources at k th stage, n k is the number of dest<strong>in</strong>ations.<br />

b k be the column vector consist<strong>in</strong>g of the availabilities and<br />

requirements of the k th subproblem, b k is (m k + n k ) * 1 column vector.<br />

It follows that each set of <strong>in</strong>dependent constra<strong>in</strong>ts can be written as:<br />

D k x k = b k , k = 1,2,…,N<br />

x k represent the vector of the correspond<strong>in</strong>g variables, x k is (m k + n k ) *1<br />

column vector.<br />

Let: For the common constra<strong>in</strong>ts:<br />

A k be the technogical matrix of k th stage activity, A k is m 0 * (m k * n k )<br />

matrix, m 0 be the number of common constra<strong>in</strong>ts.<br />

b 0 be its correspond<strong>in</strong>g common resources vector, b 0 is (m 0 * 1) column<br />

vector.<br />

This gives: A 1 x 1 + A 2 x 2 + …….+ A k x k + ……. +A N x N = b 0<br />

Let: for the objective functions:<br />

c K represent the vector of the first criterion coefficients for the k th stage<br />

activity, c k is 1*(m k *n k ) row vector.<br />

d k represent the vector of the second criterion coefficients for the k th<br />

stage activity, d k is 1*(m k *n k ) row vector.<br />

Let: For the master program:<br />

B be the basic matrix associated with the current basic solution, B is<br />

(m o *N) * (m o +N) matrix.<br />

C B be the row vector of the correspond<strong>in</strong>g coefficients <strong>in</strong> the objective<br />

function, C B is 1*(m o +N) row vector.<br />

R o is the matrix of size (m o + N)*m o consist<strong>in</strong>g of the first m o columns<br />

of B -1 , and<br />

v j is the (m o + j) th column of the same matrix B -1<br />

The algorithm presented here is divided <strong>in</strong>to two phases.<br />

Phase 1: Determ<strong>in</strong>e the nondom<strong>in</strong>ated extreme po<strong>in</strong>ts <strong>in</strong> the objective<br />

space. And the algorithm is validated by the follow<strong>in</strong>g theorem [1].<br />

Theorem:<br />

A po<strong>in</strong>t z (q) q<br />

q<br />

= z1 , z2<br />

is a nondom<strong>in</strong>ated extreme po<strong>in</strong>t is the<br />

objective space if and only if z(q) is recorded by the algorithm.<br />

Phase II: Is the decomposition algorithm which can be found <strong>in</strong> [7].<br />

S<strong>in</strong>ce the special structure of the (BMTSP3) model may allow the<br />

determ<strong>in</strong>ation of the optimal solution by, first decompos<strong>in</strong>g the<br />

problem <strong>in</strong>to small subproblems and then solv<strong>in</strong>g those subproblems<br />

almost <strong>in</strong>dependently, then the decomposition algorithm for solv<strong>in</strong>g<br />

large scale l<strong>in</strong>ear programm<strong>in</strong>g problems utiliz<strong>in</strong>g the special nature of<br />

transshipment problem can be used to solve it.<br />

Phase I:<br />

Step 1: Go to phase II, f<strong>in</strong>d<br />

z<br />

(1 ) M<strong>in</strong> z / x M <br />

1<br />

<br />

And f<strong>in</strong>d<br />

.<br />

1<br />

(1)<br />

(1)<br />

z<br />

2<br />

M<strong>in</strong> . z<br />

2<br />

/ z<br />

1<br />

z<br />

1<br />

and x M .<br />

Step 2:<br />

(1) (1)<br />

Record ( z<br />

1 , z<br />

2 ) and set q = 1.<br />

Similarly, go to phase II, f<strong>in</strong>d<br />

z<br />

( 2 )<br />

2<br />

<br />

And f<strong>in</strong>d<br />

<br />

M<strong>in</strong> . z<br />

2<br />

/ x <br />

( 2 )<br />

( 2 )<br />

z<br />

1<br />

M<strong>in</strong> . z<br />

1<br />

/ z<br />

2<br />

z<br />

2<br />

and x M .<br />

( 2 ) ( 2 ) (1) (1)<br />

( z<br />

1<br />

, z<br />

2<br />

) ( z<br />

1<br />

, z<br />

2<br />

), stop<br />

M<br />

If .<br />

(2) (2)<br />

Otherwise record ( z<br />

1 , z<br />

2 ) and set q = q+1<br />

Def<strong>in</strong>es sets L = {(1,2)} and E = , and go to step 2.<br />

Choose an element (r,s) L and set<br />

( r , s ) ( s ) ( r )<br />

a z z and<br />

a<br />

1<br />

( r , s )<br />

2<br />

<br />

z<br />

2<br />

( s )<br />

1<br />

<br />

z<br />

2<br />

( r )<br />

1<br />

k<br />

Go to phase II to obta<strong>in</strong> the optimal solution ( x , k=1,2,..,N) to the<br />

multistage transshipment problem.<br />

M<strong>in</strong>imize<br />

x<br />

k<br />

N<br />

<br />

k 1<br />

<br />

ik<br />

, jk<br />

and<br />

( r,<br />

s)<br />

k<br />

( r,<br />

s)<br />

k<br />

(e<br />

1<br />

cik<br />

j<br />

a d<br />

k 2 ik<br />

j<br />

)<br />

k<br />

Subject to<br />

k<br />

M , x o , k 1,2 ,.., N<br />

<br />

x<br />

k<br />

ik<br />

jk<br />

If there are alternative optima, choose an optimal solution<br />

k=1,2,.,N, for which<br />

N<br />

<br />

k 1<br />

<br />

ik<br />

, jk<br />

Let z<br />

1<br />

=<br />

z<br />

2<br />

=<br />

N<br />

<br />

k1<br />

( c<br />

N<br />

<br />

k1<br />

k<br />

ik<br />

jk<br />

<br />

i , j<br />

k<br />

x<br />

<br />

ik<br />

, jk<br />

k<br />

k<br />

ik<br />

jk<br />

d<br />

c<br />

k<br />

ik<br />

jk<br />

k<br />

i j<br />

k k<br />

m<strong>in</strong>.)<br />

x<br />

x<br />

k<br />

ik<br />

jk<br />

k<br />

i j<br />

k k<br />

; and<br />

( r ) ( r )<br />

If ( z<br />

1<br />

,<br />

2<br />

( z<br />

1<br />

, z<br />

2<br />

)<br />

Set E = E {(r,s)} and go to step 3.<br />

( q)<br />

( q)<br />

Otherwise record ( z<br />

1<br />

, z<br />

2 ) such that<br />

z<br />

( s ) ( s )<br />

z ) is equal to or ( z , z )<br />

( q )<br />

( q )<br />

1<br />

z1<br />

, z<br />

2<br />

z 2 and set q q <br />

Step 3:<br />

L = L {(r,q)}, (q,s)} and go to step 3.<br />

Set L = L - {(r-s)}. If L = , stop.<br />

Otherwise go to step 2.<br />

1<br />

1,<br />

2<br />

k<br />

x ,<br />

Phase II:<br />

Step 1: Reduce the orig<strong>in</strong>al problem to the modified <strong>form</strong> <strong>in</strong> terms of<br />

the new variables k<br />

Step 2: F<strong>in</strong>d an <strong>in</strong>itial basic feasible solution to the modified problem.<br />

Step 3: Solve the subproblems<br />

k k<br />

k<br />

k k<br />

w ( c OR d c<br />

B<br />

R<br />

o<br />

A ) x<br />

Subject to<br />

k k k<br />

D x b ,<br />

x k<br />

o , k 1,2,..., N .<br />

<strong>Academy</strong><strong>Publish</strong>.org – Journal of Eng<strong>in</strong>eer<strong>in</strong>g and Technology Vol.2, No.2 24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!