11.05.2014 Views

Heat Transfer in Vacuum - Owens Design

Heat Transfer in Vacuum - Owens Design

Heat Transfer in Vacuum - Owens Design

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Heat</strong> <strong>Transfer</strong> <strong>in</strong> <strong>Vacuum</strong><br />

• Methods of protect<strong>in</strong>g components from heat sources <strong>in</strong><br />

vacuum chamber<br />

• How to predict temperature of the components<br />

• Simple 1D heat transfer models for quick design<br />

evaluation<br />

• Project example<br />

Igor Fidelman 9/23/10


What needs to be protected:<br />

• O-r<strong>in</strong>gs, plastic parts (limited service temperature)<br />

• Mechanisms ( thermal expansion )<br />

• Chamber walls ( prevent<strong>in</strong>g deposition )<br />

• Feedthroughs ( proper function )


Modes of heat transfer: radiation and conduction<br />

(convection: low pressure chambers and frequent pump<strong>in</strong>g/vent<strong>in</strong>g )<br />

Methods of protection:<br />

• water cooled chamber walls or baffles,<br />

• <strong>in</strong>creased thermal conductive path<br />

• use of low thermal conductivity materials (quartz,<br />

opaque quartz, ceramics, SST)<br />

• radiation shields<br />

• gas assisted cool<strong>in</strong>g


Opaque quartz<br />

<strong>Heat</strong> source<br />

O-r<strong>in</strong>g<br />

Water<br />

channel<br />

Clear quartz<br />

Wafer<br />

Cool<strong>in</strong>g gas<br />

Chamber wall<br />

Radiation<br />

shields<br />

Th<strong>in</strong> wall:<br />

Increased thermal<br />

path


Thermal radiation.<br />

• Wavelength: 0.1 – 100 micrometers<br />

• Black body emits E=s*T^4 (W/m^2)<br />

Stefan-Boltzmann constant s=5.66e-8 (W/m^2*K^4)<br />

• Real body emits E= e*s*T^4 (W/m^2)<br />

e – emissivity (0-1)


Emissivity<br />

Depends on material and surface conditions<br />

SST, polished 0.27-0.29<br />

SST, oxidized 0.53-0.87<br />

Alum<strong>in</strong>um, polished 0.04-0.09<br />

Alum<strong>in</strong>um, anodized 0.4-0.6<br />

Opaque quartz 0.92<br />

Alum<strong>in</strong>a 0.9


• Absorptivity, reflectivity, transmissivity<br />

a + r + t = 1


More complications:<br />

Dependence of optical properties on wavelength<br />

Transmittance of 1mm thick clear fused quartz


More complications:<br />

Dependence of optical properties on temperature<br />

Emissivity of 0.725mm Si wafer


More complications:<br />

Spectral distribution of radiation energy.<br />

Maximum energy is emitted at: 2897.6/T(K) microns


More complications:<br />

Reflection – specular, diffusive


Approximation for eng<strong>in</strong>eer<strong>in</strong>g calculations<br />

• all surfaces are gray: absorptivity = emissivity, does not<br />

depend on wavelength ( rarely exist <strong>in</strong> real life, many<br />

materials are gray over certa<strong>in</strong> wavelength ranges )<br />

• all surfaces are opaque<br />

• all surfaces are diffusive<br />

• all surfaces are at uniform temperature<br />

Q :=<br />

⎛<br />

⎝<br />

1 − e<br />

1<br />

e ⋅A 1 1<br />

⎡<br />

⎣<br />

( ) 4 − ( T 2 ) 4<br />

σ⋅<br />

T 1<br />

⎞<br />

⎠<br />

+<br />

1<br />

A ⋅F 1 12<br />

+<br />

⎤<br />

⎦<br />

⎛<br />

⎝<br />

1 − e<br />

2<br />

e ⋅A 2 2<br />

⎞<br />


View Factors<br />

Fraction of energy leav<strong>in</strong>g surface 1 which reaches surface 2


Simple 1D Model<br />

Tw = const<br />

Tl = f (Cv,m)<br />

L<strong>in</strong>er (top)-Chamber wall<br />

Qr=f (e,T,F,A )<br />

Wafer –<br />

Chamber wall<br />

Qr=f (e,T,F,A )<br />

Qr Wafer-L<strong>in</strong>er<br />

Qr=f (e,T,F,A )<br />

<strong>Heat</strong>er-Wafer<br />

Qr=f (e,T,F,A )<br />

Tw = f (Cv,m)<br />

L<strong>in</strong>er (bottom)-<br />

Chamber wall<br />

Qr=f (e,T,F,A )<br />

Th = const


120<br />

115<br />

110<br />

Simple 1D model -results<br />

650<br />

600<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

45<br />

50<br />

55<br />

60<br />

65<br />

70<br />

T,C<br />

75<br />

80<br />

85<br />

105<br />

100<br />

95<br />

90<br />

time,sec<br />

wafer l<strong>in</strong>er


Tak<strong>in</strong>g it a step further<br />

Q radiation<br />

Q convection/conduction<br />

Q radiation<br />

Q convection/conduction<br />

Q conduction<br />

Q radiation<br />

Q convection/conduction<br />

Q radiation<br />

Q convection/conduction


1D Model - Results<br />

base plate<br />

heater<br />

susc. bottom<br />

susceptor 2<br />

susceptor 3<br />

susceptor 4<br />

susc. top<br />

shower head<br />

wafer<br />

temperature, °C<br />

850<br />

840<br />

830<br />

820<br />

810<br />

800<br />

790<br />

780<br />

770<br />

760<br />

750<br />

740<br />

730<br />

720<br />

710<br />

700<br />

690<br />

680<br />

670<br />

660<br />

650<br />

640<br />

630<br />

620<br />

610<br />

600<br />

4990 5000 5010 5020 5030 5040 5050 5060 5070 5080 5090 5100<br />

time, sec


1D Model - Results<br />

base plate<br />

heater<br />

susc. bottom<br />

susceptor 2<br />

susceptor 3<br />

susceptor 4<br />

susc. top<br />

shower head<br />

wafer<br />

temperature, °C<br />

850<br />

840<br />

830<br />

820<br />

810<br />

800<br />

790<br />

780<br />

770<br />

760<br />

750<br />

740<br />

730<br />

720<br />

710<br />

700<br />

690<br />

680<br />

670<br />

660<br />

650<br />

640<br />

630<br />

620<br />

610<br />

600<br />

590<br />

580<br />

570<br />

560<br />

550<br />

5000 5100 5200 5300 5400 5500 5600<br />

time, sec


1D Model - Results<br />

940<br />

920<br />

900<br />

880<br />

860<br />

840<br />

temperature, °C<br />

820<br />

800<br />

780<br />

760<br />

740<br />

720<br />

700<br />

base plate<br />

heater<br />

susc. bottom<br />

susceptor 2<br />

susceptor 3<br />

susceptor 4<br />

susc. top<br />

shower head<br />

wafer<br />

680<br />

660<br />

640<br />

620<br />

600<br />

4900 5000 5100 5200 5300 5400 5500 5600<br />

time, sec


Project example


Problem:<br />

• protect chamber from high energy ion beam<br />

• keep temperature of the shields below 150 deg C<br />

Solution:<br />

Use pure alum<strong>in</strong>um shields bolted to water cooled Al6061<br />

supports


Project example<br />

SHIELDS


Project example<br />

Cool<strong>in</strong>g<br />

channels<br />

shield


960<br />

930<br />

900<br />

870<br />

840<br />

810<br />

Project example<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

30<br />

60<br />

90<br />

120<br />

150<br />

180<br />

210<br />

240<br />

270<br />

300<br />

330<br />

360<br />

390<br />

420<br />

450<br />

480<br />

510<br />

540<br />

570<br />

600<br />

630<br />

660<br />

690<br />

720<br />

780<br />

750<br />

time, sec<br />

sac.plate cool.plate w ater exit T<br />

temperature, C


Conclusions<br />

• Thermal behavior of the chamber components have to be<br />

carefully evaluated when design<strong>in</strong>g a vacuum chamber with a<br />

heat source.<br />

• A simple 1D model allows to quickly estimate steady state and<br />

transient temperature of the parts.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!