24.10.2014 Views

My PhD thesis - Condensed Matter Theory - Imperial College London

My PhD thesis - Condensed Matter Theory - Imperial College London

My PhD thesis - Condensed Matter Theory - Imperial College London

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 6. THE MODIFIED PERIODIC COULOMB INTERACTION IN<br />

QUASI-2D SYSTEMS<br />

Finding the ũ n now amounts to finding the eigenvectors of the following matrix:<br />

⎛<br />

(<br />

− ˜f(0) − ˜f − 2π ) (<br />

− w<br />

˜f − 4π )<br />

( ) ⎞<br />

· · · −<br />

w<br />

˜f 2π ( ) ( ) ˜f(<br />

w 2 − ˜f 2π 2π<br />

− −<br />

w w<br />

˜f(0) − − 2π )<br />

( )<br />

· · · −<br />

w<br />

˜f 4π ( ) ( ) ( )<br />

w<br />

2 ( )<br />

− ˜f 4π<br />

− w ˜f 2π 4π<br />

− −<br />

w w<br />

˜f(0) · · · − ˜f<br />

6π .<br />

w .<br />

.<br />

.<br />

... .<br />

⎜ (<br />

⎝<br />

− ˜f − 2π ) (<br />

−<br />

w<br />

˜f − 4π ) (<br />

−<br />

w<br />

˜f − 6π ) (<br />

· · · − − 2π ) 2 ⎟<br />

−<br />

w<br />

w ˜f(0) ⎠<br />

(6.66)<br />

Here w is the chosen cell size in the z-direction, so that k z<br />

= 2mπ/w. In order<br />

that the matrix be finite, m must be restricted. Using the standard discrete Fourier<br />

ordering (as in the matrix itself) gives m = 0, 1, 2, . . . , N/2, −N/2 + 1, . . . , −1; the<br />

matrix is then of size 3 N × N.<br />

Obtaining the eigenvalues and eigenvectors of this finite matrix is a standard<br />

computational operation. The Green’s function can now be constructed:<br />

G(z, z ′ ; k ‖ ) = ∑ n<br />

= ∑ n<br />

u n (z)u ∗ n(z ′ )<br />

λ n − k‖<br />

2<br />

1 ∑ ∑<br />

e −i(kzz−k′ zz ′)ũ<br />

λ n − k‖<br />

2 n (k z )ũ ∗ n(k z).<br />

′<br />

k z<br />

k ′ z<br />

(6.67)<br />

Once the Green’s function is known, the response to the imposed charge distribution<br />

can be calculated, as in equation (6.60):<br />

δ ˜φ tot (k ‖ , z) = −4π<br />

∫ w<br />

0<br />

= −4π ∑ n<br />

G(z, z ′ ; k ‖ )δ ˜ρ ext (k ‖ , z ′ ) dz ′<br />

1 ∑ ∑<br />

∫ w<br />

e −ikzz ũ<br />

λ n − k‖<br />

2 n (k z )ũ ∗ n(k z)<br />

′ e ik′ z z′ δ ˜ρ ext (k ‖ , z ′ ) dz ′ .<br />

0<br />

k z<br />

k ′ z<br />

(6.68)<br />

The charge distribution δρ ext is not quite the same as the one used previously, since<br />

it must now be periodic in all three dimensions. The definition given in equation<br />

(6.38) may still be used, with the understanding that R now represents a vector of<br />

3 N is assumed to be even.<br />

101

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!