10.11.2014 Views

ACEE 434 Environmental Systems Design - Korea University

ACEE 434 Environmental Systems Design - Korea University

ACEE 434 Environmental Systems Design - Korea University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>ACEE</strong> <strong>434</strong><br />

<strong>Environmental</strong> <strong>Systems</strong> <strong>Design</strong><br />

Week 3<br />

September 16, 2009<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 1


Overview<br />

Guri WWTP<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 2


Screen, Grit Removal<br />

Influent<br />

Primary Clarifiers<br />

Aeration Tanks<br />

Dewatering<br />

Facilities<br />

Effluent<br />

Secondary<br />

Clarifiers<br />

Ozone<br />

Disinfection<br />

Anaerobic<br />

Digesters<br />

Satellite image obtained from NAVER<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 3


Pretreatments<br />

Screen<br />

Grit removal chamber<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 4


Primary Treatments<br />

Primary clarifier<br />

Buoyant solids<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 5


Secondary Treatments<br />

Aeration tank<br />

Secondary clarifier<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 6


Advanced Treatments<br />

Ozone disifection<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 7


Wastewater<br />

Constituents<br />

• Physical characteristics<br />

• Inorganic characteristics<br />

ti<br />

• Organic characteristics<br />

• Biological characteristics<br />

http://www.co.allen.oh.us/san/htmlPPT/american2/images/16.jpg<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 8


Physical Constituents<br />

• Solids<br />

• Particle size distribution<br />

• Turbidity<br />

• Color<br />

• Transmittance<br />

• Temperature<br />

• Conductivity<br />

• Density<br />

• Specific gravity<br />

• Specific weight<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 9


Solids<br />

105 o C<br />

105 o C<br />

Imhoff cone<br />

MetCalf and Eddy Figure 2-5<br />

500 o C Filter unit<br />

MetCalf and Eddy Figure 2-3<br />

Interrelationships of solids found in water and<br />

wastewater. In much of the water quality literature, the<br />

solids passing through the filter are called dissolved<br />

solids.<br />

Aluminum dish<br />

Glass fiber<br />

filter<br />

MetCalf and Eddy Figure 2-4<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 10


Size Range<br />

0.45 -2.0μm: filter size for TSS determination<br />

MetCalf and Eddy Figure 2-7<br />

Size ranges of organic<br />

contaminants in wastewater and<br />

size separation and measurement<br />

techniques used for their<br />

quantification<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 11


Example 2-4<br />

Analysis of solids data<br />

Sample size = 50 mL<br />

• Tare mass of evaporation dish = 53.5433 g<br />

• Mass of evaporating dish plus residue after evaporation at 105 o C = 53.5794 g<br />

• Mass of evaporating dish plus reside after ignition at 550 o C = 53.5625 g<br />

• Tare mass of Whatman GF/C filter after drying at 105 o C = 1.5433 g<br />

• Mass of Whatman GF/C filter and reside after drying at 105 o C = 1.5554 g<br />

• Mass of Whatman GF/C and residue after ignition at 550 o C = 1.5476 g<br />

Determine total solids (TS), total volatile solids (TVS), total suspended solids<br />

(TSS), volatile suspended solids (VSS), total dissolved solids (TDS), and volatile<br />

dissolved solids (VDS), respectively.<br />

MetCalf and Eddy Example 2-4<br />

Analysis of solids data<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 12


Temperature<br />

• Very important t parameter because of its effect on chemical reactions and<br />

reaction rates, aquatic life, and the suitability of the water for beneficial uses.<br />

• Most important in wastewater treatment<br />

- Dissolve oxygen solubility ↓ as temperature ↑<br />

- Biological activity ↑ as temperature ↑ (optimum range 25-35 o C)<br />

- Chemical activity ↑ as temperature ↑<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 13


Temperature<br />

• Effects on reaction rates (van’t Hoff-Arrhenius relationship)<br />

d(ln<br />

k)<br />

dT<br />

E<br />

= RT<br />

2<br />

dT<br />

k2 E(<br />

T2<br />

−T1<br />

) E<br />

ln = =<br />

( T<br />

2<br />

−T<br />

1<br />

)<br />

k<br />

RT T<br />

RT T<br />

1 1 2<br />

1T2<br />

C<br />

k<br />

ln 2 =<br />

C<br />

(<br />

T<br />

2<br />

−T<br />

1<br />

)<br />

k<br />

1<br />

k<br />

k<br />

k 1<br />

k<br />

k<br />

C ( T 2 − T )<br />

= e e C = θ<br />

2 1<br />

k 1<br />

= θ<br />

( T 2 −T<br />

)<br />

2 1<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 14


Temperature<br />

The effect of temperature t on the maximum growth rate of Nitrosomonas<br />

ˆ μ<br />

μ N<br />

=<br />

0.47e<br />

0.098( T −15)<br />

wth<br />

Maxi imum spe ecific gro<br />

rate (d day-1)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 10 20 30 40 50<br />

Temperature (oC)<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 15


Inorganic Constituents<br />

•pH<br />

• Nitrogen<br />

• Phosphorus<br />

• Alkalinity<br />

• Chlorides<br />

•Sulfur<br />

• Other inorganic constitutents<br />

• Gases<br />

• Odors<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 16


pH<br />

• The concentration range suitable for the existence of most biological life is<br />

quite narrow and critical (typically 6 to 9).<br />

+<br />

pH = −logl<br />

10 [<br />

H<br />

]<br />

O H 2<br />

↔<br />

H<br />

+ +<br />

OH<br />

−<br />

[ H<br />

][ OH<br />

H O<br />

+<br />

2<br />

−<br />

]<br />

=<br />

K<br />

http://www.techneusa.com/ph/3510.jpg<br />

[ H<br />

+<br />

][ OH<br />

−<br />

] =<br />

−14<br />

Kw = 1×<br />

10 @ 25<br />

o<br />

C<br />

pH + pOH =14<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 17


Nitrogen<br />

• Nitrogen species<br />

• Oxidation states<br />

MetCalf and Eddy Table 2-7<br />

Definition of the various terms used to<br />

define various nitrogen species<br />

NH 3 –N 2 –N 2 O – NO – N 2 O 3 –NO 2 –N 2 O 5<br />

-3 0 +1 +2 +3 +4 +4<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 18


Nitrogen<br />

• Nitrogen cycle<br />

denitrification<br />

nitrification<br />

http://ohioline.osu.edu/aex-fact/images/463_1.jpg<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 19


Phosphorus<br />

• A essential nutrient for the growth of algae and other biological<br />

organisms<br />

• Forms: Orthophosphate, polyphosphate, organic phosphate<br />

http://www.waterwatchadelaide.net.au/uploads/imag<br />

es/wetlands/blue_green.jpg<br />

eutrophication<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 20


Gases<br />

• N 2 , O 2 , CO 2 , H 2 S, NH 3 , CH 4<br />

atmosphere<br />

decomposition of organic matters<br />

• Solubility of gases in water<br />

- The ideal gas law<br />

PV = nRT<br />

- Henry’s law<br />

P =<br />

g<br />

H<br />

P<br />

T<br />

x<br />

g<br />

P = absolute pressure, atm<br />

V = volume occupied by the gas, L, m3<br />

n = mole of gas, mole<br />

R = universal gas law constant, t 0.082057082057 atm·L/mole·K<br />

T = temperature, K<br />

P g = mole fraction of gas in air, mole gas/mole of air<br />

H = Henry’s law constant,<br />

atm (mole gas/mole air)/(mole gas/mole water)<br />

P T = total pressure, usually 1.0 atm<br />

x g = mole fraction of gas in water, mole gas/mole water<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 21


Metals<br />

MetCalf and Eddy Table 2-13<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 22


Organic Constituents<br />

• BOD<br />

•TOC<br />

•COD<br />

•ThOD<br />

• Priority pollutants<br />

• Volatile organic pollutants<br />

• Disinfection byproducts<br />

• Pesticides<br />

Aggregate g organic constituents<br />

• Emerging organic compounds<br />

Individual organic constituents<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 23


BOD<br />

• The importance of measuring BOD (Biochemical Oxygen Demand)<br />

- To determine the approximate quantity of oxygen that will be required to<br />

biologically stabilize the organic matter present<br />

- To determine the size of wastewater facilities<br />

- To measure the efficiency of some treatment process<br />

- To determine compliance with wastewater discharge permit<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 24


BOD<br />

• Three main activities of aerobic decomposition of organic wastes<br />

- Oxidation<br />

COHNS + O 2 + bacteria → CO 2 + H 2 O + NH 3 + other products + energy<br />

Organic waste<br />

- Synthesis<br />

COHNS + O 2 + bacteria + energy → C 5 H 7 O 2 N<br />

- Endogenous respiration<br />

C 5 H 7 O 2 N + 5O 2 → 5CO 2 + NH 3 + 2H 2 O<br />

New cell tissue<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 25


BOD<br />

Filling dilution<br />

water saturated Adding test<br />

in oxygen sample<br />

Incubating 5 days @ 20 o C<br />

BOD bottle<br />

D 1 = DO conc. @ t = 0 day<br />

BOD incubator<br />

D 2 = DO conc. @ t = 5 day<br />

D1<br />

− D2<br />

BOD5 , mg / L =<br />

P<br />

Fraction of wastewater sample volume<br />

to total combined volume<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 26


BOD<br />

D1<br />

− D2<br />

BOD,<br />

mg / L =<br />

P<br />

( D1 − D2<br />

) − ( B1<br />

− B2<br />

BOD , mg<br />

/<br />

L<br />

=<br />

P<br />

) f<br />

Fraction of seeded dilution water<br />

volume in sample to volume of seeded<br />

dilution water in seed control<br />

MetCalf and Eddy Figure 2-19<br />

Procedure for setting up BOD test bottles: (a) with<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP unseeded dilution water and (b) with seeded dilution<br />

27<br />

water.


BOD<br />

Example 2-8<br />

15 mL of the waste sample was added directly into a 300-mL BOD incubation<br />

bottle. The initial DO of the diluted sample was 8.8 mg/L and the final DO after<br />

5 days was 1.9 mg/L. The corresponding initial and final DO of the seeded<br />

dilution was 9.1 and 7.9, respectively. What is the 5-day BOD of the<br />

wastewater sample?<br />

MetCalf and Eddy Example 2-8<br />

Determination of BOD from laboratory data<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 28


BOD<br />

• The rate of BOD oxidation (“exertion”) is modeled based on the assumption<br />

that the amount of organic material remaining at any time t is governed by a<br />

first-order kinetic reaction.<br />

dBOD<br />

dt<br />

BOD<br />

r<br />

r<br />

= −k<br />

1<br />

= UBOD<br />

BOD<br />

r<br />

−k1t<br />

( e<br />

)<br />

BOD<br />

t<br />

−k1t<br />

= UBOD( 1−<br />

e )<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 29


BOD<br />

Nitrification in the BOD test<br />

MetCalf and Eddy Figure 2-22<br />

Definition sketch for the exertion of the carbonaceous and<br />

nitrogenous biochemical oxygen demand in a waste<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP sample.<br />

30


Biological Constituents<br />

• Bacteria<br />

• Archaea<br />

• Fungi<br />

•Protozoa<br />

• Algae<br />

• Viruses<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 31


Indicator Organisms<br />

• Total coliform bacteria<br />

• Fecal coliform bacteria<br />

• Klebsiella<br />

•E. coli<br />

• Bacteroides<br />

• Fecal streptococci<br />

• Enterococci<br />

• Clostridium perfringerns<br />

• P. aeruginosa and A. hydrophila<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 32


Indicator Organisms<br />

MetCalf and Eddy Figure 2-33<br />

Schematic illustration of the methods used to obtain bacterial counts:<br />

(a) Multiple tube fermentation technique using a liquid medium<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 33


Toxicity Test<br />

• Acute toxicity: exposure that will result in significant response<br />

shortly after exposure (typically a response is observed within 48<br />

or 96 h)<br />

• Chronic toxicity: exposure that will result in sublethal response<br />

over a long term, often 1/10 of the life span or more<br />

http://sflabs.com/testing/images/Picture029_000.jpg000.jpg<br />

http://evodevo.uoregon.edu/ima<br />

ges/daphnia.gifgif<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 34


Summary<br />

• Guri wastewater treatment plant<br />

• Wastewater characteristics<br />

- Physical characteristics<br />

- Inorganic characteristics<br />

- Organic characteristics<br />

- Biological characteristics<br />

<strong>ACEE</strong> <strong>434</strong> Fall 2009 HDP 35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!