16.11.2014 Views

Metabolic and Biochemical Alterations in Alzheimer Disease: Facts ...

Metabolic and Biochemical Alterations in Alzheimer Disease: Facts ...

Metabolic and Biochemical Alterations in Alzheimer Disease: Facts ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

We are deeply saddened that Mark A. Smith, PhD,<br />

Professor of Pathology at Case Western Reserve University<br />

died unexpectedly <strong>in</strong> December 2010<br />

In Memory: Prof. Mark A. Smith<br />

This talk by Professor Smith on '<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong> <strong>in</strong> <strong>Alzheimer</strong>'s <strong>Disease</strong>'<br />

has now been published with the help <strong>and</strong> guidance of his family <strong>and</strong> colleagues<br />

<strong>and</strong> we thank them for ensur<strong>in</strong>g this talk could be made available<br />

Amongst his many contributions to the advancement of human health,<br />

Professor Smith served as Editor-<strong>in</strong>-Chief of the Journal of <strong>Alzheimer</strong>'s <strong>Disease</strong><br />

The journal has a tribute page dedicated to his memory located at<br />

www.j-alz.com/marksmith.html<br />

1<br />

<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>:<br />

<strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Case Western Reserve University<br />

Disclosures: Medivation, Neuropharm, Neurotez, Voyager Pharmaceuticals<br />

Fund<strong>in</strong>g: <strong>Alzheimer</strong> Association, John Douglas French Foundation, NIH<br />

2<br />

The bra<strong>in</strong> <strong>and</strong> <strong>Alzheimer</strong> disease<br />

<strong>Alzheimer</strong> disease attacks nerve cells<br />

<strong>in</strong> several regions of the bra<strong>in</strong><br />

A. Cerebral Cortex: <strong>in</strong>volved<br />

<strong>in</strong> conscious thought <strong>and</strong> language<br />

B. Basal forebra<strong>in</strong>: has large numbers<br />

of neurons conta<strong>in</strong><strong>in</strong>g i acetylchol<strong>in</strong>e,<br />

li<br />

a chemical important <strong>in</strong> memory<br />

<strong>and</strong> learn<strong>in</strong>g<br />

C. Hippocampus: essential<br />

to memory storage<br />

The earliest signs of <strong>Alzheimer</strong>'s<br />

are found <strong>in</strong> the nearby entorh<strong>in</strong>al<br />

cortex (not shown)<br />

3<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

1


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

What causes selective neuronal loss <strong>in</strong> AD?<br />

• Almost every physiological/pathological mechanism<br />

that a cell can elicit has been implicated!<br />

• And most are probably <strong>in</strong>volved…<br />

• At some po<strong>in</strong>t…<br />

4<br />

The usual suspects<br />

5<br />

Proposed chronology of changes <strong>in</strong> AD<br />

Tauist <strong>and</strong> BAPtist<br />

Tau phosphorylation<br />

[Neurofibrillary tangles]<br />

Amyloid-β deposition<br />

[Senile plaque]<br />

Amyloid-β deposition<br />

[Senile paque]<br />

Neuro nal death:<br />

dem mentia<br />

Tau phosphorylation<br />

[Neurofibrillary tangles]<br />

6<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

2


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Our hypothesis<br />

Tau phosphorylation<br />

[Neurofibrillary tangles]<br />

Fundamental<br />

disease<br />

mechanisms<br />

Neurona al death:<br />

deme entia<br />

Amyloid-β deposition<br />

[Senile plaque]<br />

7<br />

Clues to disease mechanism<br />

Pathological lesions are very<br />

<strong>in</strong>soluble, possibly crossl<strong>in</strong>ked?<br />

60<br />

S<strong>in</strong>ce the prevalence of AD<br />

is strictly age-dependent,<br />

cause must also be<br />

valence<br />

Percent prev<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

65-69 70-74 75-79 80-84 85-89 90-94 95+<br />

Age<br />

Oxidative stress/modifications?<br />

8<br />

Oxidative modifications<br />

affect all cellular macromolecules<br />

AD Ctl<br />

AD Ctl<br />

Lipid peroxidation/prote<strong>in</strong> adduction<br />

(4-HNE)<br />

Prote<strong>in</strong> oxidation<br />

(free carbonyl groups)<br />

AD Ctl AD Ctl<br />

Nucleic acids<br />

(8-OH-guanos<strong>in</strong>e)<br />

Glycoxidation<br />

(carboxymethyllys<strong>in</strong>e)<br />

9<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

3


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

What is relationship?<br />

Pathology versus oxidative stress<br />

Causes<br />

Tau phosphorylation<br />

[neurofibrillary tangles]<br />

Amyloid-β deposition<br />

[senile plaque]<br />

Consequences<br />

Oxidative stress<br />

Oxidative stress<br />

10<br />

ALZ-50<br />

Normal<br />

neuron<br />

?<br />

. . .<br />

.<br />

? Pre-NFT I-NFT E-NFT<br />

HO-1<br />

Nitrotyros<strong>in</strong>e<br />

Glycation/age<br />

HNE<br />

Amyloid deposition occurs after oxidative stress!<br />

Tau phosphorylation/NFT occur after oxidative stress!<br />

11<br />

Any theory on AD<br />

has to account for NFT<br />

<strong>and</strong> amyloid-β<br />

In other words,<br />

if they are not the cause,<br />

they may be the consequence<br />

12<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

4


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Oxidative stress<br />

<strong>in</strong>duces Tau phosphorylation<br />

ab PHF1/ab 7.51 ratio<br />

(%control)<br />

C A2 A5<br />

Gomez-Ramos et al., 2003 J Neurosci Res 71: 863-870<br />

ab PHF1/ab 7.51 ratio<br />

(%control)<br />

C A2 A5<br />

13<br />

Stress-activated prote<strong>in</strong> k<strong>in</strong>ases<br />

<strong>and</strong> phospho-τ: a complete overlap<br />

p-p38<br />

P-τ<br />

p-JNK<br />

P-τ<br />

14<br />

Oxidative stress<br />

mediates amyloid-β production<br />

Both βAPP <strong>and</strong> amyloid-β <strong>in</strong>creased<br />

3-4 fold after oxidative <strong>in</strong>sult<br />

15<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

5


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Amyloid-targeted approaches<br />

have been unsuccessful (so far…ever?)<br />

Reasons: Too late! Not strong enough! Wrong target!<br />

The American Journal of Geriatric Pharmacotherapy (2009) M.N. Sabbagh<br />

16<br />

Is amyloid an antioxidant?<br />

Neuronal oxidative stress decreases<br />

follow<strong>in</strong>g amyloid-β deposition<br />

R=-0.97, p


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

19<br />

“All mutations significantly <strong>in</strong>creased Aβ42/Aβ40 <strong>in</strong> vitro by significantly decreas<strong>in</strong>g Aβ40<br />

with accumulation of APP C-term<strong>in</strong>al fragments, a sign of decreased PSEN activity”<br />

20<br />

But what is the mechanism?<br />

APP/PS* [Aβ42/Aβ40] AD<br />

Or<br />

APP/PS* Aβ ?<br />

AD<br />

21<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

7


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Genetic factors of AD are associated<br />

with <strong>in</strong>creased oxidative stress<br />

or elevated vulnerability to oxidative stress<br />

Cell l<strong>in</strong>es Transgenic/knock <strong>in</strong> mice Postmortem bra<strong>in</strong><br />

A βPP gene Eckert et al., 2001 Smith et al., 1998 Bogdanovic et al., 2001<br />

mutation Marques et al., 2003 Takahashi et al., 2000 Nunomura et al., 2004<br />

PS1 gene Guo et al., 1997 Guo et al., 1997 Nunomura et al., 2004<br />

mutation Leutner et al., 2000<br />

LaFonta<strong>in</strong>e et al., 2002<br />

PS2 gene Hashimoto et al., 2002<br />

mutation<br />

ApoEε4 gene Miyata <strong>and</strong> Smith, 1996 Mont<strong>in</strong>e et al., 1996<br />

polymorphism Ramassamy et al., 1999<br />

Tamaoka et al., 2000<br />

22<br />

Therapeutics<br />

People always misunderst<strong>and</strong> me!<br />

23<br />

Potential mechanism of reactive oxygen<br />

species generation <strong>in</strong> <strong>Alzheimer</strong> disease<br />

Redox active metals<br />

Hormonal changes<br />

lept<strong>in</strong>/LH<br />

Mitochondria/metabolic alterations<br />

24<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

8


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Oxidative modifications<br />

affect all cellular macromolecules<br />

AD Ctl<br />

AD Ctl<br />

Lipid peroxidation/prote<strong>in</strong> p adduction<br />

(4-HNE)<br />

Causes?<br />

Prote<strong>in</strong> oxidation<br />

(free carbonyl groups)<br />

AD Ctl AD Ctl<br />

Nucleic acids<br />

(8-OH-guanos<strong>in</strong>e)<br />

Glycoxidation<br />

(carboxymethyllys<strong>in</strong>e)<br />

25<br />

Mitochondrial abnormalities:<br />

5Kb-deleletion<br />

AD Ctl AD Ctl<br />

Normal mtDNA<br />

16,569 bp<br />

OH<br />

Deleted mtDNA<br />

11,592 bp<br />

OH<br />

13475<br />

13460<br />

4977 bp<br />

deletion<br />

8454 10941<br />

8482 10897<br />

8482/13460<br />

13475<br />

8454<br />

Wild type probe<br />

Chimera probe<br />

CAACAACCTATTTAGCTGTTCCCCAACCTT ACACAAACTACCACCTACCTCCCTCACCA<br />

TTCCTCCGACCCCCT<br />

TTGGCAGCCTA GCATT<br />

4977 bp deletion conta<strong>in</strong>s ATPase subunit 8, subunit 6, cytochrome-c oxidase<br />

subunit III, <strong>and</strong> NADH-coenzyme Q oxidoreductase subunit 3, 4 <strong>and</strong> 5<br />

26<br />

Mitochondria/redox metal abnormalities<br />

predict sites of oxidative damage<br />

mtDNAr5Kb<br />

8-OHG<br />

Nitrotyros<strong>in</strong>e<br />

27<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

9


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Oxidative damage directly correlates<br />

with mtDNA<br />

mtDNA<br />

(optical<br />

density<br />

X100)<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

0 2 4<br />

R 2 = 0.8374<br />

6 8 10 12 14 16<br />

8OHG (optical density X100)<br />

28<br />

A<br />

Abnormal mitochondrial distribution<br />

<strong>in</strong> AD bra<strong>in</strong>s<br />

B<br />

C<br />

E<br />

J Neurosci., 29, 9090-103 (2009)<br />

29<br />

PET SCAN-profound metabolic<br />

decrease as an early <strong>in</strong>dicator of AD<br />

Control<br />

<strong>Alzheimer</strong><br />

30<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

10


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

However, oxidative damage<br />

is apparently restricted to cytoplasm<br />

?<br />

Oxidative modifications<br />

31<br />

H 2 O 2 ? mitochondria 32<br />

Hydrogen peroxide<br />

generates oxidative radicals<br />

<strong>Alzheimer</strong> disease<br />

(+ H 2 O 2 )<br />

<strong>Alzheimer</strong> disease<br />

(- H 2 O 2 )<br />

Aged-matched<br />

control<br />

Proc Natl Acad Sci U S A. 94, 9866-8 (1997)<br />

33<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

11


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

In situ oxidation of 3,3’ diam<strong>in</strong>obenzid<strong>in</strong>e<br />

(chelation)<br />

<strong>Alzheimer</strong> disease 10mM DFX 10mM DTPA<br />

Proc Natl Acad Sci U S A., 94, 9866-8 (1997)<br />

34<br />

Iron histochemistry<br />

AD<br />

Ctl<br />

DFX<br />

Proc Natl Acad Sci U S A., 94, 9866-8 (1997)<br />

DFX/Fe<br />

35<br />

Redox active metals are also <strong>in</strong> cytoplasm<br />

36<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

12


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Control cases lack<strong>in</strong>g endogenous redox<br />

active metals…<br />

AD<br />

Control<br />

… have metal (Fe 2+ /Fe 3+ ) b<strong>in</strong>d<strong>in</strong>g sites that produce ROS<br />

if supplied with excess H 2 O 2<br />

Control case untreated <strong>and</strong> after addition of Fe 2+ /Fe 3+<br />

J Neurochem., 74, 270-9 (2000)<br />

37<br />

Summary: oxidative stress<br />

Proliferation<br />

H 2 O 2<br />

Degradation<br />

Heme oxygenase-1<br />

Redox-metals<br />

ROS<br />

What causes these changes?<br />

38<br />

Predictions<br />

• Therapeutics/preventatives (antioxidants)<br />

• Models (cell/animal)<br />

39<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

13


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Antioxidant diet is protective<br />

Nutrients per 1000<br />

kilocalories<br />

Vitam<strong>in</strong> A (RE)<br />

α carotene (mcg)<br />

β Carotene (mcg)<br />

Pro-A carotene (mcg)<br />

Lute<strong>in</strong> (mcg)<br />

Lycopene (mcg)<br />

Vitam<strong>in</strong> C (mg)<br />

Vitam<strong>in</strong> E (a TE)<br />

<strong>Alzheimer</strong> disease cases<br />

n=104<br />

855<br />

294<br />

1921<br />

2231<br />

972<br />

666<br />

74.6<br />

5.6<br />

Controls<br />

n=223<br />

983<br />

389<br />

2370<br />

2809<br />

1214<br />

927<br />

86.7<br />

5.9<br />

p Value<br />

0.001<br />

0.001<br />

0.003<br />

0.001<br />

0.015015<br />

0.001<br />

0.007<br />

NS<br />

Serv<strong>in</strong>gs per day<br />

Yellow, green vegetables<br />

Vitam<strong>in</strong> C fruits, vegetables<br />

2.0<br />

2.4<br />

2.3<br />

2.6<br />

0.022<br />

NS<br />

40<br />

Vitam<strong>in</strong> E <strong>and</strong> AD<br />

Therapeutic<br />

Preventative<br />

ormance<br />

Cognitive Perfo<br />

Vitam<strong>in</strong> E<br />

Control<br />

Time<br />

Sana et al., 1997 Petersen et al., 2005<br />

41<br />

Rather than captur<strong>in</strong>g radicals,<br />

a better therapeutic strategy<br />

would be to reduce their production<br />

42<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

14


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Only one non-amyloid drug <strong>in</strong> phase III: 2010<br />

• IVIg or Intravenous immunoglobul<strong>in</strong> (Baxter)<br />

• Monoclonal Anti-AB Antibody (Elan-Wyeth; Lilly & Co.)<br />

• Semagacestat or LY-450139 (Lilly & Co.)<br />

• Dimebon (Medivation)<br />

– Neuroprotective agent, thought to work by protect<strong>in</strong>g mitochondria <strong>in</strong> bra<strong>in</strong> cells<br />

L<strong>in</strong> T. Nat Medic<strong>in</strong>e. 2006; Doody et al., The Lancet, 2008<br />

43<br />

Oxidative stress: cellular/animal models<br />

• Cell death!!<br />

• Selective cell death!! e.g., CA1 neurons<br />

• Oxidative stress <strong>in</strong>creases amyloid-β<br />

–(e.g., Beal SOD/APP)<br />

• Antioxidants decrease amyloid-β<br />

– e.g., Papolla w/ melaton<strong>in</strong><br />

– Cole w/ curcum<strong>in</strong><br />

– But at best partial models….certa<strong>in</strong>ly not AD<br />

44<br />

Perhaps<br />

• Oxidative stress is necessary, but not sufficient<br />

• So what else is necessary?<br />

45<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

15


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

What causes selective neuronal loss <strong>in</strong> AD?<br />

• Almost every physiological/pathological mechanism<br />

that a cell can elicit has been implicated!<br />

• And most are probably <strong>in</strong>volved….<br />

• At some po<strong>in</strong>t…<br />

46<br />

Fundamental mechanisms<br />

• Lute<strong>in</strong>iz<strong>in</strong>g hormone<br />

– Higher <strong>in</strong> AD/DS<br />

– High LH = poor cognition (receptor-dependent)<br />

– Agonist rescues OVX-mediated decl<strong>in</strong>es<br />

– Menopause is major risk factor for AD<br />

• Lept<strong>in</strong><br />

– Low <strong>in</strong> AD<br />

– In vitro lept<strong>in</strong> reduces phospho-tau through GSKβ<br />

– In vitro/vivo (CNDR8) lept<strong>in</strong><br />

reduces amyloid/improves cognition<br />

• Cell cycle alterations<br />

47<br />

Cell cycle related prote<strong>in</strong>s <strong>in</strong> AD<br />

• Cell cycle markers<br />

• Telomeres/telomerase<br />

• Bi-nucleation<br />

• Chromosome <strong>in</strong>stability<br />

Causes or consequences?<br />

Neurobiology of Ag<strong>in</strong>g, 21, 783-796, 2000<br />

48<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

16


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Establishment of a new animal model<br />

CaMKII-MYC mice<br />

MYC is specifically <strong>in</strong>duced <strong>in</strong> cerebral cortical <strong>and</strong> hippocampal neurons by depletion of doxycyl<strong>in</strong>e<br />

CaMKII<br />

promotor<br />

tTA<br />

Dox<br />

Activation<br />

Inactivation<br />

tetO<br />

p<br />

MYC<br />

C-MYC (now referred to as MYC) is a member of a family of proto-oncogenes compris<strong>in</strong>g<br />

C-MYC, N-MYC, <strong>and</strong> L-MYC; MYC encodes a transcription factor that, as part of a heterodimeric<br />

complex with MAX, regulates the expression of a multitude of genes <strong>in</strong>volved <strong>in</strong> regulat<strong>in</strong>g cellular<br />

proliferation <strong>and</strong> growth; Overexpression of MYC is commonly associated with<br />

tumorigenesis; Where MYC exerts its neoplastic function by <strong>in</strong>duc<strong>in</strong>g autonomous cellular<br />

proliferation <strong>and</strong> cellular growth, block<strong>in</strong>g differentiation, <strong>and</strong> <strong>in</strong>duc<strong>in</strong>g genomic destabilization<br />

Am J Pathol., 174, 891-7 (2009)<br />

49<br />

Cell cycle re-entry <strong>in</strong> CaMKII-MYC mice<br />

MYC-ON<br />

MYC-OFF<br />

PCNA<br />

NeuN<br />

NeuN<br />

Ki-67<br />

Am J Pathol., 174, 891-7 (2009)<br />

50<br />

Cell cycle re-entry <strong>in</strong> CaMKII-MYC mice (2)<br />

Am J Pathol., 174, 891-7 (2009)<br />

51<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

17


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Selective neurodegeneration<br />

<strong>in</strong> CaMKII-MYC mice<br />

MYC-ON<br />

MYC-OFF<br />

Am J Pathol., 174, 891-7 (2009)<br />

52<br />

Selective neurodegeneration<br />

<strong>in</strong> CaMKII-MYC mice (2)<br />

TUNEL assay<br />

GFAP<br />

MYC-ON<br />

Am J Pathol., 174, 891-7 (2009)<br />

MYC-OFF<br />

53<br />

Cognitive deficits <strong>in</strong> CaMKII-MYC mice<br />

The Morris water maze (WMM)<br />

T-maze<br />

Escape latency<br />

(distance moved)<br />

850<br />

810<br />

770<br />

730<br />

690<br />

650<br />

On Off<br />

1 2 3<br />

Tran<strong>in</strong>g (day)<br />

40<br />

35<br />

On<br />

30<br />

25<br />

20<br />

15<br />

10<br />

% time <strong>in</strong> target quadrant<br />

Am J Pathol., 174, 891-7 (2009)<br />

Off<br />

54<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

18


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Cell cycle<br />

abnormalities<br />

Proliferation:<br />

cancer<br />

Cell death: <strong>Alzheimer</strong> disease<br />

55<br />

Models <strong>and</strong>/or Tx????<br />

• Oxidative stress<br />

• Mitochondrial alterations<br />

• Cell cycle alterations<br />

• Hormonal imbalances (lept<strong>in</strong>/gonadotrop<strong>in</strong>s)<br />

Work well as preventatives, not as treatments<br />

Why, why< why?<br />

56<br />

Back to the draw<strong>in</strong>g board?<br />

ALZ-50<br />

Normal<br />

neuron<br />

?<br />

.<br />

.<br />

.. .<br />

? Pre-NFT I-NFT E-NFT<br />

Oxidative stress<br />

Cell cycle changes<br />

57<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

19


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

<strong>Alzheimer</strong> disease<br />

Phospho-ERK<br />

Phospho-JNK<br />

Phospho-p38<br />

Mitogenic signal<br />

Oxidative signals<br />

Mech Age<strong>in</strong>g Dev., 123, 39-46 (2001)<br />

58<br />

Oxidative stress <strong>and</strong> cell cycle changes<br />

occur earlier than Tau or amyloid-β<br />

ALZ-50<br />

Normal<br />

neuron<br />

. ? .<br />

.. .<br />

? Pre-NFT I-NFT E-NFT<br />

Oxidative stress<br />

Cell cycle changes<br />

But which one is first ?<br />

59<br />

Control cases (pre-<strong>Alzheimer</strong>?)<br />

Phospho-ERK Phospho-JNK Phospho-p38<br />

Control group 1<br />

Mitogenic signal<br />

Oxidative signals<br />

Control group 2<br />

Mech Age<strong>in</strong>g Dev., 123, 39-46 (2001)<br />

60<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

20


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

<strong>Alzheimer</strong> disease<br />

Phospho-ERK Phospho-JNK Phospho-p38<br />

Mitogenic signal<br />

Oxidative signals<br />

Mech Age<strong>in</strong>g Dev., 123, 39-46 (2001)<br />

61<br />

Two hit hypothesis<br />

Lancet Neurology, 3, 219-26 (2004)<br />

Hit A<br />

Hit D<br />

Aged not Demented<br />

or<br />

Decl<strong>in</strong><strong>in</strong>g not Atrophied<br />

Hit A<br />

Hit D<br />

<strong>Alzheimer</strong> disease or demented & aged<br />

62<br />

Are there more than two hits?<br />

Risk<br />

Age ([Age <strong>in</strong> years]lbs)<br />

Mutations (50lbs)<br />

Menopause*******<br />

Obesity********<br />

ApoE4 (20lbs/Apoe4 allele)<br />

Head <strong>in</strong>jury (10-20lbs)<br />

Smok<strong>in</strong>g (5lbs)<br />

Atherosclerosis (15lbs)<br />

Protection<br />

Reserve (100lbs)<br />

Male gender (10lbs)<br />

Exercise (10lbs)<br />

Education (10lbs)<br />

Antioxidant (10lbs)<br />

ERT (10lbs)<br />

63<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

21


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

Menopause<br />

APP/PS1<br />

Obesity<br />

Aβ/tau<br />

Cholesterol<br />

Oxidative<br />

stress<br />

APOE<br />

Ag<strong>in</strong>g<br />

STOP<br />

Cytochrome C/<br />

cell death<br />

Ca 2+<br />

buffer<strong>in</strong>g<br />

Oxidative<br />

stress<br />

Redox<br />

metals<br />

Synaptic<br />

dysfunction<br />

<strong>Metabolic</strong><br />

alterations<br />

64<br />

“The way to get th<strong>in</strong>gs done<br />

is not to m<strong>in</strong>d who gets the credit for do<strong>in</strong>g them”<br />

Benjam<strong>in</strong> Jowett (1817-1893), British theologian <strong>and</strong> classicist<br />

65<br />

Collaborators<br />

Case Western Reserve Univ. Centro Biologia Molecular,<br />

• George Perry (Pathology) Madrid<br />

• Lawrence M. Sayre (Chemistry) • Jesús Avila<br />

• Xiongwei Zhu (Pathology) Harvard University<br />

• Gemma Casadesus<br />

• Ashley Bush<br />

(Neurosciences)<br />

Johns Hopk<strong>in</strong>s University<br />

• Hyoung-gon-Lee (Pathology) • Donald Price<br />

• Robert P. Friedl<strong>and</strong><br />

University of Barcelona<br />

(Neurology)<br />

• Rudy Castellani (Pathology)<br />

• Luke Szweda<br />

(Physiology/Biophysics)<br />

• Alfred Rimm (Epidemiology)<br />

• Bruce Lamb (Genetics)<br />

• Grace Petot (Nutrition)<br />

• Paul Carey (Biochemistry)<br />

Asahikawa Medical College<br />

• Akihiko Nunomura<br />

• Shigeru Chiba<br />

• Merce Pallas<br />

• Toni Cam<strong>in</strong>s<br />

Voyager Pharmaceuticals<br />

• Richard Bowen<br />

Columbia University<br />

• Shi-Du Yan<br />

• David Stern<br />

Takeda Chemical Company<br />

•Keisuke Hirai<br />

Thomas Jefferson University<br />

• Hilary Koprowski<br />

Tohoku University<br />

School of Medic<strong>in</strong>e<br />

• Atsushi Takeda<br />

University of California<br />

San Diego<br />

• Donald Clevel<strong>and</strong><br />

University of South Alabama<br />

• Miguel A. Pappolla<br />

University of Genova<br />

• Massimo Tabaton<br />

66<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

22


<strong>Metabolic</strong> <strong>and</strong> <strong>Biochemical</strong> <strong>Alterations</strong><br />

<strong>in</strong> <strong>Alzheimer</strong> <strong>Disease</strong>: <strong>Facts</strong> <strong>and</strong> Fictions<br />

Prof. Mark A. Smith<br />

“If you don’t have anyth<strong>in</strong>g smart to say,<br />

say it with an English accent”<br />

67<br />

68<br />

The screen versions of these slides have full details of copyright <strong>and</strong> acknowledgements<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!