05.11.2012 Views

Jahresbericht 2005 - IPHT Jena

Jahresbericht 2005 - IPHT Jena

Jahresbericht 2005 - IPHT Jena

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

INSTITUT FÜR<br />

PHYSIKALISCHE HOCHTECHNOLOGIE e.V.<br />

JENA<br />

INSTITUTE FOR<br />

PHYSICAL HIGH TECHNOLOGY JENA<br />

JAHRESBERICHT<br />

ANNUAL REPORT<br />

<strong>2005</strong>


Institut für Physikalische Hochtechnologie e.V.<br />

Direktor: Prof. Dr. H. Bartelt<br />

Albert-Einstein-Str. 9, D-07745 <strong>Jena</strong><br />

Postfach/P.O.B.: 10 02 39, D-07702 <strong>Jena</strong><br />

Telefon/Phone: +49(0)36 41 2 06 00<br />

Telefax: +49(0)36 41 20 60 99<br />

e-mail: institut@ipht-jena.de<br />

internet: http://www.ipht-jena.de<br />

Titelfoto: Dr. K. Fischer<br />

Herstellung:<br />

Werbeagentur Kirstin Sangmeister<br />

Telefon: 03671/64 12 96<br />

Mobil: 0171 8 43 65 94<br />

e-mail: kirstin.sangmeister@freenet.de


Inhaltsverzeichnis / Content<br />

INHALT / CONTENT<br />

A. Vorwort / Introduction 3<br />

B. Organisation / Organization 7<br />

C. Personal und Finanzen / Staff and Budget 12<br />

D. Forschungsbereiche / Scientific Divisions 12<br />

1. Bereich Magnetik/Quantenelektronik (Prof. Dr. H. E. Hoenig) 12<br />

Magnetics/Quantum Electronics Division<br />

1.1 Überblick / Overview 12<br />

1.2 Scientific results 15<br />

1.2.1 Micro- and nanofabrication 15<br />

1.2.2 SQUID sensors and systems 15<br />

1.2.3 Integrated superconducting circuits 17<br />

1.2.4 Quantum computing 18<br />

1.2.5 Foundry service 19<br />

1.2.6 Domain wall motion in small GMR structures 19<br />

1.2.7 Measurement of coupling strength distribution in exchange bias film systems 21<br />

1.2.8 Electron exited L X-rax spectra of the elements 14


2<br />

INHALT / CONTENT<br />

2.3 Appendix Partners 51<br />

Publications 52<br />

Presentations/Posters 54<br />

Lectures 56<br />

Patents 57<br />

Diploma/Master Thesis/Laboratory Exercises 57<br />

Guest scientists 57<br />

Memberships 57<br />

Participations in fairs/expositions 58<br />

3. Bereich Mikrosysteme (Prof. Dr. J. Popp) 59<br />

Microsystems Division<br />

3.1 Übersicht / Overview 59<br />

3.2 Scientific results 63<br />

3.2.1 Spectral optical techniques and instrumentation 63<br />

Spectral optical sensing 63<br />

Thermal microsensors 65<br />

3.2.2 Photonic chip systems 67<br />

Molecular nanotechnology and plasmonics 67<br />

DNA-chip technology 69<br />

3.2.3 Micro system technology 69<br />

Microfluidics of liquid-liquid segmented sample streams 70<br />

Chipmodule for analysis of micro combustion 71<br />

3.3 Appendix Partners 72<br />

Editor/Book chapters 73<br />

Publications 73<br />

Presentations/Posters 75<br />

Patents 77<br />

Lectures 77<br />

Diploma thesis 78<br />

Laboratory exercises 78<br />

Practical trainee 78<br />

Guest scientists 78<br />

Memberships 78<br />

Awards 79<br />

Conference organization 79<br />

4. Bereich Lasertechnik (Prof. Dr. H. Stafast) 80<br />

Laser Technology Division<br />

4.1 Überblick / Overview 80<br />

4.2 Selected results 83<br />

4.2.1 Laser chemistry 83<br />

Laser crystallization, Thin film deposition and nanowire growth, Laser ablation 83<br />

4.2.2 Laser diagnostics 84<br />

UV optical materials, Combustion processes 85<br />

4.3 Appendix Partners 86<br />

Publications 87<br />

Presentations/Posters 88<br />

Patents 89<br />

Lectures 89<br />

Diploma Theses 89<br />

Laboratory Exercises 89<br />

Committees 89<br />

Award, Exhibitions 89<br />

New Equipment 89<br />

E. Innovation Project <strong>2005</strong> 90<br />

Nanostructured Ta 2O 5 layers for optochemical/biophotonic sensors and solar cells 90


A. Vorwort<br />

Das <strong>IPHT</strong> konnte das Jahr <strong>2005</strong> mit einer erfolgreichen<br />

Projektarbeit abschließen. Die Drittmittelquote<br />

liegt deutlich über 50% mit einer bemerkenswerten<br />

Steigerung bei den EU-Projekten.<br />

Als besonders herausragende Beispiele der in<br />

diesem <strong>Jahresbericht</strong> enthaltenen Darstellung<br />

der Ergebnisse sollen hier genannt werden:<br />

– Erstmalig wurden vier Flussquanten-Qubits als<br />

Vorstufe für einen adiabatischen Quantenrechner<br />

gekoppelt und spektroskopisch charakterisiert.<br />

– Bei der Erzeugung von Einzelpuls-Bragg-Gittern<br />

(Typ I) in optischen Fasern wurden mit bis<br />

zu 50% Reflexionseffizienz internationale Spitzenwerte<br />

erzielt.<br />

– Die Entwicklung eines auf dem Prinzip segmentierter<br />

Probenströme arbeitenden LabOn-<br />

Chip basierten Systems führte zu einer Analysenplattform<br />

für die Krebsdiagnostik, deren<br />

Anwendungspotenzial auf grundlegende molekularbiologische<br />

Fragestellungen erweiterbar<br />

ist.<br />

– durch Laserkristallisation von Silizium auf Glas<br />

wurden mittels eines industrietauglichen Diodenlasers<br />

Keimkristalle mit Abmessungen bis<br />

500 µm erzeugt, die die bisherige Größe um<br />

das 5- bis 10fache übersteigt.<br />

Gleichzeitig wurde während des Jahres eine<br />

Reihe von Weichenstellungen für eine zukunftsorientierte<br />

Aufstellung und Entwicklung der<br />

Arbeitsgebiete des <strong>IPHT</strong> vorbereitet. Dazu gehört<br />

zunächst die Berufung von Prof. Dr. Jürgen Popp<br />

als Leiter des Forschungsbereiches Mikrosysteme<br />

zum 1. Mai <strong>2005</strong>. Er ist gleichzeitig Lehrstuhlinhaber<br />

für Physikalische Chemie an der Universität<br />

<strong>Jena</strong> und ausgewiesener Spezialist auf dem<br />

Forschungsgebiet der Laserspektroskopie und<br />

der Biophotonik. Damit wird die Verbindung von<br />

optischen Technologien und Anwendungen der<br />

Lebenswissenschaften fachlich gestärkt und die<br />

Zusammenarbeit mit der Friedrich-Schiller-Universität<br />

weiter unterstützt. Dr. Helmut Dintner, der<br />

diesen Forschungsbereich während der vergangenen<br />

sechs Jahre geleitet hatte, gebührt unser<br />

Dank für seine umsichtige Leitungstätigkeit<br />

während dieser Zeit.<br />

Zur Frage einer mit dem Umfeld abgestimmten<br />

und zukunftsorientiert ausgerichteten Fokussierung<br />

der Arbeitsgebiete zu photonischen und<br />

optischen Technologien wurde auf Empfehlung<br />

des Wissenschaftlichen Beirats durch das Kuratorium<br />

des <strong>IPHT</strong> eine Strukturkommission unter<br />

Leitung von Prof. Dr. Dietrich Wegener (Universität<br />

Dortmund) mit Beteiligung von Vertretern<br />

des <strong>IPHT</strong>, der Universität und des Landes eingesetzt.<br />

Auf der Basis eines vom <strong>IPHT</strong> vorgelegten<br />

Konzeptes wurden unter besonderer Berücksichtigung<br />

der bestehenden fachlichen Stärken Empfehlungen<br />

zur Fokussierung auf den Gebieten<br />

VORWORT / INTRODUCTION<br />

A. Introduction<br />

For the <strong>IPHT</strong>, <strong>2005</strong> was a successful project year.<br />

The share of project-financed activities was well<br />

above the 50% level, with a considerable<br />

increase in EU-funded projects. Here are some<br />

highlights of the results presented in this annual<br />

report:<br />

– For the first time, four flux quantum qubits have<br />

been coupled and spectrally characterized – a<br />

first step towards an adiabatic quantum computer.<br />

– The inscription of single pulse fibre Bragg gratings<br />

(type I) has achieved a reflection efficiency<br />

of 50% – a new international record.<br />

– The development of a LabOnChip based system<br />

using the principle of segmented probe<br />

flow has paved the way for an analysis platform<br />

for cancer diagnosis, which can be further<br />

extended to perform fundamental investigations<br />

in molecular biology.<br />

– By laser crystallisation of silicon on glass with<br />

a diode laser suitable for industrial use, seed<br />

crystals with a size of up to 500 µm have been<br />

produced, which is an improvement by a factor<br />

of 5 to 10.<br />

In addition to the scientific achievements, several<br />

measures were taken to shape the future of the<br />

<strong>IPHT</strong> and to assure the successful development<br />

of its research fields. As one major point, Prof. Dr.<br />

Jürgen Popp was appointed as head of the Micro<br />

Systems research division as of May 1 st , <strong>2005</strong>.<br />

He is also a professor of physical chemistry at<br />

the University of <strong>Jena</strong> and a well-known specialist<br />

in the fields of laser spectroscopy and biophotonics.<br />

This appointment will strengthen the synergy<br />

in our research in optical technologies and<br />

applications in the life sciences as well as intensify<br />

our collaboration with the University of <strong>Jena</strong>.<br />

We are obliged to Dr. Helmut Dintner for his prudent<br />

management of the said research division<br />

during the last six years.<br />

Based on a recommendation by the Institute’s<br />

scientific council, the Supervisory Board of the<br />

<strong>IPHT</strong> appointed a structural commission headed<br />

by Prof. Dr. Dietrich Wegener (University of Dortmund)<br />

with participation of representatives from<br />

the <strong>IPHT</strong>, the University of <strong>Jena</strong> and the State of<br />

Thuringia. This commission has discussed future<br />

focussing directions in the fields of photonic technologies<br />

considering regional interests to<br />

strengthen scientific excellence. Based on a concept<br />

framed by the <strong>IPHT</strong>, the commission investigated<br />

the Institute’s specific strengths and recommended<br />

focussing and further strengthening<br />

in the fields of optical fibres and applications and<br />

photonic instrumentation.<br />

For the magnetics and quantum electronics<br />

research fields, similar and still ongoing discussions<br />

have been held in order to develop strategies<br />

for this important part of the <strong>IPHT</strong>’s activities.<br />

3


4<br />

Optische Fasern und Faseranwendungen und<br />

Photonische Instrumentierung formuliert.<br />

Für die Forschungsgebiete Magnetik und Quantenelektronik<br />

fand ebenfalls eine Reihe von<br />

Abstimmungsgesprächen zur Zukunftsgestaltung<br />

dieses gewichtigen Arbeitsfeldes statt, die aber<br />

noch nicht abgeschlossen sind.<br />

Zur Pflege des wissenschaftlichen Austauschs<br />

war das <strong>IPHT</strong> Ausrichter von Tagungen und<br />

Workshops und beteiligte sich aktiv an Ausstellungen<br />

und internationalen Messen. Im Februar<br />

traf sich der PhotonicNet-Arbeitskreis „Oberflächenbearbeitung“<br />

im <strong>IPHT</strong>. Im Mai organisierte<br />

Dr. Wolfgang Fritzsche ein internationales Symposium<br />

zur Molekularen Plasmonik. Ebenfalls im<br />

Mai versammelten sich unter der Schirmherrschaft<br />

des OPTONET e.V. Spezialisten im <strong>IPHT</strong>,<br />

um im Rahmen eines Workshops über neue<br />

Laserstrahlquellen zu diskutieren.<br />

Die Vermittlung von Forschungsergebnissen an<br />

die Öffentlichkeit war Anliegen der Beteiligung<br />

des <strong>IPHT</strong> an der Präsentation des Beutenberg<br />

Campus in Tokio im Rahmen des „Deutschlandjahres<br />

in Japan <strong>2005</strong>–2006“ sowie an den Ausstellungen<br />

Faszination Licht im Januar und Eiskalte<br />

Energien für Europa im Juli, jeweils in der<br />

<strong>Jena</strong>er Einkaufspassage Goethe-Galerie. Der<br />

öffentlichen Vermittlung von Forschungsarbeiten<br />

diente auch die Lange Nacht der Wissenschaften<br />

in <strong>Jena</strong> im November. Bis nach Mitternacht<br />

drängten sich die Besucher an den Experimenten<br />

und in den Labors.<br />

Lange Nacht der Wissenschaften:<br />

Besucher und Aussteller in Aktion<br />

The “Long Night of the Sciences”:<br />

Visitors and demonstrators in action<br />

Zu einem Ehrenkolloquium war vom <strong>IPHT</strong> aus<br />

Anlass des 75. Geburtstages von Prof. Dr. Günter<br />

Albrecht im März eingeladen worden. Prof.<br />

Albrecht hat in seiner aktiven Zeit an der Universität<br />

die Forschung zur Supraleiterelektronik<br />

maßgeblich etabliert und ist damit einer der<br />

Väter dieser Forschungsrichtung im <strong>IPHT</strong>.<br />

VORWORT / INTRODUCTION<br />

In order to encourage scientific discussion and<br />

exchange, the <strong>IPHT</strong> organized conferences and<br />

workshops and was actively engaged in exhibitions<br />

and international fairs. In February, the PhotonicNet<br />

cluster on surface modification met at<br />

the <strong>IPHT</strong>. Dr. Wolfgang Fritzsche organized an<br />

international symposium on “Molecular Plasmonics”<br />

in May. Also in May a workshop on new laser<br />

sources was held at the <strong>IPHT</strong> under the patronage<br />

of the OPONET cluster.<br />

Several activities were aimed to present our scientific<br />

results to a broad public: the presentation<br />

of the Beutenberg campus in Tokyo/Japan as<br />

part of the German Year <strong>2005</strong>/2006, and the<br />

expositions “Fascinating Light” (in January) and<br />

“Ice-cold Energies for Europe” (in July) in the<br />

<strong>Jena</strong>’s Goethe Gallery shopping mall. With the<br />

same intention, the <strong>IPHT</strong> took part in the first<br />

“Long Night of the Sciences” in <strong>Jena</strong> in November.<br />

Till well after midnight, many interested visitors<br />

crowded the Institute’s laboratories and took<br />

part in scientific experiments.<br />

An honorary colloquium was held on the occasion<br />

of the 75 th birthday of Prof. Dr. Günther<br />

Albrecht in March. During his active years, Prof.<br />

Albrecht was a major force in establishing the<br />

research field of supraconductivity at the <strong>Jena</strong><br />

University and also became a father of this<br />

research direction at the <strong>IPHT</strong>.<br />

Another special highlight at the <strong>IPHT</strong> was a public<br />

colloquium held by Prof. Dr. Anton Zeilinger<br />

(University of Vienna) on quantum information<br />

transmission, a subject which is related to our<br />

activities in quantum electronics research. As<br />

one of a series of talks at Beutenberg campus,<br />

this talk was organized by Prof. E. Hoenig with<br />

great commitment and attracted more than 200<br />

visitors.<br />

The work of Dr. Thomas Henkel for the development<br />

of microfluidic chip systems had been<br />

acknowledged by the 2004 <strong>IPHT</strong> award. Another<br />

<strong>IPHT</strong> research award was presented to Dr. Sonja<br />

Unger, Volker Reichel and Klaus Mörl for their<br />

work on high power laser fibres with a record<br />

result of 1.3 kW output power from a single fibre.<br />

Six students of the University of Applied Sciences<br />

in <strong>Jena</strong> finished their diploma work in 2004<br />

with very good results and marks: Constanze<br />

Döring, Lars Bergmann, Ralf Bitter, Carsten Hartmann,<br />

Matthias Schnepp und Rico Stober .They<br />

received the prizes for the best <strong>IPHT</strong> diploma<br />

work, sponsored by the <strong>Jena</strong>-Saale-Holzland<br />

Savings Bank.<br />

The internal competition for the <strong>2005</strong> innovation<br />

project was decided in favor of Wolfgang Morgenroth,<br />

Dr. Uwe Hübner, Richard Boucher (Magnetics/Quantum<br />

Electronics Division), Sven<br />

Brückner, Uta Jauernig, Dr. Siegmund Schröter,<br />

Dr. Torsten Wieduwilt, Barbara Geisenhainer,<br />

Matthias Giebel, Dr. Günther Schwotzer (Optics<br />

Division), Dr. Andrea Czaki, Andrea Steinbrück,


Ein besonderer Höhepunkt war im Rahmen der<br />

von Prof. E. Hoenig mit großem Engagement<br />

organisierten öffentlichen Vortragsreihe des Beutenberg<br />

Campus eine Veranstaltung im <strong>IPHT</strong> mit<br />

Prof. Dr. Anton Zeilinger aus Wien, die über<br />

200 Besucher anlockte. Prof. Zeilinger sprach<br />

über Quanteninformationsübertragung mit Anknüpfung<br />

an unsere Arbeitsrichtung Quantenelektronik.<br />

Mit einem <strong>IPHT</strong>-Preis 2004 wurden die Arbeiten<br />

von Dr. Thomas Henkel zur Entwicklung mikrofluidischer<br />

Chipsysteme für Kompartimentierung,<br />

Kultivierung und Detektion biologischer Spezies<br />

anerkannt. Ein weiterer <strong>IPHT</strong>-Preis 2004 ging an<br />

Dr. Sonja Unger, Dipl.-Phys. Volker Reichel und<br />

Dipl.-Phys. Klaus Mörl für Arbeiten auf dem<br />

Gebiet der Hochleistungsfaserlaser mit einer<br />

Ausgangsleistung von 1,3 kW aus einer Einzelfaser.<br />

Gleich sechs Diplomanden von der FH <strong>Jena</strong> hatten<br />

ihre Arbeit 2004 mit sehr guten Ergebnissen<br />

abgeschlossen: Constanze Döring, Lars Bergmann,<br />

Ralf Bitter, Carsten Hartmann, Matthias<br />

Schnepp und Rico Stober. Sie wurden mit von<br />

der Sparkasse <strong>Jena</strong>-Saale-Holzland in dankenswerter<br />

Weise zur Verfügung gestellten Preisen<br />

ausgezeichnet.<br />

Den <strong>IPHT</strong>-internen Wettbewerb um das <strong>IPHT</strong>-<br />

Innovationsprojekt <strong>2005</strong> gewannen Wolfgang<br />

Morgenroth, Dr. Uwe Hübner, Richard Boucher<br />

(Bereich Magnetik/Quantenelektronik), Sven<br />

Brückner, Uta Jauernig, Dr. Siegmund Schröter,<br />

Dr. Torsten Wieduwilt, Barbara Geisenhainer,<br />

Matthias Giebel, Dr. Günther Schwotzer (Bereich<br />

Optik), Dr. Andrea Czaki, Andrea Steinbrück,<br />

Dr. Wolfgang Fritzsche (Bereich Mikrosysteme)<br />

und Dr. Gudrun Andrä (Bereich Lasertechnik) mit<br />

der gemeinsamen Thematik „Nanostrukturierte<br />

Ta 2O 5-Schichten für optochemische/biophotonische<br />

Sensorik sowie Solarzellen“. Die erzielten<br />

Ergebnisse sind am Ende dieses <strong>Jahresbericht</strong>es<br />

zusammengefasst.<br />

Die kommerzielle Umsetzung von wissenschaftlichen<br />

Ergebnissen in Produkte ist ein besonderes<br />

Anliegen des <strong>IPHT</strong>. Auf dem Gebiet optischer<br />

Faser-Bragg-Gitter konnte dazu im Oktober <strong>2005</strong><br />

ein Gemeinschaftsunternehmen mit einem belgischen<br />

Partner unter Beteiligung des <strong>IPHT</strong>, die<br />

FBGS Technologies GmbH (Fibre Bragg Grating<br />

Sensor Technologies), mit Sitz in <strong>Jena</strong> gegründet<br />

werden. Geschäftsfelder dieses Unternehmens<br />

sind Forschung, Entwicklung, Produktion und<br />

Vermarktung von optoelektronischen Elementen,<br />

insbesondere spezielle Glasfaser-Bragg-Gitter.<br />

Der Wissenschaftliche Beirat beurteilte auf seiner<br />

jährlichen Sitzung im April die wissenschaftlichen<br />

Leistungen des <strong>IPHT</strong> als sehr beachtlich und<br />

überzeugend. Turnusmäßig ausgeschieden aus<br />

dem Wissenschaftlichen Beirat sind Dr. Siegfried<br />

Birkle (Siemens Erlangen), Prof. Dr. Hans Koch<br />

VORWORT / INTRODUCTION<br />

Die Gewinner des <strong>IPHT</strong>-Preises 2004 /<br />

<strong>IPHT</strong> Prizewinner<br />

a) Dr. Thomas Henkel,<br />

b) Klaus Mörl, Dr. Sonja Unger, Volker Reichel<br />

Dr. Wolfgang Fritzsche (Micro Systems Division)<br />

and Dr. Gudrun Andrä (Laser Technology Division)<br />

who worked on the subject of nanostructured<br />

Ta 2O 5 layers for optochemical/biophotonic<br />

sensors and solar cells. Results are presented at<br />

the end of this annual report.<br />

The transfer into commercial use of its scientific<br />

results is a matter of special interest to the <strong>IPHT</strong>.<br />

In the field of optical Bragg gratings, we started a<br />

new company in <strong>Jena</strong> in October jointly with a<br />

Belgian company (Fibre Bragg Grating Sensor<br />

Technologies). The objects of the new company<br />

are research, development, production and sale<br />

of optoelectronic components such as especially<br />

fibre Bragg gratings.<br />

The scientific council has reviewed the scientific<br />

results of the <strong>IPHT</strong> regularly and during its<br />

meeting in April appreciated them as highly<br />

respectable and convincing. Dr. Siegfried Birkle<br />

(Siemens Erlangen), Prof. Dr. Hans Koch (PTB<br />

Berlin), and Dr. Augustin Siegel (Carl Zeiss,<br />

Oberkochen) left the council due to the end of<br />

their term. We would like to thank them for their<br />

very constructive work during the last years. New<br />

members appointed to the scientific council are<br />

Prof. Dr. Michael Siegel (Universität Karlsruhe),<br />

a<br />

b<br />

5


6<br />

(PTB Berlin) und Dr. Augustin Siegel (Carl Zeiss,<br />

Oberkochen). Den ehemaligen Mitgliedern danken<br />

wir für ihre konstruktive Mitarbeit in den vergangenen<br />

Jahren. Als neue Mitglieder wurden<br />

Prof. Dr. Michael Siegel (Universität Karlsruhe),<br />

Dr. Stefan Spaniol (CeramOptec GmbH, Bonn)<br />

und Dr. Martin Wiechmann (Carl Zeiss Meditec<br />

AG, <strong>Jena</strong>) berufen.<br />

Danken möchten wir an dieser Stelle auch dem<br />

Freistaat Thüringen, allen Förderern im Bund und<br />

bei der EU für die stete Unterstützung sowie<br />

unseren Partnern in Wissenschaft, Forschung<br />

und Wirtschaft für die gute Zusammenarbeit.<br />

H. Bartelt, im Februar 2006<br />

VORWORT / INTRODUCTION<br />

Dr. Stefan Spaniol (CeramOptec, Bonn), and<br />

Dr. Martin Wiechmann (Carl Zeiss Meditec,<br />

<strong>Jena</strong>).<br />

We thank the State of Thuringia and all our partners<br />

in research and industry for their ongoing<br />

support and cooperation.<br />

H. Bartelt, February 2006<br />

Beutenberg Campus <strong>2005</strong> Foto: Ballonteam <strong>Jena</strong>


ORGANISATION / ORGANIZATION<br />

B. Organisation / Organization<br />

Institut für Physikalische Hochtechnologie e.V., <strong>Jena</strong><br />

Institute for Physical High Technology<br />

Kuratorium/Supervisory Board<br />

Thüringer Kultusministerium<br />

MDgt. Dr. J. Komusiewicz<br />

Thüringer Ministerium für<br />

Wirtschaft, Technologie und Arbeit<br />

MD Dr. F. Ehrhardt<br />

Friedrich-Schiller-Universität <strong>Jena</strong><br />

Prorektor Prof. Dr. H. Witte<br />

2 gewählte Mitglieder<br />

Dr. E. Hacker, Dr. M. Heming<br />

Vereinsvorstand/Executive Committee<br />

Vorsitzender = Direktor<br />

Prof. Dr. H. Bartelt<br />

Stellvertretender Direktor<br />

Dr. K. Fischer<br />

Kaufmännischer Direktor<br />

F. Sondermann<br />

Kaufmännischer Bereich<br />

Administrative Division<br />

Kaufmännischer Direktor:<br />

F. Sondermann<br />

Forschungsbereich<br />

1<br />

Research Division 1<br />

Magnetik/<br />

Quantenelektronik<br />

Magnetics/<br />

Quantum Electronics<br />

Leiter:<br />

Prof. Dr. H. E. Hoenig<br />

Forschungsbereich<br />

2<br />

Research Division 2<br />

Optik<br />

Optics<br />

Leiter:<br />

Prof. Dr. H. Bartelt<br />

Mitgliederversammlung<br />

Assembly of Members<br />

Wissenschaftlicher Beirat<br />

Scientific Advisory Council<br />

Sprecher:<br />

Prof. Dr. S. Büttgenbach<br />

Bereichsleiterversammlung<br />

Assembly of Convention<br />

Vereinsvorstand<br />

Betriebsratsvertreter<br />

Forschungsbereichsleiter<br />

Forschungsbereich<br />

3<br />

Research Division 3<br />

Mikrosysteme<br />

Microsystems<br />

Leiter:<br />

Prof. Dr. J. Popp<br />

Betriebsrat<br />

Works Committee<br />

Vors.: Frau Dr. G. Andrä<br />

Wissenschaftl.-Techn. Rat<br />

Scient.-Techn. Council<br />

Sprecher: Dr. E. Keßler<br />

Dez. <strong>2005</strong><br />

Forschungsbereich<br />

4<br />

Research Division 4<br />

Lasertechnik<br />

Laser<br />

Technology<br />

Leiter:<br />

Prof. Dr. H. Stafast<br />

Die Leiter der Forschungsbereiche sind berufene Professoren an der Friedrich-Schiller-Universität <strong>Jena</strong>.<br />

The divisions head are professors at the University of <strong>Jena</strong>.<br />

7


8<br />

Das <strong>IPHT</strong> ist eine gemeinnützige Forschungseinrichtung<br />

in der Rechtsform eines eingetragenen<br />

Vereins und wird institutionell gefördert durch den<br />

Freistaat Thüringen. Mitglieder des Vereins sind<br />

öffentliche Einrichtungen sowie Personen aus<br />

Wissenschaft und Wirtschaft. Im Kuratorium sind<br />

zwei verschiedene Ministerien des Freistaates<br />

Thüringen, die Friedrich-Schiller-Universität <strong>Jena</strong><br />

und die Industrie durch zwei von der Mitgliederversammlung<br />

gewählte Persönlichkeiten vertreten.<br />

Das FuE-Programm unterliegt der Kontrolle<br />

eines Wissenschaftlichen Beirats mit Mitgliedern<br />

sowohl aus der Wissenschaft als auch aus der<br />

Industrie. Das Institut ist in vier Forschungsbereiche<br />

untergliedert, deren Leiter gleichzeitig Mitglieder<br />

der Physikalisch-Astronomischen bzw.<br />

der Chemisch-Geowissenschaftlichen Fakultät<br />

der Friedrich-Schiller-Universität sind.<br />

ORGANISATION / ORGANIZATION<br />

The <strong>IPHT</strong> is a non-profit association with the legal<br />

status of a convention, institutionally funded by<br />

the Free State of Thuringia, and members from<br />

public institutions as well as private members.<br />

There is a Supervisory Board with two representatives<br />

of two different ministries of the Free<br />

State of Thuringia in Germany, one from the<br />

Friedrich-Schiller-University in <strong>Jena</strong>, and two<br />

R&D managers from the industry. The R&D program<br />

is supervised by a Scientific Advisory<br />

Council with members from the scientific community<br />

and from the industry. The institute is organized<br />

in four research divisions with heads serving<br />

also as members oft he faculties for Physics<br />

and Astronomy as well as for Chemical and Earth<br />

Sciences of the Friedrich-Schiller-University.<br />

Wissenschaftlicher Beirat / Scientific Advisory Council<br />

Prof. Dr. Stephanus Büttgenbach Technische Universität Braunschweig<br />

(Sprecher/Chairman)<br />

Prof. Dr. Bruno Elschner Technische Hochschule Darmstadt<br />

Dr. Michael Harr ASTEQ Applied Space Techniques GmbH, Kelkheim<br />

Prof. Dr. Burkard Hillebrands Universität Kaiserslautern<br />

Prof. Dr. Peter Komarek Forschungszentrum Karlsruhe<br />

Prof. Dr. Siegfried Methfessel Witten-Herbede<br />

Prof. Dr. Frieder Scheller Universität Potsdam<br />

Prof. Dr. Paul Seidel Friedrich-Schiller-Universität <strong>Jena</strong><br />

Dr. Thomas Töpfer Jenoptik AG, <strong>Jena</strong><br />

<strong>2005</strong> ausgeschieden / left in <strong>2005</strong><br />

Dr. Siegfried Birkle Siemens AG, Erlangen<br />

Prof. Dr. Hans Koch Physikalisch-Technische Bundesanstalt, Berlin<br />

Dr. Augustin Siegel Carl Zeiss AG, Oberkochen<br />

<strong>2005</strong> neu hinzugekommen / joined in <strong>2005</strong><br />

Prof. Dr. Michael Siegel Universität (TH) Karlsruhe<br />

Dr. Stefan Spaniol CeramOptec GmbH, Bonn<br />

Dr. Martin Wiechmann Carl Zeiss Meditec AG, <strong>Jena</strong>


Mitglieder des <strong>IPHT</strong> e.V. / Members of the Convention<br />

Institutionelle Mitglieder / Membership of institutions<br />

Thüringer Kultusministerium, Erfurt Dr. Gerd Meißner<br />

Thüringer Ministerium für Wirtschaft, MD Dr. Frank Ehrhardt<br />

Technologie und Arbeit, Erfurt<br />

Stadt <strong>Jena</strong> Oberbürgermeister Dr. Peter Röhlinger<br />

Friedrich-Schiller-Universität <strong>Jena</strong> Prof. Dr. Herbert Witte<br />

Fachhochschule <strong>Jena</strong> Prof. Dr. Gabriele Beibst<br />

CiS Institut für Mikrosensorik e.V., Dr. Hans-Joachim Freitag<br />

Erfurt<br />

Leibniz-Institut für Festkörper- und Prof. Dr. Helmut Eschrig<br />

Werkstoffforschung e.V., Dresden<br />

Sparkasse <strong>Jena</strong> Herr Martin Fischer<br />

TÜV Thüringen e.V., Erfurt Herr Bernd Moser<br />

4H <strong>Jena</strong> Engineering GmbH Herr Manfred Koch<br />

Robert Bosch GmbH, Stuttgart Dr. Christoph P. O.Treutler<br />

j-fiber GmbH, <strong>Jena</strong> Herr Lothar Brehm<br />

Persönliche Mitglieder / Personal members<br />

ORGANISATION / ORGANIZATION<br />

Prof. Dr. Hartmut Bartelt Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

Dr. Peter Egelhaaf Robert Bosch GmbH, Stuttgart<br />

Prof. Dr. Bruno Elschner Darmstadt<br />

Dr. Klaus Fischer Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

Prof. Dr. Peter Görnert Innovent e.V., <strong>Jena</strong><br />

Frau Elke Harjes-Ecker Thüringer Kultusministerium, Erfurt<br />

Prof. Dr. Karl-August Hempel RWTH Aachen<br />

Prof. Dr. Hans Eckhardt Hoenig Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

Herr Bernd Krekel Commerzbank AG, <strong>Jena</strong><br />

Prof. Dr. Siegfried Methfessel Witten-Herbede<br />

Prof. Dr. Gerhard Schiffner Ruhr-Universität Bochum<br />

Herr Frank Sondermann Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

Prof. Dr. Herbert Stafast Institut für Physikalische Hochtechnologie, <strong>Jena</strong><br />

9


10<br />

PERSONAL UND FINANZEN / STAFF AND BUDGET<br />

C. Personal und Finanzen / Staff and Budget<br />

Kaufmännischer Bereich / Administrative Division<br />

Leitung/Head: F. Sondermann<br />

e-mail: frank.sondermann@ipht-jena.de<br />

Beauftragte für den Haushalt/ Projektmanagement/<br />

Finance Department Head: I. Ring Project Management: Dr. I. Bieber<br />

e-mail: ina.ring@ipht-jena.de e-mail: ivonne.bieber@ipht-jena.de<br />

Technik/Technical Infrastructure: Th. Büttner, e-mail: thomas.buettner@ipht-jena.de<br />

Personal des Instituts / Staff of the institute<br />

Institutionelle Drittmittel/Project funding<br />

Förderung/<br />

Institutional Öfftl. Förderung/ Industrie/<br />

funding Public funding Industrial funding<br />

Wissenschaftler/<br />

Scientists<br />

Doktoranden/<br />

34 33 13 80<br />

Doctoral candidates<br />

Techniker, Mitarbeiter<br />

für den Betrieb/<br />

Engineers, employees<br />

14 3 17<br />

for infrastructure<br />

Verwaltung/<br />

46 27 15 88<br />

Administration<br />

Personalbestand<br />

am 31.12.<strong>2005</strong>/<br />

Number of employees<br />

15 15<br />

per <strong>2005</strong>/12/31 95 74 31 200<br />

Zusätzliches Personal (Gastwissenschaftler, Diplomanden, Praktikanten, Auszubildende)/<br />

Additional staff (visiting scientists, students, trainees): 39<br />

Anmerkung: Die Tabelle weist Personen aus, nicht Vollbeschäftigtenäquivalente./<br />

Note: The table states numbers of persons, not of full time-jobs<br />

Mitarbeiterinnen und Mitarbeiter<br />

des Kaufmännischen Bereichs.<br />

The staff of the administrative division.


Finanzen des Instituts / Budget of the institute<br />

Institutionelle Förderung (Freistaat Thüringen)/<br />

Institutional funding (Free State of Thuringia) 7.053,6 T”<br />

Drittmittel/Project funding 8.393,7 T”<br />

Institutionelle Förderung: Verwendung / Institutional funding: use<br />

15.447,3 T ”<br />

Personalmittel/staff 4.276,7 T”<br />

Sachmittel/materials 1.838,4 T”<br />

Investitionsmittel/investments 938,5 T”<br />

Aufgliederung Drittmittel / Subdivision of project funding<br />

7.053,6 T ”<br />

BMBF/Federal Ministry 2.400,6 T”<br />

DFG/German Research County 328,3 T”<br />

Freistaat Thüringen (Projektförderung)/Free State of Thuringia (Projects) 793,6 T”<br />

(davon für Datennetz-Migration/incl. computer network migration 209,3 T”)<br />

Europäische Union/European Union 931,5 T”<br />

Aufträge öffentlicher Einrichtungen/Contracts of public institutions 569,9 T”<br />

Sonstige Zuwendungsgeber/Other fundings 203,9 T”<br />

(Unterauftr. an Dritte in öfftl. gef. Projekten/Subcontracts to others 321,2 T”)<br />

Unteraufträge in Verbundprojekten/Subcontracts 438,8 T”<br />

FuE-Aufträge incl. wiss. techn. Leistungen/R&D contracts 2.727,1 T”<br />

Das Projekt „Kernnetzmigration“ wurde von<br />

der Europäischen Union kofinanziert<br />

Um heutzutage international wettbewerbsfähig<br />

zu sein, benötigt man auch eine moderne DV-<br />

Infrastruktur. Zu diesem Zweck hatte das Institut<br />

für Physikalische Hochtechnologie e.V. im Mai<br />

<strong>2005</strong> einen Antrag an das Thüringer Kultusministerium<br />

auf Förderung des „Ersatzes veralteter<br />

Netzwerkkomponenten des Datennetzwerkes<br />

des <strong>IPHT</strong>“, Kurztitel: „Kernnetzmigration“<br />

gestellt.<br />

Das Projekt wurde dankenswerterweise durch<br />

das Thüringer Kultusministerium bewilligt und<br />

dann, wie geplant, bis Ende <strong>2005</strong> umgesetzt. Die<br />

PERSONAL UND FINANZEN / STAFF AND BUDGET<br />

8.393,7 T ”<br />

Gesamtkosten des Projektes beliefen sich auf<br />

279,0 T“, von denen die Europäische Union<br />

209,3 T“ finanziert und das <strong>IPHT</strong> einen Eigenanteil<br />

von 69,7 T“ aufgewendet hat.<br />

The project „Kernnetzmigration“ was cofinanced<br />

by the European Union.<br />

To be today international competitive a modern<br />

data processing infrastructure is needed. To this<br />

purpose the Institute for Physical High Technology<br />

had applied for a funding at the Thuringian<br />

Ministry of Education an Cultural Affairs in May<br />

<strong>2005</strong> to replace the meanwhile antiquated network<br />

components of the data network of the<br />

<strong>IPHT</strong>, shortened title “Kernnetzmigration” (“Core<br />

Network Migration”).<br />

The project had been gratefully financed by the<br />

Thuringian Ministry of Education and Cultural<br />

Affairs and had been executed till the end of<br />

<strong>2005</strong>. The total costs of the project amounted to<br />

279,0 thousand Euros. From these total costs the<br />

European Union had financed 209.3 thousand<br />

Euros and the <strong>IPHT</strong> had financed an own share<br />

of 69.7 thousand Euros.<br />

11


12<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

D. Forschungsbereiche / Scientific Divisions<br />

1. Magnetik & Quantenelektronik / Magnetics & Quantum Electronics<br />

Leitung/Head: Prof. Dr. H. E. Hoenig<br />

e-mail: eckhardt.hoenig@ipht-jena.de<br />

Magnetik Magnetoelektronik Quantenelektronik<br />

Magnetics Magnetoelectronics Quantum Electronics<br />

Ltg./Head: Prof. Dr. W. Gawalek Ltg./Head: Dr. R. Mattheis Ltg./Head: Dr. H.-G. Meyer<br />

wolfgang.gawalek@ipht-jena.de roland.mattheis@ipht-jena.de hans-georg.meyer@ipht-jena.de<br />

1.1 Überblick<br />

Der Forschungsbereich Magnetik/Quantenelektronik<br />

repräsentiert in unserem Hause die<br />

Elektronik und die Materialforschung. Diese<br />

Elektronik stützt sich auf supraleitende bzw.<br />

magnetische Materialien und ist dementsprechend<br />

in Quantenelektronik und Magnetoelektronik<br />

gegliedert. Unter Quantenelektronik verstehen<br />

wir die Nutzung der Quanteneffekte der<br />

Supraleitung in mikro- und nanotechnisch hergestellten<br />

Bauelementen und Schaltungen. Die<br />

Materialforschung betrifft Supraleiter und Magnetpigmente.<br />

Die Abteilung Quantenelektronik, mit mehr als<br />

30 Mitarbeitern die weitaus größte und dynamischste<br />

im Forschungsbereich und im Institut,<br />

betreibt wesentlich unseren Reinraum und versteht<br />

sich als Systementwickler mit und für Partner<br />

und Anwender weltweit. Professionelle Qualität<br />

wird durch eine jährlich aktualisierte ISO-Zertifizierung<br />

gesichert. Eine strategische Partnerschaft<br />

besteht mit dem Fraunhofer-Institut für<br />

Angewandte Optik und Feinmechanik bei Betrieb<br />

und Anwendung der Elektronenstrahllithographie.<br />

Herausragende wissenschaftliche Ergebnisse im<br />

Jahre <strong>2005</strong> waren: (1) Weltweit erstmals wurde<br />

als Vorstufe zu künftigen adiabatischen Quantrenrechnern<br />

vier Flussquanten-Qubits quanten-<br />

Kultusminister Prof. Dr. Jens Goebel verleiht<br />

am 3. Februar <strong>2005</strong> in Schmalkalden den<br />

Thüringer Forschungspreis 2004 an<br />

Dr. Andrei Izmalkov, Dr. Thomas Wagner,<br />

Prof. Dr. Miroslav Grajcar und Dr. Evgeni<br />

Ilichev (v.l.n.r).<br />

Science minister Prof. Dr. Jens Goebel presents<br />

the Thuringian Research Award 2004<br />

to Dr. Andrei Izmalkov, Dr. Thomas Wagner,<br />

Prof. Dr. Miroslav Grajcar, and Dr. Evgeni<br />

Ilichev (left to right).<br />

1.1 Overview<br />

The division Magnetics/Quantum Electronics represents<br />

the electronics and materials research in<br />

<strong>IPHT</strong>. It is based on superconducting and magnetic<br />

materials and is organized in the Quantum<br />

Electronics and Magnetoelectronics departments<br />

respectively. Quantum Electronics uses quantum<br />

effects of superconductivity in micro- and nanodevices<br />

and circuits. Materials research concerns<br />

superconductors and magnetic nanoparticles.<br />

The Quantum Electronics department, the<br />

largest and most dynamical in house, is main<br />

operator of our clean room and system developer<br />

together with and servicing partners and customers<br />

worldwide. ISO certification assures a<br />

professional quality level and is updated every<br />

year. A strategic partnership has been established<br />

with the nearby Fraunhofer Institute for<br />

Applied Optics and Precision Mechanics operating<br />

and using electron beam lithography.<br />

Highlights in the year <strong>2005</strong> have been: (1) for the<br />

first time worldwide four superconducting flux<br />

qubits have been quantum mechanically coupled<br />

and spectroscopically characterized on the route<br />

to adiabatic quantum computation; a corresponding<br />

European research partnership has been<br />

accomplished; in February the group around<br />

Dr. Ilichev was honoured with the Thuringian<br />

Research Award, (2) again as a worldwide first, a


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

The SQUID system for archaeological prospection, pulled by a jeep, during measurement near Palpa, Peru.<br />

The orange tubes contain the SQUID channels.<br />

New measuring station<br />

used to study domain<br />

wall movement in magnetic<br />

thin film sensors.<br />

In the middle of the coils<br />

two boards are visible.<br />

The upper one contains<br />

the sensor chip<br />

(2 × 2 mm 2 ) and a fast<br />

preamplifier, the lower<br />

board contains a multiplexer.<br />

The mayor of <strong>Jena</strong><br />

C. Schwind, the Thuringian<br />

minister of education<br />

and cultural affairs<br />

Prof. Dr. J. Goebel and<br />

the head of department<br />

Magnetics Prof. Dr.<br />

W. Gawalek during the<br />

opening of the interactive<br />

exhibition “Eiskalte<br />

Energie für Europa”<br />

(June 29–July 02, <strong>2005</strong>,<br />

GoetheGalerie <strong>Jena</strong>)<br />

testing a fly-wheel<br />

energy storage system.<br />

13


14<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

mechanisch gekoppelt und spektroskopisch charakterisiert.<br />

Eine entsprechende europäische<br />

Forschungspartnerschaft wurde etabliert. Im<br />

Februar wurde der Thüringer Forschungspreis an<br />

unsere Quantenelektronikgruppe verliehen. (2)<br />

Weltweit erstmals konnte mit einem fahrzeugtransportierten<br />

SQUID-System eine professionelle<br />

archäometrische Erkundung zum Erfolg gebracht<br />

werden. (3) Unsere Beiträge zu dem von uns veranstalteten<br />

Symposium „Messen an der Quantengrenze“<br />

bei der Frühjahrstagung der DPG<br />

demonstrierten die Schlüsselstellung der supraleitenden<br />

Quantenelektronik bei Astro-Kameras<br />

und Quantencomputing. Im Rahmen des Jahres<br />

„Deutschland in Japan“ wurden diese Arbeiten<br />

auch in Tokyo als besondere Leistung des Beutenberg<br />

Campus präsentiert.<br />

Unsere Magnetoelektronik stützt sich auf die<br />

Besonderheit einer industriekompatiblen Beschichtungsanlage<br />

für Magnetowiderstands-Multilagen<br />

bis zum Format von 8 Zoll. Professioneller<br />

Betrieb ist erprobt in kundenspezifischen und<br />

kundenvertraulichen Arbeiten. Ein weltweit<br />

erstrangiger Geräteentwickler stützt sich auf<br />

unsere Prozessentwicklung. Wir haben Expertise<br />

in der Charakterisierung der Dünnschicht-Grenzflächen<br />

und das Instrumentarium dafür. Qualitätssicherung<br />

mit Zertifizierung besteht und wird turnusmäßig<br />

erneuert. Highlights sind: (1) GMR-<br />

Viel-Umdrehungszähler für Anwendungen im<br />

Automobil, (2) Analytik-Highlights: Neue L-Röntgenspektren<br />

als Kalibrierreferenz.<br />

Materialentwicklung supraleitender und magnetischer<br />

Materialien für die Energietechnik und<br />

Medizintechnik betreiben wir in unserer Abteilung<br />

Magnetik. Das Projekt DYNASTORE zum<br />

Schwungmassenenergiespeicher wurde verlängert<br />

und steht jetzt vor dem erfolgreichen<br />

Abschluss. Ein großes Projekt mit Partnern zur<br />

Entwicklung hochdynamischer Motoren wurde<br />

begonnen. Mit „Superlife“ wurde eine von uns<br />

mitgestaltete europäische Ausstellung in <strong>Jena</strong><br />

der Öffentlichkeit präsentiert. Das bisher schon<br />

bestehende Zusammengehen mit dem IFW<br />

Dresden wird intensiviert.<br />

Die Nutzung von Magnetpigmenten in der Krebstherapie<br />

in Partnerschaft mit dem Klinikum <strong>Jena</strong><br />

(Forschungsgruppe von Prof. Werner A. Kaiser)<br />

kommt voran. Die Materialentwicklung dazu hat<br />

ihre Basis dazu im Ferrofluid-Verbund der DFG,<br />

an dem wir maßgeblich beteiligt sind.<br />

vehicle carried SQUID-system operated successfully<br />

in archaeometric prospection in Palpa/<br />

Peru, (3) the key role of our Quantum Electronics<br />

in camera development for astrophysics and in<br />

quantum computing circuitry was demonstrated<br />

by our contribution to the symposium “measurements<br />

at the quantum limit” as organized by us at<br />

the spring meeting of the German Physical Society<br />

in Berlin; this work also was presented in<br />

Tokyo within the year “Germany in Japan” as<br />

highlight of the Beutenberg Campus where we<br />

belong to.<br />

Our Magnetoelectronics department features a<br />

deposition system for magneto-resistive multilayer<br />

sputtering on industry compatible 8” substrates.<br />

Professional operation has been<br />

approved in customer-specific and -confidential<br />

work. A top level company providing such<br />

machines to the world marked relies on our<br />

process development.<br />

We are experienced in characterising thin film<br />

interfaces and are well equipped for such investigations.<br />

ISO certification assures quality and is<br />

updated annually. Highlights have been: (1) a<br />

multiturn GMR counter for automotive applications,<br />

(2) new L-x-ray spectra as reference for<br />

instrumentation.<br />

Our Magnetics department developes superconducting<br />

and magnetic materials for power and<br />

medical engineering. The project DYNASTORE<br />

on a flywheel with our superconducting components<br />

has been extended and is expected to be<br />

finished in summer of 2006. A large project has<br />

been started on a superconducting machine testing<br />

high power combustion engines for the car<br />

industry. With “Superlife” we presented a European<br />

exhibition to the public here in <strong>Jena</strong> with our<br />

contributions. We intensify our collaboration with<br />

the IFW Dresden.<br />

Cancer therapy using our magnetic nanoparticles<br />

and corresponding heating system reported<br />

progress (team of Prof. Werner A. Kaiser). The<br />

materials development is based on the ferro-fluid<br />

consortium of the DFG where we contribute and<br />

organize.


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

1.2 Scientific results<br />

1.2.1 Micro- and nanofabrication<br />

(Uwe Hübner, Ludwig Fritzsch,<br />

Solveig Anders, Jürgen Kunert)<br />

The microfabrication group is responsible for the<br />

maintenance of the existing micro- and nanotechnological<br />

fabrication processes for quantum<br />

electronic devices (SQUID sensors, voltage standard<br />

chips, Qubits) and other applications such<br />

as nanoscale calibration standards, photonic<br />

crystals and micro optical components, and for<br />

the development of technologies appropriate for<br />

new device requirements. In <strong>2005</strong>, 210 chromium<br />

masks and 240 electron beam direct writing<br />

exposure jobs were made using the ZBA 23H.<br />

120 masks were prepared by using the optical<br />

pattern generator MANN 3600. About 80 high<br />

resolution exposures were made using the<br />

e-beam-tool LION. For the further improvement<br />

of the electron beam lithography the software<br />

tool SCELETON was installed as a proximity<br />

function calculator.<br />

In <strong>2005</strong> a new DFG-project, “Electrooptically Tunable<br />

Photonic Crystals”, was started. The European<br />

project PLATON (PLAnar Technology for<br />

Optical Networks) and the R&D project “KALI II”<br />

were successfully finished. In the “KALI II” project<br />

a new type of nanoscale CD-standard for AFM<br />

and a “Nanoscale Linewidth/Pitch Standard”<br />

were realized. These standards consist of different<br />

grating structures etched in nanocrystalline<br />

silicon on a quartz substrate. They contain<br />

patterns on nanometer scale for the calibration<br />

and resolution-check of high-resolution optical<br />

microscopy techniques, such as deep ultraviolet<br />

microscopy and laser scanning microscopy.<br />

One important task of the year <strong>2005</strong> was to<br />

develop a process to reduce the standard 3.5 µm 2<br />

Nb/Al process to junction dimensions of 1 µm 2 .At<br />

the start of <strong>2005</strong> a chemical-mechanical polishing<br />

(CMP) machine was installed and the process<br />

of SiO 2-planarization on 4” wafers developed. In<br />

parallel, optical lithography using a g-line stepper<br />

(AÜR, Zeiss <strong>Jena</strong>) and the RIE process for sub-<br />

µm Nb structures were optimized. A first wafer<br />

run with test structures of SQUIDs with Josephson<br />

junctions of different dimensions down to 0.8<br />

µm showed in principal the functionality of the<br />

planarization process. However, there was a<br />

large parameter spread and a small yield, caused<br />

by an insufficient reliability and overlap accuracy<br />

of the stepper and the strong dependence of the<br />

polishing rate on topology and structure dimensions.<br />

Therefore, for the ongoing test runs new<br />

technological concepts were developed including<br />

direct e-beam exposure and the CALDERA<br />

process for the CMP step in order to overcome<br />

the dimensional effects when polishing. Fig. 1.1<br />

shows a cross section of planarized SiO 2 isolated<br />

Nb lines. The standard 3.5 µm 2 Nb/Al process<br />

for SQUIDs was upgraded by integrating<br />

Nb-oxide capacitors with specific capacitances of<br />

app. 4 fF/µm 2 for areas of up to 25 mm 2 . They are<br />

used in highly balanced gradiometers for mobile<br />

SQUID system applications. The development of<br />

large area Josephson junctions for applications<br />

as x-ray detectors in synchrotron radiation experiments<br />

was started with special emphasize on<br />

the minimization of the subgap leakage currents.<br />

The first results are promising and future work will<br />

be concentrated on the preparation of sensor<br />

arrays and the implementation of different<br />

absorber materials.<br />

Fig. 1.1: Cross section of Nb lines with planarized<br />

SiO 2 isolation.<br />

1.2.2 SQUID sensors and systems<br />

(Volkmar Schultze, Ronny Stolz,<br />

Viatcheslav Zakosarenko,<br />

Andreas Chwala, Sven Linzen,<br />

Nilolay Ukhanski, Torsten May)<br />

Except for SQIFs (Superconducting Interference<br />

Filters – a special combination of number of various<br />

SQUIDs) which are developed and produced<br />

within a long-standing cooperation with the University<br />

of Tübingen and the company QEST, all<br />

SQUID projects are based now upon the use of<br />

low temperature superconductors.<br />

In the fourth phase of the development of the<br />

LTS SQUID gradiometer system for mobile applications<br />

the second generation prototype for measuring<br />

the full tensor of the Earth’s magnetic field<br />

gradient with extremely high sensitivity was built.<br />

It features several improvements compared to its<br />

antecessors.<br />

With integrated low pass filters the frequency gap<br />

for disturbances between the system bandwidth<br />

of approximately 4 MHz and 500 MHz of the RFI<br />

screen around the cryostat could be closed.<br />

Here, the main task was the development of a<br />

technology for integrated capacitances up to 80<br />

nF. After several aborts in the past few years the<br />

successful implementation of intrinsic capacitors<br />

is a highlight in the SQUID development in <strong>2005</strong>.<br />

Now, due to these filters the new gradiometer<br />

sensors provide higher stability in environments<br />

with high frequency radiation and their intrinsic<br />

noise could be decreased down to 20 fT/(m·√Hz).<br />

The second task was to reduce the motion noise<br />

15


16<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

of the SQUIDs caused by movements in the<br />

Earth’s magnetic field. By decreasing the width of<br />

all superconducting structures below 5 µm the<br />

critical magnetic field amplitude for flux capture<br />

could be increased up to 65 µT. Furthermore,<br />

using smaller areas of about 3000 µm 2 , the sensitivity<br />

of the three reference SQUID magnetometers<br />

was decreased. Now we are able to<br />

work even in high magnetic field amplitudes like,<br />

for instance, in the north of Canada.<br />

Further development has been done on the data<br />

acquisition unit of the system. It contains now<br />

extremely low noise differential inputs for 21 analogue<br />

channels. They are digitized with 24 bit<br />

ADC. All interactions of this unit with the SQUID<br />

system have been removed. The accuracy of the<br />

determination of the 3D position, flight direction,<br />

and orientation in space is determined from a<br />

low-power differential GPS system and a new<br />

inertial system unit containing high accuracy<br />

fiber-optical gyros. With the implementation of<br />

new lithium ion batteries the weight and geometric<br />

dimensions of the data acquisition unit have<br />

been decreased by simultaneous increase of the<br />

working period to approximately eight hours.<br />

In September <strong>2005</strong> the Earth’s magnetic field<br />

gradient of the same area (approx. 13 km × 7<br />

km), surveyed in South Africa already in 2004,<br />

was measured again. The system was used in a<br />

fixed wing configuration on a CESSNA Grand<br />

Caravan 208 airplane from Fugro Airborne Systems,<br />

where the rigidity of the stinger was<br />

increased compared to the past. In this configuration<br />

the area (1100 line kilometers) was<br />

scanned at altitudes of 80 m and line spacing of<br />

100 m. To compare the system sensitivity with the<br />

best contemporary conventional system (MIDAS<br />

system from Fugro Airborne systems), the survey<br />

was conducted with helicopter based instruments<br />

at altitudes between 35 m and 40 m and a tow<br />

rope length of 40 m. The comparison of the magnetic<br />

maps of both systems showed a superior<br />

sensitivity and spatial resolution of the full-tensor<br />

SQUID device.<br />

The development of a SQUID system for archaeological<br />

prospection within the project<br />

“ArcheNova” was finished with the end of year<br />

<strong>2005</strong>. Via various field trials the system was further<br />

improved compared to the status the year<br />

before. The final examination – and a highlight<br />

of the SQUID activities in this year – was an<br />

expedition to the Nasca/Palpa region in Peru,<br />

about 250 km south of Lima. This region is most<br />

famous because of the large geoglyphes. Our<br />

measurements were performed in coordination<br />

and cooperation with the BMBF project network<br />

“Nasca: Development and adaption of archaeometric<br />

techniques for the investigation of cultural<br />

history”.<br />

All the demands of this application – transport of<br />

the system, provision with liquid Helium, and<br />

especially the measurement in a hyper arid,<br />

dusty area – could be solved well. The measurements<br />

could even be performed with a pickup<br />

truck as a hauling system – despite a very<br />

cragged surface of the explored areas (cf. colored<br />

picture). Mappings on foot, performed for<br />

comparison, proved the same data quality of the<br />

“motorized” ones. So it was possible to map<br />

about one hectare per measurement hour, which<br />

is a remarkable gain compared to common handheld<br />

geomagnetic archaeological prospection<br />

systems. All in all more than 200 line kilometers<br />

were driven. Due to the geo-referenced positioning<br />

with the differential GPS system the results<br />

can easily be fit into photos or maps achieved<br />

with other methods.<br />

One example out of the 10 mapped areas is<br />

shown in Figure 1.2. On the ortho photo only<br />

recent plow furrows are visible. Partially they also<br />

reproduce in the magnetogram. However, there<br />

also an old riverbed comes out, magnetically<br />

detectable due to the deposition of sediments.<br />

This gives an impression on the dramatic<br />

changes the area around Nasca suffered in times<br />

before the Spanish set up to conquer South<br />

America.<br />

On other areas geometric structures came out in<br />

the magnetogram which allude to ancient settlement<br />

residues.<br />

Fig. 1.2: Jauranga – a site near Palpa, Peru.<br />

Top: Ortho photo (by courtesy of the Institute for<br />

Geodesy and Photogrammetry, ETH Zürich),<br />

Bottom: Magnetogram.


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Even though with the Peru expedition the project<br />

is formally finished, in 2006 some other field trials<br />

in Europe are planned where the potential of our<br />

system shall be used for geomagnetic prospection<br />

of archaeologically interesting sites.<br />

The most common electromagnetic method in<br />

mineral exploration is based on the application<br />

of transient Electro-Magnetics (TEM). Already in<br />

2003 a prototype of a TEM system with LTS<br />

SQUID magnetometers has been developed,<br />

which has been used routinely on several targets<br />

in Australia and South Africa in 2004 with great<br />

success.<br />

In <strong>2005</strong>, the system has been redesigned in various<br />

aspects. All components have been evaluated<br />

for the use of the system under arctic conditions.<br />

A new cryostat with a higher thermal efficiency<br />

(and the same size) helps to save liquid helium,<br />

since it now needs to be refilled every second day<br />

only. The power supply and control unit have<br />

shrunk by almost a factor of two in size. The<br />

mechanical setup has been ruggedized by changing<br />

cable, connectors, switches and cryostat installation.<br />

A new family of SQUIDs has been implemented<br />

to achieve a better stability of the working<br />

point all over the world (with different magnetic<br />

field strengths). At the end of this process it was<br />

possible to out-source the fabrication to our spinoff<br />

‘Supracon’. Two new systems have been produced<br />

there and meet all the required specifications.<br />

The first “production” system was applied in<br />

routine field work for many weeks in Australia.<br />

Already in 2001 a prototype of a directly coupled<br />

SQUID electronics for various applications has<br />

been developed. In between it has been successfully<br />

used in various applications. From 2002 on,<br />

commercial production of this electronics, completed<br />

by a digital control unit, started by our<br />

spin-off ‘Supracon’. In <strong>2005</strong> this electronics has<br />

been redesigned in many aspects. Keeping a<br />

frequency range of 7 MHz and very low input<br />

noise ~0.33 nV/Hz 1/2 (with flicker noise corner<br />

frequency ~0.1 Hz), thermodrift (~5 nV/K), maximum<br />

slew rate (~16 MΦ 0/s) and dynamic range<br />

(170 dB) have been remarkably improved.<br />

In the frame work of the “LABOCA” project being<br />

executed in close collaboration with the Max<br />

Planck Institute for Radio Astronomy in Bonn our<br />

group has considerably enhanced the performance<br />

of the used transition edge bolometers by<br />

developing a new technology for patterning the<br />

supporting membranes. These structured membranes,<br />

sometimes referred to as “spider-webs”<br />

(Fig. 1.3), help to lower the thermal conductivity<br />

and thereby improve the energy resolution down<br />

to values below 10 –16 W/Hz. Furthermore, we<br />

have developed a new concept of coupling the<br />

first-stage readout SQUID and the second-stage<br />

amplifier SQUID. This approach is particularly<br />

well adapted to the time domain multiplexing con-<br />

Fig. 1.3: A quadratic, 800 nm thick silicon nitride<br />

membrane patterned in the shape of a spider<br />

web. The width of the legs is 4 µm.<br />

cept. The appropriate electronics was improved<br />

and a production prototype was built, which can<br />

be easily produced in the batches of 30 ones,<br />

needed for the 300 channel array.<br />

In parallel the LABOCA prototype system with<br />

7 channels was successfully used to image<br />

objects from a distance of a few meters in a lab<br />

environment. Imaging in the frequency band<br />

between 0.1 and 1 THz also opens the possibility<br />

of detecting potentially hazardous objects hidden<br />

underneath the clothing of suspects, for<br />

instance in security areas at airports.<br />

Together with the company Vericold Technologies<br />

we have developed and manufactured X-ray<br />

bolometers, operating at a temperature of 100 mK.<br />

They are routinely used to equip the Polaris<br />

spectrometer, an add-on for commercial electron<br />

microscopes, which can be used for finding<br />

defects in semiconducting electronic circuits.<br />

1.2.3 Integrated superconducting circuits<br />

(Gerd Wende, Marco Schubert,<br />

Torsten May, Michael Starkloff,<br />

Birger Steinbach, Hans-Georg Meyer)<br />

In <strong>2005</strong> the project “Quantum Synthesizer<br />

(QuaSy)” was successfully developed further. In<br />

the project three components – an RSFQ pulse<br />

pattern generator, a pulse amplifier, and a<br />

Josephson quantizer – are being developed by<br />

different project partners, and integrated into a<br />

Multi-Chip-Module. Within the scope of the joint<br />

project the <strong>IPHT</strong> is focused on investigations of<br />

superconducting pulse-driven microwave circuits,<br />

the so-called Josephson quantizer, and on the<br />

relevant microwave tests and measurements.<br />

Our main activities were the improvement of the<br />

fabrication technology and testing the Josephson<br />

quantizer microwave circuits. With this new technology<br />

the packing density of the Josephson<br />

17


18<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

junctions (JJs) was increased by about one third.<br />

The critical current spread was reduced from<br />

about 10% to 2–3%. All this together results in a<br />

distinct increase of the yield of fully functional<br />

quantizer circuits.<br />

A new cooperation with the NMi Van Swinden<br />

Laboratorium B.V. in Delft, Netherlands, allowed<br />

to measure our chips in a bipolar pulse driving<br />

mode with pulse repetition frequencies of up to<br />

12 GHz. The pulse pattern generator delivers a<br />

repeating pattern of short current pulses in which<br />

the desired low frequency output waveform is<br />

encoded. By the Josephson quantizer circuit it is<br />

transformed into a pattern of quantized voltage<br />

pulses. Fig. 1.4 shows an example of the operation<br />

of a Josephson quantizer circuit with<br />

2560 JJs. In this case, a 122 kHz ac voltage was<br />

delta-sigma modulated in a 64 Mbit long pattern.<br />

The used clock frequency was 4 GHz. The left<br />

spectrum of Fig. 1.4 is delivered by the generator<br />

itself. It can be seen that there are not only the<br />

distinct higher harmonics of the fundamental but<br />

also other peaks whose origin is not yet clear.<br />

The quantizer circuit driven by the same pattern<br />

removes all of these unwanted signals as seen<br />

in the right hand side spectrum of Fig. 1.4. The<br />

amplitude of the fundamental frequency was<br />

9.5 mV with quantum accuracy and the higher<br />

harmonics were suppressed by –86 dBc. Currently,<br />

the Josephson junction array limits the<br />

maximum usable clock frequency to 4.8 GHz and<br />

the maximum ac voltage amplitude to 9.5 mV.<br />

Therefore, the major task for the next few months<br />

is to increase the chip bandwidth in order to<br />

increase the maximum ac voltage amplitude.<br />

Fig. 1.4: Measured power spectra of a deltasigma<br />

modulated 122 kHz sine wave with an<br />

amplitude of 9.5 mV. The bipolar pulse pattern<br />

generator was clocked at 4 GHz. Left spectrum:<br />

Delivered by the generator itself. Right spectrum:<br />

Output signal of the JJ array quantizer, pulse-driven<br />

by the generator with the same pattern. The<br />

suppression of the higher harmonics is –86 dBc.<br />

Josephson quantizer and 10 V Josephson voltage<br />

standard chips with almost 20,000 JJs are the<br />

most highly integrated superconductive circuits<br />

provided commercially. Worldwide only HYPRES<br />

Inc. (USA) and the <strong>IPHT</strong> are able to offer such<br />

10 V Josephson voltage standard circuits. In <strong>2005</strong><br />

the <strong>IPHT</strong> delivered quantizer chips and 10 V chips<br />

to several national metrology laboratories.<br />

In <strong>2005</strong> a complete microprocessor controlled<br />

10 V Josephson voltage standard system was<br />

developed. The system facilitates a variety of DC<br />

voltage calibrations and measuring functions:<br />

Calibration of secondary DC-reference Zeners<br />

and testing of the linearity and accuracy of DCvoltmeters<br />

and DC-calibrators in the voltage<br />

range of 0 to ±10 V. It was successfully evaluated<br />

at the PTB in Braunschweig. A direct comparison<br />

of the <strong>IPHT</strong> Josephson voltage standard<br />

with the PTB one showed a voltage difference<br />

between both standards of only 0.7 nV, with a<br />

measurement uncertainty of 3.4 nV. This corresponds<br />

to an accuracy of 7 × 10 –11 . So, the <strong>IPHT</strong><br />

system compares to the primary standards of the<br />

national metrology institutes.<br />

1.2.4 Quantum computing<br />

(Evgeni Il’ichev, Miroslav Grajcar,<br />

Andrei Izmalkov, Thomas Wagner,<br />

Sven Linzen, Uwe Hübner,<br />

Simon van der Ploeg, Daniel Wittig)<br />

Approximately ten years ago it was demonstrated<br />

theoretically that a quantum computer can solve<br />

some problems much more effectively than a<br />

classical one. This discovery has stimulated an<br />

effort to find a physical system which can be<br />

used as a qubit, the building block of a quantum<br />

computer.<br />

Amongst the many systems in physics which can<br />

be used as a qubit, one is the so-called persistent<br />

current qubit. This qubit consists of a small<br />

inductance superconducting loop with three<br />

Josephson junctions. Such superconducting<br />

qubits have several advantages over qubits<br />

based on microscopic systems: there is no principal<br />

limitation in their number and they can be<br />

accessed and controlled individually.<br />

We proposed a specific implementation for adiabatic<br />

quantum computing with a set of coupled<br />

superconducting flux qubits, which can be fabricated<br />

with the present state of the art. We could<br />

show that our measurement setup – the impedance<br />

measurement technique – can be effectively<br />

used to read out the results of the adiabatic<br />

evolution algorithm.<br />

In order to demonstrate any quantum algorithm, a<br />

coupling between qubits must be implemented.<br />

We proposed implementing the coupling between<br />

two qubits through a shared Josephson junction.<br />

We have experimentally demonstrated direct antiferromagnetic<br />

Josephson coupling between two<br />

persistent current qubits. The coupling strength<br />

can be of the order of a Kelvin, and agrees with<br />

theoretical predictions to the expected accuracy.<br />

Moreover, the resulting coupling not only is<br />

strong, but can also be varied independent of<br />

other design parameters by choosing the shared<br />

junction’s size.


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

We implemented a “twisted” design which exhibits<br />

the ferromagnetic coupling. It was done by fabricating<br />

and studying a four–qubit circuit (Fig. 1.5)<br />

in which the two types of coupling co-exist. This is<br />

very promising from the perspectives of realizing<br />

nontrivial Ising-spin systems and scalable adiabatic<br />

quantum computing. This world-wide first<br />

coupling of four superconducting qubits clearly is<br />

a highlight of our work in <strong>2005</strong>. The acquired data<br />

fully agree with a quantum-mechanical description<br />

to the experimental accuracy.<br />

Fig. 1.5: Electron micrograph of a four-qubit<br />

sample. The central junctions A1–A3 couple the<br />

Al qubits q1–q4. The surrounding Nb coil is part<br />

of the LC tank circuit, used for measurement and<br />

global flux biasing. The Nb lines I b1–I b4 allow<br />

asymmetric bias tuning.<br />

For superconducting qubits the problem of decoherence<br />

is one of the most important. In order to<br />

get additional information about the qubits<br />

dynamics we proposed a new tool – low frequency<br />

Rabi spectroscopy for a two-level system. In<br />

principal we have analyzed the interaction of a<br />

dissipative two-level quantum system with highand<br />

low-frequency excitation. The system is continuously<br />

and simultaneously irradiated by these<br />

two waves. If the frequency of the first signal is<br />

close to the level separation, the response of the<br />

system exhibits undamped low-frequency oscillations<br />

whose amplitude has a clear resonance at<br />

the Rabi frequency with the width being dependent<br />

on the damping rates of the system. Therefore,<br />

by analyzing the experimental data, decoherence<br />

as well as relaxation times can be reconstructed.<br />

We have also experimentally and theoretically<br />

investigated combined superconductor-semiconductor<br />

structures. The measurement of the<br />

supercurrent-phase relationship of a ballistic<br />

Nb/InAs(2DES)/Nb junction in the temperature<br />

range from 1.3 K to 9 K using impedance measurement<br />

technique showed at low temperatures<br />

substantial deviations of the supercurrent-phase<br />

relationship from conventional tunnel-junction<br />

behaviour, as has to be expected for highly trans-<br />

parent interfaces. Reasonable agreement between<br />

theory and experiment was found.<br />

The whole work of the quantum computing group<br />

was honoured already in the preceding year with<br />

the Thuringian Research Award. The actual<br />

awards ceremony happened in the year <strong>2005</strong>,<br />

shown in the colored picture.<br />

These good results, ever again presented in<br />

important scientific journals, also reflect in a<br />

steadily growing embedding in international<br />

cooperation. To allow for the growing number of<br />

measurements coming along with this, a second<br />

mK-cryostat had to be set up, what was connected<br />

with the preparation of an additional specially<br />

prepared room for it.<br />

So, in combination of these further improving<br />

measurement conditions and the scientific potential<br />

of the quantum computing group its position<br />

in the emerging field of quantum computing could<br />

further be strengthened.<br />

1.2.5 Foundry service<br />

(Wolfgang Morgenroth, Ludwig Fritzsch,<br />

Torsten May, Jürgen Kunert,<br />

Birger Steinbach, Gerd Wende,<br />

Hans-Georg Meyer)<br />

The <strong>Jena</strong> Superconductive Electronics Foundry<br />

(JeSEF) was founded in 1997. It uses the knowhow<br />

and the competitive infrastructure for niobium<br />

and YBCO technology of the department of<br />

Quantum Electronics. The foundry provides customers<br />

with LTS SQUIDs and SQUID systems,<br />

RSFQ circuits, Josephson voltage standard circuits,<br />

components and systems, and with microfabrication<br />

items including the design and fabrication<br />

of lithography masks. Further, the foundry<br />

offers technological services like single manufacturing<br />

steps, using our cleanroom facilities, as<br />

well as characterization services of our well<br />

equipped laboratories. JeSEF and the department<br />

of Quantum Electronics have been ISO<br />

9001:2000 certified since 2002.<br />

About 40 orders were processed in <strong>2005</strong>. Our<br />

main customers for SQUIDs and Microfabrication<br />

were Supracon AG, THEVA GmbH, Bruker<br />

BioSpin GmbH, and Jenoptik LOS GmbH. Voltage<br />

standard circuits and components were<br />

delivered to the University of Naples and to the<br />

national metrology laboratories of the Netherlands,<br />

France, and Korea.<br />

1.2.6 Domain wall motion in small GMR<br />

structures<br />

(Roland Mattheis, Hardy Köbe,<br />

Dominique Schmidt, Uwe Hübner,<br />

Wolfgang Morgenroth)<br />

The motion of domain walls in narrow stripes represents<br />

the key element for new magneto-<br />

19


20<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

electronic devices like magnetic logic, stacked<br />

MRAM, and our multiturn sensor. We investigated<br />

domain wall motion in 500 µm long stripes of a<br />

GMR stack with NiFe as the sensing layer. The<br />

stripes were prepared using e-beam lithography<br />

and Ar ion milling.<br />

Fig. 1.6: GMR stripe with domain wall generator:<br />

a) Temporal evolution of voltage (proportional to<br />

R) of a 220 nm wide stripe; b) distribution of the<br />

field strength H inj; c) distribution of the length covered<br />

during the first domain wall jump; d) distribution<br />

of the field strength H mov > H inj necessary for<br />

completion of the domain wall movement through<br />

the stripe.<br />

Stripe widths of between 150 and 300 nm and<br />

thicknesses of the NiFe layer of between 5 and<br />

20 nm, cause large shape anisotropy and, as a<br />

consequence, high fields H nuc were needed for a<br />

domain wall nucleation in the stripe. Some stripes<br />

have an 6 µm × 10 µm large area (domain wall<br />

generator) at one end, in which a 180° domain<br />

wall is generated upon rotation of a field of<br />

strength H gen and injected into the stripe at a field<br />

strength H inj (with H nuc > H mov > H inj > H gen). The<br />

field dependencies of the 180° domain wall injection,<br />

of the domain wall velocity, and of the<br />

processes of pinning and depinning in our stripes<br />

were determined from the resistance changes of<br />

the GMR stack, by measuring the R(t)-curve and<br />

statistically interpreting 500 repeated experiments.<br />

As shown in Fig. 1.6a during a linear increase of<br />

the magnetic field a domain wall was injected at<br />

5.3 kA/m and pinned after travelling about 70 µm,<br />

140 µm, and 270 µm, as derived from the relative<br />

voltage jump. The distribution of the injection field<br />

H inj in Fig. 1.6b clearly shows a twofold Gaussian<br />

distribution. These two peaks are presumably<br />

caused by the two possible types of domain<br />

walls, transverse and vortex-like domain walls,<br />

whose injection into the stripe is dependent on<br />

the magnetic reversal process in the domain wall<br />

generator. As displayed in Fig. 1.6c the domain<br />

wall can be pinned during movement through the<br />

stripe at nearly all parts of the wire, thereby<br />

showing the stochastic nature of domain wall<br />

movement. The pinning probability exhibits a<br />

double peak near 100 µm. In most cases the<br />

domain wall is pinned twice during passage. The<br />

magnetic field for passing through the complete<br />

stripe is depictured in Fig 1.6d. The wide distribution<br />

of this field again indicates the stochastical<br />

nature of domain wall motion, pinning and depinning.<br />

Edge roughness probably causes this statistically<br />

distributed pinning. Magnetic fields H mov<br />

of about 9.5 kA/m are sufficient to move the<br />

domain wall completely through the 500 µm long<br />

stripes.<br />

In some stripes with a domain wall generator single<br />

defects seem to occur. These cause strong<br />

pinning for every domain transition. The field<br />

strength necessary to overcome this strong pinning<br />

varies from experiment to experiment within<br />

a factor of 3. One such strong defect near the<br />

domain wall generator enabled us to determine<br />

the field dependence of the domain wall velocity.<br />

As shown in Fig. 1.7 we get a linear field dependence<br />

of the domain wall velocity v. Within some<br />

µs a domain wall can move through the whole<br />

stripe. The domain wall mobility of 17 (m/s)/<br />

(kA/m) is low compared to that obtained in largearea<br />

NiFe layers and is comparable to that found<br />

by other groups in narrow stripes at comparatively<br />

high magnetic fields. The minimum field H inj for<br />

any domain wall movement in 200 nm wide<br />

stripes is of the order of 4 kA/m.


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Fig. 1.7: Linear dependence of the domain wall<br />

velocity v on the field strength H mov in a stripe with<br />

a defect.<br />

Fig. 1.8: Distribution of the field strength necessary<br />

for nucleation of a domain wall in a GMR<br />

stripe without domain wall generator.<br />

In stripes without a domain wall generator the<br />

domain wall nucleates at one end of the stripe at<br />

a field strength H nuc = 18–26 kA/m and moves<br />

through the line within some µs. The peak field is<br />

inversely proportional to the stripe width and has<br />

a very narrow Gaussian distribution (σ ~ 0.8% of<br />

the peak field) as shown in Fig. 1.8. This field is<br />

larger than the field necessary to overcome every<br />

pinning and corresponds to the coercitive field<br />

strength H C.<br />

1.2.7 Measurement of coupling strength<br />

distribution in exchange bias film<br />

systems<br />

(Klaus Steenbeck, Roland Mattheis)<br />

The exchange bias field and the coercitivity of<br />

ferro-/antiferromagnetic (F/AF) coupled polycrystalline<br />

film systems for magnetoelectronics<br />

strongly depend on the coupling strength j of the<br />

individual grains, with their distribution function<br />

P(j) in the grain ensemble. Until now P(j) was not<br />

measurable.<br />

We quantified our proposed method to determine<br />

P(j) with low temperature torquemetry (see <strong>IPHT</strong><br />

annual report 2004) and included thermal relaxation<br />

processes in our model used to analyse the<br />

experimental non-equilibrium torque curves L(Φ).<br />

Furthermore, we performed time dependent<br />

measurements which directly show relaxation at<br />

T = 10 K.<br />

L(Φ) is the irreversible contribution to the torque<br />

exerted on the F/AF film by an in-plane rotating<br />

strong magnetic field after a rotation reversal<br />

from the cw to ccw sense. Beginning at the reversal<br />

point (Φ = 0), the film grains of coupling<br />

strength j change their magnetic states from one<br />

equilibrium (cw) to a new one (ccw) at characteristic<br />

angles Φ(j). Thus L(Φ) reflects P(j) and we<br />

derive<br />

P(j) = 1/(S(Kt) 2 ) * G(βS(j),Φ) * d2L(Φ)/dΦ2 ,<br />

where S, K, and t are the area, anisotropy constant,<br />

and thickness of the AF film, respectively.<br />

The function G was calculated in the frame of a<br />

Stoner-Wohlfarth model for 3-axial anisotropy<br />

(inset of Fig. 1.9). This model describes for a single<br />

grain the magnetization angles βS(j/Kt) at<br />

which the coupled AF net moment switches from<br />

one AF anisotropy axis to the next, thus contributing<br />

to the irreversible torque L(Φ). Thermal energy<br />

reduces this switching angle βS(j,T)< βS(j,0) as<br />

demonstrated in Fig. 1.9, because within the<br />

measuring time t > τ =10 –9s * exp(EB/kBT) an<br />

energy barrier EB can be overcome. This must be<br />

considered also at T = 10 K because the grain<br />

volume V � EB is very small. As an example<br />

Fig. 1.9: Calculated critical magnetization angles<br />

β S for switching of the AF net moment µ AF to a<br />

neighbouring easy axis as a function of the grain<br />

coupling (j/Kt). The shown parameter is the ratio<br />

(T/K) of temperature and AF anisotropy constant<br />

K.<br />

Inset: Sketch of the rotating magnetization M F<br />

and the coupled AF net moment µ AF in a film crystallite<br />

with 3 easy axes of the AF.<br />

21


22<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Fig. 1.10: Probability P(j) for a coupling energy<br />

density between j and (j+dj) as a function of j,<br />

determined from torque measurements with a<br />

NiFe / IrMn film at T = 10 K.<br />

Fig. 1.10 shows the distribution function P(j) for a<br />

sputtered NiFe (16 nm) / IrMn (0.8 nm) coupled<br />

film determined from torque measurements at<br />

T = 10 K. Only the range of coupling j > j 1, which<br />

is responsible for the irreversible torque contributions,<br />

can be recorded by the method. The result<br />

shows that most of the grains have low coupling<br />

energies and that the portion of strongly coupled<br />

grains continuously decreases with increasing j.<br />

The value of K used was estimated using information<br />

from exchange bias measurements.<br />

1.2.8 Electron excited L X-ray spectra of<br />

the elements 14


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Fig. 1.12: Correlation between the m.a.c. values<br />

and the intensity ratio R = I(20 keV)/I(7 keV).<br />

difference leads to effects of differential absorption,<br />

where the absorption is stronger for<br />

decreasing line energy. For the net peak height<br />

ratio β 1/α we obtained results which are of the<br />

same order of magnitude as those given by<br />

White and Johnson (W&J) in their popular tables.<br />

However for l/α and β 3,4/β 1 our results show an<br />

atomic number dependence which is completely<br />

different from those given by W&J.<br />

1.2.9 Preparation, characterization and<br />

application of melt-textured YBCO<br />

(Wolfgang Gawalek, Tobias Habisreuther)<br />

Our work is based on a stable preparation technology<br />

to prepare high quality material combined<br />

with an adapted characterization technology.<br />

Investigation on the whole chain from precursor<br />

preparation to the system integration of function<br />

elements is performed in order to optimize melttextured<br />

YBCO for applications.<br />

Several projects and co-operations with partners<br />

in research and industry of Germany, Europe and<br />

world wide support our work.<br />

Silvia Kracunovska successfully defended her<br />

PhD thesis on the relation between preparation<br />

and microstructure.<br />

General material development<br />

Any application requires material with good and<br />

reproducible quality. This is provided by our batch<br />

process. We are able to prepare several sizes of<br />

monoliths according to the requirements of the<br />

application (D. Litzkendorf).<br />

To enlarge the monoliths size and to improve the<br />

magnetic properties we concentrated on the<br />

multi-seeding technique where several seeds<br />

were placed on the monoliths.<br />

Both and growth fronts were investigated<br />

used polarised light microscopy (J. Bierlich,<br />

PhD work). In both orientations a transport<br />

current across the grain boundaries is observed<br />

in the trapped field profile. The seeds have to be<br />

oriented with an accuracy of about 3° in a distance<br />

less than 5 mm. Fig. 1.13 shows a mono-<br />

Fig. 1.13: Melt-textured YBCO monolith prepared<br />

using 7 seeds.<br />

lith with a size of 78 * 38 * 18 mm 3 where 7 seeds<br />

in orientation were applied. The trapped<br />

field profile (Fig. 1.14) represents a transport current<br />

across all grain boundaries.<br />

Fig. 1.14: Trapped flux distribution of the multiseeded<br />

monolith. The flux distribution shows a<br />

transport current across all grain boundaries.<br />

Within the EFFORT consortium we use the possibility<br />

to exchange and discuss the latest developments<br />

and results with all European specialists.<br />

Applications<br />

In co-operation with MAI Moscow motor tests at<br />

temperatures at 20 K were performed. Small<br />

scale reluctance motors were tested at the MAI<br />

Moscow. The power output of an YBCO-motor<br />

increased from 500 W at 77 K to 1500 W at 20 K<br />

and 3000 rpm.<br />

In <strong>2005</strong> we and our project-partners Oswald<br />

Elektromotoren GmbH, MAI Moscow, and Arburg<br />

GmbH developed first designs for the BMBF-project<br />

“Hochdynamischer HTSL Motor”.<br />

In the frame of the POWER SCENET W.<br />

Gawalek leads the working group “Rotating<br />

machines”. A meeting with 20 participants from<br />

10 countries was organized in <strong>Jena</strong> from April<br />

11–12, <strong>2005</strong> in <strong>Jena</strong>.<br />

23


24<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

In <strong>2005</strong> the final detailed system design was realized<br />

for the Dynastore project. We finished the<br />

monoliths for the embedding into the bearing and<br />

transferred them to the company Nexans High<br />

Temperature Superconductors for the system integration.<br />

It is scheduled to test the system in 2006.<br />

Public awareness<br />

Under the patronage of the Thuringian minister<br />

of education and cultural affairs Prof. J. Goebel<br />

we organised an interactive exhibition “Eiskalte<br />

Energie für Europa” from June 29 to July 2 in the<br />

GoetheGalerie <strong>Jena</strong> (Fig. 1.15). The exhibition was<br />

developed in the frame of EU-project “SUPER-<br />

LIFE” in co-operation with the Budapest University<br />

for Technology and Economics (co-ordination),<br />

ICMAB Barcelona, ISMRA Caen, Oxford University,<br />

Ben-Gurion University of the Negev, S-Metall<br />

Budapest and Sydcraft. After contacting schools<br />

within a range of 100 km around <strong>Jena</strong> we organized<br />

50 guided tours through the exhibition to<br />

bring superconductivity near to the young students.<br />

During the exhibition we counted 2000 persons<br />

testing the human levitator.<br />

Fig. 1.15: Visitors watching a levitated train at the<br />

exhibition.<br />

In addition we showed levitation during the “Highlights<br />

der Physik <strong>2005</strong>” in Berlin, at Siemens<br />

Nürnberg, during the “Lange Nacht der Wissenschaften”<br />

in <strong>Jena</strong> and Erlangen, and at the<br />

Solvay headquarters Hannover. Also we contributed<br />

our human levitator to the TV-science<br />

magazine “Galileo”.<br />

1.2.10 Characterization and application<br />

of bulk MgB 2<br />

(Wolfgang Gawalek, Tobias Habisreuther,<br />

Matthias Zeisberger)<br />

The first motor with MgB 2 elements world-wide<br />

was constructed by ISM Kiev, MAI Moscow and<br />

<strong>IPHT</strong> <strong>Jena</strong> (Fig. 1.16).<br />

ISM Kiev produced several MgB 2 plates. In <strong>Jena</strong><br />

they were characterized and machined to function<br />

elements. At the MAI Moscow the experimental<br />

Fig. 1.16: Rotor of the first MgB 2 HTS motor.<br />

set-up for motor tests at 21K was constructed and<br />

the motor tests were performed. Test results are<br />

shown in Fig. 1.17. At 20 K this motor showed an<br />

output power of 1300 W at 3000 rpm.<br />

Fig. 1.17: Test results of the MgB 2 motor at 20 K.<br />

The DFG project “Neue Werkstoffe für die<br />

Energietechnik: Magnesiumdiborid” was successfully<br />

enroled.<br />

1.2.11 Preparation of magnetic materials<br />

(Robert Müller)<br />

In the frame of the DFG-priority program spectroscopic<br />

investigations (University Bonn) on glass<br />

crystallised Ba-ferrite BaFe 12–2xTi xCo xO 19 magnetic<br />

particles were continued with respect to the<br />

problem of reduced magnetisation in nanoparticles<br />

(“magnetic dead layer”).<br />

Experiments to prepare magnetite or maghemite<br />

nanoparticles in the 20 nm-range for medical<br />

applications by glass crystallisation as well as by<br />

cyclic wet chemical precipitation were continued.<br />

Essential points of interest are the optimisation of<br />

nucleation and the growth onto given particles<br />

without further nucleation (see Fig. 1.18), respectively.<br />

Mean particles sizes >30 nm could be


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Fig. 1.18: Magnetic properties in dependence on<br />

number of cycles (i.e. on increasing mean size<br />

from 11 to 26 nm).<br />

realised. Bigger particles in size distributions with<br />

mean values > ≈25 nm are magnetically too hard<br />

to give a high loss power at the small field amplitudes<br />

required for medical treatment.<br />

Experiments on covering the particles by a biocompatible<br />

layer (dextran) were started in the<br />

frame of a diploma thesis. Stable suspensions with<br />

17 nm-particles (mean value) could be prepared.<br />

Investigations on magnetic properties were done<br />

as well in cooperation with partners on Co-particles,<br />

encapsulated particles (FZK, DFG-program),<br />

hard-magnetic Ba-ferrite particles (TU<br />

Ilmenau), iron oxide particles and ferrofluids with<br />

different polymer surface layers (University Düsseldorf,<br />

DFG-program) and iron oxide microspheres<br />

(HKI <strong>Jena</strong>).<br />

1.2.12 Biomedical applications of magnetic<br />

nanoparticles<br />

(Rudolf Hergt, Matthias Zeisberger)<br />

In the last years magnetic nanoparticles (MNP)<br />

found increasing interest in various biomedical<br />

applications as for instance superparamagnetic<br />

contrast agents for MRI, cellular separation and<br />

refinement, drug delivery, gene magnetofection<br />

and magnetic biochips. One important new therapy<br />

method entering now clinical application is<br />

magnetic particle hyperthermia and thermoablation<br />

which is under development in the group of<br />

the <strong>IPHT</strong> in co-operation with the Institute for<br />

Diagnostic and Interventional Radiology (IDIR,<br />

Prof. W. A. Kaiser) of the Clinics of the University<br />

<strong>Jena</strong>. Within the frame of the DFG-priority program<br />

“Colloidal Magnetic Fluids” foundations for<br />

therapy of breast carcinoma by magnetic particle<br />

injection were provided and the fundamentals of<br />

the second therapy generation, the “Antibody<br />

Mediated Targeting of Nanoparticles” (AMTN)<br />

were laid down. The experimental setup developed<br />

in co-operation with IDIR for first clinical trials<br />

was further improved considering reliability<br />

and comfortability for patients. For the developed<br />

apparatus as well the special magnetic particle<br />

suspension to be injected for tumour therapy two<br />

patents were filed.<br />

The new method of AMTN is presently under<br />

investigation in the frame of the DFG-project<br />

“Magnetic heat treatment of breast tumours with<br />

multivalent magnetic nanoparticles” (HE2878/9-2)<br />

in co-operation with Prof. Kaiser (IDIR). The goal<br />

is the coupling of three strategies of tumour therapy:<br />

combination of hyperthermia by magnetic<br />

nanoparticles with antibody-targeting and chemoor<br />

radiotherapy. Therefore, functional molecular<br />

groups (e.g. tumour-specific antibodies and cisplatin)<br />

will be coupled to the carboxymethyldextran<br />

coating of maghemite nanoparticles. There, a till<br />

now not satisfyingly solved problem is the preparation<br />

of MNP which provide sufficient specific<br />

heating power (SHP). While suitable MNP with<br />

moderate values of SHP are available now for the<br />

direct intratumoural injection method, the target<br />

concentrations expected for AMNT are so low that<br />

at least an order of magnitude higher SHP is<br />

needed. Theoretical modelling of the heat generation<br />

by magnetic nanoparticles in a tumour<br />

showed that for large tumours (some cm) SHP of<br />

more than 1 kW/g is needed, a value which is even<br />

increasing with decreasing tumour size. Such a<br />

high value of SHP was found by our group till now<br />

only for magnetosomes synthesized by magnetotactical<br />

bacteria (co-operation with Dr. Schüler,<br />

MPI Marine Microbiology Bremen). Unfortunately,<br />

those particles are available only in small amounts<br />

and – more importantly – they lack biocompatibility<br />

due to the bacteria proteins of their coating. Our<br />

investigations have shown that a maximum of<br />

magnetic losses occurs in the transition region<br />

between superparamagnetic and stable single<br />

domain particles. For maghemite or magnetite this<br />

is just the mean size of about 30 nm found for<br />

magnetosomes. However, screening with respect<br />

to magnetic properties, in particular losses, for<br />

various MNP types prepared by chemical precipitation<br />

resulted in nearly one order of magnitude<br />

lower SHP. As a reason, the too broad size distribution<br />

as well as a magnetic coupling of MNP is<br />

supposed and is subject of present investigations.<br />

Besides efforts with particle preparation described<br />

in the previous section. An apparatus for magnetic<br />

size fractionation was developed which is under<br />

investigation, now. Another way towards large values<br />

of SHP is the application of MNP with higher<br />

magnetic moment e.g. FePt or Co. The latter ones<br />

are presently magnetically investigated with<br />

encouraging results (co-operation with Prof. Bönnemann,<br />

FKZ).<br />

In co-operation with the University of Applied Sciences<br />

<strong>Jena</strong> (Prof. Andrä, Prof. Bellemann, Dept.<br />

Biomedical Engineering) a pharmaceutical capsule<br />

for the remote controlled drug release is in<br />

development. The release mechanism is based<br />

on the heating of a magnetic absorber in an alternating<br />

magnetic field. By in-vitro investigations<br />

the remote controlled release was realised and a<br />

clinical study is under preparation.<br />

25


26<br />

1.3. Appendix<br />

Partners<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

National cooperation<br />

Thuringia<br />

• B&W Trade Technology, <strong>Jena</strong><br />

• Carl Zeiss <strong>Jena</strong> GmbH<br />

• Docter-Optics GmbH, Neustadt/Orla<br />

• FH <strong>Jena</strong>, FB SciTec, FB Medizintechnik<br />

• Fraunhofer Institut für Angewandte Optik<br />

und Feinmechanik, <strong>Jena</strong><br />

• Friedrich Hagans Plastverarbeitung, Erfurt<br />

• FSU <strong>Jena</strong><br />

• Physikalisch-Astronomische Fakultät und<br />

Chemisch-Geowissenschaftliche Fakultät<br />

• Institut für Diagnostische und<br />

Interventionelle Radiologie<br />

• Institut für Sportwissenschaft<br />

• Klinik für Innere Medizin III<br />

• HITK Hermsdorf<br />

• IMB <strong>Jena</strong><br />

• IMG Nordhausen<br />

• IMMS gGmbH, Ilmenau<br />

• Innovent e.V. <strong>Jena</strong><br />

• j-fiber GmbH, <strong>Jena</strong><br />

• Jenoptik AG, <strong>Jena</strong><br />

• JOLD <strong>Jena</strong><br />

• Landesamt für Archäologie mit Museum für<br />

Ur- und Frühgeschichte Thüringens in Weimar<br />

• Leica Microsystems Lithography GmbH <strong>Jena</strong><br />

• Melexis AG Erfurt<br />

• Schott Lithotec, <strong>Jena</strong><br />

• STS Diagnostics, <strong>Jena</strong><br />

• Supracon AG, <strong>Jena</strong><br />

• SurA Chemicals, <strong>Jena</strong><br />

• TÜV Thüringen e.V., Kalibrierlabor Arnstadt<br />

• TU Ilmenau<br />

Germany<br />

• BAM, Berlin<br />

• Bayerisches Landesamt für Denkmalpflege<br />

(BLfD) München<br />

• Bruker AXS Microanalysis GmbH, Berlin<br />

• BUGH, Wuppertal<br />

• EAS Hanau<br />

• Eberhard Karls Universität Tübingen,<br />

Physikalisches Institut I<br />

• Forschungszentrum Jülich GmbH<br />

• Fraunhofer – INT, Euskirchen<br />

• FRT GmbH – Fries Research & Technology<br />

• FZ Karlsruhe<br />

• FZ Rossendorf<br />

• HL Planartechnik Dortmund<br />

• Hochschule für Technik, Wirtschaft und Kultur<br />

Leipzig<br />

• IFW Dresden<br />

• Infineon AG München<br />

• Infineon AG Regensburg<br />

• Lucent Technologies GmbH Nürnberg<br />

• Max Planck Institut für Radioastronomie Bonn<br />

• Max Planck Institut für Mikrostrukturphysik Halle<br />

• Nanoworld Services GmbH Erlangen<br />

• Naomi technologies Mainz<br />

• Nexans High Temperature Superconductors,<br />

Hürth<br />

• Novotechnik Messwertaufnehmer OHG,<br />

Ostfildern<br />

• OSWALD Elektromotoren GmbH, Miltenberg<br />

• Philips Semiconductor Hamburg<br />

• Physikalisch-Technische Bundesanstalt,<br />

Braunschweig<br />

• Physikalisch-Technische Bundesanstalt, Berlin<br />

• Piller GmbH, Osterode<br />

• PREMA Semiconductor GmbH, Mainz<br />

• QEST GmbH, Tübingen<br />

• RWTH Aachen<br />

• Siemens AG Erlangen<br />

• Singulus AG Kahl<br />

• Solvay Barium Strontium GmbH, Hannover<br />

• Technische Universität Hamburg-Harburg<br />

• TU Kaiserslautern<br />

• Tracto-Technik GmbH, Lennestadt<br />

• TransMIT GmbH, Gießen<br />

• TU Braunschweig<br />

• TU Bergakademie Freiberg<br />

• Universität Bielefeld<br />

• Universität Erlangen<br />

• Universität Gießen<br />

• Universität Heidelberg, Kirchhoff-Institut<br />

für Physik<br />

• Universität Karlsruhe<br />

• Universität Mainz, Institut für Organische<br />

Chemie<br />

• Universität Regensburg<br />

• Vacuumschmelze GmbH & Co KG, Hanau<br />

• VeriCold Technologies Ismaning<br />

• WSK Hanau<br />

International cooperations<br />

• Altis Semiconductor France<br />

• Anglo Operations Ltd., South Africa<br />

• Bar Ilan University, Israel<br />

• Ben-Gurion University of the Negev, Israel<br />

• Budapest University of Technology and<br />

Economy, Hungary<br />

• Cambridge University, UK<br />

• CardioMag Imaging Inc., Schenectady, USA<br />

• CEA Saclay, Gif sur Yvette cedex, France<br />

• CEA/Le Ripault Mounts, France<br />

• Chalmers University of Technology, Sweden<br />

• Chengdu University, China<br />

• CNRS Grenoble, France<br />

• Comenius University, Slovakia<br />

• Commissariat a l’energie atomique, France<br />

• Consiglio Nazionale Delle Ricerche, Italy<br />

• D-wave System Inc. Canada<br />

• Edison Spa, Milano, Italy<br />

• Encom Technology Pty Ltd, Sydney, Australia<br />

• Fugro Airborne Surveys, South Africa<br />

• Geovista, Sweden<br />

• Helsinki University of Technology, Finland<br />

• ICMAB Barcelona, Spain<br />

• Institute for Superhard Materials, Kiev, Ukrain<br />

• Institute of Crystallography Moscow, Russia<br />

• Institute of Radio Engineering and<br />

Electronics Moscow, Russia


• Lawrence Berkely National Laboratory, CA,<br />

USA<br />

• Leiden University, Kamerlingh Onnes<br />

Laboratorium, The Netherlands<br />

• Los Alamos National Laboratory, Biophysics<br />

Group, NM, USA<br />

• MAI Moscow, Russia<br />

• Moscow Engineering Physics Institute<br />

(State University), Russia<br />

• National Physical Laboratory, Teddington, UK<br />

• Nederlands Meetinstitut, NMi Van Swinden<br />

Laboratorium B.V., The Netherlands<br />

• NIST, Gaithersburg, MD, USA<br />

• Novosibirsk University, Russia<br />

• Philips Reseach Lab Eindhoven/NL<br />

• PicoImages Limited, South Africa<br />

• SAS Kosice, Slovakia<br />

• SPEZREMONT, Moscow, Russia<br />

• Swiss Federal Institute of Technology<br />

Lausanne, Institute of Applied Optics (IOA),<br />

Suisse<br />

• Technical Research Centre of Finland<br />

• TU Wien, Austria<br />

• University of Oxford, Department of Physics,<br />

Sub-department of Particle Physics, UK<br />

• University of Twente, Faculty of Science and<br />

Technology, The Netherlands<br />

• Vienna Institute for Archaeological Science,<br />

Austria<br />

Publications<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

M. Schmidt, M. Eich, U. Huebner, R. Boucher:<br />

“Electrooptically tunable photonic crystals”<br />

Appl. Phys. Lett. 87 (<strong>2005</strong>) 121110<br />

M. Grajcar, A. Izmalkov, S. H. W. van der Ploeg,<br />

S. Linzen, E. Il’ichev, Th. Wagner, U. Hübner,<br />

H.-G. Meyer, Alec Maassen van den Brink,<br />

S. Uchaikin, A. M. Zagoskin:<br />

“Direct Josephson coupling between superconducting<br />

flux qubits”<br />

Phys. Rev. B 72 (<strong>2005</strong>) 020503(R)<br />

M. Grajcar, A. Izmalkov, E. Il’ichev:<br />

“Possible implementation of adiabatic quantum<br />

algorithm with superconducting flux qubits”<br />

Phys. Rev. B 71 (<strong>2005</strong>) 144501<br />

Ya. S. Greenberg, E . Il’ichev, A. Izmalkov:<br />

“Low-frequency Rabi spectroscopy for a dissipative<br />

two-level system”<br />

Europhys. Lett., 72 (<strong>2005</strong>) 880–886<br />

Ya. S. Greenberg, I. L. Novikov, V. Schultze,<br />

H.-G. Meyer:<br />

“The influence of the second harmonic in the current-phase<br />

relation on the voltage-current characteristic<br />

of high-T c DC SQUIDs”<br />

Eur. Phys. J. B 44 (<strong>2005</strong>) 57–62<br />

H.-G. Meyer, R. Stolz, A. Chwala, M. Schulz:<br />

“SQUID technology for geophysical exploration”<br />

phys. stat. sol. (c) 2 (<strong>2005</strong>) 1504–1509<br />

M. Schubert, T. May, G. Wende, H.-G. Meyer:<br />

“A Cross-Type SNS Junction Array for a Quantum-Based<br />

Arbitrary Waveform Synthesizer”<br />

IEEE Trans. Appl. Supercond. Vol. 15 (2) 829–<br />

832, <strong>2005</strong><br />

T. May, V. Zakosarenko, E. Kreysa, W. Esch,<br />

S. Anders, L. Fritzsch, R. Boucher, R. Stolz,<br />

J. Kunert, H.-G- Meyer:<br />

“On-chip integrated SQUID readout for superconducting<br />

bolometers”<br />

IEEE Transactions on Applied Superconductivity<br />

Vol. 15 (2) (<strong>2005</strong>) 537–540<br />

W. Krech, D. Born, V. Shnyrkov, Th. Wagner,<br />

M. Grajcar, E. Il’ichev, H.-G. Meyer, Ya. Greenberg:<br />

“Quantum dynamic of the interferometer-type<br />

charge qubit under microwave irradiation”<br />

IEEE Trans. Appl. Supercond. 15 (<strong>2005</strong>) 876<br />

M. Ebel, C. Busch, U. Merkt, M. Grajcar,<br />

T. Plecenik, E. Il’ichev:<br />

“Supercurrent-phase relationship of a Nb/InAs<br />

(2DES)/Nb Josephson junction in overlapping<br />

geometry”<br />

Phys. Rev. B 71, 052506 (<strong>2005</strong>)<br />

R. Boucher:<br />

“Sr 2FeMoO 6+x: Film structure dependence upon<br />

substrate type and film thickness”<br />

J. Phys. Chem. Solids, 66 (<strong>2005</strong>) 1020<br />

R. Mattheis, K. Steenbeck:<br />

“Beating the superparamagnetic limit of IrMn in<br />

F/AF/AAF stacks”<br />

J. Appl. Phys. 97(<strong>2005</strong>) 10K107<br />

S. Questea, S. Dubourg, O. Acher, J.-C. Soret,<br />

K.-U. Barholz, R. Mattheis:<br />

“Microwave permeability study for antiferromagnet<br />

thickness dependence on exchange bias field<br />

in NiFe/lrMn layers”<br />

J. Magn. Magn. Mater. 288 (<strong>2005</strong>) 60–65<br />

P. A. Warburton, A. R. Kuzhakhmetov, G. Burnell,<br />

M. G. Blamire, Y. Koval, A. Franz, P. Müller, and<br />

H. Schneidewind:<br />

“Fabrication and Characterization of Sub-Micron<br />

Thin Film Intrinsic Josephson Junction Arrays”<br />

IEEE Trans. Appl. Supercond. 15 (<strong>2005</strong>) 237–240<br />

B. Oswald, K. -J. Best, M. Setzer, M. Söll,<br />

W. Gawalek, A. Gutt, L. K. Kovalev, G. Krabbes,<br />

L. Fisher, H. C. Freyhardt:<br />

“Reluctance motors with bulk HTS material”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S24–S29<br />

27


28<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

W. Gawalek, T. Habisreuther, M. Zeisberger,<br />

D. Litzkendorf, O. Surzhenko, S. Kracunovska,<br />

T. A. Prikhna, B. Oswald, L. K. Kovalev,<br />

W. Canders:<br />

“Batch-processed melt-textured YBCO with<br />

improved quality for motor and bearing applications”<br />

Supercond. Sci. Technol. 17 (<strong>2005</strong>) 1185–1188<br />

D. A. Cardwell, M. Murakami, M. Zeisberger,<br />

W. Gawalek, R. Gonzalez-Arrabal, M. Eisterer,<br />

H. W. Weber, G. Fuchs, G. Krabbes, A. Leenders,<br />

H. C. Freyhardt, N. Hari Babu:<br />

“Round robin test on large grain melt processed<br />

Sm-Ba-Cu-O bulk superconductors”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S173–S179<br />

M. Zeisberger, W. Gawalek, G. Giunchi:<br />

“Magnetic levitation using magnesiumdiboride”<br />

J. Appl. Phys. 98 (<strong>2005</strong>) 023905<br />

J. Bierlich, T. Habisreuther, D. Litzkendorf,<br />

C. Dubs, R. Müller, S. Kracunovska, W. Gawalek:<br />

“Growth and investigation of melt-textured<br />

SmBCO in air for preparation of Sm123 seed<br />

crystals”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S194–S197<br />

D. Litzkendorf, T. Habisreuther, J. Bierlich,<br />

O. Surzhenko, M. Zeisberger, S. Kracunovska,<br />

W. Gawalek:<br />

“Increased efficiency of batch-processed melttextured<br />

YBCO”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S206–S208<br />

S. Kracunovska, P. Diko, D. Litzkendorf,<br />

T. Habisreuther, J. Bierlich, W. Gawalek:<br />

“Oxygenation and cracking in melt-textured<br />

YBCO bulk superconductors”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S142–S148<br />

P. Diko, S. Kracunovska, L. Ceniga, J. Bierlich,<br />

M. Zeisberger, W. Gawalek:<br />

“Microstructure of top seeded melt-grown YBCO<br />

bulks with holes”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S1400–S1404<br />

T. A. Prikhna, W. Gawalek, N. V. Novikov,<br />

V. E. Moshchil, V. B. Sverdun, N. V. Sergienko,<br />

A. B. Surzhenko, L. S. Uspenskaya, R. Viznichenko,<br />

A. A. Kordyuk, D. Litzkendorf, T. Habisreuther,<br />

S. Kracunovska and A. V. Vlasenko:<br />

“Formation of superconducting junctions in MT-<br />

YBCO”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S153–S157<br />

E. Bartolome, X. Granados, T. Puig, X. Obradors,<br />

E. S. Reddy and S. Kracunovska:<br />

“Critical State of YBCO Superconductors With<br />

Artificially Patterned Holes”<br />

IEEE Transactions on Applied Superconductivity<br />

15 (<strong>2005</strong>) 2775–2778<br />

M. Zeisberger, T. Habisreuther, D. Litzkendorf,<br />

A. Surzhenko and W. Gawalek:<br />

“Investigation of the structure of melt-textured<br />

YBCO by magnetic measurements”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S90–S94<br />

M. Zeisberger, I. Latka, W. Ecke, T. Habisreuther,<br />

D. Litzkendorf and W. Gawalek:<br />

“Measurement of the thermal expansion of melttextured<br />

YBCO using optical fibre grating sensors”<br />

Supercond. Sci. Technol. 18 (<strong>2005</strong>) S202–S205<br />

R. Zboril, L. Machala, M. Mashlan, J. Tucek,<br />

R. Müller, O. Schneeweiss:<br />

“Magnetism of amorphous Fe 2O 3 nanopowders<br />

synthesized by solid-state reactions”<br />

phys. stat. sol. (c) 1 (2004) 3710–3716<br />

R. Müller, R. Hergt, M. Zeisberger, W. Gawalek:<br />

“Preparation of magnetic nanoparticles with<br />

large specific loss power for heating applications”<br />

J. Magn. Magn. Mater. 289 (<strong>2005</strong>) 13–16<br />

S. Dutz, W. Andrä, H. Danan, C. S. Leopold,<br />

C. Werner, F. Steinke, M. E. Bellemann:<br />

“Remote controlled drug delivery to the gastrointestinal<br />

tract: investigation of release profiles”<br />

Biomedizinische Technik 50 (Suppl. 1) (<strong>2005</strong>)<br />

601–602<br />

C. Werner, W. Andrä, T. Kupfer, J. Seilwinder,<br />

M. E. Bellemann:<br />

“Out-patient magnetic marker monitoring: evaluation<br />

of temporal and spatial resolution”<br />

Biomedizinische Technik 50 (<strong>2005</strong>) Suppl. Vol. 1,<br />

Part 1, 605–606<br />

W. Andrä, M. E. Bellemann:<br />

“Remote controlled drug delivery to the gastrointestinal<br />

tract: optimizing the total system”<br />

Biomedizinische Technik 50 (<strong>2005</strong>) Suppl. Vol. 1,<br />

Part 1, 607–608<br />

S. Dutz, W. Andrä, R. Hergt, R. Müller, J. Mürbe,<br />

J. Töpfer, C. Werner, M. E. Bellemann:<br />

“Magnetic nanoparticles for remote controlled<br />

drug delivery to the gastrointestinal tract”<br />

Biomedizinische Technik 50 (Suppl. 1) (<strong>2005</strong>)<br />

1555–1556<br />

W. Andrä, H. Danan, K. Eitner, M. Hocke,<br />

H.-H. Kramer, H. Parusel, P. Saupe, C. Werner,<br />

M. E. Bellemann:<br />

“A novel magnetic method for examination of<br />

bowel motility”<br />

Med. Phys. 32 (<strong>2005</strong>) 2942–2944<br />

S. Dutz, R. Hergt, R. Müller, M. Zeisberger,<br />

W. Andrä, M. E. Bellemann:<br />

“Application of Magnetic Nanoparticles for Biomedical<br />

Heating Processes”


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

VDI-Berichte Nr. 1920 – 4 th Internat. Nanotechnology<br />

Symposium: 229–232 (<strong>2005</strong>) (Ed.: VDI Wissensforum<br />

IWB GmbH).<br />

R. Müller, H. Steinmetz, R. Hergt, M. Zeisberger,<br />

S. Dutz, W. Gawalek:<br />

“Magnetic iron oxide nanoparticles for medical<br />

applications”<br />

Conference report – Chemical Nanotechnology<br />

Talks VI, (<strong>2005</strong>) Ed.: DECHEMA Frankfurt/M.<br />

M. Zeisberger, S. Dutz, R. Hergt, R. Müller:<br />

“Magnetic Nanoparticles for Hyperthermia”<br />

Conference report – Bioinspired Nanomaterials<br />

for Medicine and Technologies: 62 (<strong>2005</strong>), Ed.:<br />

DECHEMA<br />

R. Hergt, R. Hiergeist, M. Zeisberger, D. Schüler,<br />

U. Heyen, I. Hilger, W. A. Kaiser:<br />

“Magnetic properties of bacterial magnetosomes<br />

as potential diagnostic and therapeutic tools”<br />

J. Magn. Magn. Mater. 293 (<strong>2005</strong>) 80–86<br />

I. Hilger, R. Hergt, W. A. Kaiser:<br />

“Use of magnetic nanoparticle heating in the<br />

treatment of breast cancer”<br />

IEE Proc. Nanobiotechnol. 152 (<strong>2005</strong>) 33–39<br />

I. Hilger, R. Hergt, W. A. Kaiser:<br />

“Towards breast cancer treatment by magnetic<br />

heating”<br />

J. Magn. Magn. Mater. 293 (<strong>2005</strong>) 314–319<br />

I. Hilger, W. Andrä, R. Hergt, R. Hiergeist,<br />

W. A. Kaiser:<br />

„Magnetische Thermotherapie von Tumoren der<br />

Brust: Ein experimenteller Ansatz“<br />

RöFo Fortschr. Röntgenstr. 177 (<strong>2005</strong>) 507–515<br />

Presentations (Talks and Posters)<br />

V. Schultze, A. Chwala, R. Stolz, M. Schulz,<br />

S. Linzen, H.-G. Meyer, T. Schüler:<br />

“A SQUID system for geomagnetic archaeometry”<br />

Proc. 6 th Int. Conf. on Archaeological Prospection<br />

(Archeo<strong>2005</strong>), 14–17 Sept. <strong>2005</strong>, Rom, pp.<br />

245–248, poster<br />

H.-G. Meyer, A. Chwala, R. Stolz, S. Linzen,<br />

V. Schultze, M. Schulz, T. Schüler:<br />

„Aktuelle Anwendungen von SQUIDs zur geomagnetischen<br />

Pospektion“<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

„Kryo’05“, 09–11 Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 23, oral presentation<br />

V. Schultze, R. IJsselsteijn, H.-G. Meyer:<br />

„Zur Realisierung von SQIFs mit Hochtemperatur-Supraleitern“<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

„Kryo’05“, 09–11 Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 66, poster<br />

V. Schultze, A. Chwala, R. Stolz, M. Schulz,<br />

S. Linzen, T. Schüler, H.-G. Meyer<br />

„SQUID-System für die geomagnetische Archäometrie“<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

„Kryo’05“, 09–11 Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 67, poster<br />

R. IJsselsteijn, V. Schultze, H.-G. Meyer:<br />

„Thermozyklieren von HTS-SQIFs und -SQUID“<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

„Kryo’05“, 09–11 Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 96, poster<br />

V. Schultze, A. Chwala, R. Stolz, M. Schulz,<br />

S. Linzen, H.-G. Meyer, T. Schüler:<br />

„A SQUID system for geomagnetic archaeometry“<br />

Proc. ISEC ‘05, 05.–09.09.<strong>2005</strong>, Noordwijkerhout,<br />

The Netherlands, P-H.08<br />

V. Schultze, R. IJsselsteijn, H.-G. Meyer:<br />

“How to puzzle out a good high-T c SQIF?”<br />

Proc. ISEC ‘05, 05.–09.09.<strong>2005</strong>, Noordwijkerhout,<br />

The Netherlands, P-K.06<br />

U. Huebner, W. Morgenroth, R. Boucher,<br />

H. G. Meyer, Th. Sulzbach, B. Brendel,<br />

W. Mirandé, E. Buhr, G. Ehret, Th. Fries,<br />

G. Kunath-Fandrei, R. Hild:<br />

“Prototypes of new nanoscale CD-standards for<br />

high resolution optical microscopy and AFM”<br />

in Proceedings of the 5 th international euspen<br />

conference, Montepellier, 185–188, <strong>2005</strong>, poster<br />

U. Huebner, W. Morgenroth, R. Boucher,<br />

W. Mirandé, E. Buhr, Th. Fries, Nadine Schwarz,<br />

G. Kunath-Fandrei, R. Hild:<br />

“Development of a nanoscale linewidth-standard<br />

for high-resolution optical microscopy”<br />

in Optical Fabrication, Testing, and Metrology II,<br />

edited by Angela Duparré, Roland Geyl, David<br />

Rimmer, Lingli Wang, Proc. SPIE Systems<br />

Design <strong>Jena</strong>, Germany, Vol. 5965, (<strong>2005</strong>), poster<br />

U. Huebner, R. Boucher, W. Morgenroth,<br />

M. Schmidt, M. Eich:<br />

“Fabrication of photonic crystal structures in<br />

polymer waveguide material”<br />

Micro & Nano Engineering MNE <strong>2005</strong>, (<strong>2005</strong>),<br />

poster<br />

M. Eich, M. Schmidt, U. Huebner, R. Boucher:<br />

“Electrooptically tunable photonic crystal”<br />

Proceedings of SPIE Optics and Photonics San<br />

Diego, California, (<strong>2005</strong>), 5935–18<br />

29


30<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

G. Wende, M. Schubert, T. May, H.-G. Meyer:<br />

“Pulse Driving of a Josephson Pulse Quantizer<br />

for Quantum-Based Arbitrary Waveform Synthesizers,<br />

Proc. ISEC`05, 05.–09.<strong>2005</strong>, Noordwijkerhout,<br />

The Netherlands, P-K.05<br />

G. Wende, M. Schubert, T. May, H.-G. Meyer:<br />

“Impulsansteuerung eines Josephson-Impuls-<br />

Quantisierers für einen Quantensynthesizer<br />

beliebiger Wellenformen”<br />

Tagung Kryoelektronische Bauelemente “Kryo’05”,<br />

09.–11. Oktober <strong>2005</strong>, Bad Herrenalb, Poster<br />

V. Zakosarenko, S. Anders, T. May, R. Boucher,<br />

H.-G. Meyer, E. Kreysa, N. Jethava, G. Siringo:<br />

“Time domain multiplexing for superconducting<br />

bolometers read out by integrated SQUIDs”<br />

Low Temperature Detectors LTD <strong>2005</strong>, Tokio<br />

(Japan), Poster<br />

N. Oukhanski, R. Stolz, H.-G. Meyer:<br />

“Concept of ultra-low-drift and very fast dc<br />

SQUID readout electronics”<br />

Proc. Tagung Kryoelektronische Bauelemente<br />

“Kryo’05”, 09.–11. Oktober <strong>2005</strong>, Bad Herrenalb,<br />

p. 65, Poster<br />

N. Oukhanski, R. Stolz, H.-G. Meyer:<br />

“Ultra-low-drift and very fast dc SQUID readout<br />

electronics”<br />

Proc. of 7 th European Conference on Applied<br />

Superconductivity (EUCAS’05), Sept. 11–15,<br />

<strong>2005</strong>, Vienna, Austria, P- WE-P3–138<br />

A. Izmalkov, M. Grajcar, S.H. W. van der Ploeg,<br />

S. Linzen, T. Plecenik, Th. Wagner, U. Hübner,<br />

E. Il’ichev, H.-G. Meyer, A. Yu. Smirnov, P. J.Love,<br />

A. Maassen van den Brink, M. H. S. Amin,<br />

S. Uchaikin, A. M. Zagoskin:<br />

“Realization of ferro- and antiferromagnetic coupling<br />

among superconducting qubits through a<br />

common Josephson junction”<br />

“Kryo’05”, 09–11 October <strong>2005</strong>, Bad Herrenalb,<br />

contributed talk<br />

A. Izmalkov, M. Grajcar, E. Il’ichev,<br />

S. H. W. van der Ploeg, S. Linzen, Th. Wagner,<br />

U. Hübner, H.-G. Meyer, A. Yu. Smirnov,<br />

S. Uchaikin, M. H. S. Amin,<br />

A. Maassen van den Brink, A. M. Zagoskin:<br />

“Experimental investigation of coupled flux<br />

qubits”<br />

7 th European Conference on Applied Superconductivity<br />

(EUCAS’05), Sept. 11–15, <strong>2005</strong>,<br />

Vienna, Austria, poster<br />

S. H. W. van der Ploeg, A. Izmalkov, M. Grajcar,<br />

E. Il’ichev, S. Linzen, Th. Wagner, U. Hübner,<br />

H.-G. Meyer, A. Yu. Smirnov, S. Uchaikin,<br />

M. H. S. Amin, Alec Maassen van den Brink,<br />

A. M. Zagoskin:<br />

“Characterization of coupled flux qubits by<br />

impedance measurement technique”<br />

ISEC ‘05, 05.09.09.<strong>2005</strong>, Noordwijkerhout, The<br />

Netherlands, contributed talk<br />

S. H. W. van der Ploeg, A. Izmalkov, A. Maassen<br />

van den Brink, U. Hübner, M. Grajcar,<br />

S. Uchaikin, S. Linzen, E. Il’ichev, H.-G. Meyer:<br />

“Realization of strong and controllable anti-ferromagnetic<br />

coupling between superconducting<br />

flux-qubits”<br />

Tagung Kryoelektronische Bauelemente “Kryo’05”,<br />

09.–11. October <strong>2005</strong>, Bad Herrenalb, contributed<br />

talk<br />

S. Anders, T. May, R. Boucher, H.-G. Meyer,<br />

C. Hollerith, D. Wernicke:<br />

“Transition-edge sensors manufactured on 4-inch<br />

wafers for reliable, cost-effective x-ray detectors”<br />

ISEC ‘05, 05.09.<strong>2005</strong>, Noordwijkerhout, The<br />

Netherlands, poster<br />

S. Anders, R. Boucher, T. May, H.-G. Meyer:<br />

“Kantenbolometer aus dem Zweischichtsystem<br />

Mo/AuPd für Röntgendetektoren”<br />

Tagung Kryoelektronische Bauelemente “Kryo’05”,<br />

09.–11. Oktober <strong>2005</strong>, Bad Herrenalb, poster<br />

J. Fassbender, J. McCord, M. Weisheit,<br />

R. Mattheis:<br />

“Modifikation der magnetischen Dämpfung in<br />

Permalloy-Schichten durch Cr-Implantation”<br />

Vortrag, Verhandlungen Frühjahrstagung DPG,<br />

28.02.–04.03.<strong>2005</strong>, MA 27.7<br />

Ch. Hamann, J. McCord, R. Schäfer,<br />

L. Schultz, R. Mattheis:<br />

“Magnetization reversal in CoFe/IrMn exchange<br />

biased structures”<br />

Vortrag, Verhandlungen Frühjahrstagung DPG<br />

28.02.–04.03.<strong>2005</strong>, MA 15.5<br />

J. McCord, R. Mattheis:<br />

“Asymmetric fixed and rotatable magnetic<br />

anisotropy at the onset of exchange bias”<br />

Poster, Verhandlungen Frühjahrstagung DPG,<br />

28.02.–04.03.<strong>2005</strong>, MA 20.59<br />

J. Fassbender, J. McCord, M. Weisheit,<br />

R. Mattheis:<br />

“Increased magnetic damping of Permalloy upon<br />

Cr implantation”<br />

International Magnetics Conference, Intermag<br />

<strong>2005</strong>, Nagoya, Japan<br />

J. Fassbender, J. McCord, R. Mattheis,<br />

K. Potzger, A. Mücklich, J. v. Borany:<br />

“Doping magnetic materials – tunable properties<br />

due to ion implantation”<br />

European Congress on Advanced materials<br />

and processing, 5.–8.09.<strong>2005</strong>, Prague, Czech<br />

Republics<br />

R. Mattheis, M. Diegel, U. Huebner:<br />

“Domain Wall motion in narrow spin valve strip<br />

lines”<br />

50 th Conference on Magnetism and Magnetic<br />

Materials, San Jose, California, USA


MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

J. Fassbender, L. Bischoff, R. Mattheis, P. Fischer:<br />

“Magnetic domains and magnetization reversal of<br />

ion-induced magnetically patterned RKKY-coupled<br />

Ni 81Fe 19/Ru/Co 90Fe 10 films”<br />

50 th Conference on Magnetism and Magnetic<br />

Materials, San Jose, California, USA<br />

M. Mans, A. Grib, M. Büenfeld, R. Bechstein,<br />

F. Schmidl, H. Schneidewind und P. Seidel:<br />

“Elektrische Untersuchung serieller intrinsischer<br />

Josephsonkontaktarrays an dünnen Tl 2Ba 2Ca-<br />

Cu 2O 8+x Schichten auf r-cut Saphir und 20° vizinalem<br />

LaAlO 3”<br />

Vortrag, Verhandlungen Frühjahrstagung DPG,<br />

28.02.–04.03.<strong>2005</strong>, TT 10.11<br />

M. Büenfeld, R. Bechstein, M. Mans, F. Schmidl,<br />

A. Grib, H. Schneidewind und P. Seidel:<br />

“Elektrische Untersuchung serieller intrinsischer<br />

Josephsonkontaktarrays an dünnen Tl 2Ba 2Ca-<br />

Cu 2O 8+x Schichten auf r-cut Saphir und 20° vizinalem<br />

LaAlO 3”<br />

Poster, Verhandlungen Frühjahrstagung DPG,<br />

28.02.–04.03.<strong>2005</strong>, TT 23.47<br />

H. Schneidewind, M. Mans, M. Büenfeld,<br />

M. Diegel:<br />

“Misaligned Tl-2212 Thin Films with Different Tilt<br />

Angles for Intrinsic Josephson Junctions”<br />

7 th European Conference on Applied Superconductivity<br />

(EUCAS ‘05), Vienna University of Technology,<br />

11 to 15 September <strong>2005</strong>, Austria<br />

M. Büenfeld, M. Mans, A. N. Grib, F. Schmidl,<br />

H. Schneidewind, P. Seidel:<br />

“Untersuchung intrinsischer Josephsonkontaktarrays<br />

aus dünnen Tl 2Ba 2CaCu 2O 8+x Schichten auf<br />

vicinalem LaAlO 3”<br />

Tagung Kryoelektronische Bauelemente, 09.–11.<br />

Oktober <strong>2005</strong>, in Bad Herrenalb<br />

A. Assmann, J. Dellith, M. Wendt:<br />

“Electron excited L X-ray spectra of the elements<br />

24


32<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

W. Gawalek, T. A. Prikhna, L. K. Kovalev,<br />

G. Giunchi, M. Zeisberger:<br />

“Bulk MgB 2-Superconductors: A new material for<br />

Energy technologies?”<br />

Keynote talk JAPMED´4: 4 th Japanese-Mediterranean<br />

Workshop on Applied Electromagnetic<br />

Engineering for Magnetic, Superconducting and<br />

nano materials, Cairo, Egypt, September 17–20,<br />

(<strong>2005</strong>), p. 19<br />

T. A. Prikhna, Ya. M. Savchuk, W. Gawalek,<br />

N. V. Sergienko, V. E. Moshchil, P. A. Nagorny,<br />

V. B. Sverdun, A. V. Vlasenko, L. K. Kovalev,<br />

K. L. Kovalev, V. T. Penkin:<br />

“High-pressure high-temperature synthesis of<br />

Nanostructural magnesium diboride for electromotors<br />

working at liquid hydrogen temperatures”<br />

Proceedings of International Conference “Modern<br />

Materials Science: Achievements and<br />

Problems”, September 26–30, (<strong>2005</strong>), Kiev,<br />

Ukraine<br />

T. A. Prikhna, W. Gawalek, Ya. M. Savchuk,<br />

N. V. Sergienko, V. E. Moshchil, M. Wendt,<br />

M. Zeisberger, T. Habisreuther, S. X. Dou,<br />

S. N. Dub, V. S. Melnikov, Ch. Schmidt, J. Dellith<br />

and P. A. Nagorny:<br />

“Formation of magnesium diboride-based materials<br />

with high critical currents and mechanical<br />

characteristics by high-pressure synthesis”<br />

EUCAS <strong>2005</strong>, Sept. 11–15, <strong>2005</strong>, Vienna, Austria<br />

T. A. Prikhna, W. Gawalek, V. B. Sverdun,<br />

Ya. M. Savchuk, A. V. Vlasenko, X. Chaud,<br />

J. Rabier, A. Joulain, V. E. Moshchil,<br />

P. A. Nagorny, N. V. Sergienko, V. S. Melnikov,<br />

S. N. Dub, T. B. Serbenyuk:<br />

“Improvement of MT-YBCO properties by oxygenation<br />

and treatment under pressure”<br />

Proceedings of International Conference “Modern<br />

Materials Science: Achievements and Problems”,<br />

September 26–30, (<strong>2005</strong>), Kiev, Ukraine<br />

M. Eisterer, S. Haindl, M. Zehetmayer,<br />

R. Gonzalez-Arrabal, H. W. Weber,<br />

D. Litzkendorf, M. Zeisberger, T. Habisreuther,<br />

W. Gawalek, L. Shlyk, G. Krabbes:<br />

“Limitations for the Trapped Field in Large Grain<br />

YBCO Superconductors”<br />

PASREG <strong>2005</strong>, 5 th International Workshop on<br />

Processing and Applications of Superconducting<br />

(RE)BCO Large Grain Materials, October 21–23,<br />

<strong>2005</strong>, Tokyo, Japan<br />

R. Müller, H. Steinmetz, M. Zeisberger,<br />

Ch. Schmidt, S. Dutz, R. Hergt, W. Gawalek:<br />

“Precipitated iron oxide particles by cyclic<br />

growth”<br />

6. Deutschen Ferrofluid-Workshop, 19.–22. 7. 05,<br />

Saarbrücken<br />

S. Dutz, R. Hergt, J. Mürbe, J. Töpfer, R. Müller,<br />

M. Zeisberger, W. Andrä, M. E. Bellemann:<br />

“Preparation of water based dispersions of<br />

magnetic iron oxide nanoparticles in the mean<br />

diameter range of 15 to 30 nm”<br />

6 th German Ferrofluid-Workshop, 19.–22. 7. 05,<br />

Saarbrücken<br />

S. Dutz, N. Buske, R. Hergt, R. Müller, M. Zeisberger,<br />

P. Görnert, M. Röder, M. E. Bellemann:<br />

“Magnetic Nanoparticles for biomedical heating<br />

applications”<br />

6. Deutschen Ferrofluid-Workshop, 19.–22. 7. 05,<br />

Saarbrücken, poster<br />

R. Müller, H. Steinmetz, R. Hergt, Ch. Schmidt,<br />

M. Zeisberger, W. Gawalek:<br />

“Preparation of Iron Oxide Nanoparticles for<br />

Heating Applications”<br />

6 th Colloq. of DFG-Priority Program “Colloidal<br />

magnetic fluids”, Benediktbeuern 25.–28. 9. 05<br />

N. Palina, H. Modrow, R. Müller, J. Hormes, Ya.<br />

B. Losovyj:<br />

“Final results of X-ray absorption spectroscopy<br />

and resonant photo-emission investigations on<br />

doped Bariumhexaferrite nanoparticles”<br />

6 th Colloq. of DFG-Priority Program “Colloidal<br />

magnetic fluids”, Benediktbeuern 25.–28.9.05<br />

S. Dutz, W. Andrä, H. Danan, C. S. Leopold,<br />

C. Werner, F. Steinke, M. E. Bellemann:<br />

“Remote controlled drug delivery to the gastrointestinal<br />

tract: investigation of release profiles”<br />

Jahrestagung der Deutschen Gesellschaft Biomedizinische<br />

Technik, Nürnberg (14.–17.09. <strong>2005</strong>)<br />

S. Dutz:<br />

„Magnetische Nano-Verbundwerkstoffe für die<br />

intrakorporale Erwärmung in der Medizin“ Jahreskolloquium<br />

des Institutes für Keramische<br />

Werkstoffe, Bergakademie Freiberg (20.–21.10.<br />

<strong>2005</strong>).<br />

S. Dutz, R. Hergt, R. Müller, M. Zeisberger:<br />

“Magnetic nanoparticles for hyperthermia”<br />

Mitarbeitertreffen des DFG-Schwerpunktprogramms<br />

“Kolloidale magnetische Flüssigkeiten”.<br />

Erlangen (01.–02.12.<strong>2005</strong>).<br />

S. Dutz, R. Hergt, M. Zeisberger, M. Kettering,<br />

I. Hilger, W. A. Kaiser:<br />

“Magnetic hyperthermia with multivalent magnetic<br />

nanoparticles”<br />

6 th Colloq. of DFG-Priority Program “Colloidal<br />

magnetic fluids”, Benediktbeuern 25.–28.9.<strong>2005</strong><br />

J. Dellith:<br />

„Zur röntgenmikroanalytischen Werkstoffcharakterisierung<br />

mittels niederenergetischer M-Strahlung“<br />

Kolloquium des IKW der TU Freiberg, Oktober<br />

20–21, <strong>2005</strong>


J. Bierlich, T. Habisreuther, M. Zeisberger,<br />

D. Litzkendorf, S. Kracunovska, W. Gawalek:<br />

„Multi-Seeding von massiven YBCO Supraleitern“<br />

SDYN-Treffen, 07.–08.07.<strong>2005</strong>, <strong>Jena</strong>, Deutschland<br />

J. Bierlich, T. Habisreuther, S. Kracunovska,<br />

W. Gawalek, E. Müller, F. Schirrmeister:<br />

“Modifizierte Oberflächenbekeimung von schmelztexturierten<br />

YBa 2Cu 3O 7-x-Supraleitern”<br />

IKW – Hauskolloquium, 20.–21.10.<strong>2005</strong>, Freiberg,<br />

Deutschland<br />

J. Bierlich, T. Habisreuther, D. Litzkendorf,<br />

M. Zeisberger, S. Kracunovska, W. Gawalek:<br />

“Multi-seeding for single domain melt-textured<br />

YBCO”<br />

ISS <strong>2005</strong>, 18 th International Symposium on<br />

Superconductivity, October 24–26, <strong>2005</strong>, Tsukuba,<br />

Japan<br />

J. Bierlich, T. Habisreuther, D. Litzkendorf,<br />

M. Zeisberger, S. Kracunovska, W. Gawalek:<br />

“Multi-seeding for single domain melt-textured<br />

YBCO”<br />

PASREG <strong>2005</strong>, 5 th International Workshop on<br />

Processing and Applications of Superconducting<br />

(RE)BCO Large Grain Materials, October 21–23,<br />

<strong>2005</strong>, Tokyo, Japan<br />

Invited talks<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

A. Izmalkov, M. Grajcar, E. Il’ichev,<br />

S. H. W. van der Ploeg, S. Linzen, Th. Wagner,<br />

U. Hübner, H.-G. Meyer, A. Yu. Smirnov,<br />

S. Uchaikin, M. H. S. Amin,<br />

Alec Maassen van den Brink,<br />

A. M. Zagoskin:<br />

“Experimental and theoretical investigation of<br />

multiqubit systems”<br />

International Workshop on Physics of Superconducting<br />

Phase Shift Devices, 2–5 April <strong>2005</strong>,<br />

Ischia, Italy<br />

A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner,<br />

U. Hübner, N. Oukhanski, T. May, H.-G. Meyer,<br />

A. Yu. Smirnov, A. Maassen van den Brink,<br />

M. H. S. Amin, A. M. Zagoskin, Ya. S. Greenberg:<br />

“Macroscopic quantum effects in a flux qubit”<br />

Seminar at Institute of Solid State Physics, 11<br />

May <strong>2005</strong>, Chernogolovka, Russia<br />

E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,<br />

S. Linzen, T. May, H. E. Hoenig, H.-G. Meyer,<br />

D. Born, W. Krech, A. Smirnov, S. Uchaikin,<br />

A. Zagoskin:<br />

„Supraleitende Qubits auf dem Weg zum Quantenrechner“<br />

Deutschen Physikalischen Gesellschaft (German<br />

Physical Society), Berlin, Germany, March 4–9,<br />

<strong>2005</strong><br />

E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,<br />

S. Linzen, T. May, U. Hübner, H. E. Hoenig,<br />

H.-G. Meyer, M. H. S. Amin, A. Maasen van den<br />

Brink, A. Smirnov, S. Uchaikin, A. Zagoskin:<br />

“Continuous Impedance Measurements of a<br />

Superconducting Flux Qubit”<br />

American Physical Society, Los Angeles, USA,<br />

March 21–25, <strong>2005</strong><br />

E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,<br />

S. Linzen, T. May, U. Hübner, H. E. Hoenig,<br />

H.-G. Meyer, A. Maasen van den Brink,<br />

A. Smirnov, S. Uchaikin, A. Zagoskin:<br />

“Impedance Measurement Technique for Investigation<br />

of Superconducting Qubits”<br />

Pishift conference, Ischia (Naples), Italy, 2–5 April<br />

<strong>2005</strong><br />

E. Il’ichev:<br />

“Radio-Frequency Method for Investigation of<br />

Quantum Properties of Superconducting Structures”<br />

International Summer School and Conference on<br />

Arrays of Quantum Dots and Josephson Junctions<br />

Kiten, Bulgaria, 9 th –24 th June, <strong>2005</strong><br />

E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,<br />

S. Linzen, T. May, U. Hübner, H. E. Hoenig,<br />

H.-G. Meyer, A. Maasen van den Brink,<br />

A. Smirnov, S. Uchaikin, A. Zagoskin:<br />

“Radio-Frequency Method for Investigation of<br />

Quantum Properties of Superconducting Structures”<br />

International ULTRA-1D STREP Workshop<br />

Quantum Coherence and Decoherence at the<br />

Nanoscale (Corfu, Greece) 28 August–2 September<br />

<strong>2005</strong><br />

E. Il’ichev:<br />

“Radio-Frequency Technique for Investigation of<br />

Quantum Properties of Superconducting Structures”<br />

The Mesoscopic Quantum Physics Conference<br />

(Aussois, France) 05–09 October <strong>2005</strong><br />

E. Il’ichev:<br />

“Radio-Frequency Technique for Investigation of<br />

Quantum Properties of Superconducting Structures”<br />

The 5 th International Argonne Fall Workshop on<br />

the Nanohysics Argonne, USA, 13–18 November<br />

R. Mattheis:<br />

„Grundprinzipien von Sensoren auf der Basis<br />

des Magnetowiderstandseffektes und deren<br />

Anwendungsfelder in der Automobil- und Automatisierungstechnik<br />

sowie in der hochempfindlichen<br />

Magnetfeldsensorik“,<br />

Vortrag HdT Essen, Magnetische Erkennung<br />

von Position und Bewegung, Essen, 8. und 9.06.<br />

<strong>2005</strong><br />

33


34<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

R. Mattheis:<br />

„Multiturnsensor mit GMR“<br />

Vortrag 8. Sympsoium „Magnetoresistive Sensoren<br />

Grundlagen-Herstellung-Anwendungen“,<br />

Wetzlar, 8. und 9.03.<strong>2005</strong><br />

M. Wendt:<br />

„Mikrostrukturcharakterisierung mittels Rasterelektronen-<br />

und Rasterkraft-Mikroskopie“<br />

Kolloquium aus Anlass des 60. Geburtstages von<br />

Prof. Dr. Ludwig Josef Balk, Wuppertal, May 30,<br />

<strong>2005</strong><br />

M. Wendt:<br />

„Qualitative Röntgenmikroanalyse mit Si(Li)-<br />

Detektoren“<br />

RÖNTEC – Kundenschulung, Bad Saarow, June<br />

14–16, <strong>2005</strong><br />

M. Wendt:<br />

„Zur Systematik der weichen Röntgenemissionsspektren“<br />

PTB-Kolloquium, Berlin, September 22, <strong>2005</strong><br />

W. Gawalek T. Habisreuther, M. Zeisberger,<br />

D. Litzkendorf:<br />

„Magnetic levitation with Bulk YBCO and MgB 2<br />

Superconductors”<br />

„8 th International Symposium on Magnetic Suspension<br />

Technology“, Dresden, Germany, September<br />

26–28, (<strong>2005</strong>), p.114<br />

K. L. Kovalev, S. M.-A. Koneev, V. N. Poltavets,<br />

W. Gawalek:<br />

“Magnetically Levitated High-Speed Carriages on<br />

the Basis of Bulk Elements”<br />

“8 th International Symposium on Magnetic Suspension<br />

Technology”, Dresden, Germany, September<br />

26–28, (<strong>2005</strong>), p.51<br />

T. Habisreuther:<br />

„VSM – Vibrating Sample Magnetometry – Einsatz<br />

im <strong>IPHT</strong> <strong>Jena</strong>“<br />

Uni Potsdam, Germany, June 1, <strong>2005</strong><br />

T. Habisreuther:<br />

“Processing, Characterisation and Application of<br />

Batch Processed and Multi-Seeded Single<br />

Domain Melt-Textured YBCO”<br />

PASREG <strong>2005</strong>, 5 th International Workshop on<br />

Processing and Applications of Superconducting<br />

(RE)BCO Large Grain Materials, October 21–23,<br />

<strong>2005</strong>, Tokyo, Japan<br />

R. Müller:<br />

„Magnetit – Renaissance eines alten Magnetwerkstoffs“<br />

6 th Colloq. of DFG-Priority Program „Colloidal<br />

magnetic fluids“, Benediktbeuern 25.–28.9.05<br />

R. Müller:<br />

„Eigenschaften magnetischer Eisenoxidpartikel“<br />

Arbeitsgruppenseminar „Grundlagen“, Klinik für<br />

Innere Medizin II, FSU <strong>Jena</strong>, 12.10.05<br />

Th. Klupsch:<br />

“Prediction of macromolecular units and optimum<br />

crystallization conditions by static and dynamic<br />

light scattering”<br />

Crystallization Course CC <strong>2005</strong>, October 10–12,<br />

<strong>2005</strong>, Nove Hrady, Czech Republik<br />

Th. Klupsch:<br />

“Understanding the protein solubility: classical<br />

concepts and novel ideas”<br />

Crystallization Course CC <strong>2005</strong>, October 10–12,<br />

<strong>2005</strong>, Nove Hrady, Czech Republik<br />

Patents<br />

V. Schultze, W. Andrä, K. Peiselt:<br />

„Vorrichtung und Verfahren zur Lokalisierung<br />

eines Gerätes“<br />

DE 10 <strong>2005</strong> 051 357.3 (25.10.<strong>2005</strong>)<br />

R. Müller, H. Steinmetz, W. Gawalek:<br />

„Verfahren zur Herstellung von nanokristallinen<br />

magnetischen Eisenoxidpulvern“<br />

DE 10 <strong>2005</strong> 030 301.3 (05.07.<strong>2005</strong>)<br />

W. Andrä, M. E. Bellemann, H. Danan, S. Dutz,<br />

S. Liebisch, R. Schmieg:<br />

„Kapsel zum Freisetzen von in ihr befindlichen<br />

Wirkstoffen an definierten Orten in einem Körper“<br />

PCT/DE <strong>2005</strong>–001086 (15.6.<strong>2005</strong>)<br />

W. Andrä, R. Hergt, I. Hilger, W. A. Kaiser,<br />

D. Spitzer:<br />

„Vorrichtung zur zielgerichteten Erwärmung“<br />

DE 10 <strong>2005</strong> 062 746.3 (23.12.<strong>2005</strong>)<br />

K.-U. Barholz, M. Diegel, R. Mattheis, G. Rieger,<br />

J. Hauch:<br />

„Stromsensor zur galvanisch getrennten Gleichstrommessung“<br />

DE 10 <strong>2005</strong> 029 269.0 (23.06.<strong>2005</strong>)<br />

Membership<br />

Prof. Dr. H. E. Hoenig<br />

Beirat Institut für Mikroelektronik<br />

und Mechatronik Ilmenau<br />

Beirat Forschungszentrum für Medizintechnik<br />

und Biotechnologie e. V.<br />

Bad Langensalza<br />

Scientific advisor of the Materials Science<br />

Institutes CSIC (Spain)<br />

Auswahlgremium Forschungspreis<br />

des Thüringer Kultusministeriums<br />

Vorstandsvorsitzender im Verein Beutenberg<br />

Campus e. V.<br />

Vorstandsvorsitzender der SUPRACON AG<br />

Scientific board of WOLTE and CRYO


Dr. R. Mattheis<br />

Editorial Board IEEE Transactions on Magnetics<br />

Mitglied des FA 9.4 der ITG<br />

Mitglied des Wissenschaftlichen Beirats der<br />

Tagung: „Sensoren und Sensorsysteme 2006“<br />

Freiburg/Breisgau<br />

Prof. Dr. M. Wendt<br />

Mitwirkung im Organisationskomitee der EDO-<br />

Tagung<br />

Prof. W. Gawalek<br />

Head of SCENET-2 Working Group “Rotating<br />

HTS Machines”<br />

International Steering Committee JAPMED´4: 4 th<br />

Japanese-Mediterranean Workshop on Applied<br />

Electromagnetic Engineering for Magnetic,<br />

Superconducting and Nano Materials, Cairo,<br />

Egypt, September 17–20, (<strong>2005</strong>)<br />

Dr. T. Habisreuther<br />

Arbeitsgruppe K184 Supraleiter der DKE und<br />

TC90 WG10<br />

Lectures<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Prof. H. E. Hoenig<br />

Vorlesung WS 04/05, Quantencomputing<br />

Vorlesung SS <strong>2005</strong>, Quantencomputing<br />

Prof. M. Wendt<br />

Vorlesung “Einführung in die Analytische Elektronenmikroskopie”<br />

WS 2004/<strong>2005</strong> sowie <strong>2005</strong>/2006 an der FH <strong>Jena</strong><br />

Dr. H.-G. Meyer<br />

Vorlesung SS <strong>2005</strong>, Supraleiterelektronik<br />

Vorlesung WS <strong>2005</strong>/2006, Supraleitende Quanteninterferometer<br />

(SQUID) und ihre Anwendungen<br />

Dr. H. Schneidewind<br />

5 Vorlesungen in „Festkörperphysik für Werkstofftechniker“<br />

von Prof. F. Schirrmeister<br />

Vorlesung an der FH <strong>Jena</strong>, WS <strong>2005</strong>/2006<br />

Dr. H. Schneidewind<br />

“Metallphysik”<br />

Vorlesung an der FH <strong>Jena</strong> im SS <strong>2005</strong><br />

Dr. T. Habisreuther<br />

„Sonder- und Verbundwerkstoffe“<br />

Vorlesung an der FH <strong>Jena</strong>, WS2004/<strong>2005</strong><br />

Vorlesung an der FH <strong>Jena</strong>, WS<strong>2005</strong>/2006<br />

Dr. T. Habisreuther<br />

„Festkörperphysik für Werkstofftechniker“<br />

von Prof. F. Schirrmeister<br />

Vorlesung an der FH <strong>Jena</strong>, WS2004/<strong>2005</strong><br />

Vorlesung an der FH <strong>Jena</strong>, WS<strong>2005</strong>/2006<br />

PhD Thesis<br />

Andrei Izmalkov:<br />

“Macroscopic quantum effects in a flux qubit”<br />

18.05.<strong>2005</strong>, Moscow Engineering Physics Institute<br />

Silvia Kracunovska:<br />

“The influence of preparation parameters on<br />

microstructure and properties of YBCO bulk<br />

superconductors”<br />

Technische Universität Kosice, Slowakische<br />

Republik, 20.09.<strong>2005</strong><br />

Diploma Thesis<br />

André Krüger:<br />

„Entwurf, Aufbau und Inbetriebnahme einer<br />

mehrkanaligen, hochauflösenden 24-Bit Analog-<br />

Digital-Wandlerkarte für ein modulares Datenerfassungssystem“,<br />

22.03.<strong>2005</strong>, Fachhochschule<br />

<strong>Jena</strong>.<br />

Michael Starkloff:<br />

„Entwicklung und Aufbau eines mikroprozessorgesteuerten<br />

Messsystems zur Gleichspannungskalibrierung<br />

von Fluke-Normalen mit dem Josephson-Primärnormal“,<br />

22.03.<strong>2005</strong>, Fachhochschule<br />

<strong>Jena</strong>.<br />

Laboratory Exercises<br />

H. Köbe 18 Wochen, Praktikumssemester FH<br />

<strong>Jena</strong><br />

Dominique Schmidt 18 Wochen, Praktikumssemester<br />

FH <strong>Jena</strong><br />

Herr Oliver und Joachim Müller, Herr Jens Bartelt<br />

und Felix Oertel, zweiwöchentliches Seminarfach<br />

der Spezialschule Carl Zeiss, <strong>Jena</strong><br />

Christopher Schmidt<br />

“Herstellung und magnetische Eigenschaften von<br />

Eisenoxidpartikeln durch Fällung<br />

FH <strong>Jena</strong><br />

Events/Exhibitions<br />

„Eiskalte Energie für Europa – Supraleiter und<br />

der Traum vom Schweben“<br />

„International Superlife Exhibition“<br />

Goethe-Galerie <strong>Jena</strong>, <strong>Jena</strong>, Germany, June 29–<br />

July 2, (<strong>2005</strong>)<br />

SCENET-2 Workshop “Superconducting Electric<br />

motors with HTS”, <strong>Jena</strong>, Germany, April 11–13,<br />

(<strong>2005</strong>)<br />

35


36<br />

MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS<br />

Physik-Ausstellung „Zeit, Licht, Zufall – Physik<br />

seit Einstein“<br />

Highlights der Physik <strong>2005</strong>, 13.–18.06.<strong>2005</strong>,<br />

Berlin, Deutschland<br />

Präsentation „Magnetschweben-Levitator“<br />

Siemens Familien-Tag <strong>2005</strong>, 02.07.<strong>2005</strong>, Nürnberg,<br />

Deutschland<br />

Präsentation „Supraleitung-Schwebendes Logo“<br />

SOLVAY Familientag, 02.09.<strong>2005</strong>, Hannover,<br />

Deutschland<br />

Präsentation „Supraleitung-Levitation“<br />

Sternstunden. Lange Nacht der Wissenschaften<br />

<strong>Jena</strong>, 18.11.<strong>2005</strong>, <strong>Jena</strong>, Deutschland<br />

Studioexperiment „Supraleitung-Levitation“ in der<br />

TV-Sendung Galileo<br />

Gesendet am 14.10.<strong>2005</strong> bei ProSieben<br />

Awards<br />

EMAS young scientists award an Dipl.-Ing. (FH)<br />

Andy Scheffel<br />

New Equipment<br />

Ion-beam-etching-equipment for structuring of<br />

high T c-superconductors at low temperatures


2. Optik / Optics<br />

2.1 Übersicht<br />

Das zentrale Arbeitsgebiet des Forschungsbereichs<br />

betrifft „Optische Fasern und Faseranwendungen“.<br />

Die vom Kuratorium des <strong>IPHT</strong> im<br />

Jahr <strong>2005</strong> eingesetzte Strukturkommission hat<br />

die besondere wissenschaftliche und technologische<br />

Position des <strong>IPHT</strong> auf diesem Gebiet hervorgehoben<br />

und eine weitere Stärkung dieser<br />

Arbeitsfelder empfohlen.<br />

OPTIK / OPTICS<br />

Leitung/Head: Prof. Dr. H. Bartelt<br />

hartmut.bartelt@ipht-jena.de<br />

Optische Fasern Mikrooptik Optische Mikrosysteme<br />

Optical Fibers Microoptics Optical Microsystems<br />

Leitung/Head: Leitung/Head: Leitung/Head:<br />

Dr. J. Kirchhof Dr. H.-R. Müller Prof. Dr. R. Willsch<br />

johannes.kirchhof@ipht-jena.de hans.rainer.mueller@ipht-jena.de reinhardt.willsch@ipht-jena.de<br />

Mikrostrukturtechnik<br />

Micro Structuring Technology<br />

Dr. S. Schröter<br />

siegmund.schroeter@ipht-jena.de<br />

Mitarbeiter des Bereiches Optik <strong>2005</strong> / Staff of the Optics Division in <strong>2005</strong>.<br />

2.1 Overview<br />

The main focus of the activities within the Optics<br />

division is on optical fibres and fibre applications.<br />

The structure commission, which was established<br />

for advising future focusing of activities<br />

within the <strong>IPHT</strong>, has emphasized the special scientific<br />

and technological competence of the <strong>IPHT</strong><br />

in this field and has recommended a further<br />

strengthening of this research direction.<br />

37


38<br />

Demonstrator of an optical<br />

add-drop-multiplexer<br />

(OADM) based on a photosensitive<br />

planar technology<br />

OPTIK / OPTICS<br />

Characterisation of high<br />

precision multicore fibre<br />

optic waveguide arrays:<br />

cross section of an array<br />

of 61 waveguides and light<br />

propagation patterns.<br />

Thermal elongation measurement of<br />

melt-textured YBCO in cryogenic temperature<br />

range down to 10 K using a<br />

fibre Bragg grating strain sensor array<br />

(sensors attached in the three principal<br />

axes of the anisotropic sample).


Ein wichtiges internationales Forum zur Diskussion<br />

von modernen Sensoranwendungen optischer<br />

Fasern war die 17. Optical Fibre Sensors<br />

Konferenz (OFS) in Brügge/Belgien im Mai <strong>2005</strong>,<br />

an der das <strong>IPHT</strong> sowohl organisatorisch als auch<br />

inhaltlich maßgeblich mitwirkte (Prof. Reinhardt<br />

Willsch und Dr. Wolfgang Ecke als Conference<br />

Chairs). Das <strong>IPHT</strong> war mit fünf wissenschaftlichen<br />

Beiträgen einschließlich einem eingeladenen<br />

Vortrag (Prof. Hartmut Bartelt) und einem<br />

viel beachteten Ausstellungsstand vertreten, der<br />

unsere starke Stellung auf diesem Forschungsgebiet<br />

deutlich machte. Die internationale<br />

Rekordbeteiligung von ca. 500 Teilnehmern aus<br />

mehr als 40 Ländern an dieser seit 1983 stattfindenden<br />

Konferenz zeigte generell das wachsende<br />

Interesse an Anwendungen optischer Fasern<br />

in der Sensor- und Messtechnik. Dieser internationalen<br />

Entwicklung folgte auch die Ausgründung<br />

zu Fasergitter-Sensorkomponenten unter<br />

dem Namen FBGS Technologies GmbH aus dem<br />

<strong>IPHT</strong> gemeinsam mit einer belgischen Partnerfirma<br />

im Oktober <strong>2005</strong>. Die technischen Grundlagen<br />

zu diesem Arbeitsfeld, nämlich die Möglichkeit<br />

der Erzeugung von Faser-Bragg-Gittern mit<br />

einem einzelnen Laserpuls während des Faserziehens,<br />

wurde dazu im vergangenen Jahr weiter<br />

ausgebaut. Die Herstellung von solchen Gittern<br />

mit bis zu 50% Reflexion (Typ I) demonstriert die<br />

weltweit führende Rolle des <strong>IPHT</strong> und seiner<br />

Ausgründung in dieser Technologie. Mit dem Firmenstandort<br />

im Technologie- und Innovationspark<br />

am Campus Beutenberg in <strong>Jena</strong> ist auch<br />

zukünftig die Basis für eine enge Zusammenarbeit<br />

mit dem <strong>IPHT</strong> gesichert. Anwendungsfelder<br />

der Arbeiten des <strong>IPHT</strong> betrafen im Sensorbereich<br />

im vergangenen Jahr vor allem temperaturbeständige<br />

faseroptische Bragg-Gitter-Sensoren<br />

für das Turbinen- und Triebwerksmonitoring,<br />

Fasergitter-Sensornetzwerke für die strukturintegrierte<br />

Zustandsüberwachung in der Bahntechnik<br />

und in Windenergieanlagen sowie opto-chemische<br />

Fasersensorsysteme für die in-situ-<br />

Gewässeranalytik. Die Entwicklung neuartiger<br />

Fasern etwa unter Nutzung von Mikro- und Nanostrukturen,<br />

die Weiterentwicklung photonischer<br />

Kristallfasern und Arbeiten zu temperaturbeständigen<br />

Coatings bildeten dazu einen wichtigen<br />

technologischen Hintergrund.<br />

Die Arbeiten zu optischen Faserlasern finden<br />

zunehmendes Anwendungsinteresse und wurden<br />

insbesondere unter Aspekten speziell strukturierter<br />

und dotierter Faserkerne zur Optimierung<br />

der Stabilität und der Pumpeffizienz weitergeführt.<br />

Die Aktualität dieses Forschungsgebietes<br />

zeigte sich auch auf einem Workshop des<br />

OptoNet Clusters, „Neue Laserstrahlquellen“, der<br />

im Mai <strong>2005</strong> mit ca. 100 Teilnehmern am <strong>IPHT</strong><br />

organisiert und veranstaltet wurde. Kompetenz<br />

zu strukturierten Wellenleitern konnte erfolgreich<br />

auch für Sensoranwendungen in speziellen planaren<br />

Strukturen genutzt werden.<br />

OPTIK / OPTICS<br />

A major international forum in <strong>2005</strong> for the discussion<br />

of modern sensor applications of optical<br />

fibres was the 17 th Optical Fibre Sensors Conference<br />

(OFS) in May <strong>2005</strong> in Bruges (Belgium) with<br />

major organizational and scientific involvement of<br />

the <strong>IPHT</strong> (Prof. Willsch as technical chair and Dr.<br />

Ecke as program chair). The <strong>IPHT</strong> took part in<br />

this conference with 5 presentations including an<br />

invited talk (Prof. Hartmut Bartelt) and a well-recognized<br />

exhibition booth indicating its strong<br />

position in this research field. The record international<br />

participation (approx. 500 participants from<br />

40 countries) in this conference of a series started<br />

in 1983 underlines the growing interest in<br />

such modern applications of optical fibres. Following<br />

such demands for applications, the <strong>IPHT</strong><br />

became involved (together with a Belgian partner)<br />

in the founding of a new company for the<br />

development and application of draw tower fibre<br />

gratings in October <strong>2005</strong> (FBGS Technologies).<br />

The technological basis of inscribing fibre Bragg<br />

gratings during the fibre drawing process with a<br />

single laser pulse has been further developed in<br />

<strong>2005</strong>. The making of such gratings (type I) with a<br />

reflection efficiency of up to 50% has demonstrated<br />

the international leading competence in<br />

this technology of the <strong>IPHT</strong> and of the newly<br />

founded company. The headquarters of the<br />

FBGS company being placed at the Beutenberg<br />

campus in <strong>Jena</strong> ensures future close cooperation.<br />

Investigations into sensor applications of optical<br />

fibres covered especially temperature-stable fibre<br />

Bragg grating sensor systems for turbine and<br />

engine monitoring, fibre grating sensor networks<br />

for integrated diagnosis in train systems and in<br />

wind energy converters, and opto-chemical sensors<br />

for in-situ water analysis.<br />

The development of new types of fibres with<br />

micro- and nanostructures, developments for<br />

photonic crystal fibres and activities for coatings<br />

with high temperature stability were important<br />

cornerstones for these activities.<br />

The applications of fibre lasers are gaining growing<br />

interest and have been pursued with regard to<br />

specially structured and doped fibre cores, e.g.<br />

for optimization of pumping efficiency and stability.<br />

The general interest in this research field<br />

became obvious also by strong participation (15<br />

scientific presentations, 100 participants) in a<br />

workshop on new laser sources held at the <strong>IPHT</strong><br />

in cooperation with the OptoNet cluster. The competence<br />

in structured waveguides was additionally<br />

exploited for sensor applications in specific planar<br />

waveguides.<br />

The results presented in this report indicate that<br />

optical fibres indeed offer attractive research subjects<br />

for the future and also promise fruitful applications<br />

jointly with the complementary research<br />

field of photonic instrumentation within the <strong>IPHT</strong>.<br />

39


40<br />

Die nachfolgend präsentierten Ergebnisse in diesem<br />

<strong>Jahresbericht</strong> machen die hohe Attraktivität<br />

der Forschung zu optischen Fasern und Faseranwendungen<br />

deutlich und bieten in Kombination<br />

mit dem komplementären Arbeitsgebiet zur<br />

photonischen Instrumentierung im <strong>IPHT</strong> breite<br />

zukünftige Anwendungsmöglichkeiten.<br />

2.2. Scientific Results<br />

2.2.1 Flame hydrolysis technique (FHD)<br />

for the preparation of advanced<br />

optical materials<br />

(C. Aichele, St. Grimm, M. Köhler,<br />

K. Schuster)<br />

The flame hydrolysis technique allows the production<br />

of highest quality silica. This material is<br />

primarily used for planar optical waveguide<br />

devices and components or for the deposition of<br />

substrate tubes by OVD (Outside Vapor Deposition).<br />

To utilize the potential of this technology we<br />

are engaged in new applications.<br />

The recent concentration of microlithography on<br />

an excitation wavelength of 193 nm requires an<br />

improvement of the optical materials and devices<br />

used.<br />

For high power density and excellent replication<br />

quality, materials are necessary which provide<br />

special, very well-defined properties in terms of<br />

optical quality as well as type and distribution of<br />

the dopant hydrogen. The flame hydrolysis technique<br />

enables the preparation of a high-quality<br />

quartz glass material combined with the implementation<br />

of different dopant distributions in a<br />

wide range.<br />

Fig. 2.1: FHD-configuration.<br />

OPTIK / OPTICS<br />

A further miniaturization of the structure at the<br />

same excitation wavelength can be achieved by<br />

what is known as immersion lithography. Aqueous<br />

fluids (immersions) with a still higher refractive<br />

index than standard materials and good optical<br />

transparency are particularly suitable for<br />

these processes.<br />

By flame hydrolysis it is possible to prepare highly<br />

pure, oxidic particles with a main size of about<br />

5–10 nm and a narrow particle size distribution.<br />

These oxidic materials can be used as additives<br />

to water to increase its refractive index for application<br />

as an immersion medium.<br />

Figure 2.1 shows the burner configuration used<br />

for the FHD technique.<br />

2.2.2 Materials for fibre lasers: Preparation<br />

and properties<br />

(S. Unger, A. Schwuchow, S. Grimm,<br />

V. Reichel, J. Kirchhof)<br />

Recently, the performance of rare earth doped<br />

high-power silica fibre lasers has been dramatically<br />

increased with output powers beyond 1 kW,<br />

high efficiency and excellent beam quality.<br />

This progress is due to new design concepts<br />

such as non-symmetrical double clads and large<br />

mode area core structures, but also by careful tailoring<br />

of the material properties. Extreme power<br />

load and complicated fibre structures make high<br />

demands on preparation technology and materials.<br />

However, up to now still little is known about<br />

the influence of the material and the preparation<br />

technology on the laser efficiency.<br />

Here, the absorption and emission properties of<br />

silica based ytterbium doped preforms, made by<br />

Modified Chemical Vapor Deposition (MCVD)<br />

and solution doping, and of the drawn fibres were<br />

investigated in dependence on the atmosphere<br />

during the preform collapsing.<br />

The preparation was carried out under oxidizing<br />

and reducing conditions (helium/carbon monoxide/hydrogen).<br />

The absorption measurements on<br />

preforms and fibres with nominally identical compositions<br />

have shown the following results:<br />

– All Yb doped preform samples show the typical<br />

Yb 3+ absorption in the wavelength region<br />

between 800 and 1100 nm, and the absorption<br />

coefficient is not remarkably changed by modifications<br />

during the preparation process.


Fig. 2.2: Preform absorption spectra in the UV/VIS<br />

region.<br />

– However, changes are observed in the UV/VIS<br />

region. With an increasingly reducing effect of<br />

the collapsing atmosphere (He


42<br />

2.2.4 Photonic crystal fibres for innovative<br />

applications and devices<br />

(J. Kobelke, K. Schuster, J. Kirchhof,<br />

A. Schwuchow, K. Mörl, K. Oh)<br />

Photonic crystal fibres (PCFs) are commonly<br />

interesting as transmission media over long distances<br />

for their specific light propagation behaviour.<br />

However, the promising application potential<br />

of photonic crystal fibres also takes effect in various<br />

novel devices, e.g. PCFs with defect super<br />

lattice structure and PCF-based NxN fibre couplers.<br />

Such PCF couplers have a power stability<br />

advantage, because they can be manufactured<br />

without any dopants in the basic silica. Moreover,<br />

the transmission behaviour is mostly effected by<br />

air hole confinement light propagation, so a high<br />

numerical aperture is possible. Typical power limitations<br />

of polymer-clad fibre can be avoided by<br />

the air-clad design.<br />

We prepared special large mode area PCFs by<br />

variation of the geometric cross section design<br />

parameters. They were changed by introduction<br />

of a flexible defect in the lattice structure. The<br />

new defect design consists of the central air hole,<br />

surrounded by a holey germanium-doped silica<br />

ring. It provides a large-area annulus-mode light<br />

propagation and a chromatic dispersion with low<br />

slope ~0.05 ps/km nm 2 at 1550 nm.<br />

Fig. 2.4: Calculated dispersion curves of fundamental<br />

modes of different d core/Λ core of the super<br />

lattice PCF. Inset: fibre micrograph.<br />

PCFs with air-clad design are interesting components<br />

for optical devices. 2×2 and 4×4 multimode<br />

air-clad holey fibre couplers were prepared<br />

at the Gwangju Institute of Science and Technology<br />

(GIST), South Korea, based on <strong>IPHT</strong>-manufactured<br />

PCFs. The couplers were fabricated by<br />

a novel fusion tapering technology, starting from<br />

an air-clad fibre with a core diameter of about<br />

130 µm and a very high air fraction of the holey<br />

clad ring. The couplers thus fabricated show a<br />

high port-to-port coupling uniformity over a wide<br />

spectral range from 800 nm to 1650 nm. Due to<br />

the absence of power-limiting low refractive index<br />

polymer materials to achieve the high numerical<br />

aperture, the device shows a strong potential for<br />

future high-power applications.<br />

OPTIK / OPTICS<br />

Fig. 2.5: Scheme of the 4×4 coupler, micrograph<br />

of the used air-clad index-guided PCF and lateral<br />

segments of the 2×2 coupler.<br />

2.2.5 Loss measurements at silica fibres<br />

for cladding pumped applications<br />

(S. Jetschke, A. Schwuchow)<br />

Silica fibres with rare-earth-doped cores for laser<br />

or amplifier applications are often claddingpumped<br />

to benefit from commercial high-power<br />

pump diodes. Thereby, losses of pump power<br />

may occur in the cladding material itself or in the<br />

adjacent coating having a refractive index lower<br />

than silica. We investigated this attenuation in silica<br />

fibres of diameter 125 µm (without core),<br />

drawn from F300 rods and coated with different<br />

materials (see Tab. 2.1).<br />

The loss measurements were done by two different,<br />

but well-known methods:<br />

1. With the cut-back method, the loss spectra<br />

are calculated from transmission measurements<br />

in the 300–1700 nm wavelength range<br />

(Halogen lamp, NA 0.25) in a long (>60 m)<br />

and a shortened fibre (10 m). Although the<br />

fibre NA is not fully illuminated, the characteristic<br />

absorption bands of the coating materials<br />

are clearly seen (Fig. 2.6).<br />

Fig. 2.6: Loss spectra of coated silica fibres,<br />

measured by the cut-back method.


OPTIK / OPTICS<br />

Coating material NA Layer Cut-back method: OTDR:<br />

(coated thickness Loss [dB/km] Loss [dB/km]<br />

silica fibre) [µm]<br />

800nm 1310nm 1550nm 850nm 1310nm 1550nm<br />

Silicone RT601 0.358 50 20 25 250 13 29 n.m.<br />

Ormogel HG-Li-V-T 0.410 5 25 51 150 23 37 (70)<br />

1D3-63 (Acrylate) 0.404 50 34 59 180 (50) 75 n.m.<br />

Luv PC 373 (Acrylate) 0.447–0.127 50 9 17 60 5 16 45<br />

Teflon AF 0.606 5–10 9 7 8 4 5 6<br />

Tab. 2.1: Loss in silica fibres with different coating materials, measured by the cut-back method and by<br />

OTDR (n.m. = not measurable, because of limited dynamic range of OTDR; cut-back method works without<br />

limitation of measurable loss).<br />

2 With the Optical Time Domain Analysis<br />

(OTDR), the loss can be evaluated with a spatial<br />

resolution of some meters, but only at<br />

selected wavelengths. Fibre lengths >60 m<br />

can be analysed; the measurements should be<br />

executed from both fibre ends. One of the<br />

available devices applies a wavelength of<br />

850nm and illuminates the fibre under test with<br />

NA 0.20 (spot size 50 µm); another device for<br />

1310 nm and 1550 nm implements NA 0.10<br />

(spot size 10 µm).<br />

Both methods supplement each other and are<br />

suitable especially for the comparison of losses<br />

in fibres with different coatings, but equal fibre<br />

diameters.<br />

The results obtained with both methods are compared<br />

in Tab. 2.1 (the wavelengths are determined<br />

by the OTDR devices) and indicate a sufficient<br />

consistency.<br />

The low loss and the high NA achieved with the<br />

Teflon AF coating, as well as the absence of<br />

additional absorption bands (apart from OH<br />

absorption) are particularly advantageous for<br />

cladding pumping. But the Teflon layer that can<br />

be implemented is too thin for many applications.<br />

The low-index Acrylate Luv 370–444, but also Silicone<br />

RT601 provide a moderate pump loss and<br />

an adequate layer thickness. However, characteristic<br />

absorption bands may be detrimental, e.g.<br />

the Silicone absorption around the common<br />

pump wavelength of 915 nm.<br />

Besides the effects on fibre loss, the coating<br />

materials differ in their mechanical and thermal<br />

properties, which should also be taken into<br />

account in high pump power applications.<br />

2.2.6 Studies of the mode behaviour<br />

of multi-core fibre structures<br />

(K. Mörl, J. Kobelke, K. Schuster)<br />

There are various reasons to build-up the active<br />

cores of microstructured fibres from single doped<br />

filaments. One of them is to achieve a mode field<br />

as large as possible. The preparation is carried<br />

out usually by repeated packaging and stretching<br />

of rare-earth-doped elements made by the well<br />

established MCVD technique, soaking in rareearth<br />

solutions and subsequent drawing of the<br />

microstructured fibre by means of the “stack and<br />

draw“ technique. Fig. 2.7 shows the central part<br />

of a PCF with 7 × 7 active Yb-doped filaments.<br />

Fig. 2.7: Central part of a PCF with 7 × 7 active<br />

doped filaments .<br />

A matter of particular interest is the mode behaviour<br />

of such structures, especially the optical coupling<br />

of the single elements (formation of a<br />

“super-mode”). Fig. 2.8 shows the changing<br />

mode picture at the end of a short piece of the<br />

fibre shown in Fig. 2.7, achieved by launching<br />

Fig. 2.8: Mode structure at the end of a short<br />

piece of fibre shown in Fig. 2.7, obtained by<br />

launching different wavelengths in the central part.<br />

43


44<br />

light in the central part of fibre core by means of<br />

a fibre with 7 µm mode field diameter, and scanning<br />

the wavelength. We can see the beating of<br />

modes with a period of about 7 µm. From this and<br />

from the fibre length it is possible to compute the<br />

mode coupling length.<br />

Much more interesting it is to study the mode<br />

behaviour of such multi-filament cores in the<br />

active laser regime. Fig. 2.9 shows the large<br />

mode field of the fundamental laser mode (supermode),<br />

and Fig. 2.10 shows the mode profile of<br />

this mode at the same scale.<br />

Fig. 2.9: Fundamental laser mode (super –mode)<br />

of the fibre shown in Fig. 2.7.<br />

Fig. 2.10: Profile of the mode field of Fig. 2.9 in<br />

comparison to the fibre geometry.<br />

2.2.7 Fibre-optic waveguide arrays<br />

as model systems of discrete optics<br />

(U. Röpke, S. Unger, K. Schuster,<br />

J. Kobelke, H. Bartelt)<br />

The field of optics in discrete systems is evolving<br />

from theoretical concepts into experimental verification<br />

and discussion of its application potential.<br />

In the framework of a DFG research group working<br />

at this topic, we developed fibre-optic waveguide<br />

arrays suitable for optical experiments on<br />

nonlinear dynamics in two-dimensional discrete<br />

systems.<br />

The technology of microstructured fibres, which<br />

succeeds in the preparation of photonic crystal<br />

fibres, also provides a basis for waveguide arrays.<br />

OPTIK / OPTICS<br />

However, because of the necessary weak coupling<br />

between the waveguides, the tolerances of<br />

the optical properties and the relative positions of<br />

the waveguides are quite challenging. With<br />

respect to the state of the art, the precision of the<br />

geometrical and material parameters should be<br />

improved by a factor of 10.<br />

To achieve this requirement we developed a special<br />

technology on the basis of high-quality optical<br />

materials, precision machining and a careful<br />

control of all preparation steps. A first sample<br />

prepared in this way is shown in Fig. 2.11. The<br />

array consists of 61 weakly coupled single-mode<br />

waveguides with a hexagonal symmetry. The<br />

array is surrounded by a microstructured buffer<br />

zone and a jacketing tube. The precision of the<br />

array geometry fulfils the requirements.<br />

Fig. 2.11: Precision fibre<br />

array (designed for λ =<br />

1.5 µm; outer diameter<br />

585 µm); photo-micrograph<br />

with transmitted<br />

light (a) and reflected<br />

light DIC (b) of a cleaved<br />

HF-etched fibre end.<br />

The distribution of light launched into a single<br />

waveguide follows the propagation characteristic<br />

in a regular array. A thorough analysis of this<br />

array sample shows that almost all (but not really<br />

all) waveguides fulfil the requirements.<br />

Fig. 2.12: Propagation of light (λ = 1550 nm) in<br />

the array launched into a waveguide at a boundary<br />

corner (L: propagation length).<br />

In conclusion we have shown that fibre-optic<br />

waveguide arrays can be prepared that are suited<br />

as model systems in experiments of nonlinear<br />

discrete optics.


2.2.8 High-reflectivity draw-tower fibre<br />

Bragg gratings (FBG) at 1550 nm<br />

wavelength<br />

(M. Rothhardt, Ch. Chojetzki)<br />

For making Bragg gratings with excellent<br />

mechanical strength during the drawing tower<br />

process of the fibre, there is a limitation in using<br />

single pulses for the inscription of each grating.<br />

To achieve high reflectivity Bragg gratings during<br />

the dynamic inscription of FBG within the fibre<br />

drawing process (draw tower gratings), three<br />

important components are under consideration:<br />

first of all, the laser pulse properties; second, the<br />

UV photosensitivity of the fibre core, and third,<br />

the optical configuration and its alignment. These<br />

three factors have been developed and optimized<br />

during the last years; the result is the achievement<br />

of single pulse gratings with a reflectivity<br />

maximum of R = 51% at 1550 nm.<br />

Fig. 2.13: Spectral shape of a single pulse grating<br />

made at the drawing tower with a reflectivity<br />

of 51%.<br />

We use a “Compex 150” KrF excimer laser from<br />

Lambda Physics. The laser consists of an oscillator<br />

with a wavelength selection unit using 3 prisms<br />

for beam shaping and a grating for spectral narrowing.<br />

This type of laser delivers very high temporal<br />

beam coherence as well as a high degree of<br />

spatial coherence. By variation of the high voltage<br />

of oscillator and amplifier we found a regime with<br />

sufficiently high pulse energy and simultaneously<br />

very good pulse-to-pulse repeatability at about<br />

26 kV.<br />

It is essential to have a high single laser pulse<br />

photosensitivity of the fibre core. The high photosensitivity<br />

is caused by doping the fibre core with<br />

a high content of Germanium together with special<br />

collapsing conditions in the MCVD process<br />

during preform manufacturing.<br />

Ge co doping increases the refractive index of<br />

the core. This way the fibre core diameter has to<br />

be slightly smaller compared to the standard single-mode<br />

fibre in order to achieve single-mode<br />

behaviour of the fibre. This results in additional<br />

coupling losses for splices or fibre coupling with<br />

standard fibres.<br />

OPTIK / OPTICS<br />

Useful values for fibre transmission losses of<br />


46<br />

comprising a semiconductor laser and an extended<br />

external cavity. On the one hand, the FGL concept<br />

for Non-Return-to-Zero (NRZ) data transmission<br />

is considered as a potential low-cost data<br />

transmitter device; on the other hand, the laser<br />

output power and emission wavelength is shown<br />

to be sensitive to packaging, laser temperature<br />

and device current (see <strong>IPHT</strong> annual report<br />

2001).<br />

FGL understanding and optimization require simulation<br />

tools, which have been developed at the<br />

<strong>IPHT</strong>. The numerical method bases on the travelling<br />

wave model for DFB (distributed feedback)<br />

semiconductor lasers. As the lasing condition of<br />

the external cavity laser depends on its own history,<br />

the applied model splits the laser into individual<br />

sections, each with its own treatment of<br />

rate equations, (Bragg) reflections and losses.<br />

The simulation tools give access to the complex<br />

output power behaviour, mode jumps and eye.<br />

Additionally it is now possible to design special<br />

laser architectures like mode-hop-free FGLs with<br />

active wavelength stabilization and wavelengthswitchable<br />

FGLs, which are based on the interaction<br />

between the external cavity with superimposed<br />

Bragg gratings and the internal cavity,<br />

which comprises the semiconductor optical<br />

amplifier section.<br />

Fig. 2.15: Simulated eye diagrams of the virtual<br />

fibre-grating-laser at 2.5 Gbit/s. Shown are the<br />

eye diagrams with the emission wavelength at the<br />

Bragg wavelength (top) and at the long-wavelength<br />

slope close to a mode-hop (bottom).<br />

OPTIK / OPTICS<br />

2.2.10 Implementation of an OADM with a<br />

data rate of 10 Gbit/s as technology<br />

demonstrator in the PLATON project<br />

(Planar Technology for Optical Networks)<br />

(M. Rothhardt, C. Aichele, M. Becker,<br />

U. Hübner)<br />

The EU-funded PLATON Project involves collaboration<br />

and permanent feedback with a variety of<br />

European research partners: Université des Sciences<br />

et Technologies de Lille (France), Université<br />

Paris Sud (France), Ecole Polytechnique Fédérale<br />

de Lausanne (Switzerland), Technische Universität<br />

Hamburg Harburg (Germany), Instituto de<br />

Engenharia de Sistemas e Computadores do<br />

Porto (Portugal), and two industrial partners,<br />

Lucent Technologies GmbH (Nürnberg, Germany)<br />

and Highwave Optical Technologies (France).<br />

The objective of the PLATON project was to<br />

study, develop and assess photosensitive planar<br />

technology through key pilot devices. The main<br />

subject of interest is demonstrating the feasibility<br />

of the technology for making components like<br />

channel waveguides, multimode interferometers,<br />

Mach-Zehnder structures and Bragg gratings.<br />

The work aims at a reconfigurable optical adddrop<br />

multiplexer (OADM) which will be the final<br />

demonstrator.<br />

Objectives of the <strong>IPHT</strong> were particularly:<br />

(i) Accomplishing an optimized process for optical<br />

layer deposition<br />

(ii) Structuring the optical waveguides of the key<br />

pilot components (OADM)<br />

(iii) Realizing the Bragg gratings inside the optical<br />

waveguides<br />

(iv) UV trimming of the MZI structures (Mach<br />

Zehnder Interferometer) of the OADM’s<br />

(v) Packaging and fibre coupling of the optical<br />

chips.<br />

Fig. 2.16: OADM scheme with MZI structure, sections<br />

for UV trimming, input and output ports and<br />

Bragg grating regions.<br />

The main results are:<br />

(i) Optical layer deposition<br />

The well-mastered technology at the <strong>IPHT</strong> for<br />

optical silica layer deposition, FHD (Flame Hydrolysis<br />

Deposition) is applied for this project. The<br />

core layer is germanium-doped. Our parameters<br />

achieved are:<br />

Core layer thickness of 4.5 µm/5.2 µm and a<br />

refractive index of n[core] = 1.469. The refractive<br />

index tolerance is δn


a<br />

b<br />

Fig. 2.17:<br />

a. Scheme of cross<br />

sections of etched<br />

waveguides<br />

b. Deposition and<br />

sintering of a<br />

cladding layer.<br />

The cladding layer is boron co-doped, resulting in<br />

a refractive index of n[clad] = 1,454. A level of<br />

nearly no stress-induced birefringence was<br />

achieved. The resulting core-cladding refractive<br />

index difference is as specified, with ∆n~1.5 * 10 –2 .<br />

(ii) Structuring of the optical waveguides<br />

The techniques used are photolithography and<br />

reactive ion etching (RIE), which allow exact definition<br />

of planar waveguide structures. A square<br />

cross section of the waveguides was achieved.<br />

Fig. 2.18: Photomicrograph of the optical near<br />

field of the waveguide samples obtained.<br />

(iii) Bragg grating inscription process<br />

For Bragg grating inscription, a two step UVprocess<br />

was applied. It starts with imprinting the<br />

grating’s index modulation and continues with the<br />

correction of the average index modulation envelope.<br />

This final apodisation correction is done by<br />

exposing the grating to the inverse grating envelope<br />

intensity profile. The grating inscription setup<br />

at the <strong>IPHT</strong> uses the holographic Talbot interferometer<br />

inscription technique with a frequency-doubled<br />

argon-ion laser operating cw at 244 nm. The<br />

laser power at the output was 244 mW at 244 nm.<br />

Fig. 2.19: Grating transmission spectra after index<br />

modulation inscription before (α) and after (β)<br />

adaptation of the average refractive index profile.<br />

OPTIK / OPTICS<br />

(iv) UV trimming<br />

The actual trimming process applies a tuneable<br />

laser source, an EDFA and an optical power-versus-time<br />

recorder. The number of trimming sections<br />

is four for symmetry reasons.<br />

Fig. 2.20: Set-up scheme for UV trimming of the<br />

MMI structure of the OADM.<br />

The UV trimming procedure was performed two<br />

times: first time with hydrogen- loaded sample<br />

and second with presensitized trimming sections.<br />

The resulting OADM was tested at LUCENT<br />

Technologies in Nuremberg with a bit stream of<br />

10 Gbit/s. The functionality of the OADM was<br />

shown.<br />

2.2.11 Material processing with DUV/VUV<br />

laser radiation<br />

(S. Brückner)<br />

Because of their short wavelengths and their<br />

high quantum energies, the ArF laser (193 nm)<br />

and the F 2 laser (157 nm) are excellent laser tools<br />

for the precise and efficient micro structuring of<br />

high band gap materials, like fused silica or PTFE<br />

(Teflon). The measurement setups for material<br />

processing in the DUV/VUV spectral range have<br />

been continually improved in recent years. With<br />

both laser systems it is possible now, by the use<br />

of high-resolution mechanical components, to<br />

produce complex microstructures with lateral and<br />

depth resolutions in the sub-µm range.<br />

Different special tasks were successfully processed<br />

with both measurement setups by maskbased<br />

structuring.<br />

By means of the ArF laser, an array of 12 microholes<br />

with diameters smaller than 50 µm was<br />

drilled in a silica-based Photonic Crystal Fibre<br />

(PCF). For the implementation of a chemical sensor<br />

system it was necessary to drill holes through<br />

the fibre cladding exactly up to the fibre core. The<br />

drilling depth is determined by the number of<br />

laser pulses and the fluence. With an energy<br />

dose of 750 J/cm 2 it was possible to drill the hole<br />

just up to the fibre core, as shown in figure 2.21.<br />

47


48<br />

Fig. 2.21: Micrographs of the side view (left) and<br />

the fractured surface (right) of a Photonic Crystal<br />

Fibre (PCF) with a drilled hole (produced with<br />

193 nm).<br />

Additionally to a variety of experiments to F 2 laser<br />

material processing of glass, fused silica and<br />

metallic layers, the micro structuring of PTFE<br />

should be mentioned. By the use of specially<br />

designed CaF 2 lenses and an improved experimental<br />

setup, new results at sub-µm structuring<br />

were achieved. Different gratings with sizes of<br />

1mm 2 , line widths up to 1 µm and a depth of<br />

500 nm were produced with fluences from 0.3 to<br />

1.5 mJ/cm 2 . Investigations of the ablation behaviour<br />

of PTFE in a nitrogen atmosphere show an<br />

efficient ablation process with ablation rates of 40<br />

nm/pulse at a fluence of 300 mJ/cm 2 . The assembling<br />

of a new vacuum chamber system permits<br />

material processing with 157 nm in the high-vacuum<br />

range. In further experiments, a comparison<br />

of material processing in vacuum and in a dry<br />

nitrogen atmosphere will be carried out to determine<br />

the ablation behaviour and the deposition of<br />

debris particles on the grating surface.<br />

2.2.12 High-speed optical fibre grating<br />

sensor system<br />

(W. Ecke)<br />

Fibre Bragg grating (FBG) sensor systems find<br />

application in a steadily increasing number of<br />

fields, including fast strain vibrations in electrical<br />

machines, drive units or tools, e.g., train current<br />

collectors, large-scale generators, wind turbines<br />

or spot-welding grippers. These applications<br />

require fast measuring and cost-effective signal<br />

processing equipment. For this purpose, our concept<br />

of an FBG sensor system-based on broadband<br />

illumination and a compact spectrometer<br />

operating at 800 nm wavelength (Fig. 2.22) has<br />

been optimized to achieve a digital signal processing<br />

data rate of up to 1800 measurements<br />

per second, with exactly simultaneous processing<br />

for all the 16 sensors in the fibre network. The<br />

development of new optical mode-equalizing<br />

components now decreases the influence of disturbances<br />

on the fibre transmission lines to well<br />

below the detection limits of Bragg wavelength<br />

excursions (standard deviation down to 0.3 pm).<br />

Repeatability and accuracy of the measured<br />

strain signals have been improved to less than<br />

0.5 µε and 5 µε, respectively.<br />

OPTIK / OPTICS<br />

Although operating at a data rate 500 times higher<br />

than our previous standard design, the sensor<br />

system is very compact (220 × 140 × 60 mm 3 ,<br />

Fig. 2.23) and robust, operates at temperatures<br />

between –40 and +60 °C, and is fully suitable for<br />

use in industrial applications in adverse environments.<br />

Our industrial partner for sensor technologies,<br />

Jenoptik LOS GmbH, is now commercializing<br />

this new high-speed sensor system in addition<br />

to the precursor “StrainaTemp”, which is dedicated<br />

to performing slower temperature and<br />

strain measurements.<br />

Highly topical application fields of fast fibre optic<br />

strain measurements are, e.g., the quality monitoring<br />

of spot welding (cooperation with University<br />

of Applied Sciences <strong>Jena</strong>), defect monitoring<br />

of train overhead contact lines (cooperation in<br />

two European R&D projects), and load monitoring<br />

of wind turbine blades (cooperation with<br />

Enercon GmbH and Jenoptik AG).<br />

Fig. 2.22: Schematic of the optical fiber grating<br />

sensor system.<br />

Fig. 2.23: View of the high-speed sensor system<br />

(1800 meas./s for 16 strain/vibration sensors;<br />

Ethernet data output at the rear).


2.2.13 Monitoring of inhomogeneous flow<br />

distributions using fibre-optic Bragg<br />

grating temperature sensor arrays<br />

(I. Latka, W. Ecke)<br />

In many industrial facilities like chemical reactors,<br />

thermodynamic engines, pipes and others, complex<br />

flow distributions occur. Knowledge of the<br />

gas flow distributions may help to achieve an efficient<br />

system performance.<br />

In our approach, fibre Bragg grating (FBG) sensors<br />

have been used for measuring the temperature<br />

of a heated element, in our case a steel capillary,<br />

which is cooled according to the surrounding<br />

mass flow. Because of the multiplexing capability<br />

of FBG sensors, one can measure the temperature<br />

distribution, i.e., the spatial distribution<br />

of the gas mass flow along the sensor array. The<br />

length of the heated and sensor-equipped element<br />

can be easily adapted to the cross section<br />

of the gas flow, from


50<br />

After long-term laboratory tests of the sensor<br />

system with artificial and natural seawater, field<br />

tests of the sensor system were performed by the<br />

GKSS-Research Centre/Institute for Coastal<br />

Research, Geesthacht on board the ferry ship<br />

„Duchess of Scandinavia“ during a trip between<br />

Cuxhaven (D) and Harwich (GB) [Fig. 2.26]. The<br />

measured nitrate profile, shown in Fig. 2.27,<br />

reflects the nitrate load in the seawater caused by<br />

the rivers Elbe, Weser and Schelde as well as the<br />

nitrate pollution from the North Frisian Islands<br />

and the big harbour cities of the Netherlands and<br />

fits well to measurements obtained by sampling<br />

nutrient analysers on the same ferry route.<br />

Fig. 2.26: Ferry route from Harwich to Cuxhaven.<br />

Fig. 2.27: Nitrate content profile in the North Sea,<br />

measured during the ferry trip in Fig. 2.26.<br />

Further investigations mainly directed to the<br />

improvement of the long-term stability of the sensor<br />

were performed during a 2-week North Sea<br />

round trip of the German research vessel<br />

“Gauss”. On several stations the nitrate concentration<br />

was measured by the sensor and compared<br />

with the results of a commercial nutrient<br />

autoanalyser [Fig. 2.28].<br />

OPTIK / OPTICS<br />

Fig. 2.28: Comparison between water samples<br />

measured by sensor and by autoanalyzer.<br />

2.2.15 Novel optical dew point sensor<br />

(T. Wieduwilt, G. Schwotzer)<br />

The dew or frost point is a measure of the water<br />

content of any gas. Commercial optical dew point<br />

hygrometers are based on the “chilled mirror”<br />

principle. The devices consist of polished stainless<br />

steel or platinum mirrors attached to thermoelectric<br />

coolers (Peltier devices). The mirrors are<br />

illuminated (e.g. with LED), and the reflected light<br />

is received by photodiodes.<br />

The gas stream whose humidity is to measure is<br />

directed over the mirror surface. When the mirror<br />

temperature falls below the dew or frost point of<br />

the gas sample water condenses or forms ice<br />

crystals onto the mirror surface. The reflected<br />

light received by the photodiode is abruptly<br />

reduced due to scattering.<br />

The photodiode is tied into a servo loop which<br />

controls the current to the Peltier cooler. This<br />

enables the mirror to be maintained at an equilibrium<br />

temperature where the rates of condensation<br />

and evaporation of water molecules are<br />

equal and therefore, a constant mass of water is<br />

maintained on the mirror. The resulting temperature<br />

of the mirror is then fundamentally, by definition,<br />

equal the dew point temperature. A platinum<br />

resistance thermometer (PRT) embedded<br />

beneath the mirror surface measures this temperature.<br />

An inconvenience of chilled mirror hygrometers<br />

is the falsification of the measuring by contaminations<br />

on the mirror surface. Contaminations<br />

(e.g. organic particle) affect the light reflection<br />

characteristics and cleaning procedures or compensation<br />

methods are necessary. The electronic<br />

schemes used for contamination compensation<br />

are often sophisticated and expensive. Other<br />

problems are the limited miniaturization and the<br />

unsuitable manufacturing technology for mass<br />

production.<br />

In cooperation with BARTEC GmbH a novel optical<br />

dew point sensor has been developed to overcome<br />

these disadvantages.


The operation principle is based on frustrated<br />

total internal light reflection on the glass-air interface<br />

in the presence of dew drops or ice crystals<br />

(patented by Bartec).<br />

The optical principle is shown in Fig. 2.29. Essential<br />

features of the new dew point hygrometer are<br />

the application of a transparent light guiding<br />

glass slide and the reverse illumination of the<br />

glass-gas interface through glass.<br />

Fig. 2.29: Scheme of the sensor principle.<br />

Without condensed water on the glass surface,<br />

the light from a LED propagates without losses<br />

through the light guide to the photodetector. If<br />

condensed dew droplets are on the glass surface<br />

the light penetrates the glass-droplet interfaces<br />

and is scattered at the droplet-air interface. This<br />

results in a decrease of the intensity at the detector.<br />

The advantage of this principle is the ruggedness<br />

in relation to contamination.<br />

Fig. 2.30: Optical waveguide with platinum resistance<br />

thermometer.<br />

Fig. 2.31: Condensation on the glass surface.<br />

OPTIK / OPTICS<br />

To precise measure the dew point temperature, a<br />

platinum resistance thermometer with contact<br />

structures has been deposited on the glass surface<br />

(see Fig. 2.30). The platinum structure is<br />

arranged in the thermoelectric cooled condensation<br />

area. For passivation, the measuring structure<br />

is coated by a thin silicon carbide overlay to<br />

protect the electrical resistance structure. Fig.<br />

2.31 shows a microscopic photo of condensed<br />

water droplets on the sensor surface.<br />

With the presented sensor, an accuracy of ±0.5 K<br />

for the dew point temperature in the range of –15<br />

to +20 °C DP has been measured.<br />

2.3 Appendix<br />

Partners<br />

1. Industrial partners<br />

• Advanced Optic Solutions GmbH, Dresden<br />

• Analytik <strong>Jena</strong> AG<br />

• AIFOTEC Fiber Optics GmbH, Meiningen<br />

• BARTEC Messtechnik & Sensorik GmbH<br />

• Carl Zeiss <strong>Jena</strong>, Oberkochen<br />

• CeramOptec GmbH, Bonn<br />

• Crystal Fibre A/S Lyngby, Dänemark<br />

• DaimlerChrysler AG, Forschungszentrum Ulm<br />

• DSM Research, Geleen, Niederlande<br />

• EADS München-Ottobrunn<br />

• Electro-optics Industries Ltd., Israel<br />

• EPSA GmbH Saalfeld/<strong>Jena</strong><br />

• j-Fiber GmbH,<strong>Jena</strong><br />

• FiberTech GmbH, Berlin<br />

• fiberware GmbH, Mittweida<br />

• FISBA Optik, St. Gallen/Schweiz<br />

• GESO GmbH, <strong>Jena</strong><br />

• GRINTECH GmbH <strong>Jena</strong><br />

• Heraeus Quarzglas GmbH & Co. KG<br />

• Heraeus Tenevo AG<br />

• Hottinger Baldwin Messtechnik GmbH, Darmstadt<br />

• Hybrid Glass Technologies, Princeton, USA<br />

• I.D. FOS Research, Geel, Belgien<br />

• Jenoptik Laserdiode GmbH<br />

• Jenoptik L.O.S. GmbH<br />

• Jenoptik LDT GmbH, Gera<br />

• Jenoptik Mikrotechnik GmbH<br />

• Jenoptik Laser Solution GmbH<br />

• <strong>Jena</strong>-Optronik GmbH<br />

• JETI GmbH <strong>Jena</strong><br />

• Kayser & Threde GmbH München<br />

• Laserline GmbH Mühlheim-Kärlich<br />

• Layertec GmbH Mellingen<br />

• Leica Microsystems Wetzlar<br />

• Mikrotechnik & Sensorik GmbH <strong>Jena</strong><br />

• NTECH Technology, Novara, Italy<br />

• ONERA Paris Palaiseau /Frankreich<br />

• OVD Kinegram Corp., Zug, Schweiz<br />

• piezosystem jena GmbH<br />

• ROFIN SINAR Laser GmbH Hamburg<br />

• Schott Glas, Mainz<br />

• Schott Lithotec AG, <strong>Jena</strong><br />

51


52<br />

• Siemens AG, CT Erlangen und München<br />

• SUPERLUM Ltd. Moskau<br />

• SurA Chemicals GmbH <strong>Jena</strong><br />

• Thales Avionics Massy/Frankreich<br />

• Thales Research and Technology<br />

• Orsay/Frankreich<br />

• TETRA GmbH Ilmenau<br />

• Lucent Technologies Nürnberg<br />

• unique mode AG <strong>Jena</strong><br />

• VITRON Spezialwerkstoffe GmbH <strong>Jena</strong><br />

• Wahl optoparts GmbH, Neustadt<br />

• 4H <strong>Jena</strong> Engineering GmbH<br />

2. Scientific partners<br />

• Bundesanstalt für Materialprüfung und<br />

-forschung (BAM), Berlin<br />

• DBI Gas- und Umwelttechnologie GmbH,<br />

Leipzig<br />

• EMPA Dübendorf/Schweiz<br />

• ESO European Southern Observatory,<br />

Garching<br />

• Fachhochschule Giessen-Friedberg<br />

• Fachhochschule <strong>Jena</strong><br />

• Ferdinand-Braun-Institut für Höchstfrequenztechnik<br />

Berlin<br />

• Fiber Optics Research Center, Moskau<br />

• Fraunhofer Heinrich-Hertz-Institut für<br />

Nachrichtentechnik Berlin<br />

• Fraunhofer Institut Angewandte Optik und<br />

Feinmechanik <strong>Jena</strong><br />

• Fraunhofer Institut für Silicatforschung<br />

Würzburg<br />

• Fraunhofer Institut für Lasertechnik Aachen<br />

• Fraunhofer INT, Euskirchen<br />

• GKSS Forschungszentrum Geesthacht<br />

• Image Processing Systems Institute, Samara,<br />

Russia<br />

• INNOVENT e.V. <strong>Jena</strong><br />

• INESC Porto/Portugal<br />

• Institut für Angewandte Photonik, Berlin<br />

• S.I. Vavilov State Optical Institute,<br />

St. Petersburg, Russia<br />

• Institut für Bioprozess- und Analysenmesstechnik<br />

(IBA) Heiligenstadt<br />

• Institut für Fügetechnik und Werkstoffprüfung<br />

GmbH <strong>Jena</strong><br />

• Institute für Radiotechnik und Elektronik in<br />

Moskau/Uljanovsk und Prag<br />

• Laser Zentrum Hannover<br />

• Max-Planck-Institut für Plasmaphysik, Greifswald<br />

• Max-Born-Institut für Nichtlineare Optik und<br />

Kurzzeitspektroskopie, Berlin<br />

• Physikalisch-Technische Bundesanstalt Braunschweig<br />

• Technische Universität Berlin<br />

• Universität Braunschweig<br />

• Technische Universität Chemnitz<br />

• Technische Universität Darmstadt<br />

• Technische Universität Dresden<br />

• Universität Erlangen<br />

• Technische Universität Hamburg-Harburg<br />

OPTIK / OPTICS<br />

• Technische Universität Ilmenau<br />

• Universität <strong>Jena</strong><br />

• Universität Kaiserslautern<br />

• Technische Universität München<br />

• University of Leeds, U.K.<br />

• University of Pardubice, Tschech. Republik<br />

• University of Rio de Janeiro (PUC), Brasilien<br />

• University of Southampton, U.K.<br />

• Verfahrenstechnisches Institut Saalfeld<br />

• Universite Catholique de Louvain/Belgien<br />

• Universite Paris-Süd/Frankreich<br />

• Universite de Lille/Frankreich<br />

• Gwangju Institute of Science and Technology,<br />

South Korea<br />

Publications<br />

H. Bartelt:<br />

Properties of microstructured and photonic<br />

crystal fibers suitable for sensing application<br />

Proceedings SPIE Vol. 5950, 236–242 (<strong>2005</strong>)<br />

H. Bartelt:<br />

Influences of micro- and nanostructuring on light<br />

guiding<br />

Proceedings SPIE Vol. 5855, 114–117 (<strong>2005</strong>)<br />

Y. Kim, Y. Jeong, K. Oh, J. Kobelke,<br />

K. Schuster, J. Kirchhof:<br />

“Multi-port N × N multimode air-clad holey fiber<br />

coupler for high-power combiner and splitter”<br />

Optics Letters 30, 2697–2699 (<strong>2005</strong>)<br />

Y. Kim, Y. Jung, U. Paek, K. Oh,<br />

U. Röpke, J. Kirchhof, H. Bartelt:<br />

„A new type of index guiding holey fiber with flexible<br />

modal birefringence control“<br />

Proc. SPIE Vol 5855, 306–309 (<strong>2005</strong>)<br />

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster,<br />

K. Mörl, S. Jetschke, A. Schwuchow:<br />

“Materials and technologies for microstructured<br />

high power fiber lasers”<br />

Proc. SPIE 5951, 107/1–12 (<strong>2005</strong>)<br />

C. Chojetzki, M. Rothhardt, J. Ommer,<br />

S. Unger, K. Schuster, H.-R. Müller:<br />

“High-reflectivity draw-tower fiber Bragg gratings<br />

– arrays and single gratings of type II”<br />

Optical Engineering 44, 60503/1–2 (<strong>2005</strong>)<br />

M. Wegmann,J. Heiber, F. Clemens, T. Graule,<br />

D. Hülsenberg, K. Schuster:<br />

“Forming of noncircular cross-section SiO 2 glass<br />

fibers”<br />

Glass Sci. Technol. 78, 69–75 (<strong>2005</strong>)<br />

H. Lehmann, S. Brückner, J. Kobelke,<br />

G. Schwotzer, K. Schuster, R. Willsch:<br />

“Toward photonic crystal fiber based distributed<br />

chemosensors”<br />

Proc. SPIE Vol. 5855, 419–422 (<strong>2005</strong>)


K.-F. Klein, H. S. Eckhardt, C. Vincze,<br />

S. Grimm, J. Kirchhof, J. Kobelke, J. Clarkin,<br />

G. Nelson:<br />

“High NA-fibers: silica-based fibers for new applications”<br />

Proc. SPIE Vol. 5691, 30–41 (<strong>2005</strong>)<br />

J. Kirchhof, S. Unger, A. Schwuchow,<br />

S. Jetschke, B. Knappe:<br />

“Dopant interactions in high power laser fibers”<br />

Proc. SPIE Vol. 5723, 261–272 (<strong>2005</strong>)<br />

J. Kobelke, H. Bartelt, J. Kirchhof, S. Unger,<br />

K. Schuster, K. Mörl, C. Aichele, K. Oh:<br />

„„Dotierte Photonische Kristallfaser – erweiterte<br />

Möglichkeiten zur Modifizierung der Propagationseigenschaften<br />

und zur Verbesserung der Anwendungsmöglichkeiten<br />

mikrostrukturierter Fasern“<br />

DGaO – Proceedings <strong>2005</strong>, ISSN 1614 8436.<br />

W. Ecke, K. Schröder, S. Bierschenk,<br />

R. Willsch:<br />

“Opto-chemical fibre Bragg grating sensors<br />

based on evanescent field interaction with specific<br />

transducer layers”<br />

Proceedings SPIE Vol. 5952, 118–125 (<strong>2005</strong>)<br />

R. Willsch, W. Ecke, G. Schwotzer:<br />

“Spectrally Encoded Optical Fibre Sensor Systems<br />

and their Application in Process Control,<br />

Environmental and Structural Monitoring” (invited<br />

paper)<br />

Proceedings of SPIE, Vol.5952,133–146 (<strong>2005</strong>)<br />

T. Glaser, A. Ihring, W. Morgenroth, N. Seifert,<br />

S. Schröter, V. Baier:<br />

“High temperature resistant antireflective motheye<br />

structures for infrared radiation sensors”<br />

Microsystem Technologies 11, 86–90 (<strong>2005</strong>)<br />

M. Duparré, B. Lüdge, S. Schröter:<br />

“On-line characterization of Nd:YAG laser beams<br />

by means of modal decomposition using diffractive<br />

optical correlation filters”<br />

Proc. SPIE Vol. 5962, 59622G (<strong>2005</strong>)<br />

M. Zeisberger, I. Latka, W. Ecke,<br />

T. Habisreuther, D. Litzkendorf, W. Gawalek:<br />

“Measurement of the thermal expansion of melttextured<br />

YBCO using optical fibre grating sensors”<br />

Supercond. Sci. Technol. Vol. 18, 202–205 (<strong>2005</strong>)<br />

W. Ecke, K. Schröder, M. Kautz, P. Joseph,<br />

S. Willet, T. Bosselmann, M. Jenzer:<br />

“On-line characterization of impacts on electrical<br />

train current collectors using integrated optical<br />

fiber grating sensor network”<br />

Proceedings SPIE, Vol. 5758, 114–123 (<strong>2005</strong>)<br />

OPTIK / OPTICS<br />

I. Latka, W. Ecke, B. Höfer, T. Frangen,<br />

R. Willsch, A. Reutlinger:<br />

“Micro bending beam based optical fiber grating<br />

sensors for physical and chemical measurands”<br />

Proceedings SPIE Vol. 5855, 94–97 (<strong>2005</strong>)<br />

K. Schröder, J. Apitz, W. Ecke, E. Lembke,<br />

G. Lenschow:<br />

“Fibre Bragg grating sensor system monitors<br />

operational load in a wind turbine rotor blade”<br />

Proceedings SPIE Vol. 5855, 270–273 (<strong>2005</strong>)<br />

J. P. Dakin, W. Ecke, M. Reuter:<br />

“Comparison of vibration measurements of elastic<br />

and mechanically lossy (visco-elastic) materials<br />

using fibre grating sensors”<br />

Proceedings SPIE Vol. 5855, 5–8 (<strong>2005</strong>)<br />

C. Chojetzki, M. Rothhardt, J. Ommer,<br />

S. Unger, K. Schuster, H.-R. Müller:<br />

“High reflectivity draw tower fiber Bragg gratings<br />

array and single gratings of type II”<br />

Optical Engineering Jan. (<strong>2005</strong>)<br />

M. Becker, M. Rothhardt und H.-L. Althaus:<br />

„Wavelength-Switchable Fiber Grating Laser with<br />

Active Wavelength Stabilization“, Optical Engineering<br />

Dec. (<strong>2005</strong>)<br />

S. Jetschke, V. Reichel, K. Mörl, S. Unger,<br />

U. Röpke, H.-R. Müller:<br />

“Nd:Yb-codoped Silica Fibers for High Power<br />

Fiber Lasers: Fluorescence and Laser Properties”<br />

Proc. SPIE Vol. 5709, 59–68 (<strong>2005</strong>)<br />

A. Strauss, S. Brueckner, U. Roepke,<br />

H. Bartelt:<br />

“Thermal Poling of Silica”<br />

DGAO-Proceedings, ISSN 1614–8436 (<strong>2005</strong>)<br />

H. Bartelt, S. Schröter, J. Kobelke, K. Schuster<br />

“Photonische Kristalle: neue Funktionalität für<br />

integrierte Optik und optischen Fasern”<br />

Proceedings Symposium “Optik in der Rechentechnik”,<br />

TU Ilmenau Sept. (<strong>2005</strong>)<br />

C. Chojetzki, K. Schröder, M. Rothhardt,<br />

W. Ecke:<br />

“Strukturüberwachung mit Faser-Bragg-Gitter-<br />

Sensoren am Beispiel des Rotorblattes einer<br />

Windkraftanlage”<br />

VDI-Berichte Nr. 1899, 209–217, (<strong>2005</strong>)<br />

M. Rothhardt, C. Chojetzki, H.-R. Müller:<br />

“High mechanical strength single-puls draw<br />

tower gratings”<br />

Proc. SPIE Vol. 5579, 127–135, (<strong>2005</strong>)<br />

Y. Joeng, Y. Kim, K. Mörl, S. Höfer,<br />

A. Tünnermann, K. Oh:<br />

“Q-switching of Yb 3+ -doped fiber laser using a<br />

novel micro-actuating platform light modulator”<br />

Optics Express 13, 10302, (<strong>2005</strong>)<br />

53


54<br />

Presentations/Posters<br />

S. Unger, J. Kirchhof, A. Schwuchow,<br />

S. Jetschke, B. Knappe:<br />

“Dopant interactions in high power laser fibers”<br />

Photonics West/Optoelectronics,<br />

22.01.–27.01.<strong>2005</strong>, San Jose, California/USA<br />

(Poster)<br />

S. Jetschke, V. Reichel, K. Mörl, S. Unger,<br />

U. Röpke, H.-R. Müller:<br />

“Nd:Yb-codoped slica fiber lasers: fluorescence<br />

and laser properties”:<br />

Photonics West <strong>2005</strong>, San Jose USA<br />

24.01.–28.01.<strong>2005</strong><br />

(Paper)<br />

R. Willsch, W. Ecke, G. Schwotzer:<br />

„Faseroptische Sensorsysteme mit Mikro- und<br />

Nanostrukturkomponenten“<br />

VDE /GMM Workshop „Mikrooptik im Fokus der<br />

Photonik“, Karlsruhe 03.02.–04.02.<strong>2005</strong><br />

(Paper)<br />

S. Schröter, U. Hübner, R. Boucher, H. Bartelt:<br />

“Mikrooptische Komponenten auf der Basis von<br />

PC-Strukturen in Ta 2O 5-Wechselschichtsystemen”<br />

GMM-Workshop “Mikrooptik im Fokus der Photonik”,<br />

FZ Karlsruhe,03.02.–04.02. <strong>2005</strong><br />

(Paper)<br />

J. Kobelke, J. Kirchhof, K. Schuster, K. Gerth,<br />

S. Unger, C. Aichele, K. Mörl:<br />

“Photonische Kristallfasern – Möglichkeiten zur<br />

Herstellung und Anwendung einer neuen Klasse<br />

optischer Fasern”<br />

Innovationsforum Strukturierung von Gläsern,<br />

14.02.–15.02. <strong>2005</strong>, Barleben.<br />

(Paper)<br />

W. Ecke, K. Schröder, M. Kautz, P. Joseph,<br />

S. Willet, T. Bosselmann, M. Jenzer:<br />

“On-line characterization of impacts on electrical<br />

train current collectors using integrated optical<br />

fiber grating sensor network”<br />

SPIE’s 12 th International Symposium on Smart<br />

Structures and Materials, Conference “Smart<br />

Sensor Technology and Measurement Systems”,<br />

07.03.–09.03 <strong>2005</strong>, San Diego/USA, (Paper)<br />

J. Kobelke, J. Kirchhof, S. Unger, K. Schuster,<br />

K. Mörl, C. Aichele, H. Bartelt:<br />

“Active and passive doped microstructured and<br />

photonic crystal fibres”<br />

Hauptjahrestagung der DPG, 04.–09.03. <strong>2005</strong>,<br />

Berlin.<br />

(Poster)<br />

J. Kirchhof, S. Unger, J. Kobelke, H. Bartelt:<br />

„Hochleistungs-Laserfasern und Photonische<br />

Mikrostrukturen“<br />

DGG Glasforum, 10. 03.<strong>2005</strong>, Würzburg.<br />

(Invited paper)<br />

OPTIK / OPTICS<br />

Y. Kim, W. Shin, S. C. Bae, K. Oh, J. Kobelke,<br />

K. Schuster, J. Kirchhof:<br />

“Air-clad multimode holey fiber coupler for high<br />

power transmission”<br />

CLEO <strong>2005</strong>, section 09, paper CWN1.<br />

(Paper)<br />

W. Ecke, K. Schröder:<br />

“Fiber Optic Health Monitoring Sensor System for<br />

Wind Energy Turbine”<br />

Colloquium at National Wind Technology Center<br />

of US Department of Energy, Boulder, Colorado,<br />

16.03.<strong>2005</strong><br />

(Invited paper)<br />

K. Mörl:<br />

„Arbeiten zu mikrostrukturierten und Hochleistungs-Laserfasern<br />

am <strong>IPHT</strong> <strong>Jena</strong>“<br />

Universität Hamburg, 25.04.<strong>2005</strong><br />

(Invited paper)<br />

V. Reichel:<br />

„Höchstleistungsfaserlaser für cw-Betrieb“<br />

OptoNet Workshop „Neue Laserstrahlquellen“<br />

11.05.<strong>2005</strong>, <strong>IPHT</strong> <strong>Jena</strong><br />

(Invited paper)<br />

J. Kobelke, H. Bartelt, J. Kirchhof, S. Unger,<br />

K. Schuster, K. Mörl, C. Aichele, K. Oh:<br />

“Doped photonic crystal fibres – Enhanced possibilities<br />

for modification of microstructured fibres”<br />

DGaO-Jahrestagung,<br />

17.05.–20.05.<strong>2005</strong> Wroclaw, Polen.<br />

(Paper)<br />

A. Strauss, S. Brueckner, U. Roepke,<br />

H. Bartelt:<br />

“Thermal Poling of Silica“,<br />

106. Jahrestagung der DGaO,<br />

17.05.–20.05. <strong>2005</strong>, Wroclaw/Polen<br />

(Poster)<br />

A. Csaki, A. Steinbrück, S. Schröter, T. Glaser,<br />

W. Fritzsche:<br />

“Fabrication and characterization of nanophotonic<br />

metal structures”<br />

International Symposium Molecular Plasmonics,<br />

<strong>Jena</strong> 19.05.–21.05. <strong>2005</strong><br />

(Poster)<br />

I. Latka, W. Ecke, B. Höfer, T. Frangen,<br />

R. Willsch, A. Reutlinger:<br />

“Micro bending beam based optical fiber grating<br />

sensors for physical and chemical measurands”<br />

17 th International Conference on Optical Fibre<br />

Sensors, 23.05.–27.05.<strong>2005</strong>, Bruges/Belgium,<br />

(Paper)<br />

K. Schröder, J. Apitz, W. Ecke, E. Lembke,<br />

G. Lenschow:<br />

“Fibre Bragg grating sensor system monitors<br />

operational load in a wind turbine rotor blade”<br />

17 th International Conference on Optical Fibre<br />

Sensors, 23.05.–27.05.<strong>2005</strong>, Bruges/Belgium,<br />

(Paper)


J. P. Dakin, W. Ecke, M. Reuter:<br />

“Comparison of vibration measurements of elastic<br />

and mechanically lossy (visco-elastic) materials,<br />

using fibre grating sensors”<br />

17 th International Conference on Optical Fibre<br />

Sensors, 23.05.–27.05.<strong>2005</strong>, Bruges/Belgium,<br />

(Paper)<br />

H. Bartelt:<br />

“Influences of micro- and nanostructuring on light<br />

guiding”<br />

17 th International Conference on Optical<br />

Fibre Sensors, Bruges/Belgium,<br />

23.05.–27.05.<strong>2005</strong><br />

(Invited paper)<br />

C. Aichele, M. Becker, S. Grimm, B. Knappe<br />

M. Rothhardt:<br />

„Eigenschaften dotierter SiO-Wellenleiterschichten<br />

für UV-Strukturierungs-verfahren zur Realisierung<br />

passiver optischer Wellenleiterkomponenten“,<br />

VDE-ITG-Diskussionssitzung“ „Messung<br />

und Modellierung in der Optischen<br />

Nachrichtentechnik“ (MMONT’05), Hamburg,<br />

01.06.–03.06. <strong>2005</strong> (Paper)<br />

M. Becker, M. Rothhardt:<br />

„Simulation direkt modulierbarer Faser-Gitter-<br />

Laser mit dem Wanderwellenmodell, VDE-ITG<br />

Diskussionssitzung „Messung und Model-lierung<br />

optischer Nachrichtensysteme“ (MMONT’05),<br />

Hamburg, 01.06.–03.06.<strong>2005</strong><br />

(Paper)<br />

C. Chojetzki, M. Rothhardt, H.-R. Müller,<br />

M. Becker:<br />

„Ziehturm Faser-Bragg-Gitter – kostengünstige<br />

Bauelemente für die optische Informationstechnik“,<br />

VDE-ITG-Diskussionssitzung<br />

“Messung und Modellierung in der Optischen<br />

Nachrichtentechnik (MMONT’05), Hamburg,<br />

01.06.–03.06.<strong>2005</strong><br />

(Paper)<br />

K.-F. Klein, H. S. Eckhardt, C. Vincze,<br />

J. Kirchhof, J. Kobelke:<br />

„Numerische Apertur von mikrostrukturierten<br />

Multimode-Fasern“<br />

Messung und Modellierung in der optischen<br />

Nachrichtentechnik,<br />

Hamburg, 01.06.–03.06.<strong>2005</strong><br />

(Paper)<br />

U. Röpke, S. Jetschke, S. Unger:<br />

”Investigation of Nd:Yb-codoped Silica Fibers as<br />

a Laser Material”, CLEO Europe <strong>2005</strong>,<br />

WED CJ-14, München, 12.06.–17.06.<strong>2005</strong><br />

(Poster)<br />

H.-R. Müller, J. Kirchhof, V. Reichel, S. Unger:<br />

“Fibres for High-Power Lasers and Amplifiers”<br />

Journees Scientifique de I’ONERA, Paris<br />

27.06.–29.06.<strong>2005</strong><br />

(Invited paper)<br />

OPTIK / OPTICS<br />

B. Knappe, C. Aichele, St. Grimm, M. Alke,<br />

H. Renner, E. Brinkmeyer:<br />

“Ready-to-use silica slab waveguides for pretreatmentless<br />

UV-fabrication of customized planar<br />

lightwave circuits”<br />

BGPP, Sydney, Australia, 04.07.–07.07.<strong>2005</strong>,<br />

(Paper)<br />

M. Rothhardt, C. Chojetzki, H.-R. Müller,<br />

H. Bartelt:<br />

“Large Fiber Bragg Grating Arrays for Motoring<br />

Applications Made by Drauring Tower Inscription”,<br />

BGPP, Sydney, Australia<br />

04.07.–06.07.<strong>2005</strong><br />

(Poster)<br />

J. Kirchhof, S. Unger, C. Aichele, S. Grimm,<br />

J. Dellith:<br />

“Borosilicate optical fibers and planar waveguides<br />

– Technology and properties”<br />

5 th Int. Conf. on Borate Glasses, Crystals and<br />

Melts, Trento, Italy,10.07.–14.07.<strong>2005</strong>,<br />

(Paper)<br />

W. Ecke, K. Schröder, S. Bierschenk,<br />

R. Willsch:<br />

“Opto-chemical fibre Bragg grating sensors<br />

based on evanescent field interaction with specific<br />

transducer layers”<br />

SPIE OOC <strong>2005</strong>, Warsaw/Poland<br />

28.08.–02.09.<strong>2005</strong><br />

(Paper)<br />

R. Willsch, W. Ecke, G. Schwotzer:<br />

“Spectrally Encoded Optical Fiber Sensor Systems<br />

and their Application in Industrial Process<br />

Control, Environmental and Structural Monitoring”<br />

SPIE Optics and Optoelectronics Congress<br />

Warsaw/Poland, 28.08.–02.09.<strong>2005</strong><br />

(Invited paper)<br />

H. Bartelt:<br />

“Properties of microstructured and photonic crystal<br />

fibers suited for sensing applications”<br />

SPIE OOC <strong>2005</strong>, Warsaw/Poland<br />

28.08.–02.09.<strong>2005</strong><br />

(Invited paper)<br />

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster,<br />

K. Mörl:<br />

“Materials and technologies for microstructured<br />

high power fiber lasers”<br />

Optics and Optoelectronics Conference,<br />

28.08.–02.09. <strong>2005</strong>, Warsaw, Poland.<br />

(Paper)<br />

L. Kröckel, G. Schwotzer, M. Koch, K. Bley,<br />

K. H. Venus:<br />

“Fluorimetric Determination of Phosphate by<br />

Reversed-FIA for In-Situ Water Analysis”<br />

AquaLife, Kiel, 20.09.05–22.09.05<br />

(Poster)<br />

55


56<br />

G. Schwotzer:<br />

“Optical Components and Devices for In-Situ<br />

Water Analysis in Project BIOSENS”<br />

AquaLife <strong>2005</strong>, Kiel, 20.09.–22.09.<strong>2005</strong><br />

(Invited paper)<br />

C. Chojetzki, W. Ecke, M. Rothhardt,<br />

K. Schröder:<br />

“Structural monitoring using fibre Bragg gratings<br />

at the example of a wind energy facility”<br />

GESA – Symposium <strong>2005</strong>, Saarbrücken,<br />

21.09.–22.09.<strong>2005</strong><br />

(Paper)<br />

H. Bartelt:<br />

“Optische Fasern – geführtes Licht für Kommunikationstechnik<br />

und Sensorik”<br />

Lehrerfortbildung, <strong>Jena</strong>, 22.09.<strong>2005</strong><br />

H. Bartelt, S. Schröter, J. Kobelke,<br />

K. Schuster:<br />

“Photonische Kristalle: Neue Funktionalität für<br />

integrierte Optik und optische Fasern”<br />

Vortrag auf dem 8. Workshop „Optik in der<br />

Rechentechnik“, TU Ilmenau, 23.09.<strong>2005</strong><br />

(Paper)<br />

H.-R. Müller:<br />

“Fiber Development for Diode Pumped Fiber<br />

Lasers”<br />

Sino-German Workshop GZ 313<br />

“Advances in Diodes and Diode Pumped Lasers”,<br />

Peking, 25.09.–30.09.<strong>2005</strong><br />

(Invited paper)<br />

J. Kirchhof, S. Unger, A. Schwuchow,<br />

S. Grimm, V. Reichel:<br />

“Materials for high-power fiber lasers”<br />

First Conference on Advances in Optical Materials,<br />

12.10.–16.10.<strong>2005</strong>, Tucson, Arizona/USA.<br />

(Poster)<br />

W. Ecke, K. Schröder:<br />

“Optical fibre grating sensors for structural health<br />

monitoring in adverse environment”<br />

Colloquium at Max-Planck-Institute for Plasma<br />

Physics, Greifswald, 04.11.<strong>2005</strong><br />

(Invited paper)<br />

W. Ecke:<br />

“Fibre Bragg grating sensor systems for structural<br />

health monitoring and optochemical measurements”<br />

Colloquium at Institute of Materials Science and<br />

Applied Mechanics of Wroclaw University of<br />

Technology, Wroclaw/Poland, 16.11.<strong>2005</strong><br />

(Paper)<br />

R. Willsch, W. Ecke, G. Schwotzer:<br />

„Spektraloptische Fasersensorsysteme für Prozess-,<br />

Umwelt- und Strukturmonitoring“<br />

17. Internat. Wiss. Konferenz IWKM, Mittweida,<br />

03.11.–04.11.<strong>2005</strong><br />

(Invited paper)<br />

OPTIK / OPTICS<br />

K. Schuster, J. Kobelke, J. Kirchhof,<br />

C. Aichele, K. Mörl, A. Wojcik,:<br />

“High NA fibers – a comparison of optical, thermal<br />

and mechanical properties of ultra low index<br />

coated fibers and air clad MOF’s”<br />

54 th Int. Cable and Wire Symposium,<br />

Providence, RI/USA, 13.11.–16.11.<strong>2005</strong>,<br />

(Paper)<br />

A. Wojcik, K. Schuster, J. Kobelke,<br />

C. Chojetzki, C. Michels, K. Rose,<br />

M. J. Matthewson:<br />

“Novel Protective coatings for high temperature<br />

applications”<br />

54 th Int. Cable and Wire Symposium,<br />

Providence, RI/USA,13.11–16.11. <strong>2005</strong>,<br />

(Paper)<br />

J. Kobelke, K. Schuster, J. Kirchhof, S. Unger,<br />

A. Schwuchow, K. Mörl, S. Brückner:<br />

“Active and passive microstructured fibers”<br />

Int. Workshop on Emerging Areas of Fibre Optics<br />

and Future Applications,<br />

Kalkutta, India<br />

08.12.–10.12.<strong>2005</strong>,<br />

(Invited paper)<br />

Lectures<br />

Prof. Dr. H. Bartelt:<br />

Wahlvorlesung<br />

Friedrich-Schiller-Universität <strong>Jena</strong><br />

Optische Nachrichtentechnik<br />

Winter-Semester<br />

und 2004/<strong>2005</strong><br />

Wahlvorlesung<br />

Friedrich-Schiller-Universität <strong>Jena</strong><br />

Mikrooptik und integrierte Optik<br />

Sommer-Semester <strong>2005</strong><br />

Prof. Dr. R. Willsch:<br />

Fachhochschule <strong>Jena</strong>,<br />

Fachbereiche/Studienrichtungen<br />

Elektrotechnik/Informationstechnik,<br />

Physikalische Technik, Umwelttechnik und<br />

Biotechnologie, “Sensortechnik”<br />

Wintersemester 2004/<strong>2005</strong> und <strong>2005</strong>/2006<br />

Dr.W.Ecke:<br />

Fachhochschule <strong>Jena</strong>,<br />

Masterstudiengang Laser- und Opto-Technologien<br />

LOT “Faseroptik” Sommersemester <strong>2005</strong><br />

Patents<br />

J. Bolle, J. Bliedtner, K. Zweinert, W. Ecke,<br />

R. Willsch, W. Bürger:<br />

„Schweißanordnung, insbesondere zum Verbinden<br />

von Werkstücken durch Widerstands- und<br />

Pressschweißen“<br />

DE 10 <strong>2005</strong> 017 797.2


W. Ecke, K. Schröder:<br />

„Anordnung zur Erhöhung der Messgenauigkeit<br />

von Fasergitter-Sensorsystemen“<br />

DE 10 <strong>2005</strong> 062 749.8 (25.08.<strong>2005</strong>)<br />

H.-R. Müller, S. Unger, K. Mörl, K. Schuster:<br />

„Optische Fasern für polarisiert emittierende<br />

Faserlaser und -verstärker sowie ein Verfahren<br />

zu deren Herstellung“,<br />

DE 10 <strong>2005</strong> 062 749.8 (23.12.<strong>2005</strong>)<br />

Diploma<br />

Y. Eberhardt<br />

„Konzeption, Aufbau und Erprobung von Küvetten<br />

zur Messung kleiner Flüssigkeits-Volumina“<br />

Fachhochschule <strong>Jena</strong>, 15.06.<strong>2005</strong><br />

R. Roth<br />

„Optische Untersuchungen ausgewählter Laserdioden<br />

und VCSEL hinsichtlich ihrer Eignung für<br />

Sensoranwendungen“<br />

Fachhochschule <strong>Jena</strong>, 16.07.<strong>2005</strong><br />

Th. Frangen.<br />

„Entwicklung, Aufbau und Test eines Fasergitter-<br />

Mikrobiegebalkens zur Messung kleiner Biegekräfte<br />

und Anwendung als Viskosimeter“<br />

Fachhochschule <strong>Jena</strong>, 23.09.<strong>2005</strong><br />

L. Kröckel:<br />

„Untersuchungen zum fluorimetrischen Nachweis<br />

von Phosphat in Wasser mittels Fließ-Injektions-<br />

Analyse“<br />

Fachhochschule <strong>Jena</strong>, 28.09.<strong>2005</strong><br />

D. Reinisch:<br />

„Konstruktion eines Simulators für die optische<br />

Messung von Temperatur und Feuchte in Zahnradgetrieben“<br />

Fachhochschule <strong>Jena</strong> 16.12.<strong>2005</strong><br />

Master Thesis<br />

M. Giebel:<br />

„Entwicklung einer Labormesseinrichtung zur<br />

Messung von Brechzahlen in Wasser“<br />

Fachhochschule <strong>Jena</strong>, 24.03.<strong>2005</strong><br />

S. Bierschenk:<br />

“Application of specifically sensibilised layers in<br />

an optical fibre grating refractometer”<br />

Fachhochschule <strong>Jena</strong>, 11.04.<strong>2005</strong><br />

Mirko Wittrin:<br />

„Untersuchungen zum Potential des RNF-Verfahrens<br />

für Brechzahlprofilmessungen an optischen<br />

,Silica on Silicon‘-Wellenleitern“<br />

Fachhochschule <strong>Jena</strong>, Oktober <strong>2005</strong><br />

OPTIK / OPTICS<br />

Laboratory exercises<br />

Th. Frangen 01.01.05–31.01.05<br />

L. Kröckel 21.02.05–31.12.05<br />

D. Mitrenga 14.02.05–31.07.05<br />

E. Lindner 15.02.05–18.02.06<br />

M. Klube 01.03.05–30.04.06<br />

M. Wittrin 01.03.05–30.09.05<br />

D. Reinisch 01.04.05–30.11.05<br />

M. Leich 04.04.05–12.08.05<br />

R. Roth 26.04.04–16.07.05<br />

N. Westphal 18.07.05–29.07.05<br />

T. Rohrbach 05.10.05–21.02.06<br />

T. Rathje 19.10.05–30.06.06<br />

K. Wolter 21.11.05–31.05.06<br />

F. Just 01.12.05–30.06.06<br />

Guest scientists<br />

Dr. Y. Joeng<br />

Gwangju Institute of Science<br />

and Technology, Korea<br />

März <strong>2005</strong><br />

Dr. Aleksey Tchertoriski, Institute for Radio<br />

Engineering and Electronics, Ulyanovsk, Russia,<br />

01.04.–27.06.<strong>2005</strong><br />

Prof. Kyunghwan Oh<br />

Gwangju Institute of Science<br />

and Technology, Korea<br />

01.12.04–28.02.<strong>2005</strong><br />

Memberships<br />

Prof. Dr. H. Bartelt:<br />

• Mitglied im Arbeitskreis Mikrooptik der<br />

Deutschen Gesellschaft für Angewandte Optik<br />

• Deutscher Vertreter in WG7 der ISO zum<br />

Thema „Diffractive Optics“<br />

• Mitglied des Editorial Board der Fachzeitschrift<br />

„Optik“<br />

• Vorstandsmitglied des Mikrotechnik Thüringen<br />

e.V.<br />

• Mitglied im Kuratorium der Stiftung für<br />

Forschung und Technologie STIFT<br />

• Mitglied im wissenschaftlichen Beirat der<br />

<strong>Jena</strong>er Technologietage 2004 und <strong>2005</strong><br />

• Mitglied im Beirat des BioRegio <strong>Jena</strong> e.V.<br />

• Mitglied im Beirat des Technologie- und Innovationspark<br />

<strong>Jena</strong><br />

• Conference Chair Optical sensing II<br />

Photonics Europe, April 2006,<br />

Strasbourg/France<br />

Prof. Dr. R. Willsch:<br />

• Mitglied des Redaktionsbeirates der<br />

Fachzeitschrift „SENSOR report“<br />

• Member of Optical Fibre Sensors (OFS)<br />

International Steering Committee, Chair of<br />

OFS-17, International Conference May <strong>2005</strong><br />

Bruges/Belgium<br />

57


58<br />

• Mitglied im Kongressbeirat und Session-Chairman<br />

OPTO-Kongress Nürnberg, Mai 2006<br />

• Stellv. Vorsitzender AMA-Fachausschuss<br />

„Optische Sensorik“<br />

Dr.W.Ecke:<br />

• Program Chair and Member of Technical<br />

Program Committee of International Optical<br />

Fiber Sensors Conference OFS-17,<br />

Bruges/Belgium, May <strong>2005</strong><br />

• Co-Chair of Conference „Smart Sensor<br />

Technology and Measurement Systems“<br />

of SPIE International Symposium on Smart<br />

Structures and Materials, San Diego/CA<br />

USA, March <strong>2005</strong><br />

• Member of Technical Program Committees<br />

of Optical Fibre Technology (OFT) and<br />

Optical Fibre Applications (OFA)<br />

conferences of SPIE Optics and Optoelectronics<br />

Congress,<br />

Warsaw/Poland, August <strong>2005</strong><br />

OPTIK / OPTICS<br />

Participation in fairs/expositions<br />

• Exhibition at OFS-17 Conference<br />

23.05.–27.05.<strong>2005</strong> Bruges, Belgium<br />

• „Lange Nacht der Wissenschaften“<br />

18.11.<strong>2005</strong> <strong>IPHT</strong> <strong>Jena</strong><br />

• Optonet Workshop<br />

„Neue Laserstrahlquellen“<br />

11.05. <strong>2005</strong>, <strong>IPHT</strong>, <strong>Jena</strong><br />

• LASER <strong>2005</strong> – World of Photonics,<br />

Neue Messe München,<br />

3.–16. 06.<strong>2005</strong>,<br />

Ausstellung am Gemeinschaftsstand<br />

Sachsen/Thüringen<br />

• TRANSFER X, Messe Dresden,<br />

9.–11.11.05<br />

Gemeinschaftsstand <strong>IPHT</strong>


3.1 Überblick<br />

<strong>2005</strong> war für den Bereich „Mikrosysteme“ ein<br />

bewegtes Jahr, das im Rückblick mit den Begriffen<br />

Kontinuität und Veränderung umrissen werden<br />

kann.<br />

Kontinuität insofern, dass in den Gruppen die<br />

fachliche Arbeit auf den verschiedenen Themengebieten<br />

systematisch weiter vorangetrieben<br />

wurde und zu einer Reihe sehr beachtlicher wissenschaftlicher<br />

Ergebnisse, verbunden mit<br />

erfolgreicher Projektakquisition, geführt hat. Die<br />

nachfolgenden Abschnitte geben darüber Auskunft.<br />

Veränderung benennt vor allem zwei wichtige,<br />

eng miteinander verkoppelte Entwicklungen. Zum<br />

Einen hat das Kuratorium mit Wirkung vom 1. Mai<br />

<strong>2005</strong> Prof. Jürgen Popp zum neuen Bereichsleiter<br />

berufen. Prof. Popp ist Lehrstuhlinhaber für<br />

Physikalische Chemie an der hiesigen Universität<br />

und Leiter des Institutes für Physikalische Chemie.<br />

Er wird diese Funktionen auch weiterhin<br />

ausüben, so dass die Verflechtung des <strong>IPHT</strong> mit<br />

der Universität in seiner Person eine substanzielle,<br />

für die Zukunft des <strong>IPHT</strong> entscheidende Stärkung<br />

erfährt. Als weithin anerkannter Experte auf<br />

dem Gebiet der Laserspektroskopie und der Biophotonik<br />

bringt Prof. Popp – mit seiner Gruppe an<br />

der FSU – ein hochaktuelles und zukunftsträchtiges<br />

wissenschaftliches Feld in das <strong>IPHT</strong> ein, welches<br />

sich in idealer Weise mit dem KnowHow<br />

MIKROSYSTEME / MICROSYSTEMS<br />

3. Mikrosysteme / Microsystems<br />

Leitung/Head: Prof. Dr. J. Popp<br />

e-mail: juergen.popp@ipht-jena.de<br />

Stellvertreter/Vice Head: Dr. H. Dintner<br />

helmut.dintner@ipht-jena.de<br />

Spektral-optische Verfahren Photonische Chipsysteme Mikrosystemtechnologie<br />

und Instrumentierung Photonic Chip Systems Microsystem Technology<br />

Spectral Optical Techniques<br />

and Instrumentation<br />

Leitung/Head: Prof. Dr. J. Popp Leitung/Head: Dr. W. Fritzsche Leitung/Head: Dr. Th. Henkel<br />

wolfgang.fritzsche@ipht-jena.de thomas.henkel@ipht-jena.de<br />

Spectral Optical Sensing Microtechnology<br />

Dr. R. Riesenberg Dr. G. Mayer<br />

rainer.riesenberg@ipht-jena.de guenter.mayer@ipht-jena.de<br />

Thermal Microsensors<br />

Dr. E. Keßler<br />

ernst.kessler@ipht-jena.de<br />

Sensor Preparation<br />

Dr. A. Lerm<br />

albrecht.lerm@ipht-jena.de<br />

3.1. Overview<br />

<strong>2005</strong> was a rather exciting year for the microsystems<br />

division. The year <strong>2005</strong> can be sketched by<br />

the terms continuity and change.<br />

Continuity insofar as the scientific work of the<br />

various research fields within the division has<br />

been pursued systematically resulting in a lot of<br />

remarkable scientific results and a very successful<br />

acquisition of new projects. The following<br />

chapters provide a more detailed insight into the<br />

recent achievements of the microsystems division.<br />

The term change marks two important and<br />

strongly coupled developments. Firstly, Prof.<br />

Juergen Popp was appointed as the new head of<br />

the division starting at May 1 by the supervisory<br />

board of the institute. Prof. Popp holds a chair at<br />

the Friedrich-Schiller-Universität of <strong>Jena</strong> where<br />

he is the director of the institute for physical<br />

chemistry. Since he will carry on this position, the<br />

scientific interlocking between the <strong>IPHT</strong> and the<br />

university being an essential factor for the future<br />

of the <strong>IPHT</strong> will be strengthened by Prof. Popp in<br />

a substantial manner. As a widely recognized<br />

expert in the field of laser spectroscopy and biophotonics<br />

Prof. Popp – together with his group at<br />

the university – will establish a highly attractive<br />

and longreaching research field at <strong>IPHT</strong> which<br />

can be suitably combined with the know how of<br />

the division on the development of chip systems<br />

59


60<br />

The staff of the microsystems division.<br />

Fig. 3A: NIR Raman spectral sensor. The sensor<br />

works in the wavelength range of 780 nm to<br />

1100 nm, is equipped with a 1024 × 128 pixel<br />

CCD and has a spectral resolution of 0.3 nm<br />

(5 cm –1 to 2.5 cm –1 ).<br />

Fig. 3B: Relative irradiance on the CCD of the<br />

multi-signal-polychromator. Positions of 4 rows of<br />

25 spectra, dot-distance 31 nm.<br />

MIKROSYSTEME / MICROSYSTEMS<br />

Fig. 3C: 16 × 16 thermopile array of a calorimetric<br />

space debris detector on PC.


MIKROSYSTEME / MICROSYSTEMS<br />

Fig. 3D: Silver nanoparticles were coated with a gold shell in order to tune the plasmon surface resonance<br />

band. Spectra (left), scheme (center), photos of droplets with various gold shell thickness (center right) and<br />

SEM and TEM images of the sample (right).<br />

Fig. 3E: Single particle spectroscopy on immobilized 90 nm silver (left) and 110 nm gold (right) nanoparticles.<br />

The presented spectra were measured on a single particle each.<br />

Fig. 3F: LabOnChip system for droplet-based micro flow-trough PCR. Sample droplets are moved along a<br />

winding micro channel over the different temperature zones according the thermal protocol. The fluidic<br />

module is in thermal contact with a micro system-based heat plate. The thermal distribution as measured<br />

with an infrared camera is shown in the upper right corner. A detailed view of sample droplets inside the<br />

microchannel is given in the lower right corner.<br />

61


62<br />

des Bereiches zur mikrotechnisch basierten<br />

Chip- und Instrumentenentwicklung ergänzt und<br />

das fachliche Profil des Bereiches, aber auch des<br />

<strong>IPHT</strong> insgesamt, maßgeblich prägen wird.<br />

Damit ist zugleich die zweite wesentliche Veränderung<br />

des vergangenen Jahres angesprochen:<br />

Die erreichten Fortschritte in der Diskussion zu<br />

der zukünftigen Ausrichtung und Positionierung<br />

des <strong>IPHT</strong>. Die vom Kuratorium bestellte Strukturkommission<br />

hat für den optisch orientierten Teil<br />

des <strong>IPHT</strong>, und damit auch für den Bereich „Mikrosysteme“,<br />

Empfehlungen zur inhaltlichen Fokussierung<br />

und strukturellen Anpassung ausgesprochen.<br />

Von den beiden identifizierten Forschungsschwerpunkten<br />

Optische Fasern und Photonische<br />

Instrumentierung beschreibt vor allem der<br />

Letztere die avisierte thematische Ausrichtung<br />

des Bereiches, auf welche sich die Arbeiten in<br />

den kommenden Jahren fokussieren werden.<br />

Fachlich bedeutet der Fokussierungsprozess einerseits<br />

die kontinuierliche Fortführung von<br />

Arbeitsrichtungen, welche sich unmittelbar in das<br />

neue Bereichsprofil einordnen (Verknüpfung<br />

optisch basierter Chiparrays, mikroanalytischer<br />

Systeme, infrarotoptischer Sensoren mit laserspektroskopischen<br />

Verfahren). Andererseits sind<br />

mit der Neuausrichtung auch inhaltliche Umorientierungen<br />

verbunden (Mikrosystemkonzepte<br />

außerhalb der Optik) und muss mit Blick auf die<br />

kompetente Besetzung der Forschungsfelder<br />

zusätzliche Expertise auf- bzw. ausgebaut werden<br />

(Plasmonik, molekulares und funktionales<br />

Imaging, THz-Technik). Hierzu sollen insbesondere<br />

Nachwuchsgruppen zeitnah etabliert werden.<br />

Um die fachliche Profilierung zu befördern, hat<br />

sich der Bereich im vergangenen Jahr eine neue<br />

Abteilungsstruktur gegeben, welche im obigen<br />

Organigramm dargestellt ist. Die einzelnen<br />

Arbeitsgruppen sind dabei in sich weitgehend<br />

unverändert geblieben, wurden aber durch die<br />

geänderte Zuordnung in einen neuen Kontext<br />

gestellt. Dies betrifft vor allem die Vereinigung<br />

von spektraloptischer Verfahrens- und Systementwicklung<br />

sowie die Herausstellung der Mikrosystemtechnik<br />

(Mikroreaktorik, Mikrofluidik) als<br />

unverzichtbare enabling technology für die photonische<br />

Instrumentierung.<br />

Damit sind intern bereits wichtige Weichen<br />

gestellt, um den Fokussierungsprozess des<br />

Bereiches forciert weiterzuführen. Zugleich sind<br />

diese Maßnahmen eingebunden in zentrale forschungsstrategische<br />

Aktivitäten der Universität<br />

und des Campus Beutenberg (z.B. Ernst-Abbe-<br />

Center for Photonics, <strong>Jena</strong>er Innovationscluster<br />

„Optische Technologien“). Insgesamt sieht sich<br />

der Bereich „Mikrosysteme“ daher gut aufgestellt,<br />

um die Herausforderungen der inhaltlichen Profilierung<br />

als Chance für die weitere wissenschaftliche<br />

und struklurelle Entwicklung des Bereiches<br />

zu nutzen.<br />

MIKROSYSTEME / MICROSYSTEMS<br />

and instruments defining not only the future<br />

scientific profile of the division, but also a main<br />

research topic of the <strong>IPHT</strong>.<br />

For this reason, the second essential change<br />

within the last year was already addressed: the<br />

progress achieved in the discussion about the<br />

future orientation and positioning of the <strong>IPHT</strong>.<br />

The structure commission being established by<br />

the supervisory board submitted a strategic recommendation<br />

for a scientific focusing and structural<br />

adaption of the optical orientated parts of<br />

<strong>IPHT</strong>, hence, also for the microsystems division.<br />

The future scientific direction of the division is<br />

described by “Photonic Instrumentation” being<br />

one of the newly identified research fields “Optical<br />

Fibers” and “Photonic Instrumentation”.<br />

With respect to the research activities of the division<br />

the focusing process stands on the one hand<br />

for a steady continuation of those approaches<br />

which fit into the new scientific profile i.e. combination<br />

of optical based chip arrays, microanalytical<br />

systems and infrared sensors with laser spectroscopic<br />

methods. However on the other hand, a<br />

focusing on photonic instrumentation is associated<br />

with significant changes in some traditional<br />

areas like microsystem concepts not based on<br />

optical principles. Furthermore the establishment<br />

and strengthening of new research fields<br />

requires a build-up or extension of new expertise<br />

like e.g. plasmonics, molecular and functional<br />

imaging, and THz techniques etc. For these purposes,<br />

young scientists groups need to be<br />

installed.<br />

The division has changed its department structure<br />

in accordance to the recommended focusing<br />

process (see scheme given above). In doing so<br />

the various groups remained largely unchanged<br />

however are put into a new context due to the<br />

changed classification. This restructuring process<br />

mainly concerns the association between spectral-optical<br />

techniques and instrumentation as<br />

well as the emphasis on microsystem technology<br />

(including microreactors, microfluidics) as an<br />

essential enabling technology for photonic instrumentation.<br />

All these efforts are setting internally the course<br />

for a successful continuation of the department’s<br />

focusing process. Additionally, these<br />

decisions are embedded into central strategic<br />

activities of the university and the campus (e.g.<br />

Ernst-Abbe-Center for Photonics, <strong>Jena</strong> innovation<br />

cluster “Photonic Technologies”). Overall<br />

the microsystems division is in a very good position<br />

not only to face the challenges arising due<br />

to the new profile of the <strong>IPHT</strong> but also to use this<br />

profiling opportunity as a chance to further pursue<br />

the scientific and structural development of<br />

the division.


3.2 Scientific Results<br />

3.2.1 Spectral optical techniques and<br />

instrumentation<br />

(J. Popp)<br />

The main objectives of the department “Spectral<br />

optical techniques and instrumentation” are the<br />

development of innovative optical and spectroscopical<br />

techniques as well as the design and<br />

experimental realization of advanced spectral<br />

optical devices and instruments for material and<br />

life sciences applications. A fundamental understanding<br />

of the processes taking place when light<br />

interacts with matter is an indispensable prerequisite<br />

for such developments. The ultimate<br />

goal in life sciences is a deeper understanding of<br />

the molecular processes occuring inside living<br />

cells. Furthermore chemical reactions, metabolite<br />

or bioactive compounds driven functionalities<br />

of biological cells as well as cell-cell communication<br />

need to be studied. Optical and spectroscopical<br />

techniques are extremely capable methods<br />

to study the aforementioned processes on a<br />

molecular level. Based on such knowledge e.g. in<br />

the field of health care the origin of diseases can<br />

be resolved, therapies can be optimized, and the<br />

occurence of diseases might be prevented or at<br />

least minimized.<br />

Apart from the derivation of structure-property<br />

relationships, the derivation of structure-dynamic<br />

relationships is one of the most challenging topics.<br />

Utilizing advanced nanostructuring technologies<br />

artificial bioinspired materials with new<br />

promising properties can be realized.<br />

To achieve all the aformentioned ambitious goals<br />

in material and life sciences innovative optical<br />

components and sophisticated frequency-, timeand<br />

spatially resolved innovative laser spectroscopical<br />

methods and systems ranging from the<br />

UV to the THz with unparalleled functionalities<br />

need to be developed. Therefore, future research<br />

activities have to focus on the development of<br />

innovative optical spectroscopy techniques and<br />

instruments like e.g.:<br />

– Frequency resolved spectroscopical techniques<br />

exploiting novel spectral ranges to access<br />

innovative matter structures,<br />

– Time-resolved methods ranging from nanosecond<br />

to subfemtosecond time resolution to<br />

study the entire range of time dependent structural<br />

changes,<br />

– Functional and molecular imaging – e.g. CARS<br />

microscopy, TIP-SERS,<br />

– High-efficient spectral imaging for diagnostics,<br />

– Applied plasmonics for the ultra-sensitive diagnostics,<br />

– Lensless microscopes,<br />

– THz-spectroscopy and -technique.<br />

MIKROSYSTEME / MICROSYSTEMS<br />

Another research topic together with the Department<br />

“Photonic Chip Systems” shall combine the<br />

achievements of photonics especially of biophotonics<br />

with those from micro- and nano-technology.<br />

The main goal is the realization of new industrial<br />

products, like e.g. the development of a new<br />

generation of optical and spectroscopical microchips<br />

for a powerful point-of-care diagnostics.<br />

A. Spectral optical sensing<br />

(R. Riesenberg)<br />

The annual report 2004 was entitled “Micro-aperture<br />

arrays in optics” and that oft 2003 “Ultra-sensitive<br />

optical sensing”. The annual report <strong>2005</strong>,<br />

presents innovative high performance optical<br />

sensing set-ups for spectral sensors, for a multisignal-reader<br />

and for micro-imaging.<br />

Future research topics might be high performance<br />

optical spectral and 5D-sensing architectures<br />

and lensless micro-imaging with synthetic<br />

apertures.<br />

Compact Raman spectral sensors<br />

(A. Wuttig, R. Riesenberg)<br />

The project “OMIB online monitoring and identification<br />

of microorganisms and bio aerosols”<br />

deals with a rapid identification of single microorganisms<br />

by means of micro Raman-spectroscopy<br />

in combination with statistical data evaluation<br />

procedures. Such a point-of-care detection<br />

demands compact high performance sensors.<br />

Therefore, two sensors based on new technologies<br />

were designed and manufactured: one<br />

for the UV-region and another for the NIR-region.<br />

For that reason, a special 2D-entrance aperture<br />

array implementing a set of 10 little different<br />

spectrometers in one design can be applied. The<br />

reconvolution of the different images avoids aberrations<br />

and increases the spectral resolution as<br />

well as the throughput (patent pended arrangements).<br />

The UV spectral sensor established in<br />

2004 has been successfully tested by recording<br />

Raman spectra of bacteria and minerals. More<br />

than 10.000 spectral points are detected by<br />

the UV-sensor exhibiting a detector-array of<br />

2048 × 512 pixels (spectral region 245 nm – 360 nm,<br />

spectral resolution up to 0.035 nm) simultaneously<br />

(see Fig. 3.1).<br />

A second NIR Raman spectral sensor (see<br />

Fig. 3A on color page) operates in the wavelength<br />

range of 780 nm to 1100 nm at a wavelength<br />

resolution of 0.3 nm (corresponding<br />

wavenumber resolution: 5 cm –1 at λ = 780 nm …<br />

2.5 cm –1 at λ = 1100 nm) using only a 1024 × 128<br />

pixel detector.<br />

63


64<br />

a)<br />

b)<br />

Fig. 3.1: a) View of the compact UV-Raman<br />

spectral sensor (circled) with a commercial<br />

Raman spectrometer HR 600 with nearly the<br />

same performance and b) measured spectra of<br />

bacillus pumius, DSM 361, excitation wavelength<br />

257 nm, with both instruments.<br />

MIKROSYSTEME / MICROSYSTEMS<br />

Unconventional micro-imaging<br />

(R. Riesenberg, A. Grjasnow, M. Kanka,<br />

J. Bergmann)<br />

The coherent illumination of a sample by a pinhole<br />

generates an interference image (inlineholography).<br />

Results are given by unconventional<br />

microscopic imaging by illumination with a pinhole<br />

array, see Fig. 3.2. The microscopy by multiplane<br />

interference detection uses three or more<br />

interference pictures to reconstruct the objects.<br />

The actual technique is adapted to microscopic<br />

imaging. No reference is needed and a sub-pixel<br />

algorithm is implemented.<br />

The lensless technique is applied for wide field<br />

imaging. The illumination by a pinhole-array<br />

leads to a homogenous illumination with more<br />

intensity and so with an increased sensitivity. The<br />

field of view can be extended without loosing resolution<br />

(see Fig. 3.3).<br />

Fig. 3.2.: Arrangement of illumination of the<br />

sample by a pinhole-array and interference<br />

detection by a CCD.<br />

Fig. 3.3: a…d above: Digital inline holography. Objects (diameter of 0.5 µm) at the edge of the illumination<br />

cone (object plane in 10 µm distance from the pinhole-plane) can not be detected and reconstructed. For<br />

a pinhole diameter of 1 µm the aperture is limited. The field of view is limited [hologram at a distance of<br />

220 µm from the pinhole-plane, image area (200 µm) 2 , the field of view in the example is limited to about<br />

(9 µm) 2 .<br />

e…h below: The single pinhole is replaced by a pinhole-array (9 pinholes). Nearly all objects can be illuminated<br />

and reconstructed. The field of view is extended.


Spectral-reader-technologies<br />

(G. Nitzsche, R. Riesenberg)<br />

A concept and an optical design of a fluorescence<br />

reader for real-time PCR was developed<br />

which enables for the first time the detection of<br />

four different dyes in 96 samples simultaneously.<br />

It uses fiber-arrays, a lens-array and microaperture<br />

entrance arrays for parallel illumination as<br />

well as for highly parallel spectral detection. The<br />

design of the multi-signal polychromator with<br />

the 2D-slit-array consists of 4 × 25 single slits<br />

to generate 4 × 25 spectra on the CCD-chip (see<br />

Fig. 3B on color page). The design was adapted<br />

to a CCD-camera with 1024 × 1024 pixels of a<br />

pitch of 13 µm.<br />

B. Thermal microsensors<br />

(E. Keßler)<br />

Two projects (ISEL and FANIMAT-nano) could<br />

be started in <strong>2005</strong> while the MICRO-THERM<br />

project was finished. All these projects fit in the<br />

strategic orientation of the Thermal Microsensors<br />

group aimed at research and development<br />

of miniaturized thermal sensors (in particular<br />

for sensing electromagnetic radiation in<br />

the infrared and neighboring spectral regions)<br />

with a high and relatively uniform sensitivity/<br />

detectivity in a broad spectral region and in a<br />

wide range of operating temperatures up to<br />

200 °C and more based on high-performance<br />

materials of the functional layers, e.g., the<br />

absorber, the thermoelectric transducer and the<br />

isolation/passivation layers.<br />

New generation of micro-thermopiles<br />

with high detectivity (MICRO-THERM)<br />

(E. Kessler, V. Baier, U. Dillner, A. Ihring)<br />

The main goal of the project MICRO-THERM,<br />

started in July 2004, was the development of<br />

microthermopiles for high-resolution low-temperature<br />

radiation thermometry (spectral range 8 to<br />

14 µm). The work was carried out in close cooperation<br />

with Optris GmbH, Berlin and Mikrotechnik<br />

& Sensorik GmbH, <strong>Jena</strong>.<br />

Essential specifications of this new generation of<br />

detectors are reduced dimensions of the receiving<br />

area (diameters ranging from 100 to 150 µm,<br />

thus permitting the enhancement of the distance<br />

ratio and the optical resolution of pyrometers up<br />

to 1:200 even with small optics), high specific<br />

detectivities above 1 × 10 9 cm Hz 1/2 /W and comparatively<br />

low thermal time constants in the range<br />

of 100 ms. These features are achieved by a<br />

thermally optimized thermopile arrangement on a<br />

floating membrane with supporting bridges smaller<br />

than 10 µm and reduced thicknesses of active<br />

and passive layers, thereby reducing parasitic<br />

thermal conductances and masses, and, as an<br />

MIKROSYSTEME / MICROSYSTEMS<br />

inalienable condition, the detector operating in a<br />

high-vacuum ambiance.<br />

The floating membrane pattern is generated by<br />

dry etching processes. Several chip designs and<br />

types of thermopiles comprising four and eight<br />

thermocouples with leg widths of 2 and 4 µm,<br />

respectively, deposited on stress-controlled silicon<br />

nitride, have been tested and provided for<br />

packaging (see. Fig. 3.4). Under vacuum conditions,<br />

responsivities of up to approximately<br />

3000 V/W and specific detectivities of 1.4 × 10 9<br />

cm Hz 1/2 /W were measured with the thermoelectric<br />

materials combination BiSb and Sb. Variations<br />

of the multi-layer absorber system aiming at<br />

the lowering of its thermal mass to decrease the<br />

thermal time constant resulted in responsivities of<br />

about 2400 V/W and time constants in the order<br />

of 40 ms for an optimized design.<br />

A significant potential for a further increase in<br />

responsivity and detectivity arises from substituting<br />

the p-material Sb by the high-figure-of-merit<br />

material BiSbTe and by the application of a new<br />

membrane technology based on SU-8. These<br />

efforts were continued after the termination of<br />

the project in September <strong>2005</strong>.<br />

The scaled-down geometrical dimensions of the<br />

micro-thermopiles connected to the accomplishable<br />

high detectivities are an important first step<br />

towards the development of thermopile arrays<br />

with high spatial resolution; hence, this project is<br />

of particular importance for the further development<br />

of thermopile sensors at the <strong>IPHT</strong>.<br />

Fig. 3.4: MICRO-THERM thermopile chip on<br />

TO-5 base plate, wire-bonded.<br />

Infrared sensors having increased standards<br />

of performance (ISEL)<br />

(E. Kessler, V. Baier)<br />

Basically, the aims of this project are both to shift<br />

the long-term operating temperature of thermopile<br />

IR sensors beyond the limit of 180 °C,<br />

reached in the former project HOBI, towards<br />

250 °C and enhancing the responsivity of the<br />

sensors. This shall be achieved by replacing the<br />

65


66<br />

typically used thermoelectric materials BiSb and<br />

Sb with materials of higher thermoelectric figures<br />

of merit, which moreover have higher temperature<br />

stabilities. For the prediction of sensor properties<br />

by parametric thermal modeling the transport<br />

coefficients of these materials have to be<br />

characterized up to 300 °C. The according measurement<br />

equipment shall be built in 2006.<br />

The high-effective ternary BiSbTe was chosen<br />

as thermoelectric p-material. It was sputtered<br />

by dc technology under optimized conditions.<br />

Thereby a power factor of P = α 2 σ = 1.9 10 –3 W/<br />

(m K 2 ) (Seebeck coefficient α = 189 µV/K and<br />

electrical conductivity σ = 53 540 (Ω m) –1 ) was<br />

obtained at room temperature. In a first run sensors<br />

of TS 80 type were manufactured for high<br />

temperature applications with this technology<br />

using CuNi as n-material. However, some problems<br />

appeared in the wet-chemical patterning of<br />

the BiSbTe films, which can most likely be attributed<br />

to the specific sputtering conditions. The<br />

averaged responsivity S = 51 V/W is enhanced<br />

by a factor of 1.6 compared with BiSb/Sb and<br />

the temperature coefficient of responsivity is<br />

lowered by a factor of 2.7 in the room temperature<br />

range. Sensors of this type were delivered<br />

for testing and qualifying to the project partner<br />

Micro-Hybrid Electronic.<br />

Nanotechnologies for the functionalization<br />

of ceramic materials (FANIMAT-nano)<br />

(E. Kessler, U. Dillner)<br />

FANIMAT-nano represents one so-called “growth<br />

core” in the Program “Innovative Regional<br />

Growth Cores” launched by the Federal Ministry<br />

of Education and Research (BMBF). This is a<br />

development support program aimed towards<br />

regional cooperations with platform technology<br />

and important features which make them unique<br />

in their field of competence. The target region of<br />

FANIMAT-nano is the region <strong>Jena</strong>-Hermsdorf in<br />

the federal state Thuringia. Within the FANIMATnano<br />

growth core, the Thermal Microsensors<br />

group at <strong>IPHT</strong> <strong>Jena</strong> is involved in a project called<br />

“Structurable ceramic thin films for high-temperature<br />

stable infrared (HT-IR) sensors” which started<br />

in September <strong>2005</strong>. Our partners in this project<br />

are the Hermsdorf Institute for Technical<br />

Ceramics (HITK) and the Micro-Hybrid Electronics<br />

GmbH (MHE), also located in Hermsdorf.<br />

The development objectives of this project<br />

include the creation and characterization of<br />

structurable polyceramic or solgel thin film materials<br />

which can be integrated in the stacks of<br />

functional layers of thermoelectric infrared<br />

microsensors as high-temperature resistant<br />

absorber layers and isolation or passivation layers,<br />

respectively. Furthermore, the development<br />

of thermopile sensor chips with operating temperatures<br />

up to 250 °C employing those ceramic<br />

films is envisioned. Investigations of these chips<br />

MIKROSYSTEME / MICROSYSTEMS<br />

in vacuum-tight sensor housings are planned to<br />

test the compatibility of the ceramic films with<br />

high-temperature interconnection and packaging<br />

techniques. Thus, the project combines the competence<br />

of the three partners HITK (ceramic<br />

nano-powders), <strong>IPHT</strong> (thermoelectric sensor<br />

functional layers) and MHE (interconnection and<br />

packaging techniques).<br />

In <strong>2005</strong>, first investigations concerning new<br />

absorber layers were carried out. The absorption<br />

coefficients of several high-temperature resistant<br />

layers supplied by HITK and based on different<br />

materials were measured at <strong>IPHT</strong> using a FTIRspectrometer.<br />

Moreover, the morphology of the<br />

layers was characterized by SEM (see Fig. 3.5).<br />

For layers of a special soot, absorption coefficients<br />

exceeding 90% were found in the wavelength<br />

range between 8 and 14 µm.<br />

Fig. 3.5: A SEM micrograph of a special hightemperature<br />

resistant soot absorber layer.<br />

Calorimetric space debris detector<br />

(E. Kessler, V. Baier, U. Dillner, A. Ihring)<br />

A detector array of 16 × 16 thermopile sensors<br />

based on the TS100/Flow design was developed<br />

as an integrated part of a breadboard model of a<br />

new type of in-situ space debris and meteoroid<br />

detector to determine the impact energy of<br />

micron-sized particles by calorimetric measurements<br />

(see Fig. 3C on the color page). The partners<br />

of this project are the eta_max Space<br />

GmbH, Braunschweig, the Physikalisch-Technische<br />

Bundesanstalt, and the TU Braunschweig.<br />

The thermopile array is completed with an appropriate<br />

plate absorber array supported by small<br />

spacing columns of 20 µm height made of SU-8<br />

and thermally connected to the sensitive areas of<br />

the thermopiles each to convert the kinetic energy<br />

of the impacting particles into a temperature<br />

increase. An estimate of an average thermal<br />

effect gives temperature rises of 2…3 mK which<br />

can be clearly detected by the thermopiles. Initial<br />

tests using laser pulse heating were successfully<br />

performed.


3.2.2 Photonic chip systems<br />

(W. Fritzsche)<br />

The detection and manipulation of molecular<br />

ensembles as well as individual molecules based<br />

on miniaturized and paralleled photonic approaches<br />

represent the main objective of the department.<br />

It is therefore aimed at two main research directions:<br />

(I) molecular construction techniques in<br />

order to develop required novel methods for<br />

manipulation and detection at the molecular level<br />

and (II) chip technology to convert these developments<br />

into (bio)analytical applications.<br />

The ultimate goal for both ultrasensitive bioanalytics<br />

and other possible applications for molecular<br />

complexes (such as nano-electronics and<br />

-optics) is the control of the constructs at the<br />

nanoscale and the single molecule level. During<br />

the last years novel approaches for single molecule<br />

handling have been developed in the<br />

department. They address the integration problem<br />

by aiming at parallel approaches to position<br />

individual molecular structures in prestructured<br />

microsystem environments, such as microelectrode<br />

gaps. In <strong>2005</strong>, this development was<br />

advanced by the adaptation of dielectrophoretic<br />

methods. The last years witnessed also impressive<br />

results in the synthesis and optical characterization<br />

of designer metal nanoparticles, providing<br />

particles with defined spectral properties.<br />

Thereby, the main focus of the department<br />

shifted towards molecular plasmonics, a field<br />

that combines the effect of surface plasmon<br />

resonance at metal nanostructures, such as<br />

metal nanoparticles, with molecular components.<br />

These molecular structures can either be<br />

used to influence the optical properties, thus representing<br />

the analyte (bioanalytics), or to realize<br />

novel nanoscale hybrid complexes of metal<br />

nanoparticles and molecular components. In<br />

these complexes, the molecules act as backbone<br />

to realize a connection with defined geometry<br />

(distance, angle etc.) at the nanometer<br />

scale. This research field was massively pushed<br />

by the international symposium “Molecular Plasmonics”<br />

that was organized in May by the<br />

department and brought many of the world leading<br />

scientists in this field to the <strong>IPHT</strong>.<br />

In order to convert these developments into applications<br />

the established platform technologies for<br />

DNA arraying and model system evaluation has<br />

been further extended. These activities included<br />

the first successful demonstration of the electrical<br />

DNA chip detection system for a biological<br />

application and the further extension of partnerships<br />

with innovative bioanalytic companies in<br />

order to get market-driven and application-oriented<br />

impulses for future research and development<br />

in this promising field.<br />

MIKROSYSTEME / MICROSYSTEMS<br />

A. Molecular nanotechnology<br />

and plasmonics<br />

Electrical manipulation of DNA<br />

(A. Csaki, A. Wolff, R. Kretschmer, W. Fritzsche)<br />

The control of a precise positioning of (bio) molecular<br />

complexes onto microstructured substrates<br />

is a key requirement for molecular nanotechnology.<br />

The application of electrical fields<br />

represents an interesting alternative for this purpose.<br />

Electrical fields are a well-established technique<br />

for molecular manipulation and they are<br />

easily directed with microscale precision using<br />

microelectrodes. Therefore, prestructured microelectrodes<br />

that will later act as contacts to the<br />

complexes were utilized to apply fields of alternating<br />

current in order to position polarizable<br />

molecular structures from solution by dielectrophoresis.<br />

Molecules of lambda-phage DNA<br />

(about 16 µm long) could be successfully positioned<br />

in electrode gaps as revealed by fluorescence<br />

and scanning force microscopy.<br />

Fig. 3.6: Defined positioning of DNA molecules in<br />

microelectrode gaps (100 nm gold) on silicon oxide<br />

substrates by dielectrophoresis using 300 ng/µl<br />

lambda-phage DNA and a field with 1 V/µm and<br />

1 MHz. AFM-images (left and center) and fluorescence<br />

image (YOYO-1 as DNA-specific dye).<br />

Substrate-controlled orientation of DNA<br />

superstructures<br />

(J. Vesenka, A. Wolff, A. Reichert, W. Fritzsche)<br />

Another approach for aligned positioning of (bio)<br />

molecular structures is the utilization of substrate-inherent<br />

patterns of e.g. electrostatic<br />

charges. The observed effect of alignment of<br />

DNA superstructures (G wires) on mica substrates<br />

following three major directions was characterized<br />

and studied. By resolving the substrate<br />

of such samples with atomic resolution in the<br />

same experiment, it was found that the G-wires<br />

seem to align with the next nearest neighbor<br />

potassium vacancy sites of mica. Such auto-orientation<br />

phenomena could be utilized to address<br />

the fine-positioning of molecular structures e.g. in<br />

network formation. The self-organization character<br />

and the massive parallelization are features<br />

that make this approach very promising for future<br />

applications.<br />

67


68<br />

Fig. 3.7: Alignment of DNA structures (G wires)<br />

following the atomic arrangement in mica crystal<br />

planes. (Top) Overview AFM image (left) with histogram<br />

of orientation of G wire segments (right),<br />

(bottom) orientation of G wires as compared to<br />

the crystal arrangement of the underlying mica<br />

(insets) on air (left) and in buffer (right).<br />

Metal nanoparticles for molecular plasmonics<br />

(A. Steinbrück, A. Csaki, W. Fritzsche)<br />

Utilizing the optical properties of metal nanoparticles<br />

in combination with molecular complexes<br />

represents a promising recent development in<br />

molecular nanotechnology with envisioned applications<br />

especially for bioanalytics but also in<br />

nanophotonic devices. This field is based on the<br />

surface plasmon resonance effect in the particles.<br />

In order to realize complex systems the optical<br />

properties of the nanostructures have to be<br />

tuned and approaches to synthesize designer<br />

Fig. 3.8.: Synthesis of gold-silver core-shell nanoparticles<br />

yields designer particles with adjustable<br />

surface plasmon resonance peak between the<br />

bands of pure gold and pure silver nanoparticles.<br />

The particles were formed using specific silver<br />

deposition onto gold particles using various silver<br />

salt concentrations. All spectra are ensemble<br />

measurements.<br />

MIKROSYSTEME / MICROSYSTEMS<br />

particles with defined optical features are<br />

required. Therefore, core-shell particles consisting<br />

of Ag/Au or Au/Ag were identified as especially<br />

promising systems to tune the resulting plasmon<br />

resonance (see figure 3D on the color<br />

page).<br />

Moreover, optical characterization at both ensemble<br />

and single particle level are needed. The last<br />

year witnessed the set-up of a spectroscopy system<br />

with single particle capabilities in the department<br />

(see figure 3E on the color page). Experiments<br />

demonstrated the ability to yield UV-VIS<br />

spectra of individual nanoparticles, together with<br />

AFM and optical images of this structure.<br />

Photonic nanostructures combined<br />

with metal nanoparticles<br />

(A. Csaki, A. Steinbrück, S. Schröter,<br />

W. Fritzsche)<br />

Photonic nanostructures, such as nanoaperture<br />

arrays, show promising novel effects regarding<br />

e.g. transmission of light. The established experience<br />

with nanoparticle handling and ultramicroscopic<br />

characterization was applied in order to<br />

position metal nanoparticles in nanoapertures.<br />

Comparison of the transmission characteristics<br />

of the apertures with and without particles<br />

showed a higher transmission in the case of particle-modified<br />

openings. This effect seemed even<br />

enhanced when the particle where enlarged<br />

using specific metal deposition.<br />

Fig. 3.9: Light transmission of microfabricated<br />

holes with sub-wavelength dimensions in a<br />

chromium layer in dependence on the presence<br />

of metal nanoparticles. AFM images (top) and<br />

optical images (bottom) of three holes without<br />

particle (left), with an individual particle (center),<br />

and with a particle aggregate (right).


B. DNA-chip Technology<br />

Characterization of specific metal deposition<br />

at single particle level<br />

(G. Festag, W. Fritzsche)<br />

Specific reductive deposition of silver on gold<br />

nanoparticles has a tremendous importance for<br />

numerous processes in molecular construction<br />

as well as in various kinds of bioanalytical methods<br />

for signal enhancement. AFM was used to<br />

study this process at the single particle level in<br />

order to reveal the influence of parameters like<br />

particle size, composition of enhancement solution,<br />

length of incubation etc. Because on-line<br />

measurements were not feasible, techniques<br />

were developed to relocate certain positions at<br />

the sample in order to image particle arrangements<br />

after every enhancement step.<br />

Fig. 3.10: AFM study of the growth of a silver<br />

shell on gold nanoparticles at the single particle<br />

level. Top: Three images of the same sample<br />

position after different growth times; Bottom:<br />

Dependence of particle height on growth time<br />

and various start diameters.<br />

Electrical identification of microorganisms<br />

by DNA-chip technology<br />

(T. Schüler, R. Möller, W. Fritzsche)<br />

The electrical DNA-detection system that has<br />

been developed at the <strong>IPHT</strong> was for the first time<br />

applied to biological samples (PCR fragments).<br />

In collaboration with the Leibniz Institute for Natural<br />

Product Research and Infection Biology –<br />

Hans-Knöll-Institute (HKI) <strong>Jena</strong>, the electrical<br />

DNA detection was utilized to identify species<br />

of microorganisms. Therefore, capture DNA<br />

sequences, specific for each of the studied<br />

species, were immobilized into the electrode<br />

gaps prior to incubation with the target DNA.<br />

MIKROSYSTEME / MICROSYSTEMS<br />

Target DNA binding is detected by a significantly<br />

reduced resistance in the respective gap<br />

because binding of the labeled target DNA will<br />

lead to metal deposition in a subsequent signal<br />

enhancement step. The results showed that the<br />

electrical DNA chip detection is able to clearly<br />

differentiate between the different species and<br />

allows for a straightforward identification of<br />

microorganisms.<br />

Fig. 3.11: Measurements from a typical experiment<br />

with the electrical DNA-chip system show a<br />

clear signal for the species K. setea (set, left column)<br />

and the positive control from a consensus<br />

sequence (uni). An optical view on an electrical<br />

chip visualizes the silver deposition (especially in<br />

the 1+2 row and the last one) that leads to the<br />

electrically detectable signal at these positions.<br />

3.2.3 Micro system technology<br />

(Th. Henkel)<br />

Photonic instrumentation strongly depends on<br />

the integration of micromechanical and microoptical<br />

components with critical dimensions in the<br />

nanometer scale. Furthermore, LabOnChip systems<br />

for integrated sample placement and sample<br />

preparation are required for high-throughput<br />

microoptical applications, the retrieval of spatialand<br />

time-resolved spectral information and localized<br />

photochemical activation of sample ingredients.<br />

The aim of the microsystem technologies<br />

department is the development and fabrication of<br />

components for photonic instrumentation and the<br />

69


70<br />

application of LabOnChip based microfluidic<br />

devices for integrated sample preparation and<br />

placement in micro optical systems. The newly<br />

developed technology for the preparation of allglass<br />

microfluidic devices with coplanar faces are<br />

in compliance with the requirements of microoptical<br />

systems.<br />

A. Microfluidics of liquid-liquid<br />

segmented sample streams<br />

Liquid-liquid segmented flow based on highly<br />

integrated LabOnChip devices offers a powerful<br />

and versatile approach for high-throughput processing<br />

of linearly organized sample streams.<br />

Currently, these fluidic networks are built up from<br />

individual chip modules which are interconnected<br />

by HPLC-capillaries. Since all operations have to<br />

be in plug mode, micro droplets need to be large<br />

enough, to seal a given channel completely. For<br />

widely used HPLC capillaries with an inner diameter<br />

of 0.5 mm this critical volume is about<br />

64 nl. With respect to this, modular systems are<br />

limited in compartment size and thus in throughput<br />

and sample density. Processing of segmented<br />

sample streams uses interface-generated<br />

forces for the maniplation of the micro droplets at<br />

functional nodes with optimized geometry and<br />

wetting conditions. Miniaturization of the channel<br />

system and the droplet volume increases the curvature<br />

of the interfaces and thus the pressure<br />

drop generated at the interface. In conclusion,<br />

not only throughput and sample density, but also<br />

reliability of the processes benefit from miniaturization<br />

and integration. Considering this, our work<br />

in development of LabOnChip devices is focused<br />

on the development of integrated LabOnChip<br />

devices for segmented flow based application.<br />

Toolkit for computational fluidic simulation<br />

and interactive parametrization<br />

of segmented-flow based fluidic networks<br />

(N. Gleichmann, M. Kielpinski, D. Malsch,<br />

T. Henkel)<br />

The main objectives of this work are the application<br />

of principles of electronic design automation<br />

(EDA) to the model based design and parameterization<br />

of segmented-flow based micro fluidic<br />

networks. This approach will significantly increase<br />

the efficiency in development of highly<br />

integrated LabOnChip devices for custom fluidic<br />

and micro chemical protocols. By that way,<br />

research and development of micro chemical and<br />

screening applications will benefit of the promising<br />

micro droplet-based approach of segmented<br />

flow. Our toolkit is based on a computational network<br />

of fluidic nodes, which are interconnected<br />

by virtual fluid ports for the transfer of segment<br />

streams. The particular behaviour of a functional<br />

node may be given by user definable rules, which<br />

MIKROSYSTEME / MICROSYSTEMS<br />

are derived from experimental data and Computational<br />

Fluid Dynamics (CFD) simulations of the<br />

functional element. The geometry is dynamically<br />

generated from photolithographic mask data and<br />

process parameters. Segmented sample streams<br />

are implemented as lists. For interactive inspection<br />

of the interface geometries inside a functional<br />

node a software interface to the surface evolver<br />

is implemented.<br />

Fig. 3.12: Geometry of a drop passing a Tshaped<br />

junction with nozzle.<br />

The surface evolver starts with a dynamically<br />

generated mesh of the node itself and the correct<br />

position of the micro droplets inside the element.<br />

Wetting conditions and local contact angles<br />

are non-constraints and dynamically calculated<br />

from the interface energies. Channel geometry is<br />

generated from the photo lithographical mask<br />

data and the parameters of the etch process. The<br />

parameterization is realized by interactively<br />

changing the mask geometry of the fluidic nodes<br />

and analysing the results of the fluidic simulation.<br />

A complete run for a dynamic simulation takes a<br />

view minutes only. The network can operate with<br />

pressure and volume flow constraints. Currently it<br />

is implemented for non compressible liquid/liquid<br />

two-phase flows and the micro system technology<br />

of isotropic wet etching. The Toolkit consists of<br />

a C++ class library of components for fluidic network<br />

simulation, for user interaction and network<br />

visualization and for interfacing the surface<br />

evolver. In a first test case it was successfully<br />

applied for modelling a double injector module.<br />

Conceptual work on self-controled fluidic<br />

networks for segmented-flow based applications<br />

(M. Kielpinski, D. Malsch, G. Mayer, J. Albert,<br />

T. Henkel)<br />

Functional elements for sample generation, dosing<br />

of liquid into droplets and retrieval of individual<br />

samples from the sample stack, generation of<br />

stacked sequences and controlled fusion of adjacent<br />

segments within it’s segment stream have<br />

been reported and successfully applied for highthroughput<br />

applications. These processes are<br />

mainly effected and controlled by the dynamics of<br />

interface evolution at functional nodes and spe-


cial flow dynamics inside the micro droplets.<br />

Additional functionality is requested and proposed.<br />

This includes controlled 1:N fusion of multiple<br />

droplet sequences and controlled 1:N segment<br />

splitting. Unfortunately, these operations<br />

require synchronization of the flow of multiple<br />

droplet sequences and seem to require integration<br />

of actors and sensors for closed loop flow<br />

control into the micro fluidic device. Application of<br />

these approaches to fluidic networks would<br />

require a huge amount of integrated sensors and<br />

actors, each of them interfering with the others<br />

and thus, the software for control of these networks<br />

would be very complicated.<br />

Analyzing a segmented flow based system we<br />

can recognize, that all prerequisites for application<br />

of self control to these special micro fluidic<br />

systems are available. There are mobile interfaces,<br />

which can be used to seal junctions of the<br />

main channels temporarily. Obstructions can be<br />

used to increase or widenings to decrease the<br />

pressure, generated by the curved droplet inter-<br />

Fig. 3.13: CFD-Simulation (right column) and<br />

experimental data (left column) of self-synchronized<br />

1:1 droplet fusion at a Y-junction with integrated<br />

bypass. Two sequences of micro droplets<br />

are transported each with constant flow rate to<br />

the Y-junction. The droplet, which first arrives at<br />

the stricture stops (Part B) and the carrier flow is<br />

guided through the bypass until a droplet from the<br />

opposite sequence arrives (Part C). Now droplet<br />

fusion occures (Part D) and the coalesced volume<br />

is ejected from the element.<br />

MIKROSYSTEME / MICROSYSTEMS<br />

Fig. 3.14: y-Shaped junction for self syncronized<br />

droplet fusion of two generated sample streams<br />

(above) and microfluidic device, consisting of the<br />

element and a total of four injectors for sample<br />

stream generation and postprocessing by dosing<br />

operations (below).<br />

face. By that way, segmented flow provides the<br />

basics for the implementation of self-controlled<br />

functional elements and their integration into<br />

micro fluidic networks.<br />

Actual development has been focused on a first<br />

implementation of these concepts for the selfsynchronized<br />

1:1 fusion of two segment sequences.<br />

The functional node consists of a Y-shaped<br />

junction, where each inlet is equipped with an<br />

obstruction. The two inlet ports are connected by<br />

a bypass. If one segment reaches the obstruction<br />

it stops and the carrier flow is guided along the<br />

bypass to the second inlet of the Y-junction. It<br />

remains at the obstruction until a second droplet<br />

from the opposite channel reaches the junction.<br />

After this, fusion occurs followed by ejection of<br />

the formed droplet.<br />

Microfluidic devices for investigation of the fusion<br />

process have been developed and fabricated.<br />

LabOnChip based system for identification<br />

of cancer cells<br />

(J. Felbel, M. Urban, M. Kielpinski, G. Mayer,<br />

T. Henkel)<br />

Main aim of the collaboration between health professionals,<br />

molecular biologists and micro system<br />

experts is the development of a LabOnChip based<br />

analysis system permitting the partly automated<br />

execution of micro flow-through-RT-PCR for the<br />

detection and counting of cancer cells in samples<br />

71


72<br />

from cancer patients. The device combines techniques<br />

of segmented flow with thermal management<br />

of sample streams, according the given molecular<br />

biological protocol and real-time optical<br />

readout of the amplification process. The PCR<br />

reaction unit was developed as all-glass microchannel<br />

chip module, which is based on a patented<br />

flow-through thermocycler-chip. Thermal management<br />

is realized by a micro system made heat<br />

plate, providing thermal control and management<br />

for up to four thermal zones with minimized dimensions<br />

of the thermal gap between the heater<br />

zones. The PCR sample droplets are cycled during<br />

the flow over specific temperature zones (see figure<br />

3F on the color page). Main advantage of this<br />

LabOnChip module is the ability to process a high<br />

number of individual samples, each embedded in<br />

a single micro droplet by the serial flow regime.<br />

Possible fields of application of the RT-PCR are<br />

clinical diagnostics. For the establishment of the<br />

system disseminated tumour cells in the blood of<br />

patients with cervical carcinoma will be detected.<br />

A special characteristic of these tumour cells is<br />

the expression of oncogenes encoded by Human<br />

Papillomaviruses (HPV), which can be specifically<br />

amplified by this procedure.<br />

A successful PCR reaction of HPV targets in<br />

microchannels was demonstrated.<br />

B. Chipmodules for analysis<br />

of micro combustion<br />

(G. Mayer, J. Albert, T. Henkel)<br />

Chip modules for investigation of miniaturized<br />

combustion processes have been developed and<br />

successfully tested during an internal collaboration.<br />

Integrated static micro-mixers allow the efficient<br />

mixing of fuel gas and oxygen at macroscopic<br />

explosive conditions and the controlled combustion<br />

at the outlet nozzle. Up to 2300 K may be<br />

generated in micro-flames with a width of 2 mm<br />

and a height of 3 mm during micro combustion of<br />

Fig. 3.15: All-glass chip with integrated static<br />

mixer for analysis of micro flames.<br />

MIKROSYSTEME / MICROSYSTEMS<br />

oxygen and hydrogen. Detailed results on the<br />

analysis of these micro chemical high temperature<br />

processes are shown in the contribution of<br />

the laser diagnostics department in this annual<br />

report.<br />

3.3 Appendix<br />

Partners<br />

National co-operation<br />

• Alphacontec, Berlin<br />

• Analytik AG, <strong>Jena</strong><br />

• Applikationszentrum Mikrotechnik, <strong>Jena</strong><br />

• ART-Photonics GmbH, Berlin<br />

• Bartec Componenten und Systeme GmbH,<br />

Gotteszell<br />

• Berliner Glas KGaA Herbert Kubatz GmbH &<br />

Co., Berlin<br />

• Bosch und Siemens Hausgeräte GmbH,<br />

Traunreuth<br />

• Cetoni GmbH, Gera-Korbußen<br />

• Deutsches Zentrum für Luft- und Raumfahrt<br />

e.V., Berlin<br />

• Entec GmbH, Ilmenau<br />

• eta_max space GmbH, Braunschweig<br />

• Fachhochschule <strong>Jena</strong><br />

• Fachhochschule Hannover, FB Elektrotechnik<br />

• Fachhochschule Wiesbaden,<br />

FB Physikalische Technik<br />

• Faseroptik <strong>Jena</strong> GmbH, Bucha<br />

• Fraunhofer Institut für Biomedizinische<br />

Technik (IBMT) Nuthetal<br />

• Friedrich-Schiller-Universität <strong>Jena</strong><br />

– Institut für Materialwissenschaft und Werkstofftechnologie<br />

– Institut für Physikalische Chemie<br />

– Institut für Physiologie II<br />

– Klinik für Frauenheilkunde<br />

• Fritz-Lipmann-Institut, <strong>Jena</strong><br />

• Hans-Knöll-Institut, <strong>Jena</strong><br />

• Hermsdorfer Institut für Technische Keramik<br />

e.V., Hermsdorf<br />

• HL-Planartechnik, Dortmund<br />

• HSG, Institut für Mikrotechnik und Informationstechnik<br />

e.V., Villingen-Schwenningen<br />

• IL Metronic Sensortechnik GmbH, Ilmenau<br />

• IMPAC Infrared GmbH, Frankfurt/Main<br />

• Industrieanlagen-Betriebsgesellschaft mbH,<br />

Ottobrunn<br />

• Institut für Bioprozess- und Analysenmesstechnik<br />

e.V. (iba), Heiligenstadt<br />

• Institut für Mikrotechnik (IMM), Mainz<br />

• <strong>Jena</strong> Bioscience GmbH, <strong>Jena</strong><br />

• JENOPTIK Laser, Optik, Systeme GmbH,<br />

<strong>Jena</strong><br />

• JENOPTIK Mikrotechnik GmbH, <strong>Jena</strong><br />

• Kayser-Threde GmbH, München<br />

• Labor Diagnostik Leipzig GmbH, Leipzig<br />

• Max-Born-Institut, Berlin<br />

• Micro-Hybrid Electronic GmbH, Hermsdorf


• Mikrotechnik + Sensorik GmbH, <strong>Jena</strong><br />

• NFT Nanofiltertechnik, Bad Homburg<br />

• Optris GmbH, Berlin<br />

• PTB, Labor „Wechsel-Gleich-Transfer“,<br />

Braunschweig<br />

• Quantifoil Instruments GmbH, <strong>Jena</strong><br />

• RapID, GmbH, Berlin<br />

• Raytek GmbH, Berlin<br />

• Scanbec GmbH, Halle/Saale<br />

• Schering AG, Berlin<br />

• Seleon GmbH, Dessau<br />

• SurA Chemicals GmbH, <strong>Jena</strong><br />

• Technische Universität Bergakademie<br />

Freiberg, Institut für Physikalische Chemie<br />

• Technische Universität Ilmenau<br />

– Physikalische Chemie/Mikroreaktionstechnik<br />

– Zentrum für Mikro- und Nanotechnologie<br />

• Universität Leipzig, Institut für Virologie<br />

• Universität Dortmund<br />

• Universität Würzburg<br />

International co-operation<br />

• ALBEDO Technologies, Razès, France<br />

• Anhui Institute of Optics and Fine Mechanics,<br />

Hefei, China<br />

• Bundesamt für Eich- und Vermessungswesen<br />

(BEV), Wien, Austria<br />

• CAL-Sensors, Inc., Santa Rosa, CA, USA<br />

• CEA, Saclay, France<br />

• Centro National de Metrologia (CENAM),<br />

Querétaro, Mexico<br />

• Dalhousie University, Dept. of Physics and<br />

Atmospheric Science, Halifax, Canada<br />

• EDAS-Astrium-CRISA, Madrid, Spain<br />

• Foster-Miller, Waltham, MA, USA<br />

• Hebrew University, Jerusalem, Israel<br />

• HORIBA Jobin Yvon, Villeneuve, France<br />

• IR System Co. Ltd., Tokyo, Japan<br />

• Institutul National de Metrologie (INM)<br />

Bukarest, Romania<br />

• Istituto Elettrotecnico Nazionale (IEN), Turin,<br />

Italy<br />

• Karolinska Institutet, Clinical Research Center,<br />

Stockholm, Sweden<br />

• Key Techno Co., Ltd. Tokyo, Japan<br />

• Nanoprobes, Inc., Yaphank, NY, USA<br />

• Nanotec Electronica S.L., Madrid, Spain<br />

• National Institute of Metrology (NIMT),<br />

Bangkok, Thailand<br />

• National Measurement Institute (MNI),<br />

Lindfield, Australia<br />

• National Metrology Laboratory (NML), Sepang,<br />

Malaysia<br />

• National Research Counsil (NRC), Ottawa,<br />

Canada<br />

• Országos Mérésügyi Hivatal (OMH),<br />

Budapest, Hungary<br />

• Politechnika S´ la¸ska, Gliwice, Poland<br />

• Slovenian Institute of Quality and Metrology<br />

(SIQ), Ljubljana, Slovenia<br />

• Standards, Productivity and Innovation Board<br />

(SPRING), Singapore<br />

MIKROSYSTEME / MICROSYSTEMS<br />

• Tokyo University, Mechanical Engineering,<br />

Japan<br />

• Ukrmetrteststandart (UkrCSM), Kiev, Ukraine<br />

• Ulusal Metroloji Enstitüsü (UME), Gebze,<br />

Turkey<br />

• University of Bologna, Dipartimento di Biochimica,<br />

Italy<br />

• Universidad Carlos III, Optoelectronics and<br />

Laser Technology Group, Madrid, Spain<br />

• University of Copenhagen, Department Medical<br />

Biochemistry and Genetics, The Panum<br />

Institute, Denmark<br />

• University of Newcastle, Department of<br />

Chemistry, UK<br />

• University Warsaw, Institute of Micromechanics<br />

and Photonics, Poland<br />

Editor<br />

W. Fritzsche, W. Knoll:<br />

Special Issue “Nanoparticles for Biotechnology<br />

Applications”<br />

IEE Proceedings Nanobiotechnology, <strong>2005</strong><br />

Book chapters<br />

G. Festag, U. Klenz, T. Henkel, A. Csáki,<br />

W. Fritzsche:<br />

“Biofunctionalization of metallic nanoparticles<br />

and microarrays for biomolecular detection”<br />

in “Nanotechnologies for the Lifesciences”<br />

(book series) – Vol.1 “Biofunctionalization of<br />

Nanomaterials” (Ed. by C. Kumar, Wiley-VCH,<br />

<strong>2005</strong>)<br />

Publications<br />

V. Baier, R. Födisch, A. Ihring, E. Kessler,<br />

J. Lerchner, G. Wolf, J. M. Köhler, M. Nietzsch,<br />

M. Krügel:<br />

“Highly sensitive thermopile heat power sensor<br />

for micro-fluid calorimetry of biochemical processes”<br />

Sensors and Actuators A 123–124 (<strong>2005</strong>)<br />

354–359<br />

B. Dietzek, R. Maksimenka, W. Kiefer,<br />

G. Hermann, J. Popp, M. Schmitt:<br />

“The excited state dynamics of magnesium<br />

octaethylporphyrin studied by femtosecond timeresolved<br />

four-wave-mixing”<br />

Chem. Phys. Lett. 415, (<strong>2005</strong>) 94–99<br />

T. Eick, A. Berger, D. Behrendt, U. Dillner,<br />

E. Kessler:<br />

“An Alternative Method for Measuring the<br />

Responsivity of Thermopile Infrared Sensors”<br />

Proceedings of Sensor <strong>2005</strong>, 12th International<br />

Conference, Vol. I (<strong>2005</strong>) 109–114<br />

73


74<br />

J. Felbel, A. Reichert, M. Kielpinski, M. Urban,<br />

D. Malsch, T. Henkel:<br />

„Entwicklung von mikrofluidischen Chipsystemen<br />

für biologische Anwendungen“<br />

7. Dresdner Sensor-Symposium in Dresdner<br />

Beiträge zur Sensorik (Editor: G. Gerlach, H. Kaden),<br />

TUDpress Vol. 24 (<strong>2005</strong>), Ergänzungsband,<br />

Seite LMP3<br />

J. Felbel, A. Sondermann, M. Kielpinski,<br />

M. Urban, T. Henkel, N. Häfner, M. Dürst,<br />

J. Weber, W. Fritzsche:<br />

“Single-cell-diagnostics with in-situ RT-PCR in<br />

flow-through microreactors: thermal and fluidic<br />

concepts”<br />

Proceedings of BioPerspektives <strong>2005</strong>, Pub.<br />

Dechema, Vol. 2 (<strong>2005</strong>) 265<br />

G. Festag, A. Steinbrück, A. Wolff, A. Csaki,<br />

R. Möller, W. Fritzsche:<br />

“Optimization of Gold Nanoparticle-Based DNA<br />

Detection for Microarrays”<br />

Journal of Fluorescence 15 (<strong>2005</strong>) 161–170<br />

T. Funck, M. Kampik, E. Kessler, M. Klonz, H. Laiz,<br />

R. Lapuh:<br />

“Determination of the AC/DC Voltage Transfer<br />

Standards at Low Frequencies”<br />

IEEE Transactions on Instrumentation and Measurement<br />

Vol. 54, No. 2 (<strong>2005</strong>) 807–809<br />

F. Garwe, A. Csaki, G. Maubach, A. Steinbrück,<br />

A. Weise, K. König, W. Fritzsche:<br />

“Laser pulse energy conversion on sequencespecifically<br />

bound metal nanoparticles and its<br />

application for DNA manipulation”<br />

Medical Laser Application 20 (<strong>2005</strong>) 201–206<br />

A. Grjasnow, R. Riesenberg, A. Wuttig:<br />

“Lenseless coherent imaging by multi-plane interference<br />

detection”<br />

Proceedings of the 106 th Conference of the<br />

DGaO (<strong>2005</strong>) A39<br />

P. M. Günther, F. Möller, T. Henkel, J. M. Köhler,<br />

G. A. Groß:<br />

“Formation of Monomeric and Novolak Azo Dyes<br />

in Nanofluid Segments by Use of a Double Injector<br />

Chip Reactor”<br />

Chemical Engineering & Technology 28, Iss. 4<br />

(<strong>2005</strong>) 520–527<br />

Z. Guttenberg, H. Müller, H. Habermüller,<br />

A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski,<br />

J. Scriba, A. Wixforth:<br />

“Planar chip device for PCR and hybridization<br />

with surface acoustic wave pump”<br />

Lab on a Chip, Vol. 5, Iss. 3 (<strong>2005</strong>) 308–317<br />

M. Harz, P. Rösch, K.-D. Peschke,<br />

O. Ronneberger, H. Burkhardt, J. Popp:<br />

“Micro-Raman spectroscopic identification of<br />

bacterial cells of the genus Staphylococcus and<br />

dependence on their cultivation conditions”<br />

Analyst, 130 (<strong>2005</strong>) 1543–1550<br />

MIKROSYSTEME / MICROSYSTEMS<br />

E. Kessler, V. Baier, U. Dillner, J. Müller, A. Berger,<br />

R. Gärtner, S. Meitzner, K.-P. Möllmann:<br />

“High-Temperature Resistant Infrared Sensing<br />

Head”<br />

Proceedings of Sensor <strong>2005</strong>, 12 th International<br />

Conference, Vol. I, (<strong>2005</strong>) 73–78<br />

J. M. Köhler, T. Henkel:<br />

“Chip devices for miniaturized biotechnology”<br />

Applied Microbiology and Biotechnology 69,<br />

Iss. 2 (<strong>2005</strong>) 113–125<br />

J. M. Köhler, J. Wagner, J. Albert, G. Mayer,<br />

U. Hübner:<br />

„Bildung von Goldnanopartikeln und Nanopartikelaggregaten<br />

in statischen Mikromischern in<br />

Gegenwart von Rinderserumalbumin“<br />

Chemie Ingenieur Technik 77, No. 7 (<strong>2005</strong>)<br />

867–873<br />

J. Lerchner, A. Wolf, G. Wolf, V. Baier,<br />

E. Kessler:<br />

„Chip-Kalorimeter zur on-line-Detektion biomolekularer<br />

Prozesse“<br />

7. Dresdner Sensor-Symposium (Editor: G. Gerlach,<br />

H. Kaden) TUDpress (<strong>2005</strong>) 211–214<br />

An-Hui Lu, W. Schmidt, S. Tatar, B. Spliethoff,<br />

J. Popp, W. Kiefer, F. Schueth:<br />

“Formation of amorphous carbon nanotubes on<br />

ordered mesoporous silica support”<br />

Carbon, 43(8) (<strong>2005</strong>) 1811–1814<br />

G. Maubach, D. Born, A. Csaki, W. Fritzsche:<br />

“Parallel Fabrication of DNA-Aligned Metal<br />

Nanostructures in Microelectrode Gaps by a Self-<br />

Organization Process”<br />

Small 1 (<strong>2005</strong>) 619–624<br />

R. Möller, R. D. Powell, J. F. Hainfeld<br />

W. Fritzsche:<br />

“Enzymatic control of metal deposition as key<br />

step for a low-background electrical detection for<br />

DNA chips”<br />

Nano Letters (<strong>2005</strong>) 1475–1480<br />

R. Möller, W. Fritzsche:<br />

“Chip-based electrical detection of DNA”<br />

IEE Proceedings Nanobiotechnology 152 (<strong>2005</strong>)<br />

47–51<br />

U. Neugebauer, A. Szeghalmi, M. Schmitt,<br />

W. Kiefer, and J. Popp:<br />

“Vibrational Spectroscopic Characterization of<br />

Fluoroquinolones”<br />

Spectrochimica Acta Part A, 61 (<strong>2005</strong>) 1505–1517<br />

R. Riesenberg:<br />

“Pinhole array and lenseless microscopic microimaging”<br />

Proceedings of the 106 th Conference of the<br />

DGaO (<strong>2005</strong>) A26


P. Rösch, M. Schmitt, K.-D. Peschke,<br />

O. Ronneberger, H. Burkhardt, H-W. Motzkus,<br />

M. Lankers, S. Hofer, H. Thiele and J. Popp:<br />

“Chemotaxonomic identification of single bacteria<br />

by micro-Raman spectroscopy: Application to<br />

clean room relevant biological contaminations”<br />

Appl. Environm. Mikrobiol. 71 (<strong>2005</strong>) 1626–1637<br />

P. Rösch, M. Harz, M. Schmitt, J. Popp:<br />

“Raman spectroscopic identification of single<br />

yeast cells”<br />

J. Raman Spectrosc. 36 (<strong>2005</strong>) 377–379<br />

M. Schmitt and J. Popp:<br />

„Femtosekundenlaser-Mikroskopie“<br />

Laser Technik Journal, 4 (<strong>2005</strong>) 67–71<br />

M. A. Strehle, P. Rösch, M. Baranska, H. Schulz,<br />

J. Popp:<br />

“On the way to a quality control of the essential<br />

oil of fennel by means of Raman spectroscopy”<br />

Biopolymers, 77(1) (<strong>2005</strong>) 44–52<br />

A. Wuttig:<br />

“Optimal transformations for optical multiplex<br />

measurements in the presence of photon noise”<br />

Appl. Opt. 44 (14) (<strong>2005</strong>) 2710–2719<br />

Invited talks<br />

W. Fritzsche, G. Maubach, R. Kretschmer,<br />

A. Csáki, D. Born:<br />

“Parallel approaches for the integration of individual<br />

molecular structures into electrode arrangements”<br />

EU Workshop “Nanotechnology Information<br />

Devices”, Madrid (Spain), January 31–February<br />

2, <strong>2005</strong><br />

W. Fritzsche:<br />

“Nanoparticle-Based Detection of DNA”<br />

German BioSensor Symposium, Regensburg,<br />

March 15–18, <strong>2005</strong><br />

W. Fritzsche:<br />

“Nanoparticle-Based DNA Nanotechnology”<br />

German-Israeli Foundation G.I.F. Meeting on<br />

Nanotubes and Nanowires, Dresden, June<br />

18–23, <strong>2005</strong><br />

W. Fritzsche:<br />

„Mikro- und Nanosysteme für die Biosensorik“<br />

2. <strong>Jena</strong>er Technologietag, September 12, <strong>2005</strong><br />

W. Fritzsche:<br />

“Nanoparticle-Based DNA Nanotechnology”<br />

EU Workshop “DNA-Based Nanowires”, Modena<br />

(Italy), October 7–8, <strong>2005</strong><br />

W. Fritzsche:<br />

„Metallische Nanopartikel für die Bioanalytik“<br />

BioHyTec Workshop „Moderne Aspekte der Biosystemtechnik“,<br />

Luckenwalde, November 17, <strong>2005</strong><br />

MIKROSYSTEME / MICROSYSTEMS<br />

W. Fritzsche:<br />

“Metal Nanoparticles in Bioanalytics”<br />

Bioinspired Nanomaterials for Medicine and<br />

Technologies BioNanoMaT, DECHEMA Conference,<br />

Marl, November 23–24, <strong>2005</strong><br />

M. Kittler, X. Yu, M. Birkholz, T. Arguirov,<br />

M. Reiche, A. Wolff, W. Fritzsche, M. Seibt:<br />

“Self Organized Pattern Formation Of Biomolecules<br />

At Si Surfaces”<br />

European Materials Research Society Meeting,<br />

Strasbourg (France), May 31–June 3, <strong>2005</strong><br />

R. Möller, W. Fritzsche:<br />

“Metal nanoparticle-based molecular detection:<br />

Principles and applications”<br />

Annual Meeting of the German and Austrian<br />

Societies for Clinical Chemistry and Laboratory<br />

Diagnostics, <strong>Jena</strong>, October 6–8, <strong>2005</strong><br />

J. Popp:<br />

“Raman-Spectroscopy for a Rapid Identification<br />

of Single Microorganisms”<br />

5 th International Conference on Photonics,<br />

Devices and Systems, Prague (Czech Republic),<br />

June 8–11, <strong>2005</strong><br />

J. Popp:<br />

“Photonics meets Life Science – Innovative<br />

Aspects of Laser Spectroscopy”<br />

XIV. Krakow – <strong>Jena</strong> Symposium on Physical<br />

Chemistry, Dornburg, October 4–6, <strong>2005</strong><br />

J. Popp:<br />

„Innovative Bioanalytik mit Laserspektroskopischen<br />

Methoden“<br />

<strong>Jena</strong>er Technologie Tage (JETT), <strong>Jena</strong>, September<br />

12, <strong>2005</strong><br />

J. Popp:<br />

„Schwingungsspektroskopie zur Identifikation<br />

von einzelnen Mikroorganismen“<br />

Fraunhofer IPA Technologieforum, Institutszentrum<br />

der Fraunhofer-Gesellschaft, Stuttgart-Vaihingen,<br />

November 24, <strong>2005</strong><br />

J. Popp:<br />

“Rapid Microbe Identification by means of<br />

Raman-Spectroscopy”<br />

ECSBM <strong>2005</strong>, Aschaffenburg, September 3–8,<br />

<strong>2005</strong><br />

J. Popp:<br />

„Vision Biophotonik – Licht für die Gesundheit:<br />

Ein BMBF-Forschungsschwerpunkt stellt sich<br />

vor“<br />

Kaiser-Friedrich-Forschungspreis <strong>2005</strong> – Biophotonik,<br />

Goslar, May 3, <strong>2005</strong>,<br />

J. Popp:<br />

“Biophotonik – Photonics meets Life Science”,<br />

Instituts-Kolloquium, Hochschule Reutlingen –<br />

Reutlingen University, May 18, <strong>2005</strong><br />

75


76<br />

J. Vesenka:<br />

“Progree Towards Growth and Colloidal Gold<br />

Decoration of G-wire DNA”<br />

EU Workshop “DNA-Based Nanowires”, Modena,<br />

(Italy), October 7–8, <strong>2005</strong><br />

Presentations/Posters<br />

A. Brösing, B. R. Kracht, J. Felbel, M. Urban,<br />

M. Kielpinski, A. Reichert, T. Henkel, J. Weber,<br />

C. Gärtner, H.-P. Saluz, H. Krügel, T. Häfner,<br />

M. Dürst, U. Liebert, J. M. Köhler:<br />

“Serial DNA Amplification in Submicroliter Volumes<br />

by Implementation of Segmented Flow in<br />

Flow-through Micro Devices”<br />

14 th International Conference of Medical Physics<br />

and 39 th Annual Meeting of the German Society<br />

for Biomedical Engineering, Nürnberg, September<br />

14–17, <strong>2005</strong>, talk<br />

A. Csáki, G. Maubach, F. Garwe, A. Steinbrück,<br />

K. König, W. Fritzsche:<br />

“A novel DNA restriction technology based on<br />

laser pulse energy conversion on sequence-specific<br />

bound metal nanoparticles”<br />

SPIE Photonics West, San Jose (USA), February<br />

23–28, <strong>2005</strong>, poster<br />

A. Csáki, G. Maubach, F. Garwe, A. Steinbrück,<br />

K. König, W. Fritzsche:<br />

“Sequence-Specific Bound Nanoparticles For A<br />

Novel Sub-Wavelength DNA Restriction Technology<br />

Based On Laser Pulse Energy Conversion”<br />

International Meeting “Focus on Microscopy”,<br />

<strong>Jena</strong>, March 20–23, <strong>2005</strong>, poster<br />

A. Csáki, A. Steinbrück, S. Schröter, T. Glaser,<br />

W. Fritzsche:<br />

“Fabrication and characterization of nanophotonic<br />

metal structures”<br />

Intern. Symposium on Molecular Plasmonics,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong>, poster<br />

A. Csáki, F. Garwe, A. Steinbrück, A. Weise,<br />

G. Maubach, K. König, W. Fritzsche:<br />

“Laser-based sequence-specific DNA processing<br />

with sub-wavelength precision using DNAnanoparticle<br />

conjugates”<br />

Intern. Symposium on Molecular Plasmonics,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong>, poster<br />

A. Csáki, A. Steinbrück, W. Fritzsche:<br />

“Nanoparticle-based molecular plasmonics”<br />

3. German-Canadian Workshop “Young Scientist<br />

in Photonics”, München, June 10–14, <strong>2005</strong>, talk<br />

A. Csáki, F. Garwe, A. Steinbrück, A. Weise,<br />

G. Maubach, K. König, W. Fritzsche:<br />

“Novel DNA restriction technology based on laser<br />

pulse energy conversion on sequence-specific<br />

bound metal nanoparticles”<br />

3. German-Canadian Workshop “Young Scientist<br />

in Photonics”, München, June 10–14, <strong>2005</strong>, poster<br />

MIKROSYSTEME / MICROSYSTEMS<br />

T. Eick, A. Berger, D. Behrendt, U. Dillner,<br />

E. Kessler:<br />

“An Alternative Method for Measuring the<br />

Responsivity of Thermopile Infrared Sensors”<br />

Sensor <strong>2005</strong>, 12 th International Conference,<br />

Nürnberg, May 10–12, <strong>2005</strong>, talk B1.1<br />

J. Felbel, A. Sondermann, M. Kielpinski,<br />

M. Urban, I. Bieber, T. Henkel, W. Fritzsche:<br />

„Chip-Thermocycler für die Polymerase Kettenreaktion<br />

(PCR)“<br />

Micro Systems Technology Congress <strong>2005</strong>,<br />

Freiburg, October 10–12, <strong>2005</strong>, Proceedings: VDE<br />

VERLAG GMBH•Berlin•Offenbach, p. 54, talk<br />

W. Fritzsche, A. Csáki, A. Steinbrück,<br />

M. Raschke:<br />

“Metal nanoparticles as passive and active tools<br />

in bioanalytics”<br />

SPIE Photonics West, San Jose (USA), February<br />

23–28, <strong>2005</strong>, talk<br />

W. Fritzsche, A. Csaki, A. Steinbrück, F. Garwe,<br />

K. König, M. Raschke:<br />

“Metal Nanoparticles As Passive And Active Sub-<br />

Wavelength Tools For Biophotonics”<br />

International Meeting “Focus on Microscopy”,<br />

<strong>Jena</strong>, March 20–23, <strong>2005</strong>, talk<br />

W. Fritzsche:<br />

“DNA-based nanoparticle plasmonics for a highly<br />

parallel and integrated molecular nanotechnology”<br />

International Symposium on Molecular Plasmonics,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong>, talk<br />

W. Fritzsche:<br />

“DNA nanotechnology with metal particle conjugates<br />

for applications in bioanalytics and molecular<br />

construction”<br />

University of Southern Danemark, Odense, February<br />

11, <strong>2005</strong>, talk<br />

W. Fritzsche:<br />

„Charakterisierung im Nanobereich“<br />

Weiterbildungsveranstaltung „Nanotechnologie“<br />

im Haus der Technik, Essen, March 4, <strong>2005</strong>, talk<br />

W. Fritzsche, A. Csáki, F. Garwe, G. Maubach,<br />

R. Möller, A. Steinbrück, M. Raschke, K. König:<br />

„Biokonjugierte metallische Nanopartikel als Tool<br />

für optische Detektion und Manipulation mit<br />

molekularer Spezifität“<br />

Symposium im Rahmen des Biophotonik-<br />

Schwerpunkts „Struktur und Dynamik biologischer<br />

Zellen mit optischen Methoden auf der<br />

Spur“, <strong>Jena</strong>, March 15–17, <strong>2005</strong>, talk<br />

W. Fritzsche:<br />

“Nanoparticle-DNA-complexes for bioanalytics,<br />

nanoelectrics and nanophotonics”<br />

Weizmann Institute Rehovot, December 1, <strong>2005</strong><br />

and Hebrew University Jerusalem, December 4,<br />

<strong>2005</strong>, (Israel), talks


P. Grigaravicius, K. O. Greulich, S. Peters,<br />

P. Schellenberg:<br />

“Examining the influence of immobilization of<br />

proteins and their binding to ligands by probing<br />

their intrinsic UV-fluorescence decay”<br />

BioNanoMaterials, Marl, November 23–24, <strong>2005</strong>,<br />

poster<br />

T. Henkel:<br />

“Measurement of phase internal flow of liquid/<br />

liquid two phase flow in microchannels –<br />

approaches for control of mixing efficiency in<br />

microdroplets”<br />

Joint International PIVNET II/ERCOFTAC Workshop<br />

on Micro PIV and Applications in Microsystems,<br />

Delft (The Netherlands), April 7–8, <strong>2005</strong>,<br />

talk<br />

E. Kessler, V. Baier, U. Dillner, J. Müller, A. Berger,<br />

R. Gärtner, S. Meitzner, K.-P. Möllmann:<br />

“High-Temperature Resistant Infrared Sensing<br />

Head”<br />

Sensor <strong>2005</strong>, 12 th International Conference,<br />

Nürnberg, May 10–12, <strong>2005</strong>, talk A3.1<br />

M. Kittler, X. Yu, O. F. Vyvenko, M. Birkholz,<br />

W. Seifert, M. Reiche, T. Wilhelm, T. Arguirov,<br />

A. Wolff, W. Fritzsche, M. Seibt:<br />

“Self-organized pattern formation of biomolecules<br />

at silicon surfaces”<br />

2 nd International Symposium on Complex Material,<br />

Volkswagen Foundation, Stuttgart, June 2–3,<br />

<strong>2005</strong>, talk<br />

J. Lerchner, A. Wolf, G. Wolf, V. Baier,<br />

E. Kessler:<br />

“A new micro-fluid chip calorimeter for screening<br />

applications”<br />

7 th MEDICTA <strong>2005</strong>, Thessaloniki (Greece), July<br />

2–6, <strong>2005</strong>, talk<br />

J. Lerchner, R. Hüttl, A. Wolf, G. Wolf, V. Baier,<br />

R. Födisch:<br />

“Chip Calorimeter for Bioanalytical Applications”<br />

4. Deutsches BioSensor Symposium <strong>2005</strong>,<br />

Regensburg, March 13–16, <strong>2005</strong>, talk<br />

R. Petry, K. Gaus, K.-D. Peschke, H. Burkhardt,<br />

A. Wuttig, R. Riesenberg, J. Popp:<br />

„Modifiziertes, hochauflösendes UV-Mikro-Raman-Setup<br />

zur schwingungsspektroskopschen<br />

Untersuchung von Mikroorganismen“<br />

Biophotonik-Symposium „Struktur und Dynamik<br />

biologischer Zellen mit optischen Methoden auf<br />

der Spur“, <strong>Jena</strong>, March 15–17, <strong>2005</strong>, poster<br />

R. Riesenberg, A. Wuttig, R. Petry:<br />

„Neue leistungsfähige Spektrometer-Architekturen“<br />

Biophotonik-Symposium „Struktur und Dynamik<br />

biologischer Zellen mit optischen Methoden auf<br />

der Spur“, <strong>Jena</strong>, March 15–17, <strong>2005</strong>, talk<br />

MIKROSYSTEME / MICROSYSTEMS<br />

R. Riesenberg:<br />

“Spectral Bioreader, spectral High-Throughput<br />

Screening”<br />

Presentation of the Campus Beutenberg in the<br />

MIREIKAN, Tokyo (Japan), September 11–14,<br />

<strong>2005</strong>, poster<br />

A. Steinbrück, A. Csaki, C.-C. Neacsu,<br />

M. Raschke, W. Fritzsche:<br />

“Preparation and optical characterization of coreshell<br />

bi-metal nanoparticles”<br />

International Symposium on Molecular Plasmonics,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong>, poster<br />

A. Steinbrück, A. Csáki, G. Festag, W. Fritzsche:<br />

“Preparation and optical characterization of coreshell<br />

bi-metal nanoparticles”<br />

3. German-Canadian Workshop “Young Scientist<br />

in Photonics”, München, June 10–15, <strong>2005</strong>, poster<br />

A. Steinbrück, J. Vesenka, A. Csaki, G. Festag,<br />

W. Fritzsche:<br />

“Bi-metal nanostructures: Fabrication and characterization”<br />

4. Internationaler Workshop “Scanning Probe<br />

Microscopy in Life Sciences”, Berlin, October 13,<br />

<strong>2005</strong>, poster<br />

J. Vesenka, A. Wolff, A. Reichert, C. Holste,<br />

R. Möller, W. Fritzsche:<br />

“Progress towards growth and decoration of Gwire<br />

DNA with gold nanoparticles”<br />

EU Workshop “DNA-Based Nanowires”, Modena<br />

(Italy), October 7–8, <strong>2005</strong>, poster<br />

J. Weber, J. Felbel, W. Fritzsche:<br />

„Biologische Gefahrstoffe unter Beobachtung –<br />

Biotechnologische Mikrosysteme zur Gewinnung<br />

von Sicherheitsinformationen“<br />

Workshop „Neue Technologien – Ausblick in eine<br />

wehrtechnische Zukunft“, BMVg Bonn, November<br />

17, <strong>2005</strong>, talk<br />

A. Wolff, A. Csaki, W. Fritzsche:<br />

“Directed DNA-Immobilization on Solid Substrates”<br />

2 nd International Symposium on Complex Material,<br />

Volkswagen Foundation, Stuttgart, June 2–3,<br />

<strong>2005</strong>, poster<br />

A. Wolff, A. Csaki, W. Fritzsche:<br />

“DNA Stretching and Positioning for Nano-electronics”<br />

German-Israeli Foundation G.I.F. Meeting on<br />

Nanotubes and Nanowires, Dresden, June 18–23,<br />

<strong>2005</strong>, poster<br />

Patents<br />

R. Riesenberg, A. Wuttig:<br />

„Anordnung zur hochauflösenden digitalen Inline-<br />

Holographie“<br />

DE 10 <strong>2005</strong> 023 137.3 (15.05.<strong>2005</strong>)<br />

77


78<br />

Lectures<br />

W. Fritzsche:<br />

„Nanobiotechnologie“<br />

FSU <strong>Jena</strong>, Chemisch-Geowissenschaftliche Fakultät,<br />

Sommersemester <strong>2005</strong><br />

W. Fritzsche:<br />

„Metallische Nanopartikel – Präparation, Charakterisierung,<br />

Anwendungen“<br />

FSU <strong>Jena</strong>, Chemisch-Geowissenschaftliche Fakultät,<br />

Wintersemester <strong>2005</strong><br />

W. Fritzsche:<br />

„Nanocharakterisierung“<br />

TU Ilmenau, Fakultät für Mathematik und Naturwissenschaften,<br />

Wintersemester <strong>2005</strong><br />

P. Schellenberg (mit R. Glaser, K. O. Greulich):<br />

„Biophysikalische Chemie II“<br />

FSU <strong>Jena</strong>, Biologisch-Pharmazeutische Fakultät,<br />

Sommersemester <strong>2005</strong><br />

P. Schellenberg:<br />

„Biomoleküle: Visualisierungen und Rechnungen<br />

am Computer“<br />

FSU <strong>Jena</strong>, Biologisch-Pharmazeutische Fakultät<br />

und Multimediazentrum, Wintersemester <strong>2005</strong>/<br />

2006<br />

Diploma Thesis<br />

Thomas Schüler:<br />

„Chip-basierter elektrischer DNA-Nachweis zur<br />

Identifikation von Mikroorganismen“<br />

Fachhochschule <strong>Jena</strong>, FB Medizintechnik, 09/05<br />

Eileen Heinrich:<br />

„Chip-basierter Nachweis von DNA und Proteinen<br />

mittels Molekülklassen-spezifischer Markierung“<br />

Fachhochschule <strong>Jena</strong>, FB Medizintechnik, 12/05<br />

Laboratory exercises<br />

A. Csáki, A. Wolff, W. Fritzsche:<br />

„AFM-Untersuchungen an gestreckt-immobilisierter<br />

DNA“<br />

Praktikum „Biophysikalische Chemie“ (Biochemie<br />

5. Semester) für Studenten der FSU <strong>Jena</strong><br />

WS 2004/<strong>2005</strong>, SS <strong>2005</strong>, WS <strong>2005</strong>/2006<br />

A. Csáki, A. Wolff, W. Fritzsche:<br />

„AFM-Untersuchungen von DNA-Molekülen“<br />

Ergänzungspraktikum für Genetik (11. Klasse)<br />

27.6.<strong>2005</strong>–1.7.<strong>2005</strong><br />

J. Felbel, A. Reichert, W. Fritzsche:<br />

„PCR in Chip-Bauelementen“<br />

Praktikum „Biophysikalische Chemie“ (Biochemie<br />

5. Semester) für Studenten der FSU <strong>Jena</strong><br />

WS 2004/<strong>2005</strong>, SS <strong>2005</strong>, WS <strong>2005</strong>/2006<br />

MIKROSYSTEME / MICROSYSTEMS<br />

G. Festag, Th. Schüler:<br />

„DNA-Goldnanopartikel-Addukte auf Chipoberflächen“<br />

Praktikum „Molekulare Nanotechnologie“ für Studenten<br />

der TU Ilmenau, 12.–14.09.<strong>2005</strong><br />

G. Festag, G. Nitzsche:<br />

„Sequenzspezifischer DNA-Nachweis mittels Glasfasern“<br />

Praktikum „Nanobiotechnologie“ für Schüler des<br />

Gymnasiums Rudolstadt (11. Klasse),<br />

17.–28.10.<strong>2005</strong><br />

T. Henkel, D. Malsch:<br />

“Microparticle imaging velocimetry (µ-PIV)”<br />

Praktikum für Studenten der TU Ilmenau<br />

September <strong>2005</strong><br />

R. Möller, G. Festag, W. Fritzsche:<br />

„Mikroskopische Untersuchungen an DNA-Nanopartikel-Komplexen“<br />

Praktikum „Biophysikalische Chemie“ (Biochemie<br />

5. Semester) für Studenten der FSU <strong>Jena</strong><br />

WS 2004/<strong>2005</strong>, SS <strong>2005</strong>, WS <strong>2005</strong>/2006<br />

A. Wolff, A. Csaki:<br />

„Einführung in die Mikrosystemtechnik“<br />

Betriebspraktikum des Carl-Zeiss-Gymnasiums<br />

<strong>Jena</strong> (9. Klasse)<br />

31.01–03.02.05, 30.06.–12.07.05<br />

Practical Trainee<br />

Georg Ziegenhardt:<br />

„Aufbau von Anordnungen zur objektivlosen<br />

Mikroskopie“<br />

practical semester, Fachhochschule <strong>Jena</strong>,<br />

04–09/05<br />

Guest Scientists<br />

Prof. Dr. J. Vesenka<br />

University of New England, Department of<br />

Chemistry and Physics, Biddeford, ME (USA)<br />

September <strong>2005</strong>–January 2006<br />

Dr. Shin-ichi Tanaka<br />

Osaka University, Graduate School of Frontier<br />

Biosciences (Japan)<br />

May 2004–April <strong>2005</strong><br />

Memberships<br />

V. Baier<br />

Deutscher Verband für Schweißen und verwandte<br />

Verfahren e.V. (DVS), AG Waferbonden<br />

H. Dintner<br />

• Member of the Thuringian VDI/VDE working<br />

group „Mikrotechnik”


• Member of scientific council of AMA, Fachverband<br />

für Sensorik e.V.<br />

W. Fritzsche<br />

• Scientific Advisory Committee of the International<br />

Society for Nanoscale Science, Computation<br />

and Engineering (ISNSCE),<br />

• Working Committee “Micro Systems for Biotechnology”<br />

E. Keßler<br />

Gesellschaft für Thermische Analyse e.V.,<br />

AK Thermophysik<br />

J. Popp<br />

• Editorial Board Member Journal of Raman<br />

Spectroscopy<br />

• Editorial Board Member ChemPhysChem<br />

• Member of Steering committee “International<br />

Conference on Raman Spectroscopy”<br />

• Member of Steering committee “Advanced<br />

Spectroscopies on Biomedical and Nanostructured<br />

Systems”<br />

• Member advisory board BioRegio <strong>Jena</strong> e.V.<br />

• Personal member: DPG, GDCh,<br />

Bunsen society<br />

R. Riesenberg<br />

• IRS2, International Conference and Exhibition<br />

on Infrared Sensors & Systems, programme<br />

committee and chair<br />

• CLEO Europe, 16 th International Conference<br />

on Lasers and Electrooptics Europe of the<br />

Optical Society of America (OSA), programme<br />

committee<br />

MIKROSYSTEME / MICROSYSTEMS<br />

• Participant of the Humboldt Foundation,<br />

German-American Frontiers of Engineering<br />

in Optics<br />

• Personal member: SPIE, DPG<br />

Awards<br />

Winner of the Poster Award of the 7. Dresdner<br />

Sensor Symposium, 12.–14.12.<strong>2005</strong>, Dresden,<br />

Poster Title: „Entwicklung von mikrofluidischen<br />

Chipelementen für biologische Anwendungen”<br />

The Cetoni GmbH was the winner of the “Innovationspreis<br />

Thüringen Ost <strong>2005</strong>” for the development<br />

of an innovative microsyringe based multichannel,<br />

high precision liquid handling plattform,<br />

optimized for R&D and automation of microfluidic<br />

applications. The device is based on results of a<br />

joint project, between Cetoni GmbH and the<br />

<strong>IPHT</strong>, funded by the German Federation of Industrial<br />

Cooperative Research Associations “Otto<br />

von Guericke” (AiF).<br />

Conference Organization<br />

W. Fritzsche<br />

International Symposium “Molecular Plasmonics”,<br />

<strong>Jena</strong>, May 19–21, <strong>2005</strong><br />

J. Popp<br />

Symposium „Struktur und Dynamik biologischer<br />

Zellen mit optischen Methoden auf der Spur“,<br />

<strong>Jena</strong>, March 15–17, <strong>2005</strong><br />

79


80<br />

4.1 Überblick<br />

Der Bereich Lasertechnik nutzt Laser als subtiles<br />

Werkzeug (Laserchemie) und als kontaktfreie<br />

Sonde (Laserdiagnostik). Die Hauptanwendungen<br />

als Werkzeug betreffen die<br />

Laserkristallisation von Silizium-Dünnschichten<br />

hauptsächlich für Solarzellen und zunehmend<br />

die Präparation von Silizium-Nanodrähten. Die<br />

Laserdiagnostik dient im Wesentlichen zur Charakterisierung<br />

von optischen Materialien, Dünnschichten<br />

und Komponenten sowie von Flammen.<br />

Für die Flammendiagnostik unter Mikrogravitation<br />

wird für den Fallturm Bremen ein<br />

abstimmbares und gepulstes UV-Scheibenlasersystem<br />

entwickelt. In allen genannten Gebieten<br />

zeigen die konsequente Aufbauarbeit in der<br />

Lasertechnik und ihre hohen Qualitätsstandards<br />

sehr gute Erfolge.<br />

LASERTECHNIK / LASER TECHNOLOGY<br />

4. Lasertechnik / Laser Technology<br />

Leitung/Head: Prof. Dr. H. Stafast<br />

e-mail: herbert.stafast@ipht-jena.de<br />

Laserchemie / Laser Chemistry Laserdiagnostik / Laser Diagnostics<br />

Leitung/Head: PD Dr. F. Falk Leitung/Head: Prof. Dr. W. Triebel<br />

fritz.falk@ipht-jena.de wolfgang.triebel@ipht-jena.de<br />

4.1 Overview<br />

The division for Laser Technology applies lasers<br />

as subtle tools and as remote probes. The most<br />

important applications as a tool refer to laser<br />

crystallisation of silicon thin films for solar cells<br />

and increasingly to the preparation of silicon<br />

nanowires. Laser diagnostics is essentially used<br />

to characterise optical materials, thin films, and<br />

components as well as flames. For flame diagnostics<br />

under microgravity in the drop tower Bremen,<br />

a tuneable and pulsed UV disk laser system<br />

has been developed. Overall, the thorough establishment<br />

of laser technology and high quality<br />

standards are putting forth very good results.<br />

The Laser Chemistry section at <strong>IPHT</strong> is dominantly<br />

active in the field of solar cells (design and<br />

preparation) and is well established in the photo-


LASERTECHNIK / LASER TECHNOLOGY<br />

Combination of prisms and mirror to achieve single line operation in the F 2 laser of TUI Laser company.<br />

Diode laser crystallised seed layer with large grained crystalline silicon on glass (grains 10 – some<br />

100 µm wide, several mm long).<br />

81


82<br />

Die Abteilung Laserchemie arbeitet zum größten<br />

Teil auf dem Gebiet der Solarzellen (Design und<br />

Herstellung) und ist in der Photovoltaik(PV) fest<br />

verankert, in F&E-Fachkreisen (z.B. PVUniNetz<br />

und Solar INPUT) und Industriepartnerschaften<br />

(z.B. Firma Ersol, Erfurt und Antec Solar, Arnstadt).<br />

Herausragendes Projektergebnis im Jahr<br />

<strong>2005</strong> ist die produktionsnahe Präparation von<br />

Silizium-Kristallkeimschichten mit einem industrietauglichen<br />

Diodenlasersystem, das neben<br />

einer deutlichen Kapazitätssteigerung durch eine<br />

Laserleistung von 0,7 kW gegenüber 10–20 W<br />

aus einem Ar + -Laser auch eine Kristallkeimvergrößerung<br />

von 0,01–0,1 mm auf 0,1 bis wenige<br />

mm bewirkt (s. Farbbildseite).<br />

In enger Zusammenarbeit mit dem Institut für<br />

Festkörperphysik der Friedrich-Schiller-Universität,<br />

dem MPI für Mikrostrukturphysik, Halle und<br />

der Uníversität Halle ist das neue Arbeitsfeld mit<br />

nanostrukturierten Halbleitern auf eine breitere<br />

Basis gestellt worden. Zu der bereits 2004 etablierten<br />

CVD-Methode sind zur Präparation von<br />

Nanodrähten aus Silizium die Elektronenstrahlverdampfung<br />

und die Laserablation hinzugekommen.<br />

Inzwischen gelingt es, Nanodrähte in<br />

Vorzugsrichtungen wachsen zu lassen (Abb. 4.2).<br />

Die Abteilung Laserdiagnostik hat ihre Methodenvielfalt<br />

um die Frequenzverdopplung (SHG =<br />

second harmonic generation) von Femtosekundenlaserpulsen<br />

an Grenzflächen erweitert (Doktorarbeit<br />

T. Scheidt „summa cum laude“, vgl. auch<br />

Abb. 4.6) und kann damit selbst monomolekulare<br />

Dünnschichten diagnostizieren. Die an optischen<br />

Massivmaterialien erprobten Transmissions- und<br />

Absorptionsmessungen haben mit der Doktorarbeit<br />

von Ch. Mühlig („magna cum laude“) einen<br />

neuen Qualitätsstandard erreicht (Abb. 4.4 und<br />

4.5). Absorptionsmessungen mit Teststrahlablenkung<br />

(LID = laser induced deflection) und die<br />

laserinduzierte Fluoreszenz (LIF) gelingen zunehmend<br />

auch an Dünnschichten und optischen<br />

Komponenten durch Empfindlichkeitssteigerungen<br />

und/oder Konzeptverbesserungen der Messmethoden.<br />

Die Entwicklung des Scheibenlasersystems<br />

(ADL-FT = Advanced Disk Laser für Fallturm)<br />

machte <strong>2005</strong> – in bewährter Zusammenarbeit mit<br />

dem IFSW (Stuttgart) und ZARM (Bremen) –<br />

große Fortschritte. Die Ergebnisse aus den<br />

ersten Fallturm-Abwürfen haben inzwischen zu<br />

Konzeptverbesserungen geführt. Im <strong>IPHT</strong> gelang<br />

mit diesem Lasertyp auch die kurzwellige Anregung<br />

von OH-Radikalen für die Flammendiagnostik,<br />

in Zusammenarbeit mit dem Bereich<br />

Mikrosysteme auch an Mikroflammen (ca. 5 mm<br />

breit, 35 mm hoch, Abb. 4.7). In Kooperation mit<br />

dem Bereich Optik gelang auch die Laserdiagnostik<br />

an Partikel-„beladenen“ Flammen, die beispielsweise<br />

zur Glassynthese dienen.<br />

LASERTECHNIK / LASER TECHNOLOGY<br />

voltaics R&D community (e.g. PVUniNetz and<br />

Solar INPUT) and in industrial partnerships (e.g.<br />

Ersol company, Erfurt and Antec Solar, Arnstadt).<br />

The prominent success in <strong>2005</strong> consists of the<br />

production relevant preparation of silicon crystalline<br />

seed layers with a laser diode system suitable<br />

for industrial application. Not only was<br />

the throughput increased by using a 0.7 kW<br />

diode laser instead of the previous 10–20 W Ar +<br />

laser but also an enlargement of the crystallite<br />

size from 0.01–0.1 mm to 0.1–several mm was<br />

achieved (cf. coloured page).<br />

In close cooperation with the Institute of Solid<br />

State Physics at the Friedrich-Schiller-University,<br />

the Max-Planck-Institute of Microstructural Physics<br />

at Halle and the University of Halle, the new field<br />

of nanostructured semiconductors has been put<br />

onto an enlarged basis. The CVD method available<br />

in 2004 for nanowire preparation has been<br />

complemented by electron beam evaporation<br />

and laser ablation of silicon. Meanwhile we manage<br />

to grow epitaxial nanowires into preferred<br />

directions (Fig. 4.2).<br />

The Laser Diagnostics section has added frequency<br />

doubling (SHG = second harmonic generation)<br />

of femtosecond laser pulses on surfaces<br />

to its variety of experimental methods (PhD thesis<br />

of T. Scheidt “summa cum laude”, also cf.<br />

Fig. 4.6) enabling to characterize even monomolecular<br />

thin layers. The transmission and absorption<br />

measurement methods established with optical<br />

bulk materials achieved a new quality standard<br />

(PhD thesis of Ch. Mühlig, “magna cum<br />

laude”, also cf. Figs. 4.4 and 4.5). Absorption<br />

measurements with laser induced deflection<br />

(LID) of a probe beam and the laser induced fluorescence<br />

(LIF) now can more and more be<br />

transferred to thin films and optical components<br />

due to sensitivity enhancements and/or improved<br />

concepts of the measurement methods.<br />

The development of the disk laser system (ADL<br />

FT = Advanced Disk Laser for “Fallturm”) showed<br />

– in the experienced cooperation with IFSW<br />

(Stuttgart) and ZARM (Bremen) – much progress<br />

in <strong>2005</strong>. The results of the first experiments in the<br />

drop tower meanwhile induced several conceptual<br />

improvements. At <strong>IPHT</strong>, experiments with this<br />

kind of laser were performed at short wavelengths<br />

suitable to excite OH radicals in flames, in<br />

cooperation with the division for Microsystems<br />

even in microflames (5 mm broad, 35 mm high,<br />

Fig. 4.7). In cooperation with the Optics division<br />

laser diagnostics could be shown for particle<br />

“loaded” flames suitable e.g. for glass synthesis.<br />

Due to the extraordinary efforts of all coworkers<br />

during <strong>2005</strong> the division for Laser Technology<br />

managed to nearly maintain its project funds,<br />

level of publications, and patents in spite of the<br />

tough situation with governmental funds and the


Dank besonderem Engagement aller Mitarbeiter<br />

konnte der Bereich Lasertechnik <strong>2005</strong> trotz der<br />

verschärften Situation bei den öffentlichen Fördermitteln<br />

und des allgemein geringen Wirtschaftswachstums<br />

sein Niveau bei den Drittmittelprojekten,<br />

Veröffentlichungen und Patenten wenigstens<br />

in etwa halten. Das Drittmittelaufkommen von rund<br />

1,0 Mio “ liegt merklich unter dem Niveau des Vorjahres<br />

(1,2 Mio “). Insgesamt haben jedoch die<br />

mit dem Umzug erreichten kurzen Wege zu den<br />

anderen <strong>IPHT</strong>-Forschungsbereichen einen deutlichen<br />

Zuwachs bei der bereichsübergreifenden<br />

Zusammenarbeit bewirkt.<br />

4.2 Selected Results<br />

4.2.1 Laser chemistry<br />

Laser chemistry at <strong>IPHT</strong> is essentially concerned<br />

with the deposition of thin films and thin film systems,<br />

their physicochemical modification (particularly<br />

laser crystallisation) and some special<br />

items like spectroscopic diagnostics of thin film<br />

processing, nanowire preparation, and fs laser<br />

micromachining.<br />

Laser crystallisation<br />

(Gudrun Andrä, Joachim Bergmann,<br />

Arne Bochmann, Fritz Falk, Annett Gawlik,<br />

Ekkehardt Ose)<br />

For several years, <strong>IPHT</strong> has been aiming at the<br />

preparation of thin film solar cells consisting of<br />

large grained crystalline silicon on glass. The<br />

development of this new cell type is based on the<br />

deposition of amorphous silicon either by plasma<br />

CVD from SiH 4 (13.6 MHz) or by electron beam<br />

evaporation of bulk silicon and its in situ laser<br />

crystallisation. In a first step large crystal grains<br />

are obtained from 300–500 nm thick amorphous<br />

silicon layers by cw laser crystallisation (seed<br />

layer formation). Subsequently the seed layer<br />

undergoes epitaxial thickening by pulsed Layered<br />

Laser Crystallisation (LLC), an <strong>IPHT</strong> patented<br />

method. So far laboratory cells with an open circuit<br />

voltage of 510 mV and a conversion efficiency<br />

of 4.8% based on an absorber thickness of<br />

5 µm were obtained. Recent work addressed the<br />

acceleration (industrial application) and optimisation<br />

of the seed layer formation by applying a<br />

700 W diode laser focused to a line and scanned<br />

across the substrates to achieve crystallite sizes<br />

of 0.1 to several mm (cf. coloured page). Additional<br />

progress for the solar cell performance is<br />

expected from improving light trapping, improving<br />

contact and shunt resistances as well as minimising<br />

charge carrier recombination. The related<br />

work benefits from the discussions and cooperation<br />

with the Hahn-Meitner-Institute (HMI) at<br />

LASERTECHNIK / LASER TECHNOLOGY<br />

generally poor rate of economic growth. The project<br />

funds in <strong>2005</strong> of about 1.0 Mio are close to<br />

the amount of 2004 (1.2 Mio “). Overall the move<br />

to the Beutenberg campus yielded, however, a<br />

considerable strengthening of trans-divisional<br />

cooperation due to the short distances to the<br />

other <strong>IPHT</strong> research divisions.<br />

Berlin, Solar-Zentrum Erfurt at CiS, Ersol company<br />

at Erfurt, and INPUT Solar, a Thuringian association<br />

of photovoltaic industrial companies and<br />

R&D institutes.<br />

Thin film deposition and nanowire growth<br />

(Gudrun Andrä, Fritz Falk, Herbert Stafast,<br />

Thomas Stelzner)<br />

The deposition of Si/C/N thin films for tribological<br />

applications by RF plasma enhanced CVD using<br />

single source precursors was performed within<br />

the DFG program SPP 1119 in close cooperation<br />

with TU Darmstadt and RWTH Aachen. <strong>IPHT</strong><br />

contributed to the understanding of the complex<br />

CVD processes by comparing Si/C/N thin films<br />

obtained from two precursors, hexamethyldisilazane<br />

(CH 3) 3Si-NH-Si(CH 3) 3 (HMDS) and<br />

bis(trimethylsilyl)carbodiimide (CH 3) 3Si-N=C=N-<br />

Si(CH 3) 3 (BTSC). Hard Si/C/N thin films were<br />

obtained on the RF powered, but not on the<br />

grounded electrode. Therefore a heating system<br />

for the RF electrode was developed which<br />

allowed to investigate the substrate temperature<br />

dependence of the thin film properties. As an<br />

example the temperature dependence of the film<br />

hardness is sketched out in Fig. 4.1.<br />

Fig. 4.1: Martens hardness of Si/C/N thin films<br />

obtained from HMDS or BTSC as a function of<br />

the subtrate temperature.<br />

83


84<br />

As a new field of research at <strong>IPHT</strong>, silicon<br />

nanowires are grown by thermal and plasma<br />

enhanced CVD from SiH 4 or electron beam evaporation<br />

via a gold nanodot supported vapor-liquid-solid<br />

mechanism. This work is performed in<br />

close cooperation with the universities of <strong>Jena</strong><br />

and Halle as well as the Max-Planck-Institute of<br />

Microstructural Physics at Halle. Evidently the<br />

nanowire growth conditions now can be sufficiently<br />

controlled to achieve well oriented epitaxial<br />

silicon wires with diameters ranging from<br />

50 nm to 1 µm (Fig. 4.2).<br />

Fig. 4.2: Silicon nanowires grown by CVD on<br />

Si(111), Si(100), and Si(110) surfaces (top to<br />

bottom).<br />

LASERTECHNIK / LASER TECHNOLOGY<br />

Laser ablation<br />

(Gudrun Andrä, Fritz Falk, Joachim Bergmann,<br />

A. Bochmann)<br />

Femtosecond (fs) laser ablation for micromachining<br />

of hard metal tools as a spin-off from an<br />

InnoRegio project was presented at the LASER<br />

<strong>2005</strong> fair at Munich. The potential of fs laser<br />

micromachining could, in addition, be demonstrated<br />

in case of a diamond tip sharpened by fs<br />

laser ablation (Fig. 4.3). This result demonstrates<br />

the importance of nonlinear processes as diamond<br />

has an indirect bandgap of 5.48 eV (direct:<br />

7.3 eV) which is very large in comparison to the<br />

laser photon energy of 1.6 eV.<br />

Fig. 4.3: Diamond tip sharpened by fs laser ablation.<br />

4.2.2 Laser diagnostics<br />

The Laser Diagnostics section applies different<br />

types of lasers as remote and contactless probes<br />

particularly to characterise optical materials,<br />

components, and thin films and to investigate<br />

flames. Some years ago, the development of<br />

solid state lasers dedicated to flame diagnostics<br />

has been successfully established.<br />

In <strong>2005</strong> two high ranking PhD theses were<br />

submitted to the Friedrich-Schiller-University:<br />

Ch. Mühlig could considerably improve the<br />

understanding of the ArF laser pulse absorption<br />

by fused silica and CaF 2 (magna cum laude). In<br />

both materials laser absorption is related to the<br />

generation and annealing of defects. T. Scheidt<br />

revealed 5 new laser induced effects at the technologically<br />

important Si/SiO 2 interface applying<br />

the surface second harmonic generation (SSHG)<br />

method using fs laser pulses (summa cum<br />

laude). He performed his experiments at the<br />

Laser Research Institute at the University of Stellenbosch,<br />

South Africa, after having built up the fs<br />

laser laboratory from scratch.


UV optical materials<br />

(Alfons Burkert, Siegfried Kufert,<br />

Christian Mühlig, Wolfgang Triebel)<br />

UV laser lithography and other laser applications<br />

impose severe challenges on the optical quality<br />

and laser durability of bulk and thin film materials.<br />

<strong>IPHT</strong> has specialised for more than one decade<br />

on selected methods for their characterisation.<br />

Experience has been accumulated in close cooperation<br />

with Schott Lithotec company as the longstanding<br />

industrial partner as well as Jenoptik<br />

L.O.S. and Layertec companies and the FhG IOF<br />

within the last few years. The facilities, knowledge<br />

and experience of these institutions and<br />

<strong>IPHT</strong> complement each other to their mutual benefit,<br />

making <strong>Jena</strong> a place of high standards at the<br />

leading edge worldwide.<br />

The measurement methods at <strong>IPHT</strong> using<br />

excimer lasers at 248, 193, and 157 nm comprise<br />

(i) UV laser beam transmission, (ii) measurement<br />

of absorption by the laser induced probe beam<br />

deflection (LID) method, (iii) laser induced fluorescence<br />

(LIF), (iv) pulsed UV laser Raman spectroscopy,<br />

(v) vacuum UV spectroscopy, and (vi)<br />

wavefront deformation (S-H sensor). These have<br />

been complemented by (vii) surface second harmonic<br />

generation (SSHG) using fs laser pulses.<br />

The progress in investigating bulk absorption of<br />

excimer laser pulses by fused silica gained by<br />

applying the LID method becomes easily apparent<br />

in Fig. 4.4. Looking at the fluence dependence<br />

of the ArF laser absorption, it previously<br />

appeared to be a linear relation between the<br />

absorption coefficient α and the fluence H. These<br />

results from the Laser Laboratory Göttingen<br />

obtained by calorimetry were, however, limited to<br />

the high H region. The improved sensitivity of the<br />

LID method at <strong>IPHT</strong> (cf. e.g. annual report 2004)<br />

enabled us to investigate the α(H) behaviour at<br />

Fig. 4.4: ArF laser absorption coefficients α of<br />

fused silica as a function of the applied laser<br />

energy fluence H; α values in high H range<br />

obtained by calorimetry and α values in low H<br />

range by LID method (cf. text).<br />

LASERTECHNIK / LASER TECHNOLOGY<br />

small H values and unequivocally revealed a nonlinear<br />

dependence. This finding has a great<br />

impact on the extrapolation of the α(H=0) values<br />

which usually are used to estimate the materials`<br />

quality and laser durability. The α(H) data are<br />

reproduced by an empirical absorption model in<br />

the whole investigated H range (Fig. 4.4: solid<br />

line).<br />

In addition, the LID method can be calibrated<br />

absolutely and can separate laser absorption in<br />

the bulk material from that on surfaces. Bulk and<br />

surface absorption are calibrated by applying<br />

electrical resistance heaters introduced into the<br />

sample or attached to the selected sample surface<br />

area, respectively (Fig. 4.5). The method of<br />

sample surface heating has also been used to<br />

calibrate laser absorption in optical thin films, e.g.<br />

absorption in dielectric layers of highly reflective<br />

mirrors.<br />

Fig. 4.5: Samples prepared for absolute calibration<br />

of laser absorption by using electrical resistance<br />

heaters introduced into the sample (bulk<br />

absorption) or attached to the sample surface<br />

(surface absorption).<br />

The investigation of (inner) surfaces and thin<br />

films can be conveniently performed by SSHG.<br />

As an example Fig. 4.6 demonstrates that the<br />

SSHG signal obtained from the interface<br />

between silicon and its 5 nm thin natural oxide<br />

layer is sensitive to p-type doping of the silicon<br />

sample: The electric field induced SH (EFISH)<br />

signal at the beginning of irradiation is very small<br />

(no or low doping, upper part) or large (high doping,<br />

lower part). The signal development during<br />

irradiation shows how the doping induced field<br />

85


86<br />

Fig. 4.6: EFISH signal development (cf. text) at<br />

Si/SiO 2 surfaces with oxidized silicon of low<br />

(upper part) and high p-type doping (lower part).<br />

across the Si/SiO 2 interface is steadily compensated<br />

and overwhelmed by laser induced electron<br />

injection into the SiO 2 layer building up an<br />

electric field of opposite direction. In addition the<br />

SSHG method was successfully applied to detect<br />

the damage of monomolecular surface layers<br />

induced by excimer laser irradiation.<br />

Further investigations of optical materials and<br />

components in <strong>2005</strong> refer to the laser durability of<br />

fused silica (undesired microchannel formation),<br />

CaF 2 (HELD = high energy laser durability project),<br />

optical layers (impurity and defect detection)<br />

as well as the performance of optical functional<br />

elements.<br />

Combustion processes<br />

(Dirk Müller, Wolfgang Paa, Wolfgang Triebel)<br />

Laser diagnostics is applied to investigate steady<br />

state and dynamic flames up to pulse repetition<br />

rates of 1 kHz. The well-established detection of<br />

OH radicals by LIF now has – in cooperation with<br />

the Optics division – also successfully been<br />

applied to flames of industrial burners containing<br />

particles (loaded flames) and used to determine<br />

local gas temperatures. On the other hand, the LIF<br />

method is capable of characterising very small<br />

flames created by microburners which were prepared<br />

in the division for Microsystems (Fig. 4.7).<br />

The breadboard model of the advanced disk<br />

laser system (ADL) at <strong>IPHT</strong> <strong>Jena</strong> was further<br />

LASERTECHNIK / LASER TECHNOLOGY<br />

Fig. 4.7: 2D-LIF image of OH in small flame on<br />

top of microburner with 380 µm channel width.<br />

improved and tested to generate 2D-LIF images<br />

of OH in flames. This required generating the<br />

third harmonic of the ADL pulses efficiently with<br />

sufficiently high pulse energy. Furthermore, some<br />

preliminary work has been performed towards<br />

fast wavelength switching of the ADL system<br />

using the available tuning components at the high<br />

laser pulse repetition rate.<br />

Moreover the ADL-FT (Fallturm) system was tested<br />

in several drops with maximum deceleration of<br />

about 35 g in polystyrene granulate: Evidently the<br />

laser system survives these procedures. Convection,<br />

however, is still present in front of the laser<br />

disk and changes when microgravity conditions<br />

start. These changes are small but sufficient to<br />

influence the laser operation so that some revisions<br />

of the laser system and operation are required.<br />

4.3 Appendix<br />

Partners (in alphabetical sequence)<br />

in <strong>Jena</strong> and Thuringia:<br />

• CiS Institut für Mikrosensorik, Erfurt<br />

• Ersol Solar Energy AG, Erfurt<br />

• Fachhochschule (University of Applied Sciences)<br />

<strong>Jena</strong><br />

• Fraunhofer-Institut für Angewandte Optik und<br />

Feinmechanik (IOF), <strong>Jena</strong><br />

• Friedrich-Schiller-Universität, <strong>Jena</strong><br />

Institut für Festkörperphysik und Astrophysikalisches<br />

Labor<br />

• Institut für Fügetechnik und Werkstoffprüfung<br />

(IFW), <strong>Jena</strong><br />

• ITP GmbH, Weimar<br />

• Jenoptik Laser.Optik.Systeme GmbH, <strong>Jena</strong><br />

• Jenoptik Laserdiode GmbH, <strong>Jena</strong><br />

• Layertec GmbH, Mellingen<br />

• LLT Applikation GmbH, Ilmenau<br />

• MWS Schneidwerkzeuge GmbH&Co. KG,<br />

Schmalkalden


• PV Silicon GmbH, Erfurt<br />

• Schott Lithotec AG, <strong>Jena</strong><br />

• Technische Universität Ilmenau, Institut für<br />

Physik<br />

• Technische Universität Ilmenau, Institut für<br />

Werkstofftechnik<br />

• U. Speck Sensorsysteme GmbH, <strong>Jena</strong><br />

in Germany:<br />

• Carl Zeiss Oberkochen GmbH (CZO)<br />

• Carl Zeiss SMT AG<br />

• DLR Verbrennungsforschung, Stuttgart<br />

• Hahn-Meitner-Institut (HMI), Berlin<br />

• Heraeus Tenevo, Bitterfeld<br />

• Innovavent GmbH, Göttingen<br />

• Institut für Solarenergieforschung GmbH,<br />

Hameln<br />

• Lambda Physik AG, Göttingen<br />

• Laser Labor Göttingen (LLG)<br />

• Laser Zentrum Hannover (LZH)<br />

• Leica Microsystems Wetzlar GmbH<br />

• Martin-Luther-Universität Halle, Fachbereich<br />

Physik<br />

• Max-Planck-Institut für Mikrostrukturphysik,<br />

Halle<br />

• Neon Products GmbH (NP), Aachen<br />

• Neon Technik Leipzig GmbH (NEL)<br />

• Öl-Wärme-Institut gGmbH, Aachen<br />

• Schott FT, Mainz<br />

• Technische Universität München, Lehrstuhl für<br />

Thermodynamik<br />

• TUI Laser AG, Germering/München<br />

• Universität Erlangen, Lehrstuhl für Technische<br />

Thermodynamik<br />

• Universität Stuttgart, Institut für Strahlwerkzeuge<br />

• Universität Stuttgart, Institut für Thermodynamik<br />

• TU Dresden, Lehrstuhl für Verbrennungsmotoren<br />

• Zentrum für Angewandte Raumfahrttechnik<br />

and Mikrogravitation (ZARM), Universität<br />

Bremen<br />

in foreign countries:<br />

• NASA, Glenn Research Center, Cleveland,<br />

Ohio, USA<br />

• University of Lund, Sweden, Combustion<br />

Physics<br />

• University of New Mexico, USA, Dept. Physics<br />

and Astronomy<br />

• University of Rennes I, France, Sciences et<br />

Propriete de la Matiere<br />

• University of Stellenbosch, South Africa,<br />

Physics Department<br />

• University of Vigo, Spain, Dept. of Applied<br />

Physics<br />

Publications<br />

G. Andrä, J. Bergmann, F. Falk, E. Ose,<br />

S. Dauwe, T. Kieliba, C. Beneking<br />

“Characterization and Simulation of Multicrystalline<br />

LLC-Si Thin Film Solar Cells”<br />

Proc. 20 th Europ. PVSEC, Barcelona, Spain, June<br />

06–10, <strong>2005</strong>, pp. 1171–1174<br />

LASERTECHNIK / LASER TECHNOLOGY<br />

G. Andrä, J. Bergmann, F. Falk<br />

“Laser crystallized multicrystalline silicon thin films<br />

on glass”<br />

Thin Solid Films 487 (<strong>2005</strong>) 77–80<br />

A. Baum, D. Grebner, W. Paa, W. Triebel,<br />

M. Larionov, A. Giesen<br />

“Axial Mode Tuning of a Single Frequency Yb:YAG<br />

Thin Disk Laser”<br />

Appl. Phys. B 81 (<strong>2005</strong>) 1091–1096<br />

A. Burkert, W. Triebel, Ch. Mühlig, D. Keutel,<br />

L. Parthier, U. Natura, S. Gliech, S. Schröder,<br />

A. Duparré<br />

“Investigating the ArF laser stability of CaF 2 at<br />

elevated fluences”<br />

Proc. SPIE 5878 (<strong>2005</strong>) pp. E-1–E-8<br />

F. Garwe, U. Hübner, T. Clausnitzer, E.-B. Kley,<br />

U. Bauerschäfer<br />

“Elongated gold nanostructures in silica for metamaterials:<br />

theory, technology and optical properties”<br />

Proc. SPIE 5955 (<strong>2005</strong>) pp. 59550T-1–59550T- 8<br />

Ch. Mühlig, W. Triebel, J. Bergmann, S. Kufert,<br />

S. Bublitz, H. Bernitzki, M. Klaus<br />

“Absorption and fluorescence measurements of<br />

DUV/VUV coatings”<br />

Proc. SPIE 5963 (<strong>2005</strong>) pp. 59630P-1–59630P-8<br />

D. Müller, W. Paa, W. Triebel, C. Menzel,<br />

K. Lucka, H. Köhne<br />

„PLIF – Diagnostik von Formaldehyd mit kHz-<br />

Repetitionsrate in der Mischzone von flüssigen<br />

Brennstoffen und vorgeheizter Luft“<br />

VDI-Berichte Nr. 1888 (<strong>2005</strong>) 355–360<br />

W. Paa, D. Müller, A. Gawlik, W. Triebel<br />

“Combined Multispecies PLIF Diagnostics with<br />

kHz Rate in a Technical Fuel Mixing System<br />

Relevant for Combustion Processes”<br />

Proc. SPIE 5880 (<strong>2005</strong>) pp. N-1–N-8<br />

D. Probst, H. Hoche, H. Scheerer, E. Broszeit,<br />

C. Berger, Y. Zhou, R. Hauser, R. Riedel,<br />

Th. Stelzner, H. Stafast<br />

“Development of PE-CVD Si/C/N:H-films for Tribological<br />

and Corrosive Complex-Load Conditions”<br />

Surf. Coat. Technol. 200/1-4 (<strong>2005</strong>) 355–359<br />

T. Scheidt, E. G. Rohwer, H. M. v. Bergmann,<br />

H. Stafast<br />

“Femtosecond laser diagnostics of thin films, surfaces<br />

and interfaces”<br />

South African J. Science 101(<strong>2005</strong>) 267–271<br />

T. Scheidt, E. G. Rohwer, H. M. von Bergmann,<br />

E. Saucedo, L. Fornaro, E. Dieguez, H. Stafast<br />

“Optical second harmonic imaging of Pb xCd 1-x Te<br />

ternary alloys”<br />

J. Appl. Phys. 97 (<strong>2005</strong>) 103104-1–103104-6<br />

Th. Stelzner, M. Arold, F. Falk, H. Stafast,<br />

D. Probst, H. Hoche<br />

“Single source precursors for plasma-enhanced<br />

CVD of SiCN films, investigated by mass spectrometry”<br />

Surf. Coat. Technol. Vol 200/1-4 (<strong>2005</strong>) 372–376<br />

87


88<br />

Th. Stelzner, F. Falk, H. Stafast, D. Probst,<br />

H. Hoche<br />

“Plasma-enhanced CVD of hard SiCN thin films<br />

using bis-(trimethylsilyl)-carbodiimide or hexamethyl<br />

disilazane as single source precursors”<br />

Proc. Internat. Symp. EUROCVD-15, Bochum<br />

Vol. <strong>2005</strong>-09 pp.1014–1020<br />

W. Triebel, Ch. Mühlig, S. Kufert<br />

“Application of the laser induced deflection (LID)<br />

technique for low absorption measurements in<br />

bulk materials and coatings”<br />

Proc. SPIE 5965 (<strong>2005</strong>) pp 59651J-1–59651J-10<br />

Presentations (Talks and Posters)<br />

H. Stafast<br />

„Der Laser als kontaktfreie Sonde“<br />

Vortragsreihe Heinrich-Böll-Gymnasium/Rotary<br />

Club<br />

Talk at Heinrich-Böll-Gymnasium, Saalfeld,<br />

February 14, <strong>2005</strong><br />

H. Stafast, D. Müller, W. Paa, W. Triebel,<br />

A. Burkert<br />

„Moderne Entwicklungen der planaren<br />

laserinduzierten Fluoreszenz für die Laserdiagnostik<br />

von Verbrennungsprozessen“<br />

Poster at 19. Vortragstagung GDCh-Fachgruppe<br />

Photochemie, <strong>Jena</strong>, March 29–31, <strong>2005</strong><br />

F. Falk<br />

„Laserkristallisation von Halbleitern“<br />

Talk at WIAS-Kolloquium, Berlin, April 4, <strong>2005</strong><br />

H. Stafast<br />

„Laserdiagnostik an Flammen – Methoden- und<br />

Geräteentwicklung“<br />

Talk at Colloquium, Institute of Physical and Theoretical<br />

Chemistry, University of Frankfurt/Main,<br />

May 23, <strong>2005</strong><br />

G. Andrä, J. Bergmann, F. Falk, E. Ose,<br />

S. Dauwe, T. Kieliba, C. Beneking<br />

“Characterization and Simulation of Multicrystalline<br />

LLC-Si Thin Film Solar Cells”<br />

Poster at 20th Europ. PVSEC, Barcelona, Spain,<br />

June 06–10, <strong>2005</strong><br />

J. Bergmann, A. Bochmann, R. Stober<br />

„Mikromaterialbearbeitung mit dem Ultrakurzpulslaser“<br />

Poster at “Laser <strong>2005</strong>”, München, June 13–16,<br />

<strong>2005</strong><br />

F. Falk<br />

“Laser crystallization – a way to produce crystalline<br />

silicon films on glass or on polymer substrates”<br />

Talk at 16th Amer. Conf. Crystal Growth and Epitaxy,<br />

Big Sky, Montana, USA, July 10–14, <strong>2005</strong><br />

W. Paa, D. Müller, A. Gawlik, W. Triebel<br />

“Combined Multispecies PLIF Diagnostics with<br />

kHz Rate in a Technical Fuel Mixing System<br />

Relevant for Combustion Processes”<br />

Talk at SPIE Optics & Photonics <strong>2005</strong>, San Diego,<br />

USA, July 31–August 4, <strong>2005</strong><br />

LASERTECHNIK / LASER TECHNOLOGY<br />

A. Burkert, W. Triebel, Ch. Mühlig, D. Keutel,<br />

L. Partier, U. Natura, S. Gliech, S. Schröder,<br />

A. Duparré<br />

“Investigating the ArF laser stability of CaF 2 at<br />

elevated fluences”<br />

Talk at SPIE Optics & Photonics, San Diego, USA,<br />

July 31–August 4, <strong>2005</strong><br />

F. Garwe, U. Hübner, T. Clausnitzer, E.-B. Kley,<br />

U. Bauerschäfer<br />

“Elongated gold nanostructures in silica for metamaterials:<br />

theory, technology and optical properties”<br />

Talk at SPIE, Warschaw, Poland, August 28–<br />

September 2, <strong>2005</strong><br />

Th. Stelzner, F. Falk, H. Stafast, D. Probst,<br />

H. Hoche<br />

“Plasma-enhanced CVD of hard SiCN thin films<br />

using bis-(trimethylsilyl)-carbodiimide or hexamethyl<br />

disilazane as single source precursors”<br />

Talk at EUROCVD-15, Bochum, September<br />

04–09, <strong>2005</strong><br />

W. Triebel, Ch. Mühlig, S. Kufert<br />

“Application of the laser induced deflection (LID)<br />

technique for low absorption measurements in<br />

bulk materials and coatings”<br />

Talk at SPIE Optical Systems Design, <strong>Jena</strong>, September<br />

12–16, <strong>2005</strong><br />

Ch. Mühlig, W. Triebel, J. Bergmann, S. Kufert,<br />

S. Bublitz, H. Bernitzki, M. Klaus<br />

“Absorption and fluorescence measurements of<br />

DUV/VUV coatings”<br />

Talk at SPIE Optical Systems Design, <strong>Jena</strong>, September<br />

12–16, <strong>2005</strong><br />

W. Triebel<br />

“Characterization of DUV optical materials by LIF<br />

and direct absorption measurements”<br />

Talk at Boulder Damage Symposium, Boulder,<br />

USA, September 19–21, <strong>2005</strong><br />

D. Müller, W. Paa, W. Triebel, C. Menzel,<br />

K. Lucka, H. Köhne<br />

„PLIF – Diagnostik von Formaldehyd mit kHz-<br />

Repetitionsrate in der Mischzone von flüssigen<br />

Brennstoffen und vorgeheizter Luft“<br />

Talk at 22. Deutscher Flammentag, Braunschweig,<br />

September 21–22, <strong>2005</strong><br />

H. Stafast<br />

“Laserdiagnostics in Flames – Development of<br />

methods and tools”<br />

Talk at Colloquium of Laser Research Institute,<br />

University of Stellenbosch, South Africa, October<br />

11, <strong>2005</strong><br />

F. Falk, G. Andrä<br />

„Herstellung von Dünnschichtsolarzellen mit Hilfe<br />

von Excimerlasern“<br />

Talk at Technologieseminar: Laseranwendungen<br />

in der Photovoltaik, Göttingen, November 8, <strong>2005</strong>


F. Falk<br />

„Mikromaterialbearbeitung mit dem Ultrakurzpuls-Laser“<br />

Poster at TransferX-Messe, Dresden, November<br />

09–11, <strong>2005</strong><br />

W. Triebel<br />

„Charakterisierung UV-optischer Dünnschichten<br />

durch LIF und direkte Absorptionsmessung“<br />

Talk at TransferX-Messe, Dresden, November<br />

09–11, <strong>2005</strong><br />

Patents<br />

G. Andrä, F. Falk<br />

„Dünnschichtsolarzelle und Verfahren zur Herstellung<br />

eines Halbleiterbauelements“<br />

DE 10 <strong>2005</strong> 045 096.2 (21.09. <strong>2005</strong>)<br />

Lectures<br />

H. Stafast<br />

„Angewandte Lasertechniken“, 2-stündige Wahlvorlesung<br />

über 4 Semester an der Friedrich-<br />

Schiller-Universität, Winter 2004/<strong>2005</strong> bis Winter<br />

<strong>2005</strong>/2006<br />

F. Falk<br />

„Photovoltaik“, 2-stündige Wahlvorlesung an der<br />

Friedrich-Schiller-Universität, Winter 2004/<strong>2005</strong><br />

„Elastizitätstheorie“, 2-stündige Wahlvorlesung<br />

an der Friedrich-Schiller-Universität, Sommer <strong>2005</strong><br />

„Thermodynamik der Phasenübergänge“, 2stündige<br />

Wahlvorlesung an der Friedrich-Schiller-<br />

Universität, Winter <strong>2005</strong>/2006<br />

PhD Theses<br />

Torsten Scheidt: Charge Carrier Dynamics and<br />

Defect Generation at the Si/SiO2 Interface<br />

Probed by Femtosecond Optical Second Harmonic<br />

Generation*)<br />

Friedrich-Schiller-University, <strong>Jena</strong>, Faculty of Physics<br />

and Astronomy<br />

Supervisor: Prof. H. Stafast<br />

*) work at University of Stellenbosch, South Africa<br />

Christian Mühlig: Zur Absorption gepulster ArF-<br />

Laserstrahlung in hochtransparenten optischen<br />

Materialien<br />

Friedrich-Schiller-University, <strong>Jena</strong>, Faculty of Physics<br />

and Astronomy<br />

Supervisor: Prof. H. Stafast<br />

Diploma and Bachelor Theses<br />

Markus Arold: Massenspektroskopie an Ausgangsstoffen<br />

zur PE-CVD von Si-C-N-Schichten<br />

Friedrich-Schiller-University, <strong>Jena</strong>, Faculty of Physics<br />

and Astronomy<br />

Supervisor: Prof. H. Stafast<br />

LASERTECHNIK / LASER TECHNOLOGY<br />

Björn Eisenhawer: Wachstum von Si-Nanowires<br />

mittels Chemical Vapor Deposition<br />

Friedrich-Schiller-University, <strong>Jena</strong>, Faculty of Physics<br />

and Astronomy<br />

Supervisors: Dr. F. Falk/Dr. G. Andrä<br />

Sven Germershausen: Untersuchungen zur<br />

Laserkristallisation von Germaniumschichten auf<br />

Glassubstraten<br />

University of Applied Sciences, <strong>Jena</strong>, SciTec<br />

Supervisor: Dr. G. Andrä<br />

Michael Kaiser: Präparation von Solarzellen in<br />

multikristallinen LLC-Si-Schichten<br />

Technical University of Ilmenau, Mechanical<br />

Engineering<br />

Supervisors: Dr. F. Falk/Dr. G. Andrä<br />

Laboratory Exercises<br />

Ch. Noppeney, Fachhochschule <strong>Jena</strong>, Physikalische<br />

Technik<br />

Ch. Voigtländer, Friedrich-Schiller-Universität, <strong>Jena</strong>,<br />

Technische Physik<br />

J. Grasemann, O. Pabst, D. Rettig, Carl-Zeiss-<br />

Gymnasium (Spezialklasse), <strong>Jena</strong><br />

M. Aubel und R. Pagel, Staatl. Berufsbildendes<br />

Schulzentrum <strong>Jena</strong> Göschwitz, Höhere Berufsfachschule<br />

M. Röder, FH Coburg<br />

Commitees<br />

G. Andrä<br />

– Executive Committee, INPUT Solar, Thuringia<br />

W. Triebel<br />

– Program Committee “Optical Diagnostics”,<br />

SPIE Conf., San Diego, USA, August <strong>2005</strong><br />

– DUV/VUV Optics, Common working group<br />

of PhotonicNet and OptoNet<br />

– GET-UP initiative for start-up companies<br />

Award<br />

H. Stafast, professor extraordinary of University<br />

of Stellenbosch, South Africa<br />

Exhibitions<br />

– LASER <strong>2005</strong>, World of Photonics, Munich<br />

– TransferX fair, Dresden<br />

– Faszination Licht, Goethegalerie, <strong>Jena</strong><br />

New Equipment<br />

Thin film deposition unit with several material<br />

sources<br />

89


90<br />

INNOVATIONSPROJEKT / INNOVATION PROJECT<br />

E. Innovationsprojekt <strong>2005</strong> / Innovation Project <strong>2005</strong><br />

Nanostructured Ta 2O 5 layers<br />

for optochemical/biophotonic<br />

sensors and solar cells<br />

(S. Schröter, U. Hübner, W. Morgenroth,<br />

R. Boucher, R. Pöhlmann, G. Schwotzer,<br />

T. Wieduwilt, S. Brückner, U. Jauernig,<br />

A. Csáki, W. Fritzsche, G. Andrä, E. Ose)<br />

Tantalum pentoxide layers are particularly suitable<br />

for a variety of optical applications due to<br />

their high refractive index, low absorption from<br />

the visible to the infrared, good adhesion to glass<br />

and silicon substrates, and high resistance to<br />

acids and bases. Furthermore, nanoporous<br />

Ta 2O 5 layers could be a promising material for<br />

optical sensors. We have investigated several<br />

fabrication technologies for optical waveguide<br />

grating couplers and two-dimensional resonant<br />

gratings in compact and nanoporous Ta 2O 5 layers<br />

as devices for optochemical and biophotonic sensors,<br />

and characterised their optical properties.<br />

Because of the afore mentioned optical properties<br />

and the high melting point of about 1800 °C,<br />

Ta 2O 5 has potential as an intermediate layer for<br />

thin film solar cells.<br />

Waveguide grating couplers<br />

Electron beam exposure (LION LV1) or DUV<br />

interference lithography at 244 nm were applied<br />

to the patterning of about 300 nm thick resist<br />

(ZEP or ARP610) gratings with periods of 410 to<br />

420 nm atop a NiCr/C/NiCr hard mask sputtered<br />

onto the Ta 2O 5 layers on quartz or borofloat glass<br />

substrates. The resist gratings were transferred<br />

by a multi-step etching process into the bottom<br />

NiCr layer, and from this by Ar-IBE, 40 to 70 nm<br />

into the Ta 2O 5 layer. An example is shown in<br />

Fig. E1.<br />

Fig. E1: SEM picture of a grating with a period of<br />

416 nm etched 67 nm into a 147 nm thick Ta 2O 5<br />

layer. The visible surface texture is created by the<br />

gold coating for the SEM.<br />

For the nanoporous layers it was necessary to<br />

cool the substrate down to –20 °C during etching<br />

in order to maintain porosity. At higher temperatures<br />

it is supposed that a compaction of the<br />

material occurs. The sensor functionality for the<br />

nanoporous layers was also verified by considering<br />

the adsorption isotherms in water vapour as<br />

an example.<br />

Fig. E2 shows the transmission spectra of a grating<br />

coupler for the case of a grating with a period<br />

of 416 nm etched into a 600 nm thick nanoporous<br />

Ta 2O 5 layer at two different water vapour<br />

pressures of 3.5·10 –2 mbar (dry) and 22 mbar<br />

(wet). The magnitude of the spectral shifts<br />

depends on the quantity of water molecules<br />

adsorbed in the nanopores and the related<br />

refractive index change.<br />

Fig. E2: Spectral shift of transmission minima<br />

with humidity due to the coupling of the normally<br />

incident TE polarised light with two different<br />

waveguide modes.<br />

The observed shifts of 8.5 and 9.3 nm for the<br />

short and long wavelength minimum, respectively,<br />

are in good agreement with a change in the<br />

refractive index from about 2.01 to 2.05.<br />

2D resonant waveguide gratings<br />

Resonance diffraction effects from 2D dielectric<br />

gratings can be used to create very sensitive<br />

angle and/or wavelength encoded sensors. Ta 2O 5<br />

layers perforated with square or triangular lattices<br />

of air holes are suitable for this purpose. Gratings<br />

with a period of e.g. 620 nm exhibit, for hole<br />

diameters between about 200 and 400 nm, pronounced<br />

resonant diffraction properties at least<br />

within the spectral region from 700 to 1350 nm.<br />

The fabrication technology was essentially the<br />

same as for the grating couplers. The ARP671<br />

resist masks were created by e-beam exposure<br />

(ZBA23). In order to obtain steep edge profiles an<br />

ECR-RIE process with a CF 4/CHF 3 plasma was<br />

applied to transfer the pattern from the NiCr mask


into the Ta 2O 5 layers. Unlike for porous layers the<br />

samples of compact material had to be heated<br />

up to 150 °C for optimal results.<br />

An example of a triangular grating in nanoporous<br />

Ta 2O 5 is shown in Fig. E3.<br />

Fig. E3: Triangular grating with a period of<br />

620 nm and an average hole diameter of about<br />

230 nm at the top etched 150 nm into a 600 nm<br />

thick layer of porous Ta 2O 5 imaged at 0° and<br />

60°.<br />

The polarisation independent transmission spectra<br />

for normal incident light for the case of a dry<br />

and wet environment are displayed in Fig. E4.<br />

The pronounced transmission minima at λ ><br />

830 nm are caused by resonant diffraction<br />

effects.<br />

Fig. E4: Spectral shift of the transmission minima<br />

between dry and wet samples (∆λ min = 10.4 and<br />

13.5 nm for the first and second resonance wavelength,<br />

respectively).<br />

By simulating the transmission behaviour with a<br />

rigorous coupled wave method, a sufficient<br />

agreement with the experiment was obtained for<br />

150 nm deep cylindrical holes with a diameter of<br />

210 nm, see Fig. E5.<br />

A change of the refractive index from 1.97 to 2.01<br />

yields ∆λ min = 13 and 15 nm for the first and second<br />

transmission minimum, respectively, and all<br />

wavelengths of the transmission minima differ<br />

from the experimental values by less than 1.5 nm.<br />

INNOVATIONSPROJEKT / INNOVATION PROJECT<br />

Fig. E5: Simulated transmission properties of a<br />

grating with the parameters given in Fig. E3,<br />

assuming cylindrical holes with a diameter of<br />

210 nm.<br />

A variety of different devices which include the<br />

square lattices of holes have been fabricated in<br />

compact and humidity sensitive Ta 2O 5 layers and<br />

are currently under detailed investigation.<br />

The nanoporous tantalum pentoxide samples<br />

were provided by the Fraunhofer IOF in <strong>Jena</strong> and<br />

investigated here mainly because it could be possible<br />

selectively to measure the moisture content<br />

of other than water vapour analytes.<br />

The filling of the holes of two-dimensional gratings<br />

with metallic nanoparticles provides an<br />

opportunity for the biosensing of e.g. DNA molecules<br />

immobilised on gold nanoparticles. This<br />

method utilises the special plasmon scattering<br />

properties of the ordered arrays.<br />

Chemically activated samples with 2D-gratings<br />

were placed at an angle into preheated (80 °C)<br />

colloidal nanoparticle solutions (30 nm in diameter)<br />

with a concentration of 2 · 10 11 particles/ml.<br />

During the drying process the receding meniscus<br />

causes an influx of the metal nanoparticles into<br />

the holes, see Fig. E6.<br />

Fig. E6: Transmission mode optical micrograph of<br />

a 2D grating in Ta 2O 5 (square array with a period<br />

of 620 nm) when the holes are partially filled with<br />

gold particles.<br />

91


92<br />

The varying shades (spectrum from white to<br />

greenish-blue in a colour picture) indicate the different<br />

level of filling and positioning accuracy. In<br />

order to improve the homogeneity a further optimisation<br />

of this technique is required.<br />

Thin film solar cells<br />

For the first time layered laser crystallised (LLC)<br />

thin film solar cells were prepared on borofloat<br />

glass substrates covered with a tantalum pentoxide<br />

layer.<br />

Our standard cell structure is sketched in Fig. E7.<br />

Immediately on top of the borofloat glass sub-<br />

Fig. E7: Design of a standard LLC cell.<br />

strate a multicrystalline silicon layer system with<br />

grains exceeding 100 µm in size is deposited.<br />

The layer system consists of a p + -doped highly<br />

conductive seed layer, a p-doped absorber layer<br />

and an n-doped emitter layer. A metal electrode<br />

acts as a light reflector. The seed layer is prepared<br />

by cw laser crystallisation of amorphous<br />

silicon. The absorber and emitter are prepared by<br />

continuously depositing amorphous silicon on top<br />

of the seed combined with repeated excimer<br />

laser irradiation in order to guarantee epitaxial<br />

growth. In various papers it has been demonstrated<br />

that intermediate layers between the<br />

glass and silicon may increase the cell efficiency<br />

by reducing the reflection loss. Moreover, the barrier<br />

may act as a light trapping structure due to<br />

surface scattering and as a diffusion barrier<br />

against foreign atoms of the glass. In the case of<br />

LLC cells the intermediate layer has to withstand<br />

the laser crystallisation process. Standard layers<br />

INNOVATIONSPROJEKT / INNOVATION PROJECT<br />

usually applied in solar cells such as SnO 2, ZnO<br />

or a-SiN x:H do not meet this requirement.<br />

Because of its suitable optical properties and<br />

high melting point of above 1800 °C we expect<br />

tantalum pentoxide layers to be an interesting<br />

alternative. Therefore, we tested the laser stability<br />

of this material. We demonstrated that on<br />

Ta 2O 5 layers LLC solar cells can be prepared successfully.<br />

However, it turned out that Ta 2O 5 layers<br />

require an excimer laser pretreatment. Without<br />

the pretreatment layer damage was observed<br />

after laser crystallisation of amorphous silicon<br />

due to the formation of gas bubbles. Moreover,<br />

due to the laser pretreatment the Ta 2O 5 layer surface<br />

roughens so that increased light scattering<br />

is observed which is beneficial for the solar cell.<br />

In Fig. E8 a current-voltage diagram of a 2 µm<br />

thick cell with a tantalum pentoxide intermediate<br />

layer is shown, as compared to a standard cell. In<br />

both cases no metal reflector for light trapping<br />

was present. Even though the Ta 2O 5 cell has inferior<br />

properties as compared to the standard cell it<br />

is still a positive result. It was demonstrated that<br />

the intermediate layer has the desired properties.<br />

In order to improve the cell parameters the<br />

excimer laser pretreatment has to be optimised<br />

so that the crystal quality of the silicon is<br />

increased to that of the standard cells.<br />

Fig. E8: I–V-diagram of a LLC cell with tantalum<br />

pentoxide intermediate layer (full line) as compared<br />

to a standard LLC cell (broken line).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!