24.01.2013 Views

Photovoltaics - IPHT Jena

Photovoltaics - IPHT Jena

Photovoltaics - IPHT Jena

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Institute of Photonic Technology<br />

Albert-Einstein-Straße 9<br />

07745 <strong>Jena</strong><br />

PD Dr. rer. nat. habil. F. Falk<br />

Tel. 03641 206438<br />

e-mail: fritz.falk@ipht-jena.de<br />

<strong>Photovoltaics</strong><br />

Physics and Technology of Solar Cells<br />

Figures and Tables<br />

Fritz Falk<br />

Institute of Photonic Technology<br />

Elective Course Master Photonics<br />

WS 2010/11<br />

HS3, Helmholtzweg 3<br />

Tuesday 14:00 - 16:00


Contents<br />

Manuscript in German: www. ipht-jena.de 6Institut 6 Lehre<br />

1 Energy Consumption and its Consequences<br />

1.1 Energy Consumption Yesterday, Today and Tomorrow<br />

1.2 Supply of Energy Sources<br />

1.3 The Green House Effect<br />

1.4 Energy Scenarios<br />

1.5 Requirements on Solar Cells for Different Applications<br />

2 Insolation<br />

3 Basics of <strong>Photovoltaics</strong><br />

3.1 History of <strong>Photovoltaics</strong><br />

3.2 Basic Principles of Solar Cells<br />

3.3 The Influence of the Band Gap<br />

3.4 Absorption Coefficient<br />

3.5 I-V-Diagram of a Solar Cell<br />

3.6 Overview on Solar Cell Types<br />

4 Semiconductors I: Equilibrium<br />

4.1 Crystal Structure<br />

4.2 Band Diagram<br />

4.3 Dynamics of Electrons<br />

4.4 Electrons and Holes<br />

4.5 Fermi Distribution and Carrier Densities in Undoped Semiconductors<br />

4.6 Doped Semiconductors<br />

4.7 Conductivity and Hall Effect<br />

4.8 Space Charges, Fields, Currents<br />

4.9 Inhomogeneities in Equilibrium<br />

5 Semiconductors II: Non-Equilibrium<br />

5.1 Optical Absorption<br />

5.2 Carriers in Non-Equilibrium: Quasi-Fermi Levels<br />

5.3 Generation and Recombination<br />

5.4 Balance of Charges in Non-Equilibrium<br />

5.5 p-n-Junction with External Voltage<br />

5.6 p-n-Junction under Illumination: Solar Cell<br />

5.7 Thermodynamics of Solar Cells and Efficiency Thresholds<br />

6 Solar Cell Types I: Wafer Cells<br />

6.1 Single Crystalline Silicon Solar Cells<br />

6.2 Multicrystalline Silicon Solar Cells<br />

7 Solar Cell Types II: Thin-Film Cells<br />

7.1 General Scheme of Thin-Film Cells<br />

7.2 Amorphous Silicon Thin-Film Cells<br />

7.3 Crystalline Silicon Thin-Film Cells<br />

7.4 Gallium Arsenide Cells<br />

7.5 CdTe Cells<br />

7.6 CIGS Cells<br />

7.7 Polymer Cells<br />

7.8 Grätzel Cell<br />

Contents F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 3 -<br />

1 Energy Consumption and ist Consequences<br />

Fig. 1.1: Worldwide energy consuption<br />

Table 1.1: Share of primary energy sources used for generation of electricity 2008)<br />

pit coal brown coal oil gas nuclear water<br />

Germany 21% 24% 1% 13% 24% 4%<br />

world 41% 6% 21% 14% 16%<br />

Fig. 1.2: Predicted energy consumption worldwide by energy sources( Shell Study 1999)<br />

1 Energy Consumption and ist Consequences F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 4 -<br />

Table 1.2: Reserves (today economically useful) and resources (today not economivally useful)<br />

of energy sources, and time until they are expected to be used up (as of 2004, data from: J.P.<br />

Gerling, F.-W. Wellmer, Chemie in unserer Zeit 39 (2005), 236)<br />

energy source today’s<br />

share<br />

reserves<br />

10 21 J<br />

ressources<br />

10 21 J<br />

reserves to<br />

last (years)<br />

coal 0,232 20 117 65 125<br />

oil 0,342 9 14 34 58<br />

natural gas 0,196 6 7 38 57<br />

gas and<br />

methane hydrate<br />

0,196 6 55 38 104<br />

nuclear* 0,062 1 10 25 86<br />

nuclear fusion 0<br />

* without breeder technology<br />

Fig. 1.3: Change of CO 2 concentration in the atmosphere<br />

(from Physics today, Aug. 2002)<br />

ressources to<br />

last (years)<br />

1 Energy Consumption and ist Consequences F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 5 -<br />

Fig. 1.4: Increase of mean temperature of the atmosphere near ground<br />

(IPCC-Report 2007)<br />

Fig. 1.5: Predicted temperature change of the earth’s atmosphere according to different<br />

models and different assumptions compared to observations (from: IPCC Report 2001)<br />

1 Energy Consumption and ist Consequences F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 6 -<br />

Fig. 1.6: Scenarios for the expected temparture change (from IPCC Report 2007)<br />

Table 1.3: Share of renewable energy sources for generation of electricity in Germany 2009<br />

total 16%<br />

water 3,3%<br />

wind 6,4%<br />

photovoltaics 1,0%<br />

geothermal 0,02%<br />

biomass 4,4%<br />

waste 0,9%<br />

1 Energy Consumption and ist Consequences F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 7 -<br />

Table 1.4: Production and market share of solar cells by countries<br />

country produktion<br />

share<br />

2009<br />

market<br />

share<br />

2008<br />

China 38% 0,2%<br />

share in totally<br />

installed<br />

capacitiy 2008<br />

Germany 15% 27% 40%<br />

Japan 12,5% 4% 16%<br />

Taiwan 12,2<br />

USA 4,4% 6% 9%<br />

Spain 3% 48% 25%<br />

Tab. 1.5: Produktion share of solar cells by companies (2009, Photon International 3/2010)<br />

Produktionsanteil Firmen<br />

First Solar (USA, D) 8,9%<br />

Suntech Power (China) 5,7%<br />

Q-Cells (D, Thalheim S-A) 4,8%<br />

Sharp (JP) 4,8%<br />

Yingli (China) 4,3%<br />

JA Solar (China) 4,2%<br />

Trina (China) 3,2%<br />

Sunpower (Philippinen) 3,2%<br />

Gintech (Taiwan) 3,0%<br />

Kyocera (JP) 3,2%<br />

1 Energy Consumption and ist Consequences F. Falk, <strong>Photovoltaics</strong> WS 2010/11


2 Insolation<br />

Fig. 2.1: Radiation density<br />

above atmosphere [Würfel]<br />

Upper part:<br />

referred to energy interval<br />

Lower part:<br />

Referred to wavelength interval<br />

Fig. 2.2: Radiation density on<br />

ground [Hu]<br />

-8 -<br />

2 Sonneneinstrahlung F. Falk, Photovoltaik WS 2010/11


-9 -<br />

Fig. 2.3: Insolation as depending on time of the year and on inclination of solar the<br />

cell [Hu]<br />

Fig. 2.4: [Hu]<br />

2 Sonneneinstrahlung F. Falk, Photovoltaik WS 2010/11


- 10 -<br />

2 Sonneneinstrahlung F. Falk, Photovoltaik WS 2010/11<br />

Fig. 2.5: Average yearly global irradiation


- 11 -<br />

Fig. 2.6: Average yearly global irradiation in Germany<br />

2 Insolation F. Falk, <strong>Photovoltaics</strong> WS 2010/11


3 Basics of <strong>Photovoltaics</strong><br />

- 12 -<br />

1 Absorption of light: cell is not transparent<br />

Example<br />

Si wafer cell<br />

2 Generation of charge carriers<br />

electrons & holes<br />

3 Carriers are mobile: diffusion<br />

6<br />

4<br />

5<br />

Carrier life-time high enough<br />

Charge separation<br />

p-n junction<br />

hetero junction<br />

p-Si<br />

3<br />

4<br />

1,2<br />

+<br />

3<br />

4<br />

6 Carrier leave cell<br />

Space charge region 5<br />

contacts<br />

n-Si<br />

Fig. 3.1: Basic processes in a solar cell<br />

conduction band<br />

band gap<br />

E g<br />

valence band<br />

? ? ? ? ? ?<br />

hνE g<br />

3 Basics of <strong>Photovoltaics</strong> F. Falk, <strong>Photovoltaics</strong> WS 2010/11<br />

? ? ? ? ? ?<br />

fs<br />

fs<br />

loss<br />

µs<br />

loss<br />

Fig. 3.2: Photon absorption an carrier excitation in a semiconductor<br />

6<br />

electrons<br />

holes<br />

- contact<br />

+ contact


Table 3.1: Band gaps of semiconductors<br />

- 13 -<br />

Fig. 3.3: Limits for solar cell efficiency as depending on the band gap. Upper left: Ultimate<br />

efficiency,upper right: Shockley-Queisser-limit, below: semiempirical efficiency<br />

[Hu]<br />

Semiconductor Si a-Si GaAs CdTe CuInSe2 Eg/eV 1,12 1,6...1,7 1,43 1,43 1,05<br />

3 Basics of <strong>Photovoltaics</strong> F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 14 -<br />

Fig. 3.4: Efficiency of a two junction tandem solar cell as depending on<br />

both the band gaps [Lewerenz]<br />

Fig. 3.5: Theoretical efficiency of a tandem solar cell with n<br />

junctions and optimized band gaps under AM0 irradiatopn<br />

[Lewerenz]<br />

3 Basics of <strong>Photovoltaics</strong> F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 15 -<br />

Fig. 3.6: Absorptions coefficient semiconductors [Hu]<br />

3 Basics of <strong>Photovoltaics</strong> F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 16 -<br />

Table 3.2: Types of solar cells: maximum efficiency under AM1.5 [(M.A.<br />

Green et al., Solar Cell Efficiency Tables (Version 36), Prog. Photovolt. 18 (2010), 346] and<br />

production share in 2009 [Photon Int. 2/2009]<br />

Type Efficiency<br />

Lab/Module<br />

%<br />

Wafer Cells<br />

Production<br />

share<br />

2009<br />

%<br />

Further Work<br />

single crystalline Si 25.0/13-17 341 Processes,<br />

Cell Configurations<br />

multi-crystalline Si 20,4/11-15 483 Processes,<br />

Cell Configurations<br />

Thin Film Cells<br />

amorphous Si 10.1/5-8 61 Low cost processes<br />

CdTe 16.7/9-11 90 Higher efficiency in<br />

production<br />

CIS/CIGS 19.4/10-11 17 Higher efficiency in<br />

production<br />

nanocrystalline Si 10,1/... - Research<br />

micro-/polycrystalline Si 10,5/7 - Research<br />

Grätzel 10,4/... - Research, processes<br />

Polymers 5,1/... - Research, more stable<br />

3 Basics of <strong>Photovoltaics</strong> F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 17 -<br />

4 Semiconductors I: Equilibrium<br />

Diamond lattice:<br />

fcc with base<br />

Zink-blende lattice (cubic) Wurtzite lattice (hexagonal)<br />

Zink-blende lattice Wurtzite lattice<br />

Fig. 4.1: Semiconductor lattices<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 18 -<br />

Fig. 4.2: First Brillouin zone of diamond lattice<br />

Table. 4.1: Band gaps of semiconductors (at room temperature)<br />

Si a-Si GaAs CdTe CuInSe2<br />

E g/eV<br />

1,12 1,6...1,7 1,43 1,43 1,05<br />

Fig. 4.3: Band structure of Si [Enderlein]<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


Fig. 4.4: Band structure of GaAs<br />

Fig. 4.5: Band structure of CdTe<br />

- 19 -<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 20 -<br />

Fig. 4.6: Basic structure of an electron band (left) and electron motion under a constant force<br />

(right)<br />

Fig. 4.8: Electrical conductivity of metals<br />

Fig. 4.7: Density of states in crystalline silicon (left) and in amorphous silicon (right)<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


Fig. 4.9: Fermi distribution for<br />

different temperatures<br />

- 21 -<br />

Fig. 4.10: Density of states (left), Fermi distribution (middle) and density of occupied states<br />

(right)<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 22 -<br />

Table 4.2: Band gap,, effective mass and carrier density in intrinsic semiconductors<br />

semiconductor Si GaAs<br />

E g/eV<br />

1,12 1,43<br />

m /m 1,08 0,067<br />

nZ 0<br />

m /m 0,55 0,47<br />

pZ 0<br />

-3 n i/cm<br />

at 300 K<br />

10 6<br />

10 10<br />

Table 4.3: Energy level of donors and acceptors in silicon<br />

donors E-E c D/meV acceptors EA-E v/meV<br />

P 45 B 44<br />

As 53 Al 68<br />

Sb 42 Ga 72<br />

Bi 71 In 155<br />

Fig. 4.11: Fermi level as depending on temperature for different<br />

doping levels (n doping increasing from 1 to 3)<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 23 -<br />

Fig. 4.12: Carrier density in n- doped semiconductors as a function of inverse temperature<br />

Fig. 4.13: Carrier density as a function of inverse temperature in n-doped semiconductors<br />

which contain also p-dopands<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 24 -<br />

15 -3<br />

Table 4.4: Carrier mobilities at 300 K (for Si and GaAs dopand density 10 cm )<br />

Si GaAs CdTe CuInSe2 a-Si<br />

2 -1 -1 ì /cm V s 1350 8800 600 320 0,1...1<br />

n<br />

2 -1 -1 -3<br />

ì /cm V s 500 400 10 10 ...0,03<br />

p<br />

Fig. 4.14: Mobility of electrons and holes at 300 K as<br />

depending on doping level[Enderlein]<br />

Fig. 4.15: Mobilities for different doping levels of silicon as depending on temperature<br />

[Enderlein]<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 25 -<br />

Fig. 4.17: Resistivity of n- or p-doped silicon at 300 K<br />

[Colinge]<br />

Fig. 4.18: Measurement arrangement for Hall effect<br />

Fig. 4.16: Conductivity of pure intrinsic Si and Ge<br />

as depending on temperature [Enderlein]<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 26 -<br />

Table 4.5: Debye length in instrinsic semiconductors at 300 K<br />

semiconductor Si GaAs<br />

-3<br />

l D/cm<br />

1,15�10 0,116<br />

Fig. 4.19: Band bending near the surface of an intrinsic semiconductor due to surface charges<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 27 -<br />

Fig. 4.20: Band bending near the surface of an<br />

n-doped semiconductor due to surface charges<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


Fig. 4.21: Band diagram of a p-n-junction<br />

- 28 -<br />

Table 4.6: Diffusion potential at a p-n-Übergang in silicon at 300 K in case N A=ND -3<br />

N A=N D/cm<br />

15<br />

10<br />

16<br />

10<br />

17<br />

10<br />

18<br />

10<br />

19<br />

10<br />

20<br />

10<br />

V /V 0,542 0,654 0,766 0,878 0,991 1,103<br />

D<br />

w 1,4 µm 440 nm 140 nm 44 nm 14 nm 4,4 nm<br />

Fig. 4.22: Band diagram, carrier densities, and space charge density at a p-n-junction<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 29 -<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11<br />

E 0 or EFig. 0-e�:<br />

4.23: vacuum Metal/se<br />

leve


- 30 -<br />

Fig. 4.24: Band diagram of a semiconductor heterojunction<br />

without interface charges. Above: before contact, below:<br />

after contact<br />

4 Semiconductors I: Equilibrium F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 31 -<br />

5 Semiconductors II: Non-Equilibrium<br />

Fig. 5.2: Quasi Fermi levels under illumination<br />

Fig. 5.1: Tauc-Plot of amorphous silicon,<br />

deposited at different temperatures<br />

[Diss. C. Horbach, KFA Jülich]<br />

5 Halbleiter II: Nichtgleichgewicht F. Falk, Photovoltaik WS 2010/11


- 32 -<br />

Fig. 5.3: Carrier life time in silicon as depending on<br />

excess carrier density [Lewerenz u. Jungblut]<br />

5 Halbleiter II: Nichtgleichgewicht F. Falk, Photovoltaik WS 2010/11


Reverse bias<br />

n-type +<br />

Forward bias<br />

n-type -<br />

without external voltage<br />

In equilibrium<br />

- 33 -<br />

5 Halbleiter II: Nichtgleichgewicht F. Falk, Photovoltaik WS 2010/11<br />

Fig. 5.4: p-n-junction under external bias


- 34 -<br />

Fig. 5.5: I-V-Curves of diodes (be aware of different<br />

voltage scales in case of reverse and forward bias)<br />

Fig. 5.6: I-V-curves of diodes, logarithmic scale for current<br />

5 Halbleiter II: Nichtgleichgewicht F. Falk, Photovoltaik WS 2010/11


- 35 -<br />

Fig. 5.7: Width of space charge region of a silicon p-njunction<br />

as depending on bias<br />

N A=N D=10 16 cm -3 , g=12<br />

metal contact<br />

absorber<br />

Fig. 5.8: Scheme of a silicon wafer cell<br />

anti-reflection coating<br />

back contact (Al)<br />

emitter<br />

5 Halbleiter II: Nichtgleichgewicht F. Falk, Photovoltaik WS 2010/11


in the dark<br />

illuminated but without<br />

equilibrium between<br />

p- and n-side<br />

- 36 -<br />

illuminated, when equilibrium<br />

between p- and n-side is reached<br />

Fig. 5.9: Band diagram of a silicon wafer cell<br />

5 Halbleiter II: Nichtgleichgewicht F. Falk, Photovoltaik WS 2010/11


Fig. 5.10: I-V-curve of a solar cell in the dark<br />

and under illumination<br />

- 37 -<br />

5 Halbleiter II: Nichtgleichgewicht F. Falk, Photovoltaik WS 2010/11


- 38 -<br />

Fig. 5.11: Fill factor and efficiency of a silicon wafer cell as depending on the ratio i p/i s if<br />

illuminated by a wavelength of 500 nm at 300 K<br />

5 Halbleiter II: Nichtgleichgewicht F. Falk, Photovoltaik WS 2010/11


Fig. 5.12: Circuit diagram of a solar cell<br />

Fig. 5.13: Influence of series resistance on the<br />

I-V-curve of a solar cell<br />

- 39 -<br />

Fig. 5.14: Influence of a shunt (parallel resistance)<br />

on the I-V-curve of a solar cell<br />

5 Halbleiter II: Nichtgleichgewicht F. Falk, Photovoltaik WS 2010/11


- 40 -<br />

6 Types of Solar Cells I: Wafer Cells<br />

Fig. 6.1: Scheme of a single crystalline silicon wafer cell<br />

Fig. 6.2: Czochralski method to grow silicon single crystals<br />

6 Solarzellentypen I: Waferzellen F. Falk, Photovoltaik WS 2010/11


Fig. 6.3: Wire saw for wafering<br />

- 41 -<br />

Fig. 6.4: Phosphorus doping profile generated by annealing at<br />

950�C for different times [Goetzberger]<br />

6 Solarzellentypen I: Waferzellen F. Falk, Photovoltaik WS 2010/11


- 42 -<br />

Fig. 6.5: ReCombination activity of various species in p- und<br />

n-doped silicon,Shown is the product of resulting carrier life<br />

time and foreign atom concentration<br />

6 Solarzellentypen I: Waferzellen F. Falk, Photovoltaik WS 2010/11


- 43 -<br />

Fig. 6.6: Open circuit voltage as depending on diffusion<br />

length for different values of surface recombination<br />

velocity [Goetzberger]<br />

Fig. 6.7: Short circuit current as depending on<br />

diffusion length for different values of surface<br />

recombination velocity [Goetzberger]<br />

6 Solarzellentypen I: Waferzellen F. Falk, Photovoltaik WS 2010/11


- 44 -<br />

Fig. 6.8: Solar cell efficiency as depending on absorber doping level for<br />

different wafer thickness [Goetzberger]<br />

Fig. 6.9: Band diagram of a cell with back surface field<br />

6 Solarzellentypen I: Waferzellen F. Falk, Photovoltaik WS 2010/11


- 45 -<br />

Fig. 6.10: Open circuit volatge as depending on the depth and<br />

maximum concentration of back surface field doping [Goetzberger]<br />

Fig. 6.11: Reflection at a silicon surface covered with no, 1, and 2<br />

antireflection coatings as depending on light wavelength<br />

[Goetzberger]<br />

6 Solarzellentypen I: Waferzellen F. Falk, Photovoltaik WS 2010/11


- 46 -<br />

Fig. 6.12: Internal quantum efficiency as depending on<br />

dislocation density for two different values of<br />

recombination strength [Möller]<br />

Fig. 6.13: EFG method for growing silicon sheets<br />

Fig. 6.14: RGS method to produce silicon foils<br />

6 Solarzellentypen I: Waferzellen F. Falk, Photovoltaik WS 2010/11


- 48 -<br />

7 Types of Solar Cells II: Thin Film Cells<br />

Fig. 7.1: Integrated series connection in amorphosu silicon thin film solar cells<br />

Fig. 7.2: pin-type amorphous silicon solar cell<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


without contact<br />

with contact<br />

- 49 -<br />

Fig. 7.3: band diagram of a pin-type solar cell. Above:<br />

before conatct of differently doped regions, below: after<br />

contact<br />

p-type<br />

n-type<br />

nominally<br />

undoped<br />

Fig. 7.4: Influence of doping gas concemtration<br />

during CVD of amorphous silicon on conductivity<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 50 -<br />

Fig. 7.5: Open circuit voltage of crystalline silicon thin film solar<br />

cells as depending on grain size<br />

[L. Carnel et al., 4th WCPEC 2006,1449]<br />

Fig. 7.6: Efficiency of crystalline silicon thin film solar cells as depending on grain size [J.<br />

Werner, Tech. Digest 13 th Sunshine Workshop Thin Film Solar Cells,Tokyo 2000, 41]<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 51 -<br />

Fig. 7.7: Light trapping structures in thin film solar cells<br />

Fig. 7.8: Cell concept of a multicrystalline silicon thin film<br />

solar cell developed at <strong>IPHT</strong><br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 52 -<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 53 -<br />

Fig. 7.10: Transmission electron microskopic image of a<br />

nanocrystalline silicion layer prepared from amorphous<br />

silicon by excimer laser irradiation (248 nm wavelength , 25<br />

ns pulse duration)<br />

Fig. 7.11: Seed layer consisiting of larges silicon crystals<br />

prepared by melting amorphous silicon by a cw-laser;<br />

melting time 1 ms (optical micrograph)<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 54 -<br />

Fig. 7.12: LLC process: Layered Laser Crystallization<br />

absorber<br />

seed<br />

Fig. 7.13: TEM cross section of a LLClayer<br />

demonstrating epitaxy<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


concentration/cm -3<br />

1E20<br />

1E19<br />

1E18<br />

1E17<br />

emitter<br />

- 55 -<br />

Concentration profiles by SIMS<br />

P<br />

absorber seed glass<br />

1E16<br />

0,0 0,5 1,0 1,5 2,0<br />

depth/µm<br />

Fig. 7.14: Doping profiles of B and B in ann LLC cell measured by SIMS<br />

Fig. 7.15: GaAs solar cell<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11<br />

B


Table 7.1: Properties of CdTe and CdS<br />

n-CdS p-CdTe<br />

E g/eV 2,4 1,5<br />

P/eV 4,5 4,3<br />

- 56 -<br />

Dotierung N D=2@10 17 cm -3 N A=8@10 15 cm -3<br />

Fig. 7.17: CdTe solar cell<br />

sun light<br />

Fig. 7.16: Band diagram of a CdTe solar cell [Lewerenz]<br />

back contact<br />

CdTe layer (5 µm)<br />

CdS layer (100 nm)<br />

TCO layer (250 nm)<br />

glass substrate<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 57 -<br />

Fig. 7.18: Phase diagram of CdTe [Landolt-Börnstein N.S.<br />

III/17d]<br />

Fig. 7.19: I-V-curve (above) and quantum<br />

efficiency (below) of a CdTe solar cell [D.<br />

Bonnet in Schmid]<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


Fig. 7.20: Phasen diagram of CdTe/CdCl 2<br />

[M. Burgelmann, Appl. Phys. A 69 (1999),<br />

1499]<br />

- 58 -<br />

Fig. 7.21: I-V-curves of CdTe solar cells with and without<br />

CdCl 2 treatment<br />

[R.W. Birkmire, E. Eser, Ann. Rev. Mater. Sci. 27 (1997), 625]<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


Fig. 7.23: CIGS solar cell<br />

Table 7.2: Data of CuInSe 2 und CdS<br />

n-CdS p-CuInSe2 Eg/eV 2,4 1,05<br />

P/eV 4,5 4,6<br />

Dotierung N D=2@10 17 cm -3<br />

- 59 -<br />

N A=10 16 cm -3<br />

Fig. 7.22: Lattice parameters and band gaps in the CIGS system<br />

[H.W. Schock in Schmid; und wie Abb. 7.21]<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 60 -<br />

Fig. 7.24: Band diagram of a CIGS solar cell; above: before<br />

contact, below:after contact [Lewerenz]<br />

Fig. 7.25: Structure of PPV<br />

poly phenylene vinylene<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 61 -<br />

Fig. 7.26: Polymer solar cell using TiO x<br />

[A.C. Arango et al., Adv. Mater. 12 (2000), 1689]<br />

Fig. 7.27: Absorption and quantum efficiency of a<br />

polymer cell according to Fig.7.26<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


enlargement<br />

X 1<br />

X 10 3<br />

X 10 6<br />

X 10 8<br />

- 62 -<br />

Fig. 7.28: Grätzel solar cell in different enlargements<br />

glass<br />

transparent contact<br />

electrolyte<br />

TiO 2 nanocrystals<br />

transparent conatct<br />

glass<br />

dye<br />

electrolyte<br />

TiO 2 nanocrystals<br />

(20 nm)<br />

carbon<br />

nitrogen<br />

Oxygen<br />

sulfur<br />

hydrogen<br />

ruthenium<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


- 63 -<br />

Fig. 7.29: I-V-curve of a Grätzel dye solar cell<br />

[M. Grätzel, A.J. McEnvoy, 14th Europ. PSEC<br />

1997, 1820]<br />

7 Types of Solar Cells II: Thin Film Cells F. Falk, <strong>Photovoltaics</strong> WS 2010/11


References<br />

A. Goetzberger, V.U. Hoffmann, Photovoltaic Solar Energy Generation, Berlin: Springer<br />

2005<br />

Overview on technology and systems, not so much physics<br />

Solar Cells: Materials, Manufacture and Operation, T. Markvart, L. Castañer eds., Oxford:<br />

Elsevier 2005<br />

Practical Handbook of <strong>Photovoltaics</strong>: Fundamentals and Applications, T. Markvart,<br />

L. Castañer eds., Oxford: Elsevier 2003<br />

P. Würfel, Physics of solar cells, Weinheim: Wiley-VCH, 2nd ed. 2009<br />

Short introduction with emphasis on thermodynamics<br />

H.J. Möller, New Materials: Semiconductors for Solar Cells, in: Handbook of Semiconductor<br />

Technology, Vol. I, K.A. Jackson, W. Schröter eds., Weinheim: Wiley-VCH 2000, S.<br />

715-769<br />

Clean Electricity from <strong>Photovoltaics</strong>, M.D. Archer, R. Hill eds., London: Imperial College<br />

Press 2001<br />

Handbook of Photovoltaic Science and Engineering, A. Luque, S. Hegedus eds., Chichester:<br />

Wiley 2003<br />

Mostly technology<br />

C. Hu, R.M. White, Solar Cells, New York: McGraw-Hill 1983<br />

R. Brendel, Thin-Film Crystalline Silicon Solar Cells, Weinheim: Wiley-VCH 2005<br />

J.P. Collinge, C.A. Collinge, Physics of Semiconductor Devices, Boston: Kluwer Acad. Publ.<br />

2002<br />

Thin-Film Solar Cells, Y. Hamakawa ed., Berlin: Springer 2004<br />

A. Goetzberger, C. Hebling, H.-W. Schock: Photovoltaic Materials, History, Status and<br />

Outlook, Mater. Sci. Eng. R 40 (2003), 1-46<br />

M.A. Green, Third Generation <strong>Photovoltaics</strong>, Berlin: Springer 2006<br />

Visions for high efficiency solar cells making use of new concepts<br />

K. Seeger, Semiconductor Physics: An Introduction, Berlin: Springer 9 2004<br />

References F. Falk, <strong>Photovoltaics</strong> WS 2010/11


R. Enderlein, N.J.M. Horing: Fundamentals of Semiconductor Physics and Devices<br />

Singapore: World Scientific 1999<br />

H.J. Möller, Semiconductors for Solar Cells, Boston: Artech House 1992<br />

A lot of information on defects (properties and consequences)<br />

Material Parameters<br />

Landolt-Börnstein, Numerical data and functional relationships in science and technology,<br />

New Series, Springer, Berlin, Group III, Vols.17a-i, 22a,b<br />

Properties of Silicon, EMIS Datarevies Series No. 4, INSPEC 1988<br />

Properties of Amorphous Silicon, EMIS Datarevies Series No. 1, INSPEC 1989<br />

References F. Falk, <strong>Photovoltaics</strong> WS 2010/11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!