19.11.2014 Views

DFT Reactivity Descriptors and Catalysis - Vrije Universiteit Brussel

DFT Reactivity Descriptors and Catalysis - Vrije Universiteit Brussel

DFT Reactivity Descriptors and Catalysis - Vrije Universiteit Brussel

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>DFT</strong> <strong>Reactivity</strong> <strong>Descriptors</strong><br />

<strong>and</strong> <strong>Catalysis</strong><br />

30-9-2008 Herhaling titel van presentatie 1


<strong>DFT</strong> <strong>Reactivity</strong> <strong>Descriptors</strong> <strong>and</strong> <strong>Catalysis</strong><br />

Paul Geerlings<br />

Department of Chemistry, Faculty of Sciences<br />

<strong>Vrije</strong> <strong>Universiteit</strong> <strong>Brussel</strong><br />

Pleinlaan 2, 1050 - <strong>Brussel</strong>s<br />

Belgium<br />

Emeritaatsviering Professor Robert Schoonheydt<br />

Leuven, October 1, 2008<br />

30-9-2008 Pag. 2


Outline<br />

1. Robert Schoonheydt <strong>and</strong> the VUB: some reminiscences<br />

2. Chemical concepts from <strong>DFT</strong><br />

3. Some applications of global <strong>and</strong> local softness <strong>and</strong><br />

hardness in <strong>Catalysis</strong><br />

4. Towards the inclusion of confinement effects<br />

5. Conclusion<br />

30-9-2008 Pag. 3


1. Robert Schoonheydt <strong>and</strong> the VUB:<br />

some reminiscences<br />

It all started in the late seventies as a collaboration with<br />

Wilfried Mortier on the use of quantum chemical methods<br />

(at that time CNDO/2) to get more insight into the<br />

structure, chemistry <strong>and</strong> catalytic – activity of zeolites.<br />

Pag.<br />

30-9-2008 4


Pag.<br />

30-9-2008 5


<strong>and</strong> turned, in the nineties, into a collaboration with Robert<br />

Pag.<br />

30-9-2008 6


Pag.<br />

30-9-2008 7


finally leading to ± 25 joint (KULeuven- VUB) publications<br />

on the application of quantum chemistry<br />

in zeolite chemistry, the most recent one being<br />

Pag.<br />

30-9-2008 8


Pag.<br />

30-9-2008 9


Joint publications on Quantumchemical studies on Zeolites<br />

• predominant role of<br />

• Chemical Concepts from <strong>DFT</strong><br />

• Conceptual <strong>DFT</strong><br />

• gradual transition<br />

• Electronegativity<br />

hardness/softness<br />

• Global<br />

local<br />

What are these descriptors, how do they originate,<br />

what is the overall context in which they are to be used?<br />

Pag.<br />

30-9-2008 10


2. Chemical Concepts from <strong>DFT</strong><br />

Fundamentals of <strong>DFT</strong> : the Electron Density Function as Carrier of Information<br />

Hohenberg Kohn Theorems (P. Hohenberg, W. Kohn, Phys. Rev. B136, 864<br />

(1964))<br />

ρ(r) as basic variable<br />

<br />

<br />

ρ(r) determines N (normalization)<br />

"The external potential v(r) is determined, within a trivial additive constant, by the<br />

electron density ρ(r)"<br />

electrons<br />

• • •<br />

• • • •<br />

• •<br />

•<br />

•<br />

ρ(r) for a given<br />

ground state<br />

compatible<br />

with a<br />

single v(r)<br />

v(r)<br />

- nuclei<br />

- position/charge<br />

Pag.<br />

30-9-2008 11


ρ(r) → H op → E = E[ ρ]= ∫ ρ( r)<br />

v(r)dr + F HK ρ(r)<br />

• Variational Principle<br />

[ ]<br />

δF v( r)<br />

+ HK<br />

=<br />

δρ( r)<br />

µ<br />

F HK Universal Hohenberg Kohn functional;<br />

contains unknown E xc , exchange correlation<br />

energy functional<br />

Lagrangian Multiplier<br />

normalisation<br />

∫ ρ(r) dr = N<br />

• Practical implementation : Kohn Sham equations<br />

Computational breakthrough<br />

Pag.<br />

30-9-2008 12


Conceptual <strong>DFT</strong> (R.G. Parr, W. Yang, Annu. Rev. Phys. Chem. 46, 701 (1995)<br />

That branch of <strong>DFT</strong> aiming to give precision to often well known but rather<br />

vaguely defined chemical concepts such as electronegativity,<br />

chemical hardness, softness, …, to extend the existing descriptors <strong>and</strong> to use<br />

them to describe chemical bonding <strong>and</strong> reactivity either as such or within<br />

the context of principles such as the Electronegativity Equalization Principle,<br />

the HSAB principle, the Maximum Hardness Principle …<br />

Starting with Parr's l<strong>and</strong>mark paper on the identification of<br />

µ as (the opposite of) the electronegativity.<br />

Pag.<br />

30-9-2008 13


Starting point for <strong>DFT</strong> perturbative approach to chemical reactivity<br />

Consider<br />

E = E[N,v]<br />

Atomic, molecular system, perturbed in number<br />

of electrons <strong>and</strong>/or external potential<br />

⎛ ∂ E ⎞ ⎛ δ E ⎞<br />

dE = ⎜ ⎟ dN + δ v( r)<br />

dr<br />

∂ N<br />

∫ ⎜ ⎟<br />

δ v( r)<br />

⎝ ⎠v( r ) ⎝ ⎠N<br />

µ<br />

identification<br />

first order perturbation theory<br />

ρ( r)<br />

identification<br />

Electronic Chemical Potential (R.G. Parr et al, J. Chem. Phys., 68, 3801 (1978))<br />

= - χ (Iczkowski - Margrave electronegativity)<br />

Pag.<br />

30-9-2008 14


Identification of two first derivatives of E with respect to N <strong>and</strong> v in a <strong>DFT</strong><br />

context → response functions in reactivity theory<br />

E[N,v]<br />

⎛ ∂E ⎞<br />

⎜ ⎟<br />

⎝ ∂N⎠<br />

v(r)<br />

= µ<br />

⎛ δE ⎞<br />

⎜ ⎟<br />

⎝ δv(r) ⎠<br />

N<br />

= ρ(r)<br />

⎛ ∂ 2 E ⎞<br />

⎜<br />

⎝ ∂N 2 ⎟<br />

⎠<br />

v(r)<br />

= η<br />

Chemical hardness<br />

∂ 2 E<br />

∂Nδv(r) = ⎛ δµ ⎞<br />

⎜ ⎟<br />

⎝ δv(r) ⎠<br />

= f(r)<br />

N<br />

⎛<br />

= ∂ρ(r) ⎞<br />

⎜ ⎟<br />

⎝ ∂N ⎠<br />

v<br />

2<br />

⎛ δ E ⎞<br />

⎜<br />

⎟<br />

⎝ δ v( r) δ v( r ') ⎠ N<br />

= χ( r, r ')<br />

Linear response<br />

Function<br />

S = 1 η<br />

Chemical Softness<br />

Fukui function<br />

Pag.<br />

30-9-2008 15


Softness <strong>and</strong> hardness: from global to local level<br />

2<br />

E<br />

η ⎛ ∂ ⎞<br />

2<br />

⎝ ∂N<br />

⎠v<br />

⎛ ∂ µ ⎞<br />

= ⎜ ⎟ = ⎜ ⎟<br />

⎝ ∂N<br />

⎠<br />

v<br />

η S =<br />

1<br />

( r)<br />

⎛ ∂N<br />

⎞ ∂<br />

⎛ ∂ρ<br />

⎞<br />

S = ⎜ ⎟ = ρ ( r)<br />

d r = ⎜ ⎟ d r = s( r)<br />

d r<br />

∂µ ∂µ ∫ ∫<br />

∂µ<br />

∫<br />

⎝ ⎠v<br />

⎝ ⎠v<br />

s( r ) = local softness<br />

Chain rule ( )<br />

( ) ∂ρ<br />

( )<br />

∂ρ<br />

r ⎛ r ⎞ ⎛ ∂N<br />

⎞<br />

s r = = ⎜ ⎟ ⎜ ⎟ = Sf r<br />

∂µ ⎝ ∂N<br />

⎠ ∂µ<br />

v ⎝ ⎠v<br />

( )<br />

⎛<br />

δµ<br />

⎞<br />

• Local Hardness η ( r)<br />

= ∫η ( r) s ( r) d r = 1 but η<br />

⎜<br />

!!<br />

δρ ( r) ⎟<br />

( r)<br />

≠ 1<br />

s ( r)<br />

⎝ ⎠ v<br />

∫<br />

η<br />

( r) ( )<br />

f r d r<br />

= η<br />

Pag.<br />

30-9-2008 16


• Ambiguity in the definition<br />

various proposals<br />

For a recent critical account:<br />

P.K.Chattaraj, D.R. Roy, P.Geerlings, M.Torrent-Sucarrat, Theor.Chem.Acc., 118, 923 (2007)<br />

In the work presented here: two relatively simple approaches:<br />

• M.Berkowitz, S.K. Ghosh, R.G. Parr, J. Am.Chem.Soc., 107, 6811 (1985)<br />

η<br />

1<br />

N<br />

( r) ∼ V ( r)<br />

el<br />

Cfr. Molecular Electrostatic Potential<br />

( )<br />

MEP r<br />

( r ')<br />

Z ρ dr '<br />

A<br />

= ∑ −<br />

R − r<br />

∫<br />

r ' − r<br />

A<br />

A<br />

• P. Geerlings, A.M. Vos, R.A. Schoonheydt, J.Mol. Struct. (THEOCHEM), 762, 69 (2006)<br />

(A.Goursot Volume)<br />

η ∼<br />

A<br />

N<br />

N<br />

A<br />

ZA<br />

= Cte<br />

QA<br />

η<br />

A<br />

∼<br />

N<br />

Pag.<br />

30-9-2008 17


A final comment<br />

• nowadays: increasing interest in higher order response functions<br />

( )<br />

( ∂<br />

n E ∂<br />

m Nδ<br />

m' v r )<br />

( n = m + m' )<br />

• recently the third order response function<br />

3<br />

⎛ ⎞ ∂<br />

⎜<br />

⎝ ∂<br />

∂ E<br />

δ<br />

δη<br />

⎟ = =<br />

⎠<br />

( ) ⎟ δ ( )<br />

( )<br />

f r<br />

2<br />

N v r v r N<br />

∂<br />

Dual Descriptor<br />

C.Morell, A. Gr<strong>and</strong>, A.Toro-Labbé,<br />

J.Phys.Chem.A, 109, 205 (2005)<br />

turned out to yield a firm basis to regain the Woodward Hoffmann<br />

rules for pericyclic reactions, in a density – only context.<br />

avoiding the phase, sign, symmetry of the wave function<br />

(cfr. ρ(r) is strictly positive <strong>and</strong> has a trivial symmetry)<br />

F. De Proft, P.W. Ayers,S. Fias, P. Geerlings, J.Chem.Phys, 125, 214101 (2006)<br />

P.W. Ayers, C. Morell, F. De Proft, P. Geerlings, Chem. Eur. J., 13, 8240 (2007)<br />

Pag.<br />

30-9-2008 18


Applications until now mostly on (generalized) acid base reactions<br />

- acid/base (Arrhenius, BrØnsted-Lowry)<br />

- generalized acid base (Lewis) → complexation reactions<br />

importance in Zeolite chemistry/ catalysis<br />

- organic chemistry<br />

• electrophilic/nucleopilic<br />

• substitution/addition/elimination<br />

Use of Principles<br />

- EEP (Electronegativity Equalization Principle) (S<strong>and</strong>erson, Mortier)<br />

- HSAB (Hard <strong>and</strong> Soft Acids <strong>and</strong> Bases Principle; global/local)(Parr, Pearson)<br />

- MHP (Maximum Hardness Principle)(Pearson)<br />

Pag.<br />

30-9-2008 19


Reviews<br />

• H. Chermette, J. Comput.Chem., 20, 129 (1999)<br />

• F. De Proft, P. Geerlings, Chem.Rev., 101, 1451 (2001)<br />

• P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev., 103, 1793 (2003)<br />

• P.W. Ayers, J.S.M. Anderson <strong>and</strong> J.L. Bartolotti, Int.J.Quantum Chem, 101, 520 (2005)<br />

• P. Geerlings, F. De Proft, PCCP, 10, 3028 (2008)<br />

Pag.<br />

30-9-2008 20


3. Some applications of global <strong>and</strong> local softness <strong>and</strong><br />

hardness in <strong>Catalysis</strong><br />

Kinetics of acid catalyzed electrophilic aromatic substitution reactions<br />

Friedel Crafts alkylation<br />

functionalization of aromatic molecules<br />

Traditionally: homogeneous Lewis acid catalysis<br />

Nowadays: more <strong>and</strong> more heterogeneous Br∅nsted acid catalysis: zeolites<br />

? Mechanism – number of steps<br />

- nature of the alkylating reagent<br />

• non-empirical ab initio evaluation of reaction profiles <strong>and</strong> rate constants<br />

• interpretation of the results in conceptual <strong>DFT</strong> context (MHP, HSAB)<br />

Alkylation of benzene/toluene<br />

Role of various domains of Quantum Chemistry<br />

• methanol/ethene/propene<br />

Br∅nsted Acid <strong>Catalysis</strong><br />

• CH 3 F, CH 3 Cl, CH 3 OH<br />

Lewis Acid <strong>Catalysis</strong><br />

in combination with BF 3 , AlCl 3 , Al(OH) 3<br />

30-9-2008 Pag. 21


3.1 Br∅nsted Acid <strong>Catalysis</strong> by Zeolites –<br />

Methylation of benzene/toluene<br />

• Two – or single step proces → reaction profile<br />

• Rate constants<br />

• Influence of substituent<br />

• Interpretation within conceptual <strong>DFT</strong> context<br />

• 4T cluster model (1Al; 3 Si)<br />

• <strong>DFT</strong>: B3LYP<br />

rate constants<br />

reactivity descriptors<br />

Pag.<br />

30-9-2008 22


The Two Step Consecutive Mechanism<br />

• First methanol adsorbs on the Br∅nsted acid site <strong>and</strong> the acid proton of the cluster<br />

jumps to the hydroxyl group of methanol <strong>and</strong> methylation of the cluster occurs<br />

• In the second step benzene adsorbs on the methylated cluster<br />

<strong>and</strong> methyl migrates to benzene with<br />

transfer of a proton to the cluster<br />

Energy scale in kJmol -1<br />

Pag.<br />

30-9-2008 23


The Direct Mechanism<br />

• Methanol <strong>and</strong> benzene coadsorb on the acid site<br />

• Zeolite proton moves to methanol; formation of<br />

water; methylgroup of methanol moves to benzene<br />

transferring a proton to the zeolite<br />

Si2<br />

Cb<br />

Hb<br />

O2<br />

Al<br />

Cm<br />

Om<br />

Ha<br />

Hm<br />

O3<br />

Si3<br />

TS2<br />

O4<br />

acid zeolite<br />

+ methanol (g)<br />

+ benzene (g)<br />

acid zeolite<br />

+ toluene (g)<br />

84.25<br />

40.21<br />

+ water (g)<br />

R2<br />

194.87<br />

27.28 71.32<br />

P2<br />

Si2<br />

O2<br />

Cb<br />

Hb<br />

Ha<br />

O1<br />

Al<br />

O4<br />

Om<br />

O3<br />

Cm<br />

Hm<br />

Si3<br />

Si2<br />

Cb<br />

Hb<br />

O2<br />

O4<br />

Cm<br />

Ha<br />

Om<br />

Hm<br />

Al<br />

O1<br />

O3<br />

Si1<br />

Si3<br />

Pag.<br />

30-9-2008 24


• Rate Constant Evaluation<br />

• Transition State Theory<br />

k<br />

r<br />

k T<br />

h<br />

Q<br />

Q<br />

‡<br />

B<br />

= ⋅ ⋅<br />

∏<br />

i<br />

i<br />

e<br />

−E<br />

/ bar<br />

RT<br />

• Q ‡ ,Q i …: partition functions in rigid rotor, harmonic oscillator approximation<br />

• E bar : activation barrier<br />

Example: one step reaction, A <strong>and</strong> B reacting simultaneously with an acidic<br />

zeolite HZ: reaction rate per acid proton<br />

‡<br />

( Q Q Q<br />

)<br />

k T<br />

k ( )<br />

−<br />

r<br />

= N<br />

AvV × ⋅e<br />

h Q Q Q Q Q Q Q Q Q<br />

2 B<br />

v r t TS<br />

−<br />

E /<br />

RT<br />

( ) ( ) ( )<br />

v r t A v r t B v r t HZ<br />

bar<br />

Arrhenius type analysis<br />

E A , A, ∆S Act<br />

• Tested via H/D Exchange reaction of methane: 3T cluster model<br />

fair agreement between theoretical <strong>and</strong> experimental activation energy<br />

A.M. Vos, F.De Proft, R.A.Schoonheydt, P. Geerlings, Chem.Comm., 1108 (2001)<br />

Pag.<br />

30-9-2008 25


Results for the 4T cluster (1Al, 3Si) model<br />

• rate constants 300-800K E A<br />

• 2 mechanisms consecutive* vs direct<br />

E A<br />

193 127 kJmol -1<br />

* Pre-exponential factor is higher so that at higher T the two<br />

mechanisms become competing (400K) (effect of ∆S act )<br />

Direct mechanism in line with experimental data ( no stable intermediates) <strong>and</strong> confirmed<br />

in periodic boundary calculations by Van Santen (J.Am.Chem.Soc.123, 2799(2001))<br />

• Influence of substituents: the role of activation hardness (MHP at work)<br />

∆ η = η −η<br />

Z. Zhou, R.G.Parr, J.Am.Chem.Soc, 112, 5720 (1991)<br />

react<br />

TS<br />

obtained via HOMO –LUMO gap<br />

E A (kJmol -1 ) k (400K) ∆η (activation hardness)<br />

Benzene 127.1 (4) 5.6 10 -24 0.0597 (4)<br />

Toluene o 114.2 (1) 3.6 10 -23 0.0493 (1)<br />

m 123.9 (3) 3.1 10 -24 0.0536 (3)<br />

p 117.8 (2) 2.2 10 -22 0.0499 (2)<br />

• electrondonating character of CH 3 -group shows up in E A .<br />

• E A <strong>and</strong> activation hardness match<br />

Pag.<br />

30-9-2008 26


• Local level<br />

• Softness indicators fail<br />

Charge controlled reaction<br />

Cfr. Hardness of electrophilic species CH 3+ (η= 7.83V)<br />

• Dominance of electrostatic interactions<br />

η C(arom)<br />

|q c | (arom) derived from Electrostatic potential based<br />

∆E<br />

cc<br />

∼<br />

q<br />

q<br />

( ar ) c( methanol )<br />

R cc<br />

Charges (CHELPG) for<br />

adsorbed reactants<br />

η c(ar)<br />

∆E cc<br />

Benzene 0.0259 -9.85<br />

Toluene o 0.1522 -67.63<br />

m 0.0033 -1.36<br />

p 0.0548 -20.19<br />

Hardness related quantities are adequate reactivity descriptors<br />

for these reactions<br />

A.M.Vos, K.H.Nulens, F.De Proft, R.A. Schoonheydt, P.Geerlings, J.Phys.Chem.B, 106, 2026 (2002)<br />

Pag.<br />

30-9-2008 27


From Regioselectivity (Intramolecular <strong>Reactivity</strong> Sequence)<br />

to an Intermolecular <strong>Reactivity</strong> Sequence<br />

Comparison between ethylation <strong>and</strong> isopropylation of benzene.<br />

starting from ethylene <strong>and</strong> propene (one step reaction)<br />

E A (kJmol -1 ) k (400K) η c<br />

*<br />

η H ∆E el<br />

114.2 4.8 10 -23 0.174 0.331 -0.0253<br />

106.0 2.0 10 -21 0.357 0.343 -0.0564<br />

* C-atom of ethene or propene protonated by the acid proton<br />

of the zeolite ( values in adsorption complex)<br />

• sequence of k <strong>and</strong> E A in agreement with experiment (Corma et al, J.Cat., 192,<br />

163 (2000)): isopropylation more favored<br />

• hard – hard interaction - acidic proton of zeolite<br />

- C atom of the alkene that is protonated more<br />

favored in isopropylation<br />

A.M.Vos, R.A.Schoonheydt, F.De Proft, P.Geerlings, J.Phys.Chem B, 107, 2001 (2003)<br />

Pag.<br />

30-9-2008 28


3.2 Lewis acid <strong>Catalysis</strong>: the role of softness<br />

• Catalytic activity of Lewis acid sites in Zeolites: much less frequently studied<br />

than Br∅nsted acid sites<br />

• Methylation of benzene catalyzed by Lewis acids BF 3 , AlCl 3 , Al(OH) 3 <strong>and</strong> a Lewis acid<br />

site (L1) of a zeolite involving a three coordinated Al<br />

A.A. Lamberov et al, J.Mol.Cat.A,<br />

158, 481 (2000)<br />

Methylating reagents<br />

CH 3 F, CH 3 Cl, CH 3 OH(2x) ≡<br />

CH 3 X<br />

AlCl<br />

e.g. CH 3 -Cl + 3<br />

CH 3<br />

+ HCl<br />

Pag.<br />

30-9-2008 29


General, schematic energy diagram<br />

TS<br />

benzene +<br />

lewis acid + CH 3<br />

X<br />

toluene +<br />

lewis acid + HX<br />

E 1 E 2 E app E act E 2 ’ E 1 ’<br />

benzene +<br />

(lewis acid · CH 3<br />

X) toluene +<br />

(lewis acid ·HX)<br />

(lewis acid · CH 3<br />

X · benzene)<br />

E r<br />

(lewis acid · HX · toluene)<br />

• formation of a Lewis Acid – CH 3 X - Benzene Complex<br />

• single step reaction, without formation of stable intermediates<br />

Pag.<br />

30-9-2008 30


Transition States<br />

C m<br />

H 3Cb<br />

X 1<br />

H 2<br />

X 3<br />

X<br />

M 2<br />

tsM_Al(OH) 3<br />

tsM_BF 3<br />

tsM_AlCl 3<br />

C m<br />

CbH2 O 2<br />

O 3<br />

O 1<br />

Al<br />

tsM_L-site<br />

• concerted, not synchronous, pathway with cyclic<br />

transition structure<br />

• migrating methyl group<br />

• planar<br />

• charge ~ +0.35 a.u.<br />

Pag.<br />

30-9-2008 31


Activation energies <strong>and</strong> rate constants<br />

catalytic activity AlCl 3 > BF 3 > Al(OH) 3 > L1<br />

• AlCl 3 most efficient<br />

catalyst in agreement with<br />

experimental studies on<br />

relative efficiencies of<br />

metalhalides (Russell, Olah)<br />

• more appropriate in H-<br />

exchange reactions (not<br />

shown)<br />

• influence of surrounding<br />

atoms?<br />

Crystal calculations<br />

Interpretation?<br />

Pag.<br />

30-9-2008 32


Cyclic TS characterized by several interactions of the<br />

electrophilic/nucleophilic type<br />

N<br />

Calculated TS with CH 3 F/BF 3<br />

CH 3+ attacking<br />

benzene<br />

E<br />

C m<br />

C b<br />

E<br />

H 2<br />

H + leaving<br />

benzene<br />

X - leaving<br />

CH 3 X<br />

X 1<br />

N<br />

M<br />

E<br />

X 2<br />

N<br />

C m<br />

H 3Cb<br />

X 1<br />

H 2<br />

X 3<br />

X<br />

M 2<br />

tsM_BF 3<br />

X 3<br />

X 4<br />

orbital interactions (eg vacant orbital(s) of Lewis acids) > electrostatics<br />

softness at work?<br />

HSAB at local level A ..... B s A<br />

+<br />

as close possible to s B<br />

-<br />

+ -<br />

Multicenter event: looking for smallest value of ∑( s -s ) 2<br />

A,i B,i<br />

Cfr. regioselectivity of Diels Alder reactions showing cyclic TS.<br />

S. Damoun, G. V<strong>and</strong>e Woude, F. Mendez, P. Geerlings, J.Phys.Chem.A, 101, 886 (1997)<br />

i<br />

Pag.<br />

30-9-2008 33


Sequence AlCl 3 < L 1 < BF 3 < Al(OH) 3 ; also for H-exchange reaction<br />

?<br />

Note: all hardness related descriptors failed in describing these reactions<br />

Lewis acid catalyzed reactions are much better described by softness<br />

related descriptors than the acid zeolite catalyzed ones.<br />

AlCl 3 always more active than BF 3 in agreement with experimental data.<br />

Ranking of Al(OH) 3 <strong>and</strong> L 1 with comparative active centers less obvious<br />

<strong>and</strong> incites further research on structure /acid strength of Lewis acid sites<br />

in zeolites<br />

A.M.Vos, R.A.Schoonheydt, F.De Proft, P.Geerlings, J.Catal. 220, 333 (2003)<br />

P. Geerlings, A.M. Vos, R. Schoonheydt, J.Mol.Struct. (Theochem), 762, 69 (2006) (A.<br />

Goursot Festschift)<br />

Pag.<br />

30-9-2008 34


4. Towards the Inclusion of Confinement Effects<br />

• Relevance cfr. PCCP Thematic Issue “Molecules in Confined Space”<br />

“ … intricate chemistry of molecules taking place in the confined space of<br />

e.g. zeolites …”<br />

• Zeolites with their 3D network involving cages are archetypal structures<br />

• Early work (C.M. Zicovich- Wilson, A. Corma, P. Viruela, J.Phys.Chem., 98, 10863 (1993)<br />

• New concept: “electronic confinement”: density of the guest molecule orbitals suddenly<br />

drops to nearly zero when reaching the walls of the zeolite as a consequence of the shortrange<br />

repulsion with the delocalized electronic cloud of the lattice change is orbital<br />

energy levels<br />

•Hückel Theory ethylene HOMO-LUMO gap, <strong>and</strong> so the hardness, decreases if the<br />

molecule is spatially confined.<br />

c=c<br />

η<br />

LUMO<br />

HOMO<br />

η<br />

LUMO<br />

HOMO<br />

Pag.<br />

30-9-2008 35


• Confirmed by later work by Corma <strong>and</strong> coworkers, using a supermolecule<br />

approach, on ethylene, benzene, toluene in a zeolite cage <strong>and</strong> naphtalene in<br />

pure silica structures “ avoiding the interference of electrostatic effects”.<br />

( F.Marquez, C.M. Zicovich-Wilson, A. Corma, E. Palomares, H. Garcia, J.Phys.Chem.B, 105, 9973 (2001)<br />

Are these results reflecting “pure confinement” effects or<br />

are (still) electrostatic, polarization, … effects at work due<br />

to the direct interaction between guest molecule <strong>and</strong><br />

confining atoms?<br />

B<br />

A<br />

Study of pure confinement effects on global<br />

<strong>and</strong> local <strong>DFT</strong> based reactivity descriptors<br />

Pag.<br />

30-9-2008 36


Atoms<br />

• previous work (1992-2005) (impenetrable spherical cavity)<br />

by Goldman, Garza, Sen, Chattaraj<br />

• blue shifted transition frequencies<br />

• increasing hardness<br />

• decreasing polarizability<br />

• decreasing electronegativity<br />

Our approach<br />

Pag.<br />

30-9-2008 37


<strong>DFT</strong> based – spherical Confinement approach (collaboration with D.J.Tozer)<br />

• Atomic Radius R A =λB A<br />

Bragg radius<br />

• Within the sphere: convertional v xc<br />

• outside the sphere: v xc = constant<br />

ensuring appropriate asymptotic density decay<br />

λ=1.7 λ=3.0 λ=4.0<br />

λ↑ →molecule is trapped within cavity resembling an ellipsoid<br />

Pag.<br />

30-9-2008 38


An atom test case: helium<br />

Radial Density Distribution<br />

V=9.10 3 au<br />

ensures “atom trapped in a<br />

spherical wall”<br />

Atom increases its HOMO-LUMO<br />

gap upon confinement i.e.<br />

becomes “harder”<br />

λ= 3<br />

B He = 0.35 Å<br />

λB He ~ 2a.u.<br />

cfr earlier (1992-2005) work<br />

Number of electrons outside this region < 10 -7<br />

Pag.<br />

30-9-2008 39


Molecules: ethylene<br />

• Increasing hardness upon<br />

confinement<br />

•Trend opposed to literature results<br />

by Zicovich-Wilson, Corma<br />

Planar Confinement?<br />

Modellisation (planar<br />

hydrocarbons)<br />

v xc =cte (9 .10 3 au)<br />

R c =λB c<br />

Conventional<br />

v xc<br />

v xc =cte<br />

Pag.<br />

30-9-2008 40


Ethylene: planar confinement<br />

• Same trend as in spherical<br />

confinement<br />

Pag.<br />

30-9-2008 41


Confirmation: benzene, toluene,naphtalene: trend again opposed to literature results<br />

• Reason for systematic<br />

error?<br />

• In literature: explicit<br />

interaction between<br />

molecule <strong>and</strong> confining<br />

medium in a supermolecule<br />

approach<br />

Naphtalene<br />

(Corma et al,<br />

J.Am.Chem.Soc.122, 6520 (2000)<br />

J.Phys.ChemB, 105, 9973 (2001))<br />

Confrontation with experiment<br />

Upon elimination of specific interactions, exclusively focussing on<br />

confinement effect, hardness increases effect on reactivity<br />

remaining questions: magnitude of the effect; to which extent does it cancel<br />

effect of specific interactions<br />

A. Borgoo, D.J. Tozer, P. Geerlings, F.De Proft, PCCP, 10, 1406 (2008)<br />

Naphtalene<br />

0-0 transition 309 nm - 316 nm<br />

∆λ= 7 nm<br />

Pure silica<br />

structure<br />

Pag.<br />

30-9-2008 42


A first try: an order of magnitude analysis<br />

Ethlene:<br />

Exp<br />

η = I − A = 12.45eV = 0.458au<br />

≅ ε LUMO - ε HOMO<br />

Confinement: take λ=4 R B = 0.70Å → R=2.80Å<br />

→ ± spherical confinement with radius ≅ 4.0Å<br />

cfr. Zeolite Cavity with diameter of 8Å<br />

∆η<br />

≃ 0.015au<br />

η=0.473au=12.87eV<br />

Increasing hardness<br />

Increasing in hardness: cfr. Particle in a Box<br />

Cube:<br />

1 L↓<br />

En ∼ ⎯⎯→ E<br />

2<br />

n<br />

− En−<br />

1<br />

↑→<br />

L<br />

Influence on wavelength HOMO-LUMO transition<br />

∆λ~ -3 nm<br />

increasing hardness<br />

Effect opposed to “softening upon<br />

confinement” in the literature<br />

Pag.<br />

30-9-2008 43


What about effects on local descriptors, eg, Fukui function?<br />

Some introductory results on ethylene<br />

f + (r)<br />

f - (r)<br />

V=9x10 3 au<br />

Fukui function for nucleophilic attack (f + (r)) is dramatically affected by the confinement,<br />

whereas fukui function for electrophilic attack f - (r) is hardly affected<br />

Reason: artificial binding , due to the potential barrier, of the extra electron in the anion<br />

(cfr. evaluation- technique for negative electron affinities)<br />

N. Sablon, F. De Proft, P.Geerlings, D.J.Tozer, PCCP, 9, 5880 (2007)<br />

F.De Proft, N. Sablon, D.J.Tozer, P.Geerlings, Farad.Discussions, 135, 151 (2006)<br />

Confinement influences shape of the Fukui function <strong>and</strong><br />

thereby also regioselectivity reactivity<br />

A. Borgoo, F. De Proft, P. Geerlings, D.J.Tozer, ICCMSE 2008, Am.Inst. Phys.Conf. Proceedings, in press<br />

Pag.<br />

30-9-2008 44


Epilogue: looking back at the 1979-2008 period from a theoretical/<br />

computational chemistry point of view: a spectacular evolution.<br />

• Increasing computing power (external factor)<br />

• Moore’s law: doubling of computing power each 1.5 year<br />

• 30 years = 20 x 1.5 years → factor 2 10 ≅ 10 6<br />

• Theoretical/ methodological advances<br />

• Introduction of <strong>DFT</strong>: a true computational breakthrough<br />

• Scaling properties<br />

<strong>DFT</strong> – B3LYP ~ N 2.5<br />

CISD ~ N 6 ; MP2 ~ N 5<br />

→ Performance ratio B3LYP/ other correlated techniques ~ N 2 à N 3<br />

• Overall efficiency/quality increases by several orders of magnitude extra<br />

as compared to 10 6<br />

Theoretical / Computational Chemistry getting closer <strong>and</strong> closer to ‘real’<br />

Chemistry, eg. Zeolite Chemistry<br />

Pag.<br />

30-9-2008 45


5. Conclusions<br />

• Present day Quantum Chemical Computational Techniques<br />

afford detailed studies on reaction path <strong>and</strong> rate constant of (zeolite) catalysed<br />

reactions<br />

• Following Parr’s dictum “to calculate a molecule is not to underst<strong>and</strong> it”<br />

interpretation of the results provides further insight. Conceptual <strong>DFT</strong> can play<br />

a predominant role in this field.<br />

• Global (activation hardness) <strong>and</strong> local descriptors (local softness, local<br />

hardness) offer complementary information in combination with principles such<br />

as HSAB an MHP.<br />

• When discussing confinement effects care should be taken to make the<br />

distinction between pure confinement <strong>and</strong> effects resulting from the direct<br />

interaction with the cage atoms.<br />

• The future of a Computational approach to (Zeolite) <strong>Catalysis</strong> is bright.<br />

Pag.<br />

30-9-2008 46


6. Acknowledgments<br />

Prof. Wilfried Mortier (KULeuven)<br />

Prof. Frank De Proft (VUB)<br />

Dr. An Vos<br />

Dr. Pierre Mignon<br />

Prof. David Tozer (Durham, UK)<br />

Alex Borgoo (VUB)<br />

<strong>and</strong> Prof. R. Schoonheydt<br />

… ad multos annos<br />

30-9-2008 Pag. 47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!