20.11.2014 Views

BIO, BIOA, ZIO - Combustion 911

BIO, BIOA, ZIO - Combustion 911

BIO, BIOA, ZIO - Combustion 911

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Burners for gas <strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong><br />

Technical Information · GB<br />

7.2.14 Edition 05.10<br />

• Large capacity range up to 1000 kW<br />

• Maintenance-friendly thanks to modular design<br />

• Robust burner design<br />

• Safe flame control thanks to ionization electrode and reliable electrical ignition<br />

• Length increments enable individual adjustment either to new systems or<br />

when modernizing existing systems<br />

• Suitable for new systems and modernisation of existing systems thanks to<br />

individual length adjustment<br />

• Air preheating to 450°C available as an option<br />

• Low polluting level thanks to optimized combustion<br />

• For installation as ceiling or side-wall burner<br />

• Can be combined with different combustion chamber shapes<br />

www.kromschroeder.com


2<br />

Table of contents<br />

Burners for gas <strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> . . . . . . . . . . . . . . . . . . . . . . 1<br />

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.1 Examples of application. . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.1.1 Continuous control with pneumatic ratio control system . . .5<br />

1.1.2 Continuous control with pneumatic ratio control system<br />

and lance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5<br />

1.1.3 Cascade control for extended control range . . . . . . . . . . . .6<br />

1.1.4 Staged control with pneumatic ratio control system . . . . . .6<br />

2 Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

2.1 Approval for Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

3 Mechanical construction. . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

3.1 Burner housing (furnace flange) . . . . . . . . . . . . . . . . . . . 8<br />

3.2 Burner insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

3.3 Burner tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

3.3.1 Burner tube in burner quarl. . . . . . . . . . . . . . . . . . . . . . . . . .9<br />

3.3.2 Burner tube with attachment tube . . . . . . . . . . . . . . . . . . . .9<br />

4 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

5 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

5.1 Burner type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11<br />

5.2 Burner size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11<br />

5.3 Burner head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

5.4 Field of application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

5.5 Calculating the burner length . . . . . . . . . . . . . . . . . . . 14<br />

5.5.1 Burners in burner quarls . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

5.5.2 Burners with burner attachment tube . . . . . . . . . . . . . . . . 17<br />

5.6 Selection table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

5.6.1 Type code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

6 Project planning information . . . . . . . . . . . . . . . . . . . . . 21<br />

6.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

6.2 Recommended ignition transformer . . . . . . . . . . . . . . 21<br />

6.3 Non-return gas valve . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

6.4 Flame control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10<br />

6.5 Hot air compensation . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

6.6 Purging air/cooling air . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

6.7 Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

6.8 Gas line connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

6.9 Air line connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

6.10 Condition on delivery. . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

7 Technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

7.1 Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

7.2 Ignition lance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

8 Maintenance cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Contact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

t = To be continued


3<br />

<strong>BIO</strong><br />

1 Application<br />

For industrial furnaces and firing systems in the iron and steel<br />

industries in the precious, non-ferrous and light metal sector,<br />

as well as in the plastics, fibre and paper industries. Other<br />

fields of application are thermal incineration installations, as<br />

well as driers and hot-air generators.<br />

For low temperature applications (e.g. for crucible heating,<br />

radiant tube heating or hot-air generation), the burners are<br />

equipped with a heat-resistant steel attachment tube.<br />

For high temperature applications (e.g. forging furnace), the<br />

burners are used in combination with a burner quarl made<br />

from refractory concrete. Different flame shapes can be<br />

achieved by using burner quarls with a different geometry.<br />

The burner may be adapted to the system requirements using<br />

different burner lengths.<br />

<strong>BIO</strong>A<br />

<strong>ZIO</strong><br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Application<br />

4<br />

Shaft melting and holding furnace Bogie hearth forging furnace Incineration installation for thermal regenerative<br />

flue air purification<br />

Strip galvanising plant Rotary table furnace Aluminium tank furnace<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Application<br />

5<br />

1.1 Examples of application<br />

Threepoint<br />

step<br />

AKT<br />

VAS<br />

M<br />

VAG<br />

GEH<br />

EKO<br />

EKO<br />

<strong>ZIO</strong>, <strong>BIO</strong>, <strong>BIO</strong>A<br />

1.1.1 Continuous control with pneumatic ratio control system<br />

The burner output is controlled in modulating mode by adjusting<br />

the butterfly valve BVA. The air/gas ratio control VAG<br />

ensures a constant gas/air flow ratio via the impulse line. This<br />

type of control is used in melting furnaces in the aluminium<br />

industry or in regenerative incineration installations in the<br />

environment industry, for example.<br />

IC 20 + BVA<br />

BVA<br />

AKT<br />

VAG<br />

GEH<br />

EKO<br />

<strong>BIO</strong>..L, <strong>ZIO</strong>..L<br />

1.1.2 Continuous control with pneumatic ratio control<br />

system and lance<br />

The burner’s flexibility is increased thanks to an ignition lance.<br />

This type of control is used in heat treatment furnaces in the<br />

iron and non-ferrous metal industries and in heating furnaces<br />

in the steel industry, for example.<br />

60DJZ VG 8<br />

GEH<br />

60DJLZ<br />

M<br />

GEH<br />

EKO<br />

IC 20..E + BVA<br />

BVA<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Application > Examples of application<br />

6<br />

VAS<br />

M<br />

IC 20<br />

+ LFC<br />

1.1.3 Cascade control for extended control range<br />

The burner is adjusted near-stoichiometrically to a low-fire<br />

rate of 10% using a pneumatic ratio control system. Smaller<br />

capacities can be adjusted with the IC 20 at a constant lowfire<br />

air flow rate by throttling down the gas flow. With cascade<br />

control, control ranges of 1:45 can be achieved with excess air.<br />

AKT<br />

VAS<br />

VAG<br />

GEH<br />

EKO<br />

<strong>ZIO</strong>, <strong>BIO</strong>, <strong>BIO</strong>A<br />

M<br />

IC 20 + BVA<br />

LEH<br />

EKO<br />

VAG+VBY<br />

1.1.4 Staged control with pneumatic ratio control system<br />

The burner capacity is switched cyclically between high fire<br />

and low fire by opening and closing the solenoid-operated<br />

butterfly valve for air.<br />

AKT<br />

MB 7 + BVHM<br />

GEH<br />

EKO<br />

LEH<br />

EKO<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong><br />

The pneumatic air/gas ratio control system offers maximum<br />

safety by an air deficiency cut-out, with a constant lambda<br />

value being maintained while the air pressure varies. The<br />

low-fire rate is guaranteed by the bypass valve VBY. The high<br />

output impulse at the burner produces a uniform temperature<br />

distribution and good circulation of the furnace or kiln<br />

atmosphere, e.g. in heat treatment furnaces in the iron and<br />

non-ferrous metal industries or kilns for heavy clay and fine<br />

ceramics.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


7<br />

2 Certification<br />

2.1 Approval for Russia<br />

Certified by Gosstandart pursuant to GOST-R.<br />

Approved by Rostekhnadzor (RTN).<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


8<br />

3 Mechanical construction<br />

The burners are composed of three modules: burner housing,<br />

burner insert and burner tube. This structure allows the<br />

burners to be easily adapted to the respective process or to<br />

be integrated into existing systems. Maintenance and repair<br />

times are reduced, and existing furnace installations can<br />

easily be converted.<br />

3.1 Burner housing (furnace flange)<br />

<strong>BIO</strong> <strong>BIO</strong>A <strong>ZIO</strong><br />

The burner is secured to the furnace by the burner housing.<br />

The burner housing accommodates the burner insert and the<br />

burner tube, and routes the combustion air. The combustion air<br />

pressure can be measured using an air pressure test nipple.<br />

3.2 Burner insert<br />

<strong>BIO</strong> <strong>BIO</strong>A <strong>ZIO</strong><br />

The combustion gas is supplied to the burner head via the<br />

gas connection and the gas pipe. The gas connection flange<br />

comprises of the gauge glass, ground screw and electrode<br />

plugs with plug caps.<br />

As of construction stage E, a measuring orifice and flow adjustment<br />

are integrated in the connection flange to easily measure<br />

and adjust the gas flow rate.<br />

The ignition and ionization electrodes are screwed into the<br />

connection flange and can be replaced without removing the<br />

burner insert as of burner size 65.<br />

Burners <strong>BIO</strong>, <strong>BIO</strong>A and <strong>ZIO</strong> are nozzle-mixing burners. Gas<br />

and air are mixed only once they are in the burner head. This<br />

prevents explosive gases from being generated in the pipeline.<br />

There are various burner head versions for different flame<br />

shapes and gas types.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Mechanical construction<br />

9<br />

3.3 Burner tube<br />

Different overall lengths enable adjustment to the furnace wall<br />

thickness of the system.<br />

3.3.1 Burner tube in burner quarl<br />

The burner head is positioned inside the burner tube. The<br />

burner quarl accommodates the burner tube and simultaneously<br />

acts as the combustion chamber for the complete<br />

combustion of the flame. The burner quarls are components<br />

of the refractory lining of the furnace and are usually supplied<br />

by the furnace manufacturer.<br />

3.3.2 Burner tube with attachment tube<br />

The burner head is positioned inside the burner tube. An attachment<br />

tube made of heat-resistant steel acts as the combustion<br />

chamber for the complete combustion of the flame<br />

for low- and medium-temperature applications.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


10<br />

4 Function<br />

The burner control unit opens the gas and air control valves.<br />

Gas flows through the gas connection flange and air flows<br />

through the burner housing as far as the nozzle-mixing burner<br />

head.<br />

The combustible gas/air mixture is produced downstream of<br />

the burner head. Slots and holes in the air disc vary the degree<br />

and manner of twisting of the combustion air and determine<br />

the flame geometry. Depending on the gas type, the geometry<br />

of the gas nozzle varies.<br />

The gas/air mixture is electrically ignited directly by an ignition<br />

electrode or an ignition lance. A flame forms which is<br />

monitored using an ionization electrode or optionally using<br />

the UV sensor.<br />

The choice of the respective combustion chamber material<br />

and geometry is primarily determined by the process.<br />

Using burner quarls, almost any flame shape and outlet velocity<br />

can be achieved.<br />

For low-temperature applications, a combustion chamber<br />

made of heat-resistant steel can be used. The flame burns<br />

inside the metal burner attachment tube.<br />

<strong>BIO</strong>, <strong>BIO</strong>A<br />

<strong>ZIO</strong><br />

Burner insert<br />

Gas<br />

Burner housing<br />

Burner insert<br />

Gas<br />

Air<br />

Burner housing<br />

Air<br />

Burner head<br />

Burner tube<br />

Burner head<br />

Burner tube<br />

Burner head<br />

Ignition electrode<br />

Ionization electrode<br />

Gas nozzle<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


11<br />

5 Selection<br />

5.1 Burner type<br />

Type<br />

Housing<br />

Air temperature Furnace temperature<br />

°C °C<br />

<strong>BIO</strong> GG 20 to 450 50 to 1600<br />

<strong>BIO</strong>A AlSi 20 to 200 50 to 1400<br />

<strong>ZIO</strong> ST 20 to 450 50 to 1600<br />

* For furnace temperatures of > 1450°C, special burner versions are available on request.<br />

5.2 Burner size<br />

Burner size<br />

Burner capacity<br />

[kW]<br />

<strong>BIO</strong> 50 40<br />

<strong>BIO</strong>, <strong>BIO</strong>A 65 90<br />

<strong>BIO</strong> 80 150<br />

<strong>BIO</strong> 100 230<br />

<strong>BIO</strong> 125 320<br />

<strong>BIO</strong> 140 450<br />

<strong>ZIO</strong> 165 630<br />

<strong>ZIO</strong> 200 1000<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Selection<br />

12<br />

5.3 Burner head<br />

The choice of burner head depends on the flame shape, gas type and variant.<br />

Burner head<br />

code letter<br />

Furnace temperature<br />

[°C]<br />

Air temperature2)<br />

[°C]<br />

Flame shape<br />

Control range Low fi re l λ1)<br />

Continuous Staged<br />

Normal R 1:10 1:10 > 1.05 0.8 to 1.3 50 to 350 20 to 150 4)<br />

Long H 1:10 1:10 > 1.3 0.8 to 1.5 500 to 1600 5) 20 to 450<br />

Flat K 3) – 1:10 > 1.05 0.9 to 1.2 50 to 100 4) 20 to 50 4)<br />

1) Indicates the rough range for the max. connection rating. For precise values for the individual versions, see burner diagrams.<br />

The ranges were determined for an ionization current of ≥ 5 µA. Extension of the working range using a UV sensor.<br />

2) The gas fl ow rate should be reduced in accordance with the enthalpy gain of the preheated combustion air.<br />

3) In conjunction with a burner quarl, for use as a radiant burner.<br />

4) Higher temperatures available on request.<br />

5) From a furnace temperature of > 1450°C, the control range is limited.<br />

Gas type<br />

Code letter<br />

Calorifi c value range<br />

[kWh/m 3 (n)]<br />

Density ρ<br />

[kg/m 3 ]<br />

Natural gas L and H quality B 8 to 12 0.7 to 0.9<br />

Propane, propane/butane, butane M 25 to 35 2.0 to 2.7<br />

Propane, propane/butane, butane G 1) 25 to 35 2.0 to 2.7<br />

Coke oven gas, town gas D 4 to 5 0.4 to 0.6<br />

Low calorifi c value gas L 2) 1.7 3 to 3 0.9 to 1.15<br />

1) For λ < 0.9 or when using the <strong>BIO</strong> 50.<br />

2) Not for all burner sizes. Burner capacity is limited to 50 % of the rated capacity.<br />

3) Calorifi c value range < 1.7 on request.<br />

Variant Code letter Output<br />

[kW]<br />

Ignition lance L approx. 1.5<br />

Reduced max. connection rating R –<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Selection<br />

13<br />

5.4 Field of application<br />

For optimal operation, the combustion chamber and flame shapes are combined according to the field of application.<br />

Field of application<br />

Illustration<br />

<strong>Combustion</strong><br />

chamber<br />

Control<br />

Flame<br />

shape<br />

Max.<br />

capacity<br />

Remarks<br />

Industrial furnaces, open<br />

combustion chambers<br />

A<br />

Open cone<br />

High/Low<br />

Continuous<br />

R 100 %<br />

Recommended for cold-air operating<br />

mode only, otherwise the nitric oxide values<br />

are too high<br />

Industrial furnaces, open<br />

combustion chambers<br />

B<br />

Cylindrical<br />

High/Low<br />

High/Low/Off<br />

Continuous<br />

R, H 100 % Normal to medium fl ow velocity<br />

Industrial furnaces, open<br />

combustion chambers<br />

C<br />

Tapered<br />

High/Low<br />

High/Low/Off<br />

Continuous<br />

R, H<br />

approx.<br />

80%<br />

Medium to high velocity, capacity depending<br />

on the diameter<br />

Industrial furnaces, open<br />

combustion chambers<br />

D<br />

Flat fl ame<br />

quarl<br />

High/Low<br />

High/Low/Off<br />

(Continuous)<br />

K 100 %<br />

With continuous control, limited control<br />

range (≥ 40%)<br />

Radiant tube heating<br />

E<br />

Burner with<br />

attachment<br />

tube and<br />

purging air<br />

bore holes<br />

On/Off H 100 %<br />

For cold-air only. Note the capacity of the<br />

radiant tube in accordance with the manufacturer’s<br />

specifi cations.<br />

A draught blocker must be fi tted on the<br />

fl ue gas side.<br />

Hot-air generation<br />

F<br />

Burner attachment<br />

tube<br />

with purging<br />

air bore holes,<br />

protective<br />

fl ame tube<br />

FPT<br />

High/Low<br />

High/Low/Off<br />

continuous<br />

R 100 %<br />

Protection of the fl ame from cooling is ensured<br />

by using a protective fl ame tube<br />

FPT at fl ow velocities of > 15 m/s).<br />

Only where the furnace temperature is<br />

< 600°C.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Selection<br />

14<br />

5.5 Calculating the burner length<br />

L1<br />

L2<br />

L O<br />

BKL<br />

Legend<br />

L1 = Burner tube length<br />

L2 = Position of burner head<br />

L O = Furnace wall thickness<br />

BKL = Burner chamber length (L 10 )<br />

5.5.1 Burners in burner quarls<br />

The position of the burner head (L2) should be appropriately selected, so that the<br />

burner head extends into the burner quarl.<br />

The position of the burner head is available in the following lengths:<br />

35, 135, 235, 335 mm, etc.<br />

The burner chamber length BKL for ensuring optimum flame formation and stable<br />

burner operation can be found in the [Data table – p. 15].<br />

Determine the position of the burner head: L2 = L O - BKL<br />

The burner tube length (L1) is predefined, depending on the flame shape R, K or<br />

H: R, K burner head:<br />

L1 = L2 + 15 mm, H burner head: L1 = L2 + 65 mm<br />

Example<br />

Desired burner quarl type = B, desired flame shape = R (normal).<br />

Selected burner with 90 kW capacity = <strong>BIO</strong> 65,<br />

suitable for burner chamber length (BKL) = 115 – 265 mm.<br />

Furnace wall thickness L O = 340 mm.<br />

Calculate shortest length L2:<br />

Select maximum burner chamber length: BKL = 265 mm.<br />

L2 = LO - BKL = 340 mm - 265 mm = 75 mm.<br />

Compare L2 (here 75 mm) with standard lengths (35, 135, 235, 335 mm, etc.).<br />

Select next longest standard length L2: L2 = 135 mm.<br />

Test whether the burner chamber length BKL fits:<br />

L O - L2 = BKL ➔ 340 mm - 135 mm = 205 mm.<br />

205 mm falls into the burner chamber length range for burners <strong>BIO</strong> 65:<br />

115 – 265 mm – see [Data table – p. 15].<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Selection > Calculating the burner length > Burners in burner quarls<br />

15<br />

Data table<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong><br />

Burner quarl type<br />

Flame shape<br />

Burner head*<br />

Burner chamber length<br />

BKL (L 10 )<br />

[mm]<br />

50 A R 215 to 265<br />

50 B, C R 115 to 265<br />

50 B, C H 115 to 265<br />

50 D KB, KG 130 to 135<br />

65 A R 215 to 265<br />

65 B, C R 115 to 265<br />

65 B, C H 115 to 265<br />

65 D KB, KM, KD 155 to 175<br />

80 A R 215 to 265<br />

80 B, C R 165 to 265<br />

80 B, C H 165 to 265<br />

80 D KB, KM 205 to 225<br />

100 A R 215 to 315<br />

100 B, C R 165 to 265<br />

100 B, C H 165 to 315<br />

100 D KB, KM 230 to 250<br />

100 D KD 170 to 190<br />

125 A R 265 to 365<br />

125 B, C R 215 to 315<br />

125 B, C H 215 to 365<br />

125 D KB 190 to 210<br />

* Flame shape: R = normal, H = long, K = fl at.<br />

Gas type: B = natural gas, M, G = propane, butane/propane, butane, D = coke oven gas,<br />

town gas.<br />

Burner quarl type<br />

BKL<br />

BKL<br />

BKL<br />

BKL<br />

∅<br />

6°<br />

A<br />

B<br />

C<br />

D<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Selection > Calculating the burner length > Burners in burner quarls<br />

16<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong><br />

Burner quarl type<br />

Flame shape<br />

Burner head*<br />

Burner chamber length<br />

BKL (L 10 )<br />

[mm]<br />

140 A R 315 to 415<br />

140 B, C R 265 to 365<br />

140 B, C H 265 to 415<br />

140 D KB, KM 215 to 235<br />

165 A R 315 to 465<br />

165 B R 265 to 415<br />

165 B, C H 265 to 465<br />

165 D KB, KM 240 to 260<br />

200 A R 415 to 565<br />

200 B R 315 to 465<br />

200 B, C H 315 to 565<br />

200 D KB 255 to 275<br />

* Flame shape: R = normal, H = long, K = fl at.<br />

Gas type: B = natural gas, M, G = propane, butane/propane, butane, D = coke oven gas,<br />

town gas.<br />

BKL<br />

BKL<br />

∅<br />

6°<br />

A<br />

B<br />

C<br />

For further information on burner quarls – see www.docuthek.com<br />

BKL<br />

D<br />

BKL<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Selection > Calculating the burner length<br />

5.5.2 Burners with burner attachment tube<br />

Examples for fields of application<br />

E<br />

Radiant tube heating<br />

When using the burner in radiant tubes or protective flame<br />

tubes, the extended burner tube (attachment tube) acts as the<br />

combustion chamber. Burners for this field of application are<br />

supplied with purging air bore holes for optimal flame stability.<br />

The outlet diameter of the radiant tube must be reduced to<br />

the point where a pressure loss of approx. 10 mbar occurs at<br />

the burner’s rated capacity.<br />

17<br />

F<br />

Hot-air generation<br />

To generate hot air at a furnace temperature of < 600°C, burners<br />

with an attachment tube and purging air bore holes are<br />

used.<br />

At flow velocities of > 15 m/s, the protective flame tube FPT is<br />

used to protect the flame from being cooled. At flow velocities<br />

of < 15 m/s, the protective flame tube FPT is not needed.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Selection > Calculating the burner length > Burners with burner attachment tube<br />

18<br />

L1<br />

L O<br />

L2 L 1-2<br />

Legend<br />

L1 = Burner tube length<br />

L2 = Position of burner head<br />

LO = Furnace wall thickness<br />

L 1-2 = Attachment tube length (distance<br />

from burner head to burner tube<br />

end)<br />

Calculation example<br />

Attachment tube lengths (L 1-2 ):<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong><br />

H burner head<br />

R burner head<br />

[mm]<br />

[mm]<br />

50 115 115<br />

65 115 115<br />

80 165 165<br />

100 165 165<br />

125 215 215<br />

140 265 265<br />

165 265 165<br />

200 315 215<br />

Position of the burner head (near the interior furnace wall):<br />

L2 = L O ± 50 mm<br />

The burner tube length (L1) is calculated by adding the position of the burner<br />

head (L2) to the attachment tube length (L 1-2 ):<br />

L1 = L2 + L 1-2<br />

Example<br />

Desired flame shape = H (long) – see [Field of application – p. 13].<br />

Selected burner with 90 kW capacity = <strong>BIO</strong> 65.<br />

Attachment tube length (L 1-2 ) = 115 mm.<br />

Furnace wall thickness L O = 300 mm.<br />

Calculate shortest length L2:<br />

L2 = L O - 50 mm = 300 - 50 mm = 250 mm.<br />

Compare L2 (here 250 mm) with standard lengths (35, 135, 235, 335 mm, etc.).<br />

Select next longest standard length L2: L2 = 335 mm.<br />

Calculate the related burner tube length (L1):<br />

L1 = L2 + L1-2 = 335 mm + 115 mm = 450 mm.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Selection<br />

19<br />

5.6 Selection table<br />

50 65 80 100 125 140 165 200 H R K B G M L D L R - 50 –… /35 – … -(1) – -(99) A – Z B<br />

<strong>BIO</strong> <br />

<strong>BIO</strong>A <br />

<strong>ZIO</strong> <br />

= standard, = available<br />

Order example<br />

<strong>ZIO</strong> 165RB-50/35-(17)D<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Selection > Selection table<br />

20<br />

5.6.1 Type code<br />

Code<br />

Description<br />

<strong>BIO</strong><br />

Burner for gas<br />

<strong>BIO</strong>A<br />

Burner for gas with aluminium housing<br />

<strong>ZIO</strong><br />

Burner for gas<br />

50 to 200 Burner size<br />

Flame shape:<br />

H<br />

long<br />

R<br />

normal<br />

K<br />

fl at<br />

B<br />

G, M<br />

L<br />

D<br />

Gas type:<br />

natural gas<br />

propane, propane/butane, butane<br />

low calorifi c value gas<br />

coke oven gas, town gas<br />

Variant:<br />

with ignition lance<br />

with reduced max. connection rating<br />

L<br />

R<br />

–50*<br />

–100**<br />

–150*<br />

–200**<br />

Burner tube length (L1) [mm]<br />

–250*<br />

–300**<br />

…<br />

/35–<br />

/135–<br />

Position of burner head (L2)<br />

/235–<br />

…<br />

-(1) to -(99) Burner head identifi er<br />

D to F<br />

Construction stage<br />

B<br />

With purging air bore holes<br />

* R, K burner head<br />

** H burner head<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


21<br />

6 Project planning information<br />

6.1 Installation<br />

Installation position: any.<br />

Gas and air connection: can be rotated in 90° steps.<br />

Install and insulate the burner in order to avoid any overheating<br />

of the components during operation. Where applicable,<br />

purging air must be used to prevent ingress of aggressive<br />

gases and thermal overload of components.<br />

6.2 Recommended ignition transformer<br />

6.4 Flame control<br />

Flame control is performed using an ionization electrode or<br />

optionally using a UV sensor.<br />

6.5 Hot air compensation<br />

In order to maintain the λ constant in hot-air operating mode,<br />

the combustion air pressure is increased. The gas pressure<br />

increases in hot-air operating mode (450°C) by approx. 5 mbar<br />

for <strong>BIO</strong>..K and by approx. 10 mbar for <strong>BIO</strong>..H. The total capacity<br />

(gas capacity + hot air capacity) must not exceed the maximum<br />

possible burner capacity (see also burner operating characteristic<br />

diagrams at www.docuthek.com):<br />

Hot air capacity [%]<br />

20<br />

10<br />

≥ 7.5 kV, ≥ 12 mA, e.g. TZI 7,5-12/100 or TGI 7,5-12/100.<br />

6.3 Non-return gas valve<br />

Non-return gas valves are not required, since the burners are<br />

of the nozzle-mixing type.<br />

0<br />

0 50 100 150 200 250 300 350 400 450<br />

Hot air [°C]<br />

The air pressure is increased for a constant l.<br />

Air pressure [%]<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 50 100 150 200 250 300 350 400 450<br />

Hot air [°C]<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Project planning information<br />

22<br />

6.6 Purging air/cooling air<br />

Cooling air at 20°C<br />

Air volume at rated capacity [%]<br />

Purging/cooling air volume for burners<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

<strong>BIO</strong>/<strong>ZIO</strong>..K<br />

<strong>BIO</strong>, <strong>ZIO</strong><br />

<strong>BIO</strong>/<strong>ZIO</strong>..KB..E<br />

0<br />

0<br />

700 800 900 1000 1100 1200 1300 1400<br />

Kiln temperature °C<br />

While the burner is switched off and depending on the furnace<br />

temperature, there must be a certain air flow in order to ensure<br />

safe ignition and monitoring of the burners, and for cooling<br />

the burner components.<br />

The relative air volume in percentage values, based on the<br />

air volume for the rated capacity of the relevant size, is given<br />

in the Purging/cooling air volume for burners diagram. For<br />

hot air, the values on the right-hand axis are based on the<br />

standard air volume for the relevant rated capacity.<br />

The air fan must remain switched on until the furnace has<br />

cooled down completely.<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Cooling air at 450°C<br />

Air volume* at rated capacity [%]<br />

* The cooling air volumes measured in standard<br />

cubic metres are converted into percentage values.<br />

6.7 Emissions<br />

NOX<br />

[mg/m3]<br />

5% O2<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

70<br />

50<br />

H (450 °C)<br />

R, K (20 °C)<br />

H (20 °C)<br />

K (450 °C)<br />

10 50 100<br />

Capacity [%]<br />

Flame shape:<br />

R = Normal<br />

H = Long<br />

K = Flat<br />

T Furnace<br />

= 1000°C<br />

Emissions for cold-air operating mode do not exceed the limits<br />

stipulated by the German Clean Air Directive.<br />

NO X values depend on the temperature, burner head, combustion<br />

chamber, furnace chamber, λ value and output (NO X<br />

values on request).<br />

If operated with LPG, NO X values are approx. 25% higher.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Project planning information<br />

23<br />

6.8 Gas line connection<br />

To ensure accurate measurements of the pressure differential<br />

on the integrated gas measuring orifice, the following applies<br />

for the design of the gas connection:<br />

– Ensure undisturbed flow to the gas connection on the burner<br />

for a distance of ≥ 5 DN.<br />

– Use a bellows unit with the same nominal dimensions as<br />

the gas connection on the burner.<br />

– Use a pipe bend up to an angle of 90° with the same nominal<br />

dimensions as the gas connection on the burner.<br />

– Only use reducing nipples with an external thread at both<br />

ends in order to reduce the nominal diameter on the burner<br />

(e.g. from 1” to ¾”).<br />

To ensure optimum flow, to avoid incorrect measurements and<br />

to enable burner operation with excess gas, we recommend<br />

the following:<br />

– Do not screw the manual valve directly into the burner.<br />

6.9 Air line connection<br />

Ensure there is a bellows unit and an air adjusting cock upstream<br />

of the burner. It is recommended to install a measuring<br />

orifice FLS to determine the air flow rate.<br />

6.10 Condition on delivery<br />

Gas and air connections are fitted opposite one another at<br />

the factory.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


24<br />

7 Technical data<br />

Gas supply pressure: approx. 20 to 50 mbar,<br />

Air supply pressure: approx. 25 to 40 mbar,<br />

each depending on flame shape and gas type (gas and air<br />

pressures – see burner diagrams at www.docuthek.com).<br />

Burner length increments: 100 mm.<br />

Gas types: natural gas, LPG (gaseous) and coke oven gas;<br />

other gases on request.<br />

Heating: direct using a burner quarl or an attachment tube,<br />

indirect using a burner attachment tube inside the radiant<br />

tube.<br />

Control type:<br />

staged: On/Off, High/Low/Off,<br />

continuous: constant λ value.<br />

Most of the burner components are made of corrosion-resistant<br />

stainless steel.<br />

Housing:<br />

<strong>BIO</strong>: cast steel,<br />

<strong>BIO</strong>A: AlSi,<br />

<strong>ZIO</strong>: ST.<br />

Flame control: with ionization electrode (UV sensor as an<br />

option).<br />

Ignition: direct, electrical, lance as an option.<br />

Maximum furnace temperature:<br />

<strong>BIO</strong>/<strong>ZIO</strong> in burner quarl: up to 1600°C,<br />

with K burner head: up to 1100°C (higher temperatures on<br />

request),<br />

<strong>BIO</strong>/<strong>ZIO</strong> with burner attachment tube: up to 600°C (higher<br />

temperatures on request).<br />

Maximum air temperature:<br />

<strong>BIO</strong>, <strong>ZIO</strong>: 450°C,<br />

<strong>BIO</strong>A: 200°C.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Technical data<br />

25<br />

Burners Rated capacity 1) Burner quarl type Flame shape code letter Flame length 2) Flame outlet velocity 3)<br />

kW cm m/s<br />

<strong>BIO</strong> 50 40 A R 25 15<br />

<strong>BIO</strong> 50 40 B R 30 55<br />

<strong>BIO</strong> 50 40 B H 35 50<br />

<strong>BIO</strong> 50 40 D K – –<br />

<strong>BIO</strong>(A) 65 90 A R 40 20<br />

<strong>BIO</strong>(A) 65 90 B R 50 70<br />

<strong>BIO</strong>(A) 65 90 B H 60 65<br />

<strong>BIO</strong>(A) 65 90 D K – –<br />

<strong>BIO</strong> 80 150 A R 45 20<br />

<strong>BIO</strong> 80 150 B R 60 75<br />

<strong>BIO</strong> 80 150 B H 70 70<br />

<strong>BIO</strong> 80 150 D K – –<br />

<strong>BIO</strong> 100 230 A R 55 20<br />

<strong>BIO</strong> 100 230 B R 70 75<br />

<strong>BIO</strong> 100 230 B H 80 70<br />

<strong>BIO</strong> 100 230 D K –<br />

<strong>BIO</strong> 125 320 A R 60 20<br />

<strong>BIO</strong> 125 320 B R 100 65<br />

<strong>BIO</strong> 125 320 B H 115 60<br />

<strong>BIO</strong> 125 320 D K – –<br />

<strong>BIO</strong> 140 450 A R 80 20<br />

<strong>BIO</strong> 140 450 B R 120 75<br />

<strong>BIO</strong> 140 450 B H 140 70<br />

<strong>BIO</strong> 140 450 D K – –<br />

<strong>ZIO</strong> 165 630 A R 90 20<br />

<strong>ZIO</strong> 165 630 B R 110 75<br />

<strong>ZIO</strong> 165 630 B H 160 70<br />

<strong>ZIO</strong> 165 630 D K – –<br />

1) Higher capacities are possible – either on request or see burner diagrams at www.docuthek.com.<br />

2) Measured in the burner quarl from the front edge of the burner quarl. The fl ame diameter is approx. one to two times that of the burner tube or burner<br />

quarl outlet.<br />

3) Refers to rated capacity, with a fl ame temperature of 1600°C for R burner head and 1500°C for H burner head. The fl ow velocity is increased when the<br />

outlet diameter of the burner quarl is reduced. The rated capacity must then be adjusted to the outlet diameter.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Technical data<br />

26<br />

Burners Rated capacity 1) Burner quarl type Flame shape code letter Flame length 2) Flame outlet velocity 3)<br />

kW cm m/s<br />

<strong>ZIO</strong> 200 1000 A R 100 25<br />

<strong>ZIO</strong> 200 1000 B R 130 85<br />

<strong>ZIO</strong> 200 1000 B H 200 80<br />

<strong>ZIO</strong> 200 1000 D K – –<br />

1) Higher capacities are possible – either on request or see burner diagrams at www.docuthek.com.<br />

2) Measured in the burner quarl from the front edge of the burner quarl. The fl ame diameter is approx. one to two times that of the burner tube or burner<br />

quarl outlet.<br />

3) Refers to rated capacity, with a fl ame temperature of 1600°C for R burner head and 1500°C for H burner head. The fl ow velocity is increased when the<br />

outlet diameter of the burner quarl is reduced. The rated capacity must then be adjusted to the outlet diameter.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Technical data<br />

27<br />

7.1 Dimensions<br />

d3<br />

n3<br />

h H<br />

LA<br />

L5<br />

k3<br />

D3<br />

L3<br />

S<br />

D<br />

d2<br />

F<br />

n2<br />

h H 30<br />

GA<br />

LA<br />

L5<br />

L3<br />

S<br />

D<br />

d2<br />

F<br />

n2<br />

GA<br />

L4<br />

L6<br />

L2<br />

L1<br />

k2<br />

D2<br />

L6<br />

L4<br />

L2<br />

L1<br />

k2<br />

D2<br />

L1 (burner tube length) and L2 (position of burner head) are variable (see Calculating the burner tube length)<br />

<strong>BIO</strong><br />

<strong>BIO</strong>A<br />

Burner<br />

Max.<br />

Dimensions [mm]<br />

capacity*<br />

Gas connection<br />

Air connection<br />

Weight<br />

[kW] D** GA LA H h S L3 L4 L5 L6 D2 k2 d2 n2 F D3 k3 d3 n3 [kg]<br />

<strong>BIO</strong> 50 40 50 Rp 1 / 2 Rp 1 1 / 2 50 38 12 73 149 240 127 181 151 12 4 75 – – – – 5.4<br />

<strong>BIO</strong> 65 90 65 Rp 3 / 4 Rp 1 1 / 2 62 48 12 73 156 246 127 195 165 12 4 95 – – – – 7.2<br />

<strong>BIO</strong>A 65 90 65 Rp 1 / 2 ∅ 48 80 44 16 95 170 261 149 195 165 13 4 88 – – – – 3.6<br />

<strong>BIO</strong> 80 150 82 Rp 3 / 4 Rp 2 112 55 14 90 172 272 140 240 210 14 4 110 – – – – 11.2<br />

<strong>BIO</strong> 100 230 100 Rp 1 Rp 2 100 60 16 103 185 285 153 240 200 14 4 120 – – – – 12.6<br />

<strong>BIO</strong> 125 320 127 Rp 1 1 / 2 DN 65 135 73 16 120 254 350 212 270 240 14 4 145 185 145 18 4 21.7<br />

<strong>BIO</strong> 140 450 140 Rp 1 1 / 2 DN 80 150 80 18 130 271 381 232 300 265 14 4 160 200 160 18 8 29<br />

* Cold-air connection, open fl ame, λ = 1,1<br />

** Approx. 10 cm larger in the case of a deviation from the standard length, as a weld seam is applied.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Technical data > Dimensions<br />

28<br />

L6<br />

S<br />

d2<br />

F<br />

n2<br />

D<br />

Z<br />

I<br />

d3<br />

H<br />

GA<br />

L4<br />

LA<br />

D3<br />

k3<br />

L3<br />

L2<br />

L1<br />

k2<br />

D2<br />

<strong>ZIO</strong><br />

Burner<br />

Max.<br />

Dimensions [mm]<br />

capacity*<br />

Gas connection<br />

Air connection<br />

Weight<br />

[kW] D** GA LA H h S L3 L4 L5 L6 D2 k2 d2 n2 F D3 k3 d3 n3 [kg]<br />

<strong>ZIO</strong> 165 630 165 R 1 1 / 2 DN 100 213 – 20 150 359 – 230 285 240 14 4 ∅ 220 220 180 18 8 26<br />

<strong>ZIO</strong> 200 1000 194 R 2 DN 150 220 – 20 220 469 – 340 330 295 22 8 ∅ 255 285 240 22 8 37<br />

* Cold-air connection, open fl ame, λ = 1,1<br />

** Approx. 10 cm larger in the case of a deviation from the standard length, as a weld seam is applied.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Technical data<br />

29<br />

7.2 Ignition lance<br />

<strong>BIO</strong><br />

Gas connection: Rp ¼.<br />

Air connection: Rp 3/8.<br />

Gas pressure: 30 to 50 mbar.<br />

Air pressure: 30 to 50 mbar.<br />

L7<br />

<strong>ZIO</strong><br />

Gas connection: Rp ¼.<br />

Air connection: Rp ½.<br />

Gas pressure: 30 to 50 mbar.<br />

Air pressure: 30 to 50 mbar.<br />

L7<br />

B<br />

E2<br />

B<br />

gas<br />

E1<br />

Air<br />

W1<br />

I<br />

Z<br />

I<br />

Z<br />

C<br />

E1<br />

air<br />

C<br />

W2<br />

E2<br />

Gas<br />

I<br />

Burner<br />

Gas Air<br />

connection connection<br />

Dimensions<br />

B C E1 E2 L7 W1 W2<br />

mm mm mm mm mm ∠ ° ∠ °<br />

<strong>BIO</strong> 80..L 57 54 7 10 177 36 45<br />

<strong>BIO</strong> 100..L 57 54 7 10 190 36 45<br />

<strong>BIO</strong> 125..L 69 65 8 8 261 30 30<br />

<strong>BIO</strong> 140..L 63 62 16 18 276 42 45<br />

Burner<br />

Gas Air<br />

connection connection<br />

Dimensions<br />

B C E1 E2 L7<br />

mm mm mm mm mm<br />

<strong>ZIO</strong> 165..L 118 77 27 71 382<br />

<strong>ZIO</strong> 200..L 137 77 27 89 482<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


30<br />

8 Maintenance cycles<br />

Twice per year, but if the media are highly contaminated, this<br />

interval should be reduced.<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10


Feedback<br />

Finally, we are offering you the opportunity to assess this “Technical Information (TI)” and to give us your opinion, so that we<br />

can improve our documents further and suit them to your needs.<br />

Clarity<br />

Found information quickly<br />

Searched for a long time<br />

Didn’t find information<br />

What is missing?<br />

No answer<br />

Comprehension<br />

Coherent<br />

Too complicated<br />

No answer<br />

Scope<br />

Too little<br />

Sufficient<br />

Too wide<br />

No answer<br />

31<br />

Use<br />

To get to know the product<br />

To choose a product<br />

Planning<br />

To look for information<br />

Navigation<br />

I can find my way around<br />

I got “lost”<br />

No answer<br />

My scope of functions<br />

Technical department<br />

Sales<br />

No answer<br />

Remarks<br />

(Adobe Reader 7 or higher required)<br />

1 Contact<br />

Elster GmbH<br />

Postfach 2809 · 49018 Osnabrück<br />

Strotheweg 1 · 49504 Lotte (Büren)<br />

Germany<br />

T +49 541 1214-0<br />

F +49 541 1214-370<br />

info@kromschroeder.com<br />

www.kromschroeder.com<br />

www.elster.com<br />

The current addresses of our international<br />

agents are available on the Internet:<br />

www.kromschroeder.com Sales<br />

Kromschröder, a product<br />

brand of the Elster Group<br />

We reserve the right to make technical<br />

modifications in the interests of progress.<br />

Copyright © 2007 Elster Group<br />

All rights reserved.<br />

03250786<br />

<strong>BIO</strong>, <strong>BIO</strong>A, <strong>ZIO</strong> · Edition 05.10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!