31.12.2014 Views

Low Light Intensity Performance of N- and P-Type ... - ISC Konstanz

Low Light Intensity Performance of N- and P-Type ... - ISC Konstanz

Low Light Intensity Performance of N- and P-Type ... - ISC Konstanz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LOW LIGHT INTENSITY PERFORMANCE OF N-<br />

AND P-TYPE SILICON SOLAR CELLS WITH<br />

DIFFERENT ARCHITECTURES<br />

Andreas Halm, Peter Hering, Corrado Comparotto, Valentin D.<br />

Mihailetchi, Eckard Wefringhaus, Radovan Kopecek<br />

International Solar Energy Research Center - <strong>ISC</strong> - <strong>Konstanz</strong>,<br />

Germany<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 1


contents<br />

• motivation – potential advantage <strong>of</strong> n-type<br />

solar cells <strong>and</strong> modules<br />

• lV measurements <strong>of</strong> p- <strong>and</strong> n-type cells at<br />

low light intensities<br />

• influence <strong>of</strong> the shunt resistance<br />

• outdoor module measurements<br />

• summary<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 2


motivation<br />

N-type on wafer level: n-type base material maintains high lifetimes for<br />

low injection levels at the presence <strong>of</strong> common impurities like Fe<br />

• n-type FZ: D. Macdonald et al., APL Vol 85 Nr<br />

18, p. 4061-4063, 11.2004<br />

• n-type mc: S. Dubois PhD thesis<br />

more relevant on cell level: diffusion length LD<br />

Effective<br />

carrier density<br />

[1/cm³]<br />

LD p-type<br />

[µm]<br />

LD n-type<br />

[µm]<br />

1e15 312 304<br />

2e14 240 298<br />

S. Dubois, PhD thesis, 2006, INES, France<br />

-> potential advantage <strong>of</strong> n-type base on cell level<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 3


IV measurements<br />

illumination: 1 sun …….. 0.02 suns (5 steps)<br />

base material: Cz p-type Cz n-type<br />

cell design:<br />

st<strong>and</strong>ard:<br />

Al BSF cell<br />

Al rear emitter cell<br />

advanced:<br />

PERL cell<br />

PERL cell<br />

-> comparison <strong>of</strong> the relative normalized power output at P mpp<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 4


IV measurements – st<strong>and</strong>ard cells<br />

definition:<br />

• P mpp @ 1 sun ≡ 1<br />

-> normalization for comparability<br />

cell to cell<br />

• P mpp relative to illumination:<br />

P mpp,rel = P mpp (x)*(1sun/x suns)<br />

-> for comparability <strong>of</strong> different<br />

illumination levels<br />

-> P mpp,rel drops faster for p-type cells !<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 5


IV measurements – PERL cells<br />

definition:<br />

• P mpp @ 1 sun ≡ 1<br />

-> normalization for comparability<br />

cell to cell<br />

• P mpp relative to illumination:<br />

P mpp,rel = P mpp (x)*(1sun/x suns)<br />

-> for comparability <strong>of</strong> different<br />

illumination levels<br />

-> P mpp,rel drops faster for n-type cells !<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 6


influence <strong>of</strong> parallel resistance<br />

• P mpp,rel drops linear with<br />

the shunt resistance<br />

• saturation observable for<br />

R shunt ~ 1 M cm²<br />

• minimum drop <strong>of</strong> P mpp,rel :<br />

13% for n-type<br />

( R shunt = 3 M cm² )<br />

20% for p-type<br />

( R shunt = 25 k cm² )<br />

-> Rshunt governs the power output for low illumination levels !<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 7


origin <strong>of</strong> power loss without R shunt<br />

-> drop <strong>of</strong> P mpp,rel directly proportional to Voc drop for R shunt > 1Mcm²<br />

-> logarithmic behavior according to Voc = kT/q * ln(I phot /I R +1)<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 8


simulated influence <strong>of</strong> R shunt<br />

Silvaco ATLAS simulation :<br />

• ideal cell device including<br />

Rseries <strong>and</strong> Rshunt<br />

• no Rcontact considered<br />

• extraction <strong>of</strong> IV parameters<br />

at 0.02 suns with varying<br />

Rshunt<br />

-> good agreement <strong>of</strong><br />

experiment <strong>and</strong> simulation<br />

-> simulation confirms that for<br />

Rshunt > 1 Mcm² no<br />

more significant effect on<br />

the IV parameters is<br />

observed<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 9


outdoor module measurements<br />

• 4 cell mini-modules made <strong>of</strong> cells <strong>of</strong> the same batches as used before:<br />

st<strong>and</strong>ard BSF p / Al emitter n – PERL p / PERL n<br />

• modules are measured in two configurations:<br />

• transparent backsheet with white back relfector on floor<br />

• for this study: black backsheet taped on the rear side <strong>of</strong> each<br />

module<br />

• intensity E [W/m²] measured every 20s using a pyranometer<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 10


elative power output outdoors<br />

• only data points between 9.45 am <strong>and</strong> 4.45 pm are considered because<br />

<strong>of</strong> shadowing problems<br />

• calibrated flasher measurements after LID <strong>of</strong> each module are used as<br />

reference<br />

‣ all n-type modules show higher relative power output for all intensities !<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 11


P mpp,rel vs. intensity outdoors<br />

For 8 < E < 50 W/m² :<br />

module data is consistent with cell data: R shunt limits P mpp,rel<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 12


Pmpp,rel vs. intensity outdoors<br />

For 50 < E < 150 W/m² :<br />

P mpp,rel independant <strong>of</strong> R shunt !<br />

-> influence <strong>of</strong> effective module temperature <strong>and</strong> lifetime is visible !<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 13


P mpp,rel vs. intensity outdoors<br />

For 8 < E < 1200 W/m² :<br />

P mpp,rel for all n-type modules is higher than for the p-type references !<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 14


comparison <strong>of</strong> energy harvest<br />

-5.4%<br />

-4.5%<br />

-1.7%<br />

-0.4%<br />

*<br />

*<br />

*all measurements in mon<strong>of</strong>acial configuration !<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 15


comparison <strong>of</strong> energy harvest<br />

data source: www.ipe.uni-stuttgart.de<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 16


summary<br />

L eff<br />

p-type<br />

R shunt L eff higher<br />

n-type<br />

higher<br />

S. Dubois, PhD thesis, 2006, INES, France<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 17


summary<br />

• the low light performance <strong>of</strong> Si solar cells strongly<br />

depends on the R shunt rather than the base material<br />

• on module level R shunt influences the power output for<br />

intensities lower 50 W/m²<br />

• n-type modules feature a higher energy yield due to<br />

better temperature coefficient <strong>and</strong> higher carrier lifetimes<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 18


acknowledgements<br />

• “Schwachlicht”- project (grant reference<br />

KF2818601AB1) by the German<br />

government (BMWi) under the ZIM program<br />

• Hitachi Chemical Co. Ltd. for stringing the Al emitter<br />

cells<br />

• PI Berlin for module measurements<br />

• <strong>ISC</strong> members for support:<br />

• Lejo J. Koduvelikulathu for simulations<br />

• Antonia Beuttner for measurements<br />

Andreas Halm, PVSEC-21 Fukuoka, Japan, 2011 19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!