18.01.2015 Views

MLD-S Tech-FB Library Description - Bosch Rexroth

MLD-S Tech-FB Library Description - Bosch Rexroth

MLD-S Tech-FB Library Description - Bosch Rexroth

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Application <strong>Description</strong><br />

Version 1<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


About this Documentation<br />

<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Title<br />

Type of Documentation<br />

<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Version 1<br />

Application Manual<br />

Document Typecode<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D<br />

Internal File Reference<br />

Purpose of Documentation<br />

This documentation contains the description of<br />

• Blocks<br />

• Functions<br />

• Data types<br />

of the <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Record of Revisions<br />

<strong>Description</strong><br />

Release<br />

Date<br />

Notes<br />

First release 11.05 Version 01<br />

Copyright<br />

© 2005 <strong>Bosch</strong> <strong>Rexroth</strong> AG<br />

Copying this document, giving it to others and the use or communication<br />

of the contents thereof without express authority, are forbidden. Offenders<br />

are liable for the payment of damages. All rights are reserved in the event<br />

of the grant of a patent or the registration of a utility model or design<br />

(DIN 34-1).<br />

Validity<br />

The specified data is for product description purposes only and may not<br />

be deemed to be guaranteed unless expressly confirmed in the contract.<br />

All rights are reserved with respect to the content of this documentation<br />

and the availability of the product.<br />

Published by<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AG<br />

Bgm.-Dr.-Nebel-Str. 2 • D-97816 Lohr a. Main<br />

Telephone +49 (0)93 52/40-0 • Tx 68 94 21 • Fax +49 (0)93 52/40-48 85<br />

http://www.boschrexroth.com/<br />

Note<br />

This document has been printed on chlorine-free bleached paper.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Contents I<br />

Contents<br />

1 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-1<br />

1.1 Introduction and Overview............................................................................................................ 1-1<br />

1.2 Common Definitions ..................................................................................................................... 1-1<br />

1.3 Further Documentation ................................................................................................................. 1-2<br />

1.4 Requirements ............................................................................................................................... 1-3<br />

1.5 Flying Shear Function Block......................................................................................................... 1-3<br />

Introduction and Overview....................................................................................................... 1-3<br />

ML_FlyingShear....................................................................................................................... 1-3<br />

1.6 Touch Probe Function Blocks..................................................................................................... 1-13<br />

Introduction and Overview..................................................................................................... 1-13<br />

MC_TouchProbe.................................................................................................................... 1-15<br />

MC_AbortTrigger ................................................................................................................... 1-17<br />

1.7 Crosscutter Function Block......................................................................................................... 1-19<br />

Introduction and Overview..................................................................................................... 1-19<br />

MX_Crosscutter..................................................................................................................... 1-19<br />

1.8 Register-Controller Function Block............................................................................................. 1-35<br />

Introduction and Overview..................................................................................................... 1-35<br />

MB_RegisterControllerType1 ................................................................................................ 1-35<br />

1.9 Adjustment Function Blocks ....................................................................................................... 1-44<br />

Introduction and Overview..................................................................................................... 1-44<br />

MX_ContinuousAdjustType01............................................................................................... 1-46<br />

MX_ContinuousAdjustType02............................................................................................... 1-49<br />

MX_IncrementalAdjustType01 .............................................................................................. 1-51<br />

1.10 Measuring Wheel Function Blocks ............................................................................................. 1-54<br />

Introduction and Overview..................................................................................................... 1-54<br />

MX_MeasuringWheel ............................................................................................................ 1-55<br />

2 Service & Support 2-1<br />

2.1 Helpdesk....................................................................................................................................... 2-1<br />

2.2 Service-Hotline ............................................................................................................................. 2-1<br />

2.3 Internet.......................................................................................................................................... 2-1<br />

2.4 Vor der Kontaktaufnahme... - Before contacting us... .................................................................. 2-1<br />

2.5 Kundenbetreuungsstellen - Sales & Service Facilities ................................................................. 2-2<br />

3 Index 3-1<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-1<br />

1 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong><br />

1.1 Introduction and Overview<br />

1.2 Common Definitions<br />

<strong>Tech</strong>nology Function Blocks (<strong>Tech</strong>-<strong>FB</strong>’s) enhance the basic functionality<br />

of <strong>MLD</strong> / MLC and provide application specific functionality such as Flying<br />

Shear, Cross Cutter, Register-Controller.<br />

<strong>Tech</strong>nology Function Blocks are provided by an internal IEC library (e.g.<br />

“MX_<strong>Tech</strong>nology.lib” for <strong>MLD</strong> or "ML_<strong>Tech</strong>nology.lib" for MLC).<br />

This documentation describes the functionality as well as in- and output<br />

description of the provided <strong>Tech</strong>nology Function Blocks.<br />

Every function and function block provides a common error structure and<br />

defined behavior of the most common in- and outputs.<br />

All function blocks with "Execute" input and "Done" output have the same<br />

edge-oriented runtime behavior. The rising edge on the "Execute" input of<br />

a function block triggers the execution.<br />

When the result is available, "Done" is set to TRUE. When an error is<br />

present, "Error" is set to TRUE and "ErrorID" to an error identifier. Unless<br />

"Execute" is reseted, "Done" or "Error" remain at their values. When<br />

"Execute" is reset, "Done", "Error" and "ErrorID" are reset.<br />

If "Execute" is already FALSE when the command completes, the outputs<br />

"Done" or "Error" and "ErrorID" remain active for exactly one cycle.<br />

Function blocks with an "Enable" input are working in a level-oriented<br />

way. The "Enable" input normally is transmitted to the corresponding<br />

functionality (example: MC_Power).<br />

The following figure shows typical timing diagrams of Execute, Done and<br />

Error:<br />

Fig. 1-1: Timing diagrams of Enable, Active, Done and Error<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-2 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Fig. 1-2: Timing diagrams of Execute, Active, Done and Error<br />

1.3 Further Documentation<br />

The following table shows the available documentation of IndraDrive hardand<br />

firmware as well as <strong>MLD</strong>-S documentation.<br />

Title Type of documentation Document typecode Part number<br />

<strong>Rexroth</strong> IndraDrive M<br />

Drive Controllers<br />

Power Section<br />

<strong>Rexroth</strong> IndraDrive<br />

Drive Controllers<br />

Control Section<br />

Electromagnetic<br />

Compatibility (EMC) in<br />

Drive and Systems<br />

<strong>Rexroth</strong> IndraDrive<br />

Drive Controllers<br />

<strong>Rexroth</strong> IndraDrive<br />

Drive Controllers<br />

PLC Programming with<br />

<strong>Rexroth</strong> IndraLogic 1.0<br />

<strong>Rexroth</strong> SIS Serial<br />

Interface<br />

<strong>Rexroth</strong> IndraDrive<br />

<strong>Rexroth</strong> Indramotion <strong>MLD</strong>-<br />

S<br />

Project Planning Manual DOK-INDRV*-HMS+HMD****-PR01-EN-P R911295014<br />

Project Planning Manual DOK-INDRV*-CSH********-PR01-EN-P R911295012<br />

Project Planning Manual DOK-GENERL-EMV********-PR02-EN-P R911259814<br />

Parameter <strong>Description</strong> DOK-INDRV*-GEN-**VRS**-PA01-EN-P R911297317<br />

Troubleshooting Guide DOK-INDRV*-GEN-**VRS**-WA01-EN-P R911297319<br />

Operating and<br />

Programming Guide<br />

DOK-CONTRL-IL**PRO*V01-AW01-EN-P<br />

DOK-GENERL-SIS-DEFINIT-IF02-EN-P<br />

R911305036<br />

R911289718<br />

Application Manual DOK-INDRV*-<strong>MLD</strong>-**VRS**-AW01-EN- R911306084<br />

Fig. 1-3:<br />

Further Documentation<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-3<br />

1.4 Requirements<br />

1.5 Flying Shear Function Block<br />

Introduction and Overview<br />

<strong>Tech</strong>nology Function Blocks are using the functionality of <strong>MLD</strong>-S and<br />

MPH03 drive firmware. Please refer chapter 1 of “DOK-INDRV*-<strong>MLD</strong>-<br />

**VRS**-AW01-EN-P“, Mat. Number: R911306084 for details about the<br />

required components. Specific requirements related to special<br />

<strong>Tech</strong>nology Function Blocks are documented in the chapter of every<br />

<strong>Tech</strong>nology Function Block (see next chapters).<br />

In a typical Flying Shear system, material (sheet metal, plastic, foil etc.) is<br />

fed continuously to a cutoff carriage. The carriage contains the cutting<br />

device (shear, saw etc.) and is driven by a servomotor.<br />

When performing a cut, it is usually not acceptable to stop the material.<br />

Consequently, the cutoff carriage has to accelerate to the synchronous<br />

velocity and to execute a cut. At the point when the carriage is<br />

synchronized to the material position, it is possible to perform the cut.<br />

After the cut is complete and the Minimum Stroke was reached, the cutoff<br />

carriage returns to the Start Position and will then synchronize to the next<br />

cut position.<br />

A measuring wheel rides on the material and determines the position and<br />

velocity of the material. The measuring wheel is connected to an<br />

incremental or absolute encoder. This encoder is connected to the<br />

second encoder input of the IndraDrive. The Flying Shear carriage will be<br />

synchronized using this encoder or using a virtual master signal for test<br />

purposes.<br />

ML_FlyingShear<br />

Short <strong>Description</strong><br />

MX(L)_FlyingShear provides basic functionality of Flying Shear<br />

applications and performs the following steps once “Start” is true:<br />

• Move slave axis to “ReturnPos” and wait until axis is in position<br />

• Synchronize slave axis to the master axis with a Lock On Cam profile<br />

• Set output “InSync” once the slave axis is synchronized to the material<br />

• Position slave axis to the starting position when triggered by the<br />

„MoveReturn“ input.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-4 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Interface <strong>Description</strong><br />

*1: VirtualMaster input signal is only available at MX(L)_FlyingShear<br />

function block<br />

*2: Master In/Output signal is only available at MX(L)_FlyingShear<br />

function block (MLC) as the master axis is already defined by <strong>MLD</strong>-S<br />

Fig. 1-4: <strong>FB</strong> MX(L)_FlyingShear<br />

Name Type Comment<br />

VAR_IN_OUT Master AXIS_REF MLC only: Reference to master axis. 360° modulo scaling is<br />

required for the master axis.<br />

Slave AXIS_REF Reference to slave axis<br />

FSRetain<br />

MB_FS_RET<br />

AIN_DATA* 1<br />

Reference to the required retain data of this <strong>FB</strong><br />

VAR_INPUT Start BOOL Starts FlyingShear function. The axis move to ReturnPos and<br />

synchronizes with the next cut.<br />

VirtualMaster BOOL <strong>MLD</strong>-S only:<br />

FALSE - real master is used,<br />

TRUE - virtual master (MX_MasterSimulator is used.)<br />

CropCut BOOL On a rising edge, the slave axis starts synchronization after the<br />

cutlength is passed on the machine.<br />

The CropCut will run in the next cut cycle if a cut cycle is<br />

already running (InCycle=TRUE).<br />

ImmediateCut BOOL If „Start“ = TRUE:<br />

The slave axis starts synchronization immediately, once a<br />

positive edge of ImmediateCut was detected. The function will<br />

run in the next cut cycle if a cut cycle is already running<br />

(InCycle=TRUE). This function is intended for moving material.<br />

If („Start“ = FALSE) & (Material is in Standstill v < 20PRM):<br />

The slave axis stays in standstill and the “InSync” bit is set<br />

immediately in order to command a cut once the material is not<br />

moving.<br />

MoveReturn BOOL Decouples the slave axis from the material and commands it to<br />

the “ReturnPos”.<br />

ResetCutCounter BOOL Positive edge resets Cut Counter.<br />

CutLength REAL Cut length of the material* 2*3<br />

MWFeedconst REAL Feed constant of the measuring wheel * 2 * 3<br />

SyncDist REAL Travel distance of the slave after it is synchronized to the<br />

material* 2 * 3<br />

ReturnPos REAL The slave moves to the ReturnPos as soon the slave is<br />

synchronized and MoveReturn is TRUE* 2 * 3<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-5<br />

ReturnVel REAL The slave axis moves to the ReturnPos with ReturnVel* 2 * 3<br />

ReturnAcc REAL The slave axis moves to the ReturnPos with ReturnAcc* 2 * 3<br />

PreSyncPos REAL The output "PreSyncSignal" becomes TRUE "PreSyncPos"<br />

ahead from synchronization* 2<br />

PreSyncTime TIME Time duration of "PreSyncSignal"<br />

VAR_OUTPUT InSync BOOL The Flying Shear is synchronized with the material.<br />

InCycle BOOL Flying Shear axis is currently performing a cut cycle.<br />

CropCutDone BOOL Crop cut is done.<br />

ImmediateCutDone BOOL Immediate cut is done.<br />

PreSyncSignal BOOL TRUE "PreSyncPos" ahead of synchronization.<br />

ShortPrdWarning BOOL Not enough time to reach home position. reduce material<br />

velocity, increase cut length, return velocity or acceleration.<br />

MaterialMoving BOOL The material-encoder is moving more then 20RPM.<br />

Reserve DINT Reserve of the Lock On mechanism in Increments (only for<br />

diagnostics). It’s not possible to Lock On, if Reserve ≤ 0 -> The<br />

<strong>FB</strong> will issue an error in this case.<br />

CycleState UINT Current cut cycle state:<br />

0: Standstill & WaitPhase; 1: Acceleration Phase;<br />

2: Synchronization Phase; 3: Return Phase.<br />

CutCounter UINT Every cut increments the cut counter. (Start = FALSE) or pos.<br />

edge on "ResetCutCounter" reset this counter.<br />

Error BOOL Indicates an error. Clearedwith “Start” = FALSE<br />

ErrorID INT (Enum) ERROR_CODE: Short error description.<br />

ErrorIdent<br />

ERROR_STR<br />

UCT<br />

Detailed error description<br />

Fig. 1-5: Interface of MX(L)_FlyingShear<br />

Timing Diagram<br />

* 1 : MB_FS_RETAIN_DATA* 1 : STRUCT (bCutNotCompleted: BOOL,<br />

diMasterSyncPosition: DINT, iRevCounter:INT)<br />

* 2 : Units according to drive scaling in engineering units (mm)<br />

* 3 : New values become active in the transition synchronization -><br />

return phase<br />

The following diagram shows the Immediate Cut with standstill of material<br />

(Start = FALSE).<br />

Fig. 1-6: Timing Diagram: Immediate Cut with Standstill of Material<br />

The following diagram shows the complete sequence of the FlyingShear<br />

function block with moving material and immediate cut:<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-6 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Fig. 1-7: Sequence of the Flying Shear function block with Immediate Cut<br />

Errorhandling<br />

The Flying Shear function block generates the following error messages<br />

in Additional1/Additional2 for the "F_RELATED_TABLE", 16#0170.<br />

ErrorID Additional1 Additional2 <strong>Description</strong><br />

RESOURCE_ERROR (16#0003) 16#0001 16#0000 Drive is not enabled or drive error<br />

ACCESS_ERROR (16#0004) 16#0003 16#0000 <strong>FB</strong> was aborted from another <strong>FB</strong><br />

ACCESS_ERROR (16#0004) 16#0004 16#0000 Not supported drive firmware<br />

RESOURCE_ERROR (16#0003) 16#0009 16#0000 Selected Axis (Axis_Ref) was changed while <strong>FB</strong> is in<br />

operation<br />

INPUT_RANGE_ERROR (16#0006) 16#0201 16#0001 CutLenght


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-7<br />

ACCESS_ERROR (16#0004) 16#0203 16#0002 P-0-0054 is not configured in the cyclic channel<br />

(MDT)<br />

Fig. 1-8: Flying Shear Error Codes<br />

Note:<br />

If software limit switches of the drive are activated, the<br />

reaction must be configured as „error“. The setting "Warning"<br />

may lead to a synchronization after standstill of the drive<br />

again.<br />

Required Components and<br />

Parameterization<br />

Required Hardware<br />

• IndraDrive C or IndraDrive M with advanced performance is required.<br />

The following control unit is supported:<br />

• ADVANCED (type code: CSH01.1C-...)<br />

• Additional second encoder interface card required for measuring<br />

wheel<br />

• Additional second encoder (according to drive project planning<br />

manual)<br />

Hinweis:<br />

High resolution second encoder must be used in case of large<br />

feedconstants (>400mm) of the measuring wheel. Resolution<br />

of min. 4096 Increments/Rev and sinewave signal are<br />

recommended. Low resolution encoder cause low cut<br />

accuracy and noise of the Flying Shear axis.<br />

Required Firmware<br />

• Drive firmware MPH03V10 or higher<br />

• The following functional packages are required<br />

• Closed Loop<br />

• Synchronization<br />

• Drive PLC<br />

Required Software<br />

• IndraWorks Drives or DriveTop16V09 or higher<br />

• IndraLogic 1.2 or higher<br />

Required Parameterization<br />

The following drive parameterization is required in order to run the<br />

FlyingShear function block. Please download the file<br />

‘FlyingShearSettings.par’ *1 to the drive or setup the drive according to the<br />

following instructions:<br />

• Download Lock On Cam (Cam#1) *1<br />

• DriveTop →File →Load →select file “LockOnCamPolynom.par”<br />

and send this file to the drive<br />

• Download Run Cam (Cam#2) *1<br />

• DriveTop →File →Load →select file “RunCam.par” and send this<br />

file to the drive<br />

• Setup primary and 1 st secondary operation mode of the drive<br />

• DriveTop → Drive Functions → Operation mode selection → Select<br />

Primary operation mode = “Cam shaft lagless, encoder1, real<br />

master drive” mode and Secondary operation mode 1 = “Cam shaft<br />

lagless, encoder1, virt. master drive”<br />

• Setup “NC Cycle Time ‘S-0-0001’ = PLC Task Cycle Time<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-8 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

• DriveTop → Right mouse button → Single parameter → S-0-0001<br />

= cycle time of the PLC task in [us] where function block<br />

MX_MasterSimulator is running in<br />

• Setup “Modulo factor measuring encoder ‘P-0-0765’ = 0”<br />

• DriveTop → Right mouse button → Single parameter → send P-0-<br />

0765 = 0 to the drive<br />

• Setup “Master axis rev. per master axis cycle ‘P-0-0750’ = 0”<br />

• DriveTop → Right mouse button → Single parameter → send P-0-<br />

0750 = 0 to the drive<br />

• Setup Flying Shear Axis<br />

• Setup mechanical settings of the Flying Shear axis (Linear axis, No<br />

Modulo, travel range, limits...) according to the application<br />

• Setup additional second encoder / measuring encoder<br />

• DriveTop → Drive Functions → Special/optional drive functions →<br />

Measuring Encoder → setup measuring encoder<br />

• Make sure the second encoder moves in positive direction since the<br />

Lock On mechanism works for positive direction only<br />

• DriveTop → Right mouse click → Single parameter → watch P-0-<br />

0052 and move measuring wheel in material direction → the value<br />

in P-0-0052 should increase (drive must be in bb/Ab/AH/AF)<br />

*1<br />

The files are located in the “ Parameter files” folder on the <strong>MLD</strong>-S<br />

<strong>Tech</strong>nology CD.<br />

Parameter IDN Parameter Name <strong>Description</strong><br />

P-0-0750 Master axis revolutions per master axis Specifies the modulo range of the Master axis. Always<br />

cycle<br />

use P-0-0750 = 0<br />

P-0-0765 Modulo factor measuring encoder Specifies the modulo range of the measuring encoder.<br />

Always use P-0-0765 = 0<br />

P-0-0329<br />

Parameter Overview and<br />

<strong>Description</strong><br />

Smoothing of actual position value 3 of<br />

measuring encoder<br />

This is the filter time constant of the measuring encoder<br />

filter. This filter reduces noise of the FlyingShear axis if it<br />

is synchronized with the material.<br />

P-0-0142 Synchronization acceleration This ramp is used once separation (using S-0-0048) is<br />

performed or the sync operation mode is enabled. It is<br />

recommended to select a high value in order to perform<br />

fast separation and provide a dynamic synchronization<br />

to the material.<br />

P-0-0143 Synchronization velocity This max. velocity is used once separation (using S-0-<br />

0048) is performed and the sync operation mode is<br />

enabled. It is recommended to select a high value in<br />

order to perform fast separation and provide a dynamic<br />

synchronization to the material.<br />

S-0-0228 Position synchronization window The FlyingShear function block issues the output<br />

"InSync=TRUE" once the synchronization distance<br />

(SyncDist) is passed and the axis feedback position is in<br />

the synchronization window. A small synchronization<br />

window is recommended in order to provide high cut<br />

accuracy.<br />

S-0-0048 Additive position command value This parameter provides an additive position offset and<br />

is usable in order to separate the pieces after the cut<br />

was performed. Increase of S-0-0048 with the<br />

separation distance while the axis is in synchronization<br />

(InSync=TRUE) cause the separation movement using<br />

the ramp P-0-0142 and P-0-0143. The FlyingShear<br />

function block resets S-0-0048 to the ReturnPosition<br />

once the axis reaches ReturnPos.<br />

P-0-0694 Gear ratio fine adjust, process loop This gear fine adjust cause a higher velocity of the<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-9<br />

FlyingShear axis in reference to the material velocity in<br />

case P-0-0694 > 0%. This gear fine adjust cause a<br />

lower velocity of the FlyingShear axis in reference to the<br />

material velocity in case P-0-0694 < 0%. A value 0%<br />

cause additional cut inaccuracy.<br />

S-0-0193 Positioning Jerk This parameter limits the change of the acceleration<br />

(jerk) in the return movement. S-0-0193=0 disable the<br />

jerk limiting<br />

Fig. 1-9:<br />

Parameter Overview and <strong>Description</strong><br />

Required IndraLogic Steps<br />

• Include the library MX_<strong>Tech</strong>nology.lib in your IndraLogic project<br />

• Call the provided <strong>FB</strong> in your IndraLogic project. The <strong>FB</strong>’s should run in<br />

a high priority cyclic task with a cycle time ≤ 4ms<br />

Example Project<br />

• Enable drive first (MX_Power) and start the FlyingShear <strong>FB</strong> once the<br />

drive is enabled<br />

Functionality Overview<br />

A ready-made IndraLogic project using the Flying Shear function block is<br />

available and should reduce and simplify the development of Flying Shear<br />

application programs. Some application require just a change in the Tool<br />

program of the provided PLC project. The FlyingShear example project<br />

provides the following functionality:<br />

• Manual Mode<br />

• Jogging<br />

• Homing<br />

• Immediate Cut at material standstill<br />

• Automatic Mode<br />

• Continuous production of cuts<br />

• Immediate Cut at material movement<br />

• Material simulation<br />

• Example IndraLogic HMI<br />

• Example Tool program with implementation of minimal cut position,<br />

minimal stroke and separation<br />

• Program to simulate the handshake with the knife for test purpose<br />

without physical I/O’s<br />

Program / Task Structure<br />

The Flying Shear example project is subdivided in different programs in<br />

order to provide independent code sections and optimize the runtime<br />

behavior. The following table shows an overview about the provided<br />

programs and their function:<br />

Program Associated Task <strong>Description</strong><br />

PrgFlyingShear_ Cyclic Task 2ms Contains time critical, high priority<br />

HighPrio<br />

motion functionality of the Flying<br />

Shear project. This program is<br />

controlled by<br />

PrgFlyingShear_LowPrio<br />

PrgFlyingShear_ Freewheeling This program contains the low<br />

LowPrio<br />

priority state machine of the<br />

FlyingShear application with<br />

Manual, Automatic and Error state<br />

and controls the program<br />

PrgFlyingShear_HighPrio<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-10 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

PrgFlyingShear_<br />

ToolProgram<br />

PrgFlyingShear_<br />

KnifeSimulation<br />

PrgFlyingShear_<br />

HMI<br />

Freewheeling<br />

Freewheeling<br />

Freewheeling<br />

Controls the tools of the<br />

FlyingShear once it is in<br />

synchronization with the material.<br />

The tool program commands the<br />

different tools of the Flying Shear<br />

and send the carriage back to the<br />

return position once the cut<br />

procedure is completed. The<br />

program can be modified in order<br />

to address individual applications<br />

Simulates the signals required by<br />

PrgFlyingShear_ToolProgram in<br />

order to provide a handshake<br />

without physical IO’s (only for<br />

demonstration or test purpose)<br />

Calculates data viewed by the HMI<br />

Fig. 1-10:<br />

Program / Task Overview<br />

In/Output <strong>Description</strong><br />

The FlyingShear project is controllable using the following global<br />

variables.<br />

Program Inputs<br />

Variable Type <strong>Description</strong><br />

PowerOn BOOL Enables power of the drive Ab -> AH/AF/AU<br />

ManualMode BOOL Commands program in manual mode<br />

AutoMode BOOL Commands program in automatic mode<br />

JogPlus BOOL Jog axis in positive direction -> works only in manual mode<br />

JogMinus BOOL Jog axis in negative direction -> works only in manual mode<br />

Homing BOOL Homes the axis -> works only in manual mode<br />

Reset BOOL Positive edge reset program and drive error<br />

ImmediateCut BOOL Commands an immediate cut in Manual and Automatic Mode:<br />

ManualMode: Immediate cut intended for material standstill, Flying<br />

Shear axis stays in standstill and cut is performed immediately<br />

AutomaticMode: Immediate cut intended for moving material,<br />

FlyingShear axis is started to get into synchronization as soon the<br />

carriage reaches the return position<br />

SimulationMode BOOL Flying Shear runs in simulation mode with a virtual master. Transition to<br />

and from Simulation Mode possible if Manual and Automatic Mode is<br />

not active<br />

MoveReturn BOOL Uncouple Flying Shear from material and command it to the Return<br />

Position<br />

ResetCutCounter BOOL Resets the current cut counter<br />

KnifeStatus1 BOOL 1 st status bit of the knife/saw used by PrgFlyingShear_ToolProgram<br />

KnifeStatus2 BOOL 2 nd status bit of the knife/saw used by PrgFlyingShear_ToolProgram<br />

KnifeStatus3 BOOL 3 rd status bit of the knife/saw used by PrgFlyingShear_ToolProgram<br />

JogSpeed REAL Jogging Velocity *1<br />

JogAccel REAL Jogging Acceleration *1<br />

MWFeedconst REAL Feedconstant of the measuring wheel *1<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-11<br />

SyncDist REAL Synchronization distance *1<br />

MinStroke REAL The Flying Shear will move in synchronization with the material until<br />

MinimumStroke *1 is reached (absolute position)<br />

MinCutPos REAL This is the earliest cut position *1 (absolute)<br />

SeperationDist REAL Separation distance *1 used in the tool program<br />

ReturnPos REAL The Flying Shear axis move to the Return Position *1 once it is in<br />

synchronization and MoveReturn is true<br />

ReturnVel REAL The Flying Shear axis move to the Return Position using the Return<br />

Velocity *1<br />

ReturnAcc REAL The Flying Shear axis move to the Return Position using the Return<br />

Acceleration *1<br />

PreSyncPos REAL Position *1 of the Pre-Sync Signal relative to the material position where<br />

Lock On synchronization start<br />

PreSyncTime REAL Time duration of the Pre-Sync Signal<br />

Cutlenght REAL Commanded Cutlenght *1<br />

SimulationVel REAL Commanded velocity of the "virtual master" used in test mode, units<br />

[RPM]<br />

Fig. 1-11:<br />

Program Inputs of the FlyingShear Project<br />

*1: In engineering units according to drive scaling<br />

Program Outputs<br />

Variable Type <strong>Description</strong><br />

PowerOk BOOL Power of the drive is enabled<br />

ManualModeActive BOOL Manual Mode is active<br />

AutomaticModeActive BOOL Automatic Mode is active<br />

JogPlusActive BOOL Axis is jogging in positive direction<br />

JogMinusActive BOOL Axis is jogging in negative direction<br />

HomingDone BOOL Homing is successful completed<br />

HomingActive BOOL Homing command is currently active<br />

Error BOOL Indicates error<br />

PreSyncSignal BOOL Turns on before synchronization start<br />

InSync BOOL FlyingShear axis is in synchronization with the material<br />

ImmediateCutDone BOOL Immediate Cut is completed<br />

SimulationRunning BOOL Simulation (Virtual Master) is running<br />

KnifeControl1 BOOL 1 st output to control the knife/saw controlled by<br />

PrgFlyingShear_ToolProgram<br />

KnifeControl2 BOOL 2 nd output to control the knife/saw controlled by<br />

PrgFlyingShear_ToolProgram<br />

KnifeControl3 BOOL 3 rd output to control the knife/saw controlled by<br />

PrgFlyingShear_ToolProgram<br />

CutCounter UINT Cut Counter of the FlyingShear<br />

diMasterPos DINT Current Master Position in increments<br />

rActVel REAL Current velocity of the slave axis<br />

rActPos REAL Current position of the slave axis<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-12 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

rActMaterialPos REAL Current material position<br />

rActOffset REAL Current offset of the master in ° / P-0-0054<br />

rActMaterialVel REAL Current material velocity<br />

rPhaseMW REAL Phase of the measuring wheel in ° for HMI only<br />

rReserve REAL Reserve of the Cam-Lock-On mechanism<br />

ErrorString STRING Error identification<br />

ErrorID<br />

ErrorIdent<br />

ERROR_<br />

CODE<br />

ERROR_<br />

STRUCT<br />

Error identification -> see error ID’s of MX_FlyingShear<br />

Error identification -> see error idents of MX_FlyingShear<br />

ErrorState STRING Additional Error identification<br />

Fig. 1-12:<br />

Program Outputs of the FlyingShear Project<br />

First Steps to get the Program to work<br />

The example program should run after the following steps:<br />

• The example program expects the same parameter settings as well as<br />

hard-, firm- and software like MX_FlyingShear. Please setup the drive<br />

accordingly or download the parameter file “FlyingShearExample.par”<br />

(available in the "Application example" folder of the <strong>MLD</strong>-S <strong>Tech</strong>nology<br />

CD) in the drive.<br />

• Open the FlyingShear demo project “FlyingShearExample1.pro”<br />

(available in the "Application example" folder of the <strong>MLD</strong>-S <strong>Tech</strong>nology<br />

CD), download the project to the drive and start the program.<br />

• Make sure drive is in phase 4 and has no error (bb, Ab in the drive<br />

display)<br />

• Open the “FLYING_SHEAR1” visualization in IndraLogic (HMI)<br />

• Press the button “Power ON”, which enables the dive (drive shows AH<br />

or AU)<br />

• Press the button “Manual” and home (with the “Home” button) the<br />

axis in case it’s not an absolute encoder. Wait until the homing is<br />

completed indicated by the green color in the home status light<br />

• You can also jog the axis in positive or negative direction with the<br />

“Jog” buttons in manual mode. (make sure you reset “Home” once<br />

you start the jog command or the jog command will be blocked)<br />

• Reset the Manual Mode button.<br />

• Press the simulation button -> the simulation of the material should<br />

start (indicated by the green light “Sim. Running”)<br />

• Press the button “Imm Cut” and “Automatic” -> The Flying Shear axis<br />

performs an immediate cut first of all. Secondly, the FlyingShear<br />

starts with continuous production of cuts with the commanded cut<br />

length.<br />

• You can also run the demo program without simulation and a real<br />

encoder with the same sequence like above. Transitions to and from<br />

simulation mode are accepted if automatic and manual mode are not<br />

active.<br />

Changes of the Tool Program<br />

The tool program contains the complete logic to perform different task,<br />

once the FlyingShear is synchronized to the material. Furthermore, the<br />

tool program commands the FlyingShear back to its return position, once<br />

the cut process is completed. The following figure shows the example tool<br />

program of the example project. This tool program contains the following<br />

parts:<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-13<br />

• Wait until FlyingShear is synchronized (InSync-Bit) and reached the<br />

Minimal Cut Position<br />

• Control knife #1<br />

• Wait for status of knife #1<br />

• Handshake with Knife 2 and 3<br />

• Execute separation using drive parameter S-0-0048<br />

• Wait until separation is completed (using P-0-0089 Bit 8 = TRUE)<br />

• Command FlyingShear back to ReturnPosition using the signal<br />

MoveReturn= TRUE<br />

Step 1. and 7. are always required at the start and end of the tool<br />

program. All steps between can be modified depending on the<br />

application.<br />

Fig. 1-13:<br />

Sequence of the PrgFlyingShear_ToolProgram<br />

1.6 Touch Probe Function Blocks<br />

Introduction and Overview<br />

The function blocks MC_TouchProbe and Required Components and<br />

Parametrization<br />

Required Hardware<br />

• IndraDrive C or IndraDrive M with advanced or basic performance is<br />

required. The following control units are supported:<br />

• ADVANCED (type code: CSH01.1C-...)<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-14 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

• BASIC SERCOS (single-axis; type code: CSB01.1N-SE-...)<br />

• BASIC PROFIBUS (single-axis; type code: CSB01.1N-PB-...)<br />

• BASIC UNIVERSAL (single-axis; type code: CSB01.1C-...)<br />

Required Firmware<br />

• Drive firmware MPH03 or MPB03, Release 10 or higher<br />

• The following functional packages are required<br />

• Servo or Synchronization<br />

• Drive PLC<br />

Required Software<br />

• IndraWorks Drives or DriveTop16V09 or higher<br />

• IndraLogic 1.2 or higher<br />

Required Parameterization<br />

Setup the drive probe feature using IndraWorks D or DriveTop using the<br />

following dialog:<br />

Fig. 1-17<br />

Touch probe Configuration Dialog<br />

Note: Continuous measurement is not supported by<br />

MC_TouchProbe<br />

Required IndraLogic Steps<br />

• Include the library MX_<strong>Tech</strong>nology.lib in your IndraLogic project<br />

• Call the provided <strong>FB</strong>'s in your IndraLogic project<br />

MC_AbortTrigger control and administrate the drive "Touch Probe"<br />

functionality.<br />

The function block MC_TouchProbe activates the selected touch probe,<br />

evaluates the status and provides the measuring values once the trigger<br />

event arrives.<br />

The function block MC_AbortTrigger aborts an active measurement of the<br />

MC_TouchProbe.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


Interface <strong>Description</strong><br />

<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-15<br />

MC_TouchProbe<br />

Short <strong>Description</strong><br />

The touch probe function block is used to record an axis position, master<br />

position or probe time at a trigger event using the drive probe feature.<br />

Note:<br />

Probing cycle procedure command (S-0-0170) must be<br />

activated before execution of MC_TouchProbe. Consequently,<br />

the write request S-0-0170=3 is necessary before<br />

MC_TouchProbe execution.<br />

Interface <strong>Description</strong><br />

Fig. 1-14: <strong>FB</strong> MC_TouchProbe<br />

Name Type Comment<br />

VAR_IN_OUT Axis AXIS_REF Reference to the axis<br />

VAR_INPUT Execute BOOL Positive edge starts the probe function<br />

ProbeType PROBE_DATA_FORMAT Specify the data format of the measured probe signal.<br />

AXIS_POS = 0: Position of the axis (e.g. S-0-0051)<br />

PROBE_TIME = 1: Probe time in us;<br />

MASTER_POS = 2: Master position (e.g. P-0-0053)<br />

ProbeSelect PROBE_NUMBER Specify the selected probe. PROBE1 = 1: Probe 1 is<br />

selected; PROBE2 = 2: Probe 2 is selected<br />

PosEdge BOOL Positive edge of the selected probe will be evaluated<br />

NegEdge BOOL Negative edge of the selected probe will be evaluated<br />

VAR_OUTPUT Done BOOL Selected probe events are recorded<br />

Active BOOL <strong>FB</strong> is active<br />

PosEdgeDetected BOOL Positive edge of the selected probe was detected<br />

NegEdgeDetected BOOL Negative edge of the selected probe was detected<br />

RecordedPosition REAL Axis position where positive edge occurred (in<br />

technical units according drive scaling). This output is<br />

used in case ProbeType = AXIS_POS<br />

RecordedPositionNe<br />

g<br />

REAL<br />

Axis position where negative edge occurred (in<br />

technical units according drive scaling). This output is<br />

used in case ProbeType = AXIS_POS<br />

RecordedValue DINT Master position (in Increments) or probe time (in us)<br />

where positive edge occurred. This output is used in<br />

case ProbeType = PROBE_TIME or ProbeType =<br />

MASTER_POS<br />

RecordedValueNeg DINT Master position (in Increments) or probe time (in us)<br />

where neagtive edge occurred. This output is used in<br />

case ProbeType = PROBE_TIME or ProbeType =<br />

MASTER_POS<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-16 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

CommandAborted BOOL Command was aborted by MC_AbortTrigger<br />

Error BOOL Indicates an error. Clear error with “Execute” = FALSE<br />

ErrorID ERROR_CODE Short error description<br />

ErrorIdent<br />

Timing Diagram<br />

ERROR_<br />

STRUCT<br />

Fig. 1-15: Interface of MC_TouchProbe<br />

Detailed error description<br />

Timing diagram according to PLCOpen specification. (Common<br />

Definitions).<br />

Errorhandling<br />

The function block generates the following error messages<br />

Additional1/Additional2 for the "F_RELATED_TABLE", 16#0170:<br />

in<br />

ErrorID Additional1 Additional2 <strong>Description</strong><br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

INPUT_RANGE_ER<br />

ROR (16#0006)<br />

INPUT_RANGE_ER<br />

ROR (16#0006)<br />

16#0004 16#0000 Drive-Firmware not supported -> MPH03 or MPB03, release 10<br />

or higher required<br />

16#0401 16#0000 Configuration of S-0-0169 does not match <strong>FB</strong> inputs -> Check<br />

probe configuration S-0-0169<br />

16#0402 16#0000 Probe command (S-0-0170) is not running -> Start probe<br />

command with a parameter write request S-0-0170=3<br />

16#0403 16#0001 Required probe control bit (S-0-0405, Bit 0) is not configured in<br />

signal control word<br />

16#0403 16#0002 Required probe control bit (S-0-0406, Bit 0) is not configured in<br />

signal control word<br />

16#0403 16#0003 Required probe status bit (S-0-0409, Bit 0) is not configured in<br />

signal status word<br />

16#0403 16#0004 Required probe status bit (S-0-0410, Bit 0) is not configured in<br />

signal status word<br />

16#0403 16#0005 Required probe status bit (S-0-0411, Bit 0) is not configured in<br />

signal status word<br />

16#0403 16#0006 Required probe status bit (S-0-0412, Bit 0) is not configured in<br />

signal status word<br />

16#0403 16#0007 Required probe value S-0-0130 is not cyclic configured in the AT<br />

16#0403 16#0008 Required probe value S-0-0131 is not cyclic configured in the AT<br />

16#0403 16#0009 Required probe value S-0-0132 is not cyclic configured in the AT<br />

16#0403 16#000A Required probe value S-0-0133 is not cyclic configured in the AT<br />

16#0404 16#0001 <strong>FB</strong> Input "ProbeSelect" is outside valid range<br />

16#0404 16#0002 <strong>FB</strong> Input "ProbeType" is outside valid range<br />

Fig. 1-16 MC_TouchProbe Error Codes<br />

Required Components and<br />

Parametrization<br />

Required Hardware<br />

• IndraDrive C or IndraDrive M with advanced or basic performance is<br />

required. The following control units are supported:<br />

• ADVANCED (type code: CSH01.1C-...)<br />

• BASIC SERCOS (single-axis; type code: CSB01.1N-SE-...)<br />

• BASIC PROFIBUS (single-axis; type code: CSB01.1N-PB-...)<br />

• BASIC UNIVERSAL (single-axis; type code: CSB01.1C-...)<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-17<br />

Required Firmware<br />

• Drive firmware MPH03 or MPB03, Release 10 or higher<br />

• The following functional packages are required<br />

• Servo or Synchronization<br />

• Drive PLC<br />

Required Software<br />

• IndraWorks Drives or DriveTop16V09 or higher<br />

• IndraLogic 1.2 or higher<br />

Required Parameterization<br />

Setup the drive probe feature using IndraWorks D or DriveTop using the<br />

following dialog:<br />

Fig. 1-17<br />

Touch probe Configuration Dialog<br />

Note: Continuous measurement is not supported by<br />

MC_TouchProbe<br />

Required IndraLogic Steps<br />

• Include the library MX_<strong>Tech</strong>nology.lib in your IndraLogic project<br />

• Call the provided <strong>FB</strong>'s in your IndraLogic project<br />

MC_AbortTrigger<br />

Short <strong>Description</strong><br />

Interface <strong>Description</strong><br />

The function block MC_AbortTrigger is used to abort an active measuring<br />

of MC_TouchProbe.<br />

Fig. 1-18: <strong>FB</strong> MC_AbortTrigger<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-18 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Name Type Comment<br />

VAR_IN_OUT Axis AXIS_REF Reference to the axis<br />

VAR_INPUT Execute BOOL Positive edge aborts the trigger<br />

ProbeSelect PROBE_NUMBER Specify the selected probe.<br />

PROBE1 = 1: Probe 1 is selected;<br />

PROBE2 = 2: Probe 2 is selected<br />

VAR_OUTPUT Done BOOL Selected probe events are aborted<br />

Error BOOL Indicates an error<br />

ErrorID ERROR_CODE Short error description<br />

ErrorIdent ERROR_STRUCT Detailed error description<br />

Fig. 1-19: Interface of <strong>FB</strong> MC_AbortTrigger<br />

Timing Diagram<br />

Timing diagram according to PLCOpen specification (Common<br />

Definitions).<br />

Errorhandling<br />

The function block generates the following error messages<br />

Additional1/Additional2 for the "F_RELATED_TABLE", 16#0170:<br />

in<br />

ErrorID Additional1 Additional2 <strong>Description</strong><br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

16#0004 16#0000 Drive-Firmware not supported -> MPH03 or MPB03,<br />

release 10 or higher required<br />

16#0403 16#0001 Required probe control bit (S-0-0405, Bit 0) is not<br />

configured in signal control word<br />

16#0403 16#0002 Required probe control bit (S-0-0406, Bit 0) is not<br />

configured in signal control word<br />

16#0404 16#0001 <strong>FB</strong> Input "ProbeSelect" is outside valid range<br />

Fig. 1-20:<br />

MC_AbortTrigger Errorcodes<br />

Required Components and<br />

Parametrization<br />

Required Hardware<br />

Required hardware see MC_TouchProbe.<br />

Required Firmware<br />

Required firmware see MC_TouchProbe.<br />

Required Software<br />

Required software see MC_TouchProbe.<br />

Required Parameterization<br />

Required parameterization see MC_TouchProbe.<br />

Required IndraLogic Steps<br />

• Include the library MX_<strong>Tech</strong>nology.lib in your IndraLogic project<br />

• Call the provided <strong>FB</strong>'s in your IndraLogic project<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-19<br />

1.7 Crosscutter Function Block<br />

Introduction and Overview<br />

A rotating knife system is used to cut webs of paper, plastic or metal to a<br />

given length. The web moves independently and the knife is synchronized<br />

so the blade moves at the same linear speed as the web during the cut<br />

interval. When the cutting is completed, the knife is advanced in a manner<br />

that produces the required cut length.<br />

Fig. 1-21: Crosscutter Construction<br />

For this purpose the Function block has been developed.<br />

MX_Crosscutter<br />

Short <strong>Description</strong><br />

The Crosscutter provides basic functionality for a Crosscutter application<br />

(without any print marks) and performs the following steps:<br />

• Synchronizes the slave axis to the master axis with a CAM profile and<br />

then cuts continuously<br />

• Format switch on the fly<br />

• Stops the slave axis immediately at a defined position<br />

Additional a function block "MX_MasterSimulator” is available, in order to<br />

simulate a master axis<br />

Interface <strong>Description</strong><br />

*1: VirtualMaster input signal is only available at MX_FlyingShear <strong>FB</strong><br />

*2: Master In/Out signal is only available at ML_FlyingShear <strong>FB</strong> (MLC)<br />

Fig. 1-22: <strong>FB</strong> ML(X)_CrossCutter<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-20 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Name Type Comment<br />

VAR_IN_OUT Master AXIS_REF Reference to the Master Axis<br />

Slave AXIS_REF Reference to the Slave Axis<br />

VAR_INPUT Enable BOOL Enables the Crosscutter functions<br />

CutExecute BOOL Positive edge activates the "Synchronization phase" and<br />

afterwards the "Cutting State"<br />

StopExecute BOOL Positive Edge stops the "Cutting State" and commands the<br />

slave to the "StopPos"<br />

VirtualMaster BOOL This input is used for <strong>MLD</strong>-S only.<br />

FALSE: Real master is used -> Main Operation mode is used.<br />

TRUE: Virtual master is used -> First secondary operation<br />

mode is used<br />

FormatLength REAL Cut-format, length of sheet<br />

NumberOfKnifes UINT number of knives, CURRENTLY ONLY 1 KNIFE<br />

Pos REAL The slave moves to the "StopPos" with a positive edge on the<br />

"StopExecute" Input. *1*2<br />

Vel REAL The slave axis moves to the "StopPos" with max. "Vel" (in case<br />

of positive edge of "StopExecute"-Input) *1*2<br />

Acc_Dec REAL The slave axis moves to the "StopPos" with max. "Acc_Dec" *1*2<br />

CamRelValues<br />

MB_CC_CAM_<br />

REL_VALUES<br />

CAM related values<br />

ResetCutCounter BOOL Positive edge (or "Enable= FALSE”) resets the cut counter<br />

VAR_OUTPUT InSync BOOL The cut drum is in synchronization with the material<br />

State UINT Current cut cycle state:<br />

0: Standstill & Wait state<br />

1: Synchronisation phase<br />

2: Cutting state<br />

3: Stop phase<br />

4: Error state<br />

Error BOOL Indicates an error, Reset with "Enable= FALSE"<br />

ErrorID ERROR_CODE Short error description<br />

ErrorIdent<br />

ERROR_STRU<br />

CT<br />

Error indentification<br />

CutCounter UINT Every cut increments the cut counter. "Enable= FALSE" or a<br />

positive edge on "ResetCutCounter" reset this counter<br />

Fig. 1-23: Interface of ML(X)_CrossCutter<br />

Timing Diagram<br />

* 1 : Units according to drive scaling in engineering units like mm<br />

* 2 : New values become active in the standstill and wait state<br />

(CycleState =0)<br />

The following diagram shows a crosscutter cycle beginning with the start<br />

of the crosscutter and ending with the stop of the cutter drum. Usually the<br />

cut drum is only stopped in an emergency case (in this way the cut drum<br />

will lose synchronization with the master axis). A regular stop of the cut<br />

process should be done by the master axis.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-21<br />

Fig. 1-24: Crosscutter Time Diagram<br />

Functional <strong>Description</strong><br />

A measuring wheel rides on the material and determines the position and<br />

velocity of the material.<br />

The crosscutter is placed at the end of a (corrugated) paper production<br />

line, for example. The end product of such machines are stacked sheets<br />

with various lengths. A wide range of formats must be covered which<br />

requires running the cut cylinder in electronic cam mode.<br />

Fig. 1-25: Process: Cut-off single sheets from blank material<br />

The basic issue in such applications is a job change without stopping the<br />

machine. The next figure shows an example for a job change from format<br />

A to a shorter format B.<br />

Fig. 1-26: On-the-fly format change at constant web speed<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-22 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Format Length<br />

Fig. 1-27: Format length<br />

Sync Format<br />

The sync format (sync length) corresponds with the cut cylinder<br />

circumference.<br />

Fig. 1-28: Sync format<br />

Format Ratio<br />

The format ratio defines the relation between the cut cylinder<br />

circumference and the format length.<br />

Fig. 1-29: Format ratio<br />

Format Ranges<br />

The solution described in this manual is based on the idea to define 4<br />

fixed format ranges.<br />

Each format range is covered by 1 cam profile<br />

Fig. 1-30: Cam profiles for 4 format ranges<br />

Cut Angle<br />

The cut angle is the area of synchronous speed around the cut position.<br />

The size depends on the mechanical construction of the knife.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-23<br />

Fig. 1-31: Cut angle<br />

Real Master Axis<br />

The cut cylinder follows a master axis, which represents the web speed.<br />

The web speed is measured with a measuring wheel.<br />

The master axis must be configured such that the transported web length<br />

in one master revolution corresponds with the circumference of the cut<br />

cylinder. With a linear cam the knife would cut the "synchronous format".<br />

For other formats the cut cycle must be reduced or extended. The cut<br />

cycle - and thus the cut length - is defined by the electronic gear.<br />

Fig. 1-32: The importance of the master axis to the cut process<br />

Adjusting the knife position<br />

The cam profile always has a fixed reference to the master axis. The<br />

initial profile generated with the CamBuilder or a PLC function block starts<br />

at 0°. The cut position in the synchronous part of the profile is defined as<br />

180°.<br />

While the knife is in contact with the material, the cut cylinder must pass<br />

the synchronous part of the profile (the cut angle). Depending on the<br />

mechanical 0° position the cylinder needs an adjustment to meet this rule.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-24 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Fig. 1-33: Knife position adjustment<br />

Cam Profile Calculation<br />

The PC program CamBuilder is an offline tool to design cam profiles. It<br />

can be used to download profiles for first tests or to design the initial cam<br />

table for applications which are covered with fixed profiles.<br />

A special wizard is available to calculate cam profiles for crosscutter<br />

applications. Based on the input parameters for format length, cut cylinder<br />

diameter and cut angle the wizard generates a profile as shown below.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-25<br />

Fig. 1-34:<br />

Note:<br />

Crosscutter wizard: work area<br />

Always disable option "Use Velocity Limit".<br />

Using the CamBuilder Version 01Vxx you have always to<br />

disable the Option "Allow reverse movement".<br />

Output value "synchronous area gradient" is the ∆TW parameter for the<br />

hub factor calculation.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-26 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Cam Table Download<br />

Cam tables can be downloaded to the drive using IndraWorks /<br />

CamBuilder.<br />

Fig. 1-35: Cam table download<br />

Cam Table Export<br />

Error Handling<br />

Fig. 1-36: Cam table export<br />

The function block generates the following error messages<br />

Additional1/Additional2 of the table "F_RELATED_TABLE", 16#0170:<br />

in<br />

ErrorID Additional1 Additional2 <strong>Description</strong><br />

RESOURCE_ERROR (16#0003) 16#0003 16#0000 <strong>FB</strong> was aborted from another <strong>FB</strong><br />

RESOURCE_ERROR (16#0003) 16#0004 16#0000 Drive firmware version is not supported<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

16#0601 16#0601 Inputs are outside of valid range:<br />

Format length is out of range: valid range is<br />

FormatLength < 0.5*SyncFormat OR FormatLength<br />

> 8.0*SyncFormat<br />

16#0601 16#0602 Inputs are outside of valid range: Velocity is out of<br />

range<br />

16#0601 16#0603 Inputs are outside of valid range: Acceleration is out of<br />

range<br />

16#0601 16#0604 Inputs are outside of valid range: Position is out of<br />

range<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-27<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

16#0601 16#0605 Inputs are outside of valid range: CAM related values<br />

are not initialized correctly<br />

ACCESS_ERROR (16#0004) 16#0602 16#0000 S-0-0051 is not configured in the P-0-0131<br />

ACCESS_ERROR (16#0004) 16#0603 16#0000 P-0-0755 could not be initialized<br />

ACCESS_ERROR (16#0004) 16#0604 16#0000 P-0-0088, Bit 4 is not set<br />

ACCESS_ERROR (16#0004) 16#0605 16#0000 P-0-0135, Bit 0 is not set in the AT<br />

Fig. 1-37:<br />

CrossCutter Error Codes<br />

Required Components and<br />

Parametrization<br />

Required Hardware<br />

• IndraDrive C or IndraDrive M<br />

• Additional second encoder interface card required for measuring<br />

wheel<br />

• Additional second encoder (according to drive project planning<br />

manual)<br />

Required Firmware<br />

• Drive firmware MPH03V10 or higher<br />

• The following functional packages are required<br />

• Closed Loop<br />

• Synchronization<br />

• Drive PLC<br />

Required Software<br />

• IndraWorks Drives or DriveTop16V09 or higher<br />

• IndraLogic 1.2 or higher<br />

• For CAM generation a CAM-builder tool (e.g. “CAMbuilder 01Vxx” or<br />

higher)<br />

Required Parameterization<br />

The following drive parameterization is required in order to run the<br />

CrossCutter function block. Please do the following steps before you run<br />

the Crosscutter function block.<br />

• The drive has to be referenced before (absolute feedback preferred)<br />

• The drive has to be set into Modulo format (set S-0-0076, Bit 7 = 1)<br />

• The PLC is able to control the motion (set P-0-1367.4 = 1)<br />

• Download one after another the matched set of the 4 different CAMs<br />

of your crosscutter construction *1 :<br />

• Either use the CAM Builder:<br />

You can create your own CAMs byself using the “CAMbuilder”. Build 4<br />

different CAMs with (see example in next figure, in order to get further<br />

instructions see „CAMbuiler“ description)<br />

• Format length = 0.5 * synchron format<br />

• Format length = 2.0 * synchron format<br />

• Format length = 4.0 * synchron format<br />

• Format length = 6.0 * synchron format<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-28 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

L: Total format range: ( 0.5...8 ) x sync format = 250...4000 mm<br />

Fig. 1-38: Crosscutter example format range<br />

Wizard inputs<br />

Values and parameters<br />

Format range 1<br />

min. format length = 0.5 x 500 mm = 250 mm<br />

PLC constant for hub factor calculation:<br />

rDeltaTW_05to20 = 0.048828<br />

Download:<br />

Cam table 1 → P-0-0072<br />

Format range 2<br />

min. format length = 2.0 x 500 mm = 1000 mm<br />

PLC constant for hub factor calculation:<br />

rDeltaTW_20to40 = 0.195313<br />

Download:<br />

Cam table 2 → P-0-0092<br />

Format range 3<br />

min. format length = 4.0 x 500 mm = 2000 mm<br />

PLC constant for hub factor calculation:<br />

rDeltaTW_40to60 = 0.390625<br />

Download:<br />

Cam table 3 → P-0-0780<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-29<br />

Format range 4<br />

min. format length = 6.0 x 500 mm = 3000 mm<br />

PLC constant for hub factor calculation:<br />

rDeltaTW_60to80 = 0.585938<br />

Download:<br />

Cam table 4 → P-0-0781<br />

You must use the 4 different rDeltaTW-values in your PLC project,<br />

‘CrossCutter_GlobalConstants’ !<br />

Fig. 1-39: Example: cam profile calculation<br />

• Or download a set of prepared, matched CAM-parameter files<br />

using DriveTop:<br />

• → DriveTop → File → Load→ select file „CC_SF*_CA*_*.par “ 1)<br />

and send this file to the drive. Repeat this procedure with the 3<br />

other files (see Fig 4-19):<br />

• Load CC_SF75_CA20_05TO20.par to the drive<br />

• Load CC_SF75_CA20_20TO40.par to the drive<br />

• Load CC_SF75_CA20_40TO60.par to the drive<br />

• Load CC_SF75_CA20_60TO80.par to the drive<br />

Fig. 1-40:<br />

example CAM parameter file download with DriveTop<br />

• Setup primary and 3rd secondary operation mode of the drive<br />

• → DriveTop → Drive Functions → Operation mode selection → Select<br />

Primary operation mode = “Cam shaft lagless, encoder1, virt. master<br />

drive” mode and Secondary operation mode 3 = “Cam shaft lagless,<br />

encoder1, real master drive (see Fig 4-20)<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-30 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Fig. 1-41:<br />

Operation mode selection with DriveTop<br />

• Setup “NC Cycle Time ‘S-0-0001’ = PLC Task Cycle Time<br />

In case of using RTC variables in the <strong>MLD</strong>-S project (see also <strong>MLD</strong>-S<br />

documentation) the NC-cycle time (parameter S-0-0001) has to be the<br />

same one as the cycle task time of the PLC project. The <strong>FB</strong><br />

“MX_MasterSimulator” uses RTC-variables. So in case of using the<br />

“MX-MasterSimulator” use this in a cyclic task using the same task<br />

time as the NC cycle time (S-0-0001). (see Fig. 4-21)<br />

L: →DriveTop → Right mouse button → Single parameter → S-0-0001<br />

Fig. 1-42: DriveTop, set the NC cyclic time<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-31<br />

Fig. 1-43:<br />

IndraLogic, cyclic task time<br />

• Setup cycle time of the PLC task in [us] where function block<br />

MX_MasterSimulator is running in<br />

• Setup cut drum axis<br />

• Setup the mechanical settings of the cut drum axis (travel ranges,<br />

limits)<br />

• In order to switch the format between the CAM and the CAM shaft<br />

distance on the fly you have to set (see Fig 4-23):<br />

• Reduction (P-0-0755) to “1”<br />

• P-0-0094 (CAM shaft switch angle) usually to 180 deg<br />

• P-0-0144 (CAM shaft distance switch angle) the same as P-0-0094<br />

• P-0-0088, Bit 4 = 1 (change gear switching at the same time as the<br />

cam shaft distance switching<br />

• P-0-0755 = 1 (Reduction)<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-32 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Reduction / P-0-0755:<br />

One cut cylinder could carry more than 1 knife, currently only “1”<br />

Gear switch on distance switch / P-0-0088, Bit4=1<br />

This value defines, that new gear settings become active with a new<br />

hub factor or a cam table switching.<br />

CAM shaft switch angle<br />

This option defines, when a CAM is activated. A new CAM becomes<br />

valid as soon as the cam passes the "cam switch angle" (P-0-0094).<br />

In crosscutter applications the "cam shaft distance switch angle"<br />

must be 180,0000deg.<br />

CAM shaft distance switch angle<br />

This option defines, when a new value for the hub factor ("cam shaft<br />

distance") is activated. A new hub factor becomes valid as soon as<br />

the cam passes the "cam shaft distance switch angle" (P-0-0144). In<br />

crosscutter applications the "cam shaft distance switch angle" must<br />

be 180,0000deg.<br />

Fig. 1-44: parameter setting with DriveTop<br />

• Set the synchronisation acceleration (P-0-0142) and the<br />

synchronisation velocity (P-0-0143) of the cut drum axis<br />

• →DriveTop → Right mouse button → Single parameter → P-0-0142<br />

(and P-0-0142)<br />

• Depending on the master drive polarity (P-0-0108) set the<br />

synchronization direction (P-0-0154), the synchronization mode (P-0-<br />

0155) and the command value mode (S-0-0393) of the cut drum axis<br />

• →DriveTop → Right mouse button → Single parameter → P-0-0154<br />

(and P-0-0155, and S-0-0393)<br />

• In order to count your cuts you have to define a certain range inside of<br />

the cutangle. The “CutCounter” <strong>FB</strong>-output will increase once by<br />

passing this area. This range size depends on the web velocity and the<br />

task cycle time of the “MX_CrossCutter” functionblock. The range has<br />

to be at least 5deg (max. v web =400U/min, T cyc =2ms of the “MX-<br />

Crosscutter” functionblock ).With this set the following parameter: (Fig.<br />

4-24)<br />

• P-0-0131 to S-0-0051<br />

• The first element of P-0-0132 to 180deg.<br />

• The first element of P-0-0133 to 185deg<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-33<br />

Fig. 1-45:<br />

DriveTop, set cut counting angle<br />

The cut position in the synchronous part of the profile is usually defined as<br />

180deg. For shifting the cut cylinder into the right position related to the<br />

master axis you have to set S-0-0048 to the right value (usually 180deg if<br />

the 0-Position of the knife is the same one as the cut-position)<br />

Required IndraLogic Steps<br />

• Include the library MX_<strong>Tech</strong>nology.lib in your IndraLogic project:<br />

→ Window → <strong>Library</strong> Manager → Right mouse button Additional<br />

library (see next figure)<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-34 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Fig. 1-46:<br />

IndraLogic, insert TECH-<strong>FB</strong> library<br />

• The value of the synchronous format and the matched "deltaTW"-<br />

Values (results of the CAM Builder) have to be entered to the<br />

"CamRelValues" Input of the "MX_CrossCutter" Functionblock (see<br />

next figure)<br />

Fig. 1-47:<br />

Indralogic, implementation of the CAM related values of the<br />

“MX_CrossCutter”-<strong>FB</strong> based on the CAM calculation<br />

Note: You will find this values in the CamBuilder application wizard.<br />

• Call the provided <strong>FB</strong> in your IndraLogic project. The <strong>FB</strong>’s should run<br />

in a high priority Motion Task with a cycle time ≤ 4ms.<br />

Note:<br />

Enable drive first (MX_Power) and start the Crosscutter <strong>FB</strong><br />

once the drive is enabled.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-35<br />

1.8 Register-Controller Function Block<br />

Introduction and Overview<br />

MB_RegisterControllerType1<br />

Short <strong>Description</strong><br />

The Register Controller function block is intended for paper, printing,<br />

packaging and film applications, which use synchronized drives (e.g.<br />

Phase-, Cam-Synchronization) that feed material through a machine.<br />

Variations in the characteristics of the material, material slippage and the<br />

production process disturb the accuracy of the material position. The<br />

register controller function block determines the current position of marks,<br />

mounted or printed on the material and the deviation to the setpoint value.<br />

In addition, it calculates the required correction value using a P- or PI<br />

control loop. Using this method, the marks stay precisely on their setpoint<br />

and do not drift away.<br />

The provided Register Controller function block<br />

"MB_RegisterControllerType1" provides the following functionality:<br />

• Start and monitor the drive probe feature<br />

• Calculate a correction value based on both measured and setpoint<br />

value using a P or PI control loop (similar to indirect control algorithm<br />

of SYNAX)<br />

• Dead-time compensation of the measured signal caused by the used<br />

sensor<br />

• Preset feature<br />

• Pause feature<br />

• Min/Max limiting of the calculated control value<br />

• Expectation window of the measured signal<br />

Interface <strong>Description</strong><br />

Fig. 1-48:<br />

<strong>FB</strong> MB_RegisterControllerType01<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-36 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Name Type Comment<br />

VAR_IN_OUT ControlledAxis AXIS_REF Reference to the controlled axis.<br />

MeasuredAxis AXIS_REF Reference to the measured axis (used only for MLC).<br />

<strong>MLD</strong>-S provides only one axis, consequently the<br />

MeasuredAxis is equal with the Controlled axis.<br />

VAR_INPUT Enable BOOL Enables the Register Controller<br />

Pause BOOL The input "Pause" will only be evaluated while the<br />

"Enable" input is active. Pause is intended to keep the<br />

"ControlValue" constant in a steady state. In this case, the<br />

"Deviation" = Setpoint-ActualValue will be set to 0 causing<br />

the "ControlValue" to be fixed. Probe events are still<br />

monitored and the controlled parameter will still be<br />

affected.<br />

Preset BOOL The input Preset will only be evaluated while "Enable"<br />

AND "Pause" is TRUE. A positive edge of this input forces<br />

the I-fraction of the control loop to "PresetVal". In addition,<br />

this function sets the controlled parameter to the absolute<br />

value "PresetVal"<br />

Polarity BOOL The polarity of the control value is inverse as long this<br />

input is TRUE<br />

ProbeSelect PROBE_NUMBER Specify the selected probe input used for signal<br />

measurement:<br />

PROBE1 = 1: Probe 1 is selected,<br />

PROBE2 = 2: Probe 2 is selected<br />

ProbeEdge PROBE_EDGE Specify the selected probe edge for signal measurement:<br />

POS_EDGE = 1: Positive Edge is used<br />

NEG_EDGE = 2: Negative Edge is used<br />

ControlledValueIDN DINT Sercos-IDN of the controlled parameter. The following<br />

IDN's are supported: P-0-0691, P-0-0694, P-0-0695, S-0-<br />

0048, P-0-0061<br />

Setpoint REAL Desired value<br />

PControl REAL Proportional gain of the PI controller. If 0, the proportional<br />

part of the controller is disabled and the proportional gain<br />

is set internally to 1 in order to work as an I-Controller..<br />

IControl REAL Integral time Tn of the PI controller. If set to 0, the integral<br />

part of the PI-controller is disabled. Units [10 -2 ], like Synax<br />

parameter A-0-0092.<br />

SensorDeadTime REAL Dead time of the sensor in [us] used for dead time<br />

compensation of the measured signal<br />

HighLimit REAL This is the maximum value that ControlValue can have<br />

LowLimit REAL This is the minimum value that ControlValue can have<br />

PresetVal REAL This is the value fed to the system when the Preset<br />

function becomes active<br />

VAR_OUTPUT InOperation BOOL Registration controller is running<br />

Error BOOL Indicates an error. Clear error with “Enable” = FALSE<br />

ErrorID INT (Enum) ERROR_CODE: Short error description<br />

ErrorIdent ERROR_STRUCT Detailed error description<br />

PresetDone BOOL Preset function is done<br />

HighLimitAck BOOL High limit is active. ControlValue would be higher, but is<br />

limited to HighLimit<br />

LowLimitAck BOOL Low limit is active. ControlValue would be lower, but is<br />

limited to LowLimit<br />

Counter UINT Counter increases if probe was detected<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-37<br />

MissingMarks UINT Missing mark counter<br />

ControlValue REAL Control value calculated by the registration controller<br />

ActualValue REAL Actual value used in the register controller<br />

Deviation REAL Difference = "Setpoint - ActualValue" of the register<br />

controller<br />

ParameterControl<br />

Value<br />

REAL<br />

Fig. 1-49:<br />

Calculated control parameter which is send to the drive<br />

Interface of MB_RegisterControllerType1<br />

Timing Diagram<br />

The following diagram shows the signal timing of<br />

MB_RegisterControllerType1 including Pause- and Preset Function.<br />

Fig. 1-50:<br />

Timing Diagram of MB_RegisterControllerType1 with Pause- and<br />

Preset Function<br />

Functional <strong>Description</strong><br />

A sensor detects marks, perforations, cuts or pasted joints on the material<br />

and provides this (binary) signal to the drive.<br />

The probe feature of the drive determines the edge of the sensor signal<br />

and latches the following position, depending on the signal selection of<br />

the probe.<br />

• Drive feedback position (Parameter: S-0-00051, S-0-0053)<br />

• Master axis position (Parameter: P-0-0052, P-0-0227, P-0-0753, P-0-<br />

0775, P-0-0776, P-0-0778)<br />

The probe function records positional data with a resolution of 0,5µs. The<br />

sensor must provide a 24V signal with a rise time in the µs range. The<br />

sensor-specific delay time can be compensated using the input<br />

"SensorDeadTime" of the provided function block.<br />

The register controller calculates the control deviation between the<br />

measured and setpoint positions and determines the required correction<br />

value once a new edge of the sensor signal is detected.<br />

Changes of the correction value become active via trapezoidal profile,<br />

velocity ramp, PT1-filter or instantaneously, depending on the selected<br />

control parameter ("ControlledValueIDN" input of the function block). The<br />

following table shows the available control parameters<br />

("ControlledValueIDN") as well the resulting motion profile of all available<br />

drive operation modes with synchronization.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-38 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Fig. 1-51:<br />

Available control parameter and behavior<br />

Block Diagram<br />

The following diagram shows the internal block diagram of the Register<br />

Controller.<br />

Fig. 1-52:<br />

Register Controller1 Block Diagram<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-39<br />

Fig. 1-53:<br />

Internal PI-Controller Block Diagram<br />

Errorhandling<br />

The function block generates the following error messages<br />

Additional1/Additional2 using the "F_RELATED_TABLE", 16#0170:<br />

in<br />

ErrorID Additional1 Additional2 <strong>Description</strong><br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

RESOURCE_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

16#0801 16#0001 Selected "ControlledValueIDN" is not supported<br />

16#0801 16#0002 HighLimit < LowLimit<br />

16#0801 16#0003 Input-variable PControl < 0<br />

16#0801 16#0004 Input-variable IControl < 0<br />

16#0801 16#0005 SensorDeadTime < 0<br />

16#0802 16#0000 Selected probe number and edge does not correspond to<br />

the probe configuration (S-0-0169)<br />

16#0803 16#0000 Continuous measurement not active (S-0-0169)<br />

16#0804 16#0000 Probe signal is not configured, or selected probe signal is<br />

not supported<br />

16#0805 16#0001 Required probe value S-0-0130 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0002 Required probe value S-0-0131 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0003 Required probe value S-0-0132 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0004 Required probe value S-0-0133 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0005 Required probe value S-0-0409 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0006 Required probe value S-0-0410 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0007 Required probe value S-0-0411 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0008 Required probe value S-0-0412 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0009 Required probe value S-0-0405 Bit 0 is not configured in<br />

the signal control word of the measured axis<br />

16#0805 16#000A Required probe value S-0-0406 Bit 0 is not configured in<br />

the signal control word of the measured axis<br />

ACCESS_ERROR 16#0805 16#000B Required parameter S-0-0048 is not configured in the<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-40 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

(16#0003) optional cyclic MDT data of the controlled axis<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

ACCESS_ERROR<br />

(16#0003)<br />

16#0805 16#000C Required parameter P-0-0691 is not configured in the<br />

optional cyclic MDT data of the controlled axis<br />

16#0805 16#000D Required parameter P-0-0061 is not configured in the<br />

optional cyclic MDT data of the controlled axis<br />

16#0805 16#000E Required parameter P-0-0695 is not configured in the<br />

optional cyclic MDT data of the controlled axis<br />

16#0805 16#000F Required parameter P-0-0694 is not configured in the<br />

optional cyclic MDT data of the controlled axis<br />

16#0805 16#0010 Required parameter P-0-0224 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0011 Required parameter P-0-0225 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0012 Required parameter P-0-0332 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0013 Required parameter P-0-0776 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0014 Required parameter P-0-0764 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0015 Required parameter P-0-0777 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

16#0805 16#0016 Required parameter P-0-0779 is not configured in the<br />

optional cyclic AT data of the measured axis<br />

Fig. 1-54:<br />

Register Controller1 Errorcodes<br />

Required Components and<br />

Parametrization<br />

Required Hardware<br />

• IndraDrive C or IndraDrive M with advanced or basic performance is<br />

required. The following control units are supported<br />

• ADVANCED (type code: CSH01.1C-...)<br />

• BASIC SERCOS (single-axis; type code: CSB01.1N-SE-...)<br />

• BASIC UNIVERSAL (single-axis; type code: CSB01.1C-...)<br />

Required Firmware<br />

• Drive firmware MPH03V10 or higher<br />

• The following functional packages are required<br />

• Closed Loop<br />

• Synchronization<br />

• Drive PLC<br />

Required Software<br />

• IndraWorks Drives or DriveTop16V09 or higher<br />

• IndraLogic 1.2 or higher<br />

Required Parameterization<br />

Setup the used probe and edge using the following IndraWorks /<br />

DriveTop dialog.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-41<br />

Fig. 1-55:<br />

Required Probe Setup<br />

Note: The RegisterControllerType01 function-block expects<br />

"Continuous Measurement" of the probe function. In addition,<br />

"Marker Failure Monitoring" is required in case the expectation<br />

window is used.<br />

Required IndraLogic Steps<br />

• Include the library MX_<strong>Tech</strong>nology.lib in your IndraLogic project<br />

• Call the provided <strong>FB</strong> in your IndraLogic project. The <strong>FB</strong>’s should run in<br />

a high priority cyclic task<br />

Note:<br />

The response time between probe event and calculation of a<br />

new correction value is one task cycle. Consequently, the task<br />

cycle time should be as short as possible in order to get a fast<br />

response.<br />

Application Examples<br />

Die Cutting in Label Printing<br />

The following example shows a cutter on a label printing machine.<br />

Fig. 1-56:<br />

Register control of a die cutter<br />

Labels are printed on a composite material comprising a backing foil and<br />

a self-adhesive top layer. The unprinted grid is stamped and re-wound.<br />

The task of the register controller is to adjust the die cutting cylinder to the<br />

printed web.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-42 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

The die cutting cylinder operates in phase synchronization mode. The<br />

alignment on the printed web is provided by way of an adjustment of the<br />

phase offset. The sensor is connected to the drive control unit for the die<br />

cutting cylinder. The angle position (the position actual value) of the die<br />

cutting cylinder is recorded with the sensor signal.<br />

The position command for the register controller corresponds to the<br />

cylinder position in which it is correctly aligned onto the product. The<br />

correction value is calculated on the basis of the difference between<br />

reference and actual value and added to the current phase offset.<br />

The key settings of the probe function, register controller and drive<br />

operation mode of this application are:<br />

• Measured Value (Probe Function) = Position feedback 1 value (S-0-<br />

0051)<br />

• Controlled Value (ControlledValueIDN) = Additive position command<br />

value (S-0-0048 or P-0-0691)<br />

• Drive operation mode = Phase synchronization<br />

Insetter Control<br />

The following figure shows an insetter control in an infeed application.<br />

Fig. 1-57:<br />

Insetter control on the infeed<br />

The infeed unit transports pre-printed material to a printing machine. After<br />

pre-printing and drying, the web is shrunk; the format length differs from<br />

the nominal format. The web must be elongated for further processing to<br />

include the register.<br />

The task of the register controller is to adjust the speed of the infeed<br />

rollers in such a way that the pre-printed web is extended to the nominal<br />

format. This assumes that one format is transported for each master axis<br />

revolution.<br />

The position command of the register controller relates to the master axis.<br />

The infeed roller operates in velocity synchronization mode. The velocity<br />

of the infeed roller is adapted via the gear ratio - fine adjust. The web<br />

elongation is correct if the print mark always passes beneath the mark<br />

reader at the same master axis position. The master position is recorded<br />

via the sensor signal. The mark reader is connected to the probe input of<br />

the infeed roller drive.<br />

The key settings of the probe function, register controller and drive<br />

operation mode of this application are:<br />

• Measured Value (Probe Function) = Resulting master axis position (P-<br />

0-0775)<br />

• Controlled Value (ControlledValueIDN) = Gear ratio fine adjust (P-0-<br />

0694)<br />

• Drive operation mode = Velocity synchronization<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-43<br />

Flow Wrapper<br />

The following figure shows a sideseal axis (foil infeed axis) used by flow<br />

wrapper applications.<br />

Fig. 1-58:<br />

Sideseal axis in a flow wrapper application<br />

In this application products are fed into the packaging machine with an<br />

infeed belt. The sideseal axis will infeed the foil in a corresponding<br />

position to the product. The correct relationship between the foil and the<br />

product with a reproducible product length is required.<br />

Slippage between the material and the crimp rollers as well as<br />

inaccuracies in the material can result in position errors between the<br />

servomotor and the foil. Therefore registration marks are printed on the<br />

material to correct for these position errors.<br />

Prints, pictures and dirtiness on the product could result in noise signals<br />

on the registration input. Therefore an expectation window for registration<br />

signals is required. Only in the expectation window is the drive’s probe<br />

function active to measure the registration mark position. It is also<br />

necessary to detect missing marks in the expectation window.<br />

The correction movement is proportional to the difference between the<br />

measured and the setpoint value. It is required to limit the correction<br />

movement to a user defined value because of mechanical limits.<br />

The register controller has to adjust the sideseal axis to the printed foil in<br />

order to align the foil to the product.<br />

The sideseal axis operates in phase synchronization mode. The register<br />

controller calculates an additive position command value of the sideseal<br />

axis in order to align the foil.<br />

The key settings of the probe function, register controller and drive<br />

operation mode of this application are:<br />

• Measured Value (Probe Function) = Resulting master axis position (P-<br />

0-0775)<br />

• Controlled Value (ControlledValueIDN) = Additive position command<br />

value (S-0-0048 or P-0-0691)<br />

• Drive operation mode = Phase synchronization<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-44 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

1.9 Adjustment Function Blocks<br />

Introduction and Overview<br />

Basic Principle<br />

⎡ Degree⎤<br />

AlterationVelocity<br />

⎢ ⎥<br />

= Increments<br />

⎣ s ⎦<br />

With the function blocks:<br />

• MX_ContinuousAdjustType01<br />

• MX_ContinuousAdjustType02<br />

• MX_IncrementalAdjustType01<br />

PLC-Variables can be changed (jogged) continuously or incrementally via<br />

binary inputs.<br />

• The operation must be stopped via a binary input (Enable).<br />

• The selected variable can be changed continuously with the function<br />

blocks MX_ContinuousAdjustType01 or MX_ContinuousAdjustType02<br />

(similar to long jog in SYNAX).<br />

• The affected variable can be changed incrementally with the function<br />

MX_IncrementalAdjustType01 (similar to short jog in SYNAX).<br />

• The selected variable can be incremented and decremented within the<br />

limit values.<br />

• When reaching a limit value (HighLimitAck= TRUE or LowLimitAck=<br />

TRUE), the continuous adjustment deactivates, i.e. the function block<br />

no longer adjusts the variable. In this case, the corresponding limit<br />

value, secified with the „HighLimit“ and „LowLimit“ inputs, is output.<br />

• When the limits, „HighLimit“ and „LowLimit“, have the same value as<br />

the specified modulo value, „LowLimit“ is set to zero and „HighLimit“ is<br />

set equal to the modulo value. Thus adjusting is possible over the full<br />

modulo value range.<br />

The alteration velocity characterizes the rate of change of the adjusted<br />

variable. The rate of change depends on the increments and the number<br />

of increments per second. When changing a position, the alteration<br />

velocity is calculated by:<br />

1<br />

⎢<br />

⎣s<br />

⎡ ⎤<br />

[ Degree] * Increments per Second<br />

⎥ ⎦<br />

If, for example, the revolution speed of the virtual master axis is altered,<br />

the alteration velocity is calculated by:<br />

⎡r.<br />

p.<br />

m.<br />

⎤<br />

AlterationVelocity<br />

⎢ ⎥<br />

= Increments<br />

⎣ s ⎦<br />

1<br />

⎢<br />

⎣s<br />

⎡ ⎤<br />

[ r.<br />

p.<br />

m.<br />

]*<br />

Increments per Second<br />

⎥ ⎦<br />

Adjustment Limits<br />

Basic Rules<br />

While the adjustment signal is active, the influenced variable is adjusted<br />

with the defined velocity.<br />

The adjustment can only occur via the corresponding inputs if they are<br />

within the specified limits.<br />

Exception: If the start value of the influenced variable is outside the<br />

specified limits, the influenced variable can only be modified in the<br />

direction of the valid range. If a modulo value is specified, the influenced<br />

variable can be modified in both directions. After reaching the valid range,<br />

it is impossible to move the variable outside this range.<br />

• When both adjustment signals (Inc/Dec) = TRUE simultaneously, both<br />

signals are evaluated as FALSE.<br />

• An adjustment signal with that changes polarity causes an immediate<br />

inversion of the direction. Also, the current adjustment is not finished.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-45<br />

• The function blocks MX_ContinuousAdjustType01,<br />

MX_ContinuousAdjustType02 and MX_IncrementalAdjustType01 have<br />

different behaiors when the adjustment velocity changes.With<br />

MX_ContinuousAdjustType01 and MX_ContinuousAdjustType02 the<br />

alteration is immediately active. But with<br />

MX_IncrementalAdjustType01, the movement is finished before the<br />

new incremental velocity is used. A following adjustment procedure<br />

executes the altered factors.<br />

The following rules apply for function MX_IncrementalAdjustType01:<br />

• The inputs „Inc“ and „Dec“ are edge triggered. A rising edge triggers<br />

an adjustment by the specified increment („StepWidth“).<br />

• A new adjustment triggered with a rising edge during a movement of<br />

the same direction, will trigger a new adjustment once the current<br />

move completes.<br />

Fig. 1-59: Comparison of the behavior of Continuous and<br />

IncrementalAdjustment<br />

Independent of the inputs, the Function blocks<br />

MX_ContinuousAdjustType01, MX_ContinuousAdjustType02 and<br />

MB_Incremental-Adjust initialize the variables that determine the cycle<br />

time at the first activation („Enable“ = true). In the second cycle, the<br />

function block calculates the correct cycle time to calculate the correct<br />

adjustment velocity. Subsequently the cycle time is continuously updated.<br />

By specifying a modulo value, the function block supplies an output factor<br />

between zero and the specified modulo value. When the modulo value is<br />

exceeded, only the output factor is set to zero but the adjustment<br />

procedure continues. The valid range is between zero and the modulo<br />

value. Specify the range so that it can be adjusted around zero.<br />

Additionally the function block MX_ContinuousAdjustType01 and<br />

MX_ContinuousAdjustType02 offers the possibility to modify the alteration<br />

velocity, time-dependently, by specifying weighting factors and time<br />

intervals.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-46 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

MX_ContinuousAdjustType01<br />

Short <strong>Description</strong><br />

Interface <strong>Description</strong><br />

Fig. 1-60: Possible assignment of a valid range with a modulo value of 360°<br />

The function allows the continuous adjustment of an influenced REAL-<br />

Variable via binary inputs.<br />

Fig. 1-61:<br />

<strong>FB</strong> MX_ContiniuousAdjustType01<br />

Name Type Comment<br />

VAR_INPUT Enable BOOL Enable the function block (cyclical, state-triggered)<br />

Inc BOOL Increment the influenced variable<br />

Dec BOOL Decrement the influenced variable<br />

Preset BOOL Set the Preset-Value (PresetValue)<br />

PresetValue REAL Specified value for Preset<br />

ModuloValue REAL Modulo value (if 0, then absolute processing)<br />

HighLimit REAL Maximum output value of the influenced variable<br />

LowLimit REAL Minimum output value of the influenced variable<br />

StepWidth REAL Increments<br />

StepsPerSecond REAL Number of increments per second<br />

AdjTimeIntervals ARRAY [1..4] OF<br />

REAL<br />

Time intervals (in seconds) for weighting of the alteration<br />

velocity<br />

AdjWeightFactors<br />

ARRAY [1..5] OF<br />

REAL<br />

Weighting factors of the alteration velocity<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-47<br />

VAR_OUTPUT InOperation BOOL No calculations active. Ouputs HighLimitAck and<br />

LowLimitAck are valid.<br />

Error BOOL Calculation of the influenced variable "Value" completed<br />

with error, output variable ErrorIdent is valid<br />

ErrorID ERROR_CODE Short error description<br />

ErrorIdent ERROR_STRUCT Detailed description of the diagnostics in case of an error<br />

Changing BOOL Calculation of the influenced variable takes place.<br />

Influenced variable "Value" is valid<br />

HighLimitAck BOOL Maximum output value of the influenced variable<br />

reached<br />

LowLimitAck BOOL Minimum output value of the influenced variable reached<br />

VAR_IN_OUT Value REAL Influenced variable<br />

Fig. 1-62: Interface of <strong>FB</strong> MX_ContinuousAdjustType01<br />

Signal-Time Diagram<br />

Fig. 1-63: Continuous Parameter Adjustment<br />

Functional <strong>Description</strong><br />

The adjustment of the influenced variable, „Value“ may take place in<br />

positive or negative direction. The limits set a valid range for adjusting the<br />

variable. Specifying a modulo value allows the adjustment to be withing<br />

an axis‘ frame for reference. Predefining increments and increments per<br />

second determines the alteration velocity of the influenced variable. It is<br />

possible to write a given value („PresetValue“), inside the valid operating<br />

range, directly to the influenced variable.<br />

After activation, with „Enable“, the influenced variable can be changed via<br />

inputs „Inc“ (positive direction) and „Dec“ (negative direction). While input<br />

„Inc“or Dec is set, the influenced variable is continuously increased (or<br />

decreased) with the given velocity. (StepsPerSecond * StepWidth).<br />

At initialization, ensure the inputs „ModuloValue“, „HighLimit“ and<br />

„LowLimit“, contain valid values.<br />

By determining weighting factors („AdjWeightFactors[]“) and the<br />

corresponding time intervals („AdjTimeIntervals[]“) it is possible to make<br />

time-dependent velocity modifications. The weighting factors and time<br />

intervals must also be set on the inputs „StepsPerSecond“ and<br />

„StepWidth“. Depending on the actual time interval, the alteration velocity<br />

is then multilpied with the appropriate weighting factor. The figure below<br />

shows the behavior of the block with an example configuration: The input<br />

factors of „AdjTimeIntervals“ ([T1; T2; T3; T4]) are specified in seconds.<br />

T5 specifies the period after completion of time interval T4 when the<br />

adjustment procedure aborts. The input factors of „AdjWeightFactors“<br />

([0,5; 1; 1,5; 2; 4]) determine the weighting of the alteration velocity. The<br />

last value of „AdjWeightFactors [5]“ is assigned to time interval T5.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-48 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Fig. 1-64: WeightedAdjustment<br />

Note:<br />

When a time interval = 0, so the next weighting factor is used<br />

until the adjustment process aborts. Example: If<br />

AdjTimeIntervals[2] = 0, then the weighting factor of<br />

AdjWeightFactors[3] is used until abortion.<br />

To determine the correct time interval of the weighting factors, the expired<br />

time is reset with each new starting adjustment process. If inputs<br />

„AdjWeightFactors“ and „AdjTimeIntervals“ are not set, a continuous<br />

adjustment with the given alteration velocity specified with<br />

„StepsPerSecond“ and „StepWidth“ occurs.<br />

Note:<br />

Values in “AdjTimeIntervals“ must only contain positive values.<br />

Weighting factors can be positive or negative.<br />

The influenced variable can only be set to the specified preset<br />

value if it is within the valid range between „HighLimit“ and<br />

„LowLimit“.<br />

Output „InOperation“ signals that the block is in use, but an adjustment is<br />

not active. " Changing" indicates an error-free adjustment and the value of<br />

the adjusted variable „Value“ is valid.<br />

“Error“ indicates that an error occurred during the adjustment process.<br />

Details are indicated in the „ErrorIdent“ structure.<br />

Errorhandling<br />

The function block generates the following error messages<br />

Additional1/Additional2 of the table "F_RELATED_TABLE", 16#0170:<br />

in<br />

ErrorID Additional1 Additional2 <strong>Description</strong><br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

16#0002 16#0000 Inputs are outside permitted range<br />

RESOURCE_ERROR (16#0003) 16#0004 16#0000 Drive firmware not supported.<br />

STATE_MACHINE_ERROR<br />

(16#0005)<br />

16#0006 16#0000 Invalid status of the function block<br />

Fig. 1-65 Error numbers, caused by MX_ContinuousAdjustType01<br />

Required Hardware<br />

Required Software<br />

Required Parameterization<br />

Required IndraLogic Steps<br />

• IndraDrive C or M (MPx03 Firmware)<br />

• IndraWorks Drive with IndraLogic<br />

• No special parameterization required<br />

• Include library ML(X)_<strong>Tech</strong>nology.lib in the IndraLogic-Project<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-49<br />

MX_ContinuousAdjustType02<br />

Short <strong>Description</strong><br />

Interface <strong>Description</strong><br />

The function block enables the continuous adjustment of an influenced<br />

DINT-Variable using binary inputs.<br />

Fig. 1-66: <strong>FB</strong> MX_ContinuousAdjustType02<br />

Name Type Comment<br />

VAR_INPUT Enable BOOL Enables the function block (cyclical, state-controlled)<br />

Inc BOOL Increment the influenced variable<br />

Dec BOOL Decrement the influenced variable<br />

Preset BOOL Set the Preset-Value (PresetValue)<br />

PresetValue DINT Specified value for Preset<br />

ModuloValue DINT Modulo value (if 0, then absolute processing)<br />

HighLimit DINT Maximum output value of the influenced variable<br />

LowLimit DINT Minimum output value of the influenced variable<br />

StepWidth REAL Increments<br />

StepsPerSec<br />

ond<br />

REAL<br />

Increments per second<br />

AdjTimeInterv<br />

als<br />

AdjWeightFa<br />

ctors<br />

ARRAY [1..4] OF<br />

REAL<br />

ARRAY [1..5] OF<br />

REAL<br />

Time intervals in seconds for weighting the alteration velocity<br />

Weighting factors of the alteration velocity<br />

VAR_OUTPUT InOperation BOOL No calculation active. Ouputs HighLimitAck and LowLimitAck<br />

are valid.<br />

Error BOOL Calculation of the influenced variable "Value" completed with<br />

error, output variable ErrorIdent is valid<br />

ErrorID ERROR_CODE Error short description<br />

ErrorIdent ERROR_STRUCT Detailed description of the diagnostics in case of an error<br />

Changing BOOL Calculation of the influenced variable takes place. Influenced<br />

variable "Value" is valid<br />

HighLimitAck BOOL Maximum output value of the influenced variable reached<br />

LowLimitAck BOOL Minimum output value of the influenced variable reached<br />

VAR_IN_OUT Value DINT Influenced variable<br />

Fig. 1-67: Interface of <strong>FB</strong> MX_ContinuousAdjustType02<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-50 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Fig. 1-68: Continuous Parameter Adjustment<br />

Functional <strong>Description</strong><br />

The adjustment of the influenced variable, „Value“ may take place in<br />

positive or negative direction. The limits set a valid range for adjusting the<br />

variable. Specifying a modulo value allows the adjustment to be withing<br />

an axis‘ frame fo reference. Predefining increments and increments per<br />

second determines the alteration velocity of the influenced variable. It is<br />

possible to write a given value („PresetValue“), inside the valid operating<br />

range, directly to the influenced variable.<br />

After activation, with „Enable“, the influenced variable can be changed via<br />

inputs „Inc“ (positive direction) and „Dec“ (negative direction). While input<br />

„Inc“or Dec is set, the influenced variable is continuously increased (or<br />

decreased) with the given velocity. (StepsPerSecond * StepWidth).<br />

At initialization, ensure the inputs „ModuloValue“, „HighLimit“ and<br />

„LowLimit“, contain valid values.<br />

By determining weighting factors („AdjWeightFactors[]“) and the<br />

corresponding time intervals („AdjTimeIntervals[]“) it is possible to make<br />

time-dependent velocity modifications. The weighting factors and time<br />

intervals must also be set on the inputs „StepsPerSecond“ and<br />

„StepWidth“. Depending on the actual time interval, the alteration velocity<br />

is then multilpied with the appropriate weighting factor. The figure below<br />

shows the behavior of the block with an example configuration: The input<br />

factors of „AdjTimeIntervals“ ([T1; T2; T3; T4]) are specified in seconds.<br />

T5 specifies the period after completion of time interval T4 when the<br />

adjustment procedure aborts. The input factors of „AdjWeightFactors“<br />

([0,5; 1; 1,5; 2; 4]) determine the weighting of the alteration velocity. The<br />

last value of „AdjWeightFactors [5]“ is assigned to time interval T5.<br />

Fig. 1-69: WeightedAdjustment<br />

Note:<br />

When a time interval = 0, so the next weighting factor is used<br />

until the adjustment process aborts. Example: If<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-51<br />

AdjTimeIntervals[2] = 0, then the weighting factor of<br />

AdjWeightFactors[3] is used until abortion.<br />

To determine the correct time interval of the weighting factors, the expired<br />

time is reset with each new starting adjustment process. If inputs<br />

„AdjWeightFactors“ and „AdjTimeIntervals“ are not set, a continuous<br />

adjustment with the given alteration velocity specified with<br />

„StepsPerSecond“ and „StepWidth“ occurs.<br />

Note:<br />

Values in“AdjTimeIntervals“ must only contain positive values.<br />

Weighting factors can be positive or negative.<br />

The influenced variable can only be set to the specified preset<br />

value if it is within the valid range between „HighLimit“ and<br />

„LowLimit“.<br />

Output „InOperation“ signals that the block is in use, but an adjustment is<br />

not active. "Changing" indicates an error-free adjustment and the value of<br />

the adjusted variable „Value“ is valid.<br />

“Error“ indicates that an error occurred during the adjustment process.<br />

Details are indicated in the „ErrorIdent“ structure.<br />

The function block generates the following error messages<br />

Additional1/Additional2 of the table "F_RELATED_TABLE", 16#0170:<br />

ErrorID Additional1 Additional2 <strong>Description</strong><br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

Errorhandling<br />

16#0002 16#0000 Inputs are outside permitted range<br />

RESOURCE_ERROR (16#0003) 16#0004 16#0000 Drive firmware not supported<br />

STATE_MACHINE_ERROR<br />

(16#0005)<br />

16#0006 16#0000 Invalid status of the function block<br />

Fig. 1-70 Error numbers, caused by MX_ContinuousAdjustType02<br />

in<br />

Required Hardware<br />

Required Software<br />

Required Parameterization<br />

Required IndraLogic Steps<br />

• IndraDrive C or M (MPx03 Firmware)<br />

• IndraWorks Drive with IndraLogic<br />

• No special parameterization required<br />

• Include library ML(X)_<strong>Tech</strong>nology.lib in the IndraLogic-Project<br />

MX_IncrementalAdjustType01<br />

Short <strong>Description</strong><br />

Interface <strong>Description</strong><br />

The function block enables incremental adjustment of an influenced<br />

REAL-Variable using binary inputs.<br />

Fig. 1-71:<br />

<strong>FB</strong> MX_IncrementalAdjustType01<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-52 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Name Type Comment<br />

VAR_INPUT Enable BOOL Enable the function block (cyclical, state-controlled)<br />

Inc BOOL Increment the influenced variable<br />

Dec BOOL Decrement the influenced variable<br />

Preset BOOL Set the Preset-Value (PresetValue)<br />

PresetValue REAL Specified value for Preset<br />

ModuloValue REAL Modulo value for rotatory calculation<br />

HighLimit REAL Maximum output value of the influenced variable<br />

LowLimit REAL Minimum output value of the influenced variable<br />

StepWidth REAL Step Width<br />

StepsPerSec<br />

ond<br />

REAL<br />

Increments per second<br />

VAR_OUTPUT Done BOOL Calculation of the influenced variable completed. The output<br />

variables "Value", „HighLimitAck“ and „LowLimitAck“ are valid.<br />

Active BOOL Calculation of the influenced variable not yet completed. The<br />

influenced variable "Value" is still in process. The outputs<br />

„HighLimitAck“ and „LowLimitAck“ are valid.<br />

Error BOOL Calculation of the influenced variable "Value" completed with<br />

error, output variable „ErrorIdent“ is valid<br />

ErrorID ERROR_CODE Short error description<br />

ErrorIdent ERROR_STRUCT Detailed description of the diagnostics in case of an error<br />

HighLimitAck BOOL Maximum output value of the influenced variable reached<br />

LowLimitAck BOOL Minimum output value of the influenced variable reached<br />

VAR_IN_OUT Value REAL Influenced variable<br />

Fig. 1-72: Interface of <strong>FB</strong> MX_IncrementalAdjustType01<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-53<br />

Signal-Timing Diagram<br />

Fig. 1-73: Incremental Parameter Adjust<br />

Functional <strong>Description</strong><br />

The adjustment of the influenced variable, „Value“ may take place in<br />

positive or negative direction. The limits set a valid range for adjusting the<br />

variable. Specifying a modulo value allows the adjustment to be withing<br />

an axis‘ frame for reference. Predefining increments and increments per<br />

second determines the alteration velocity of the influenced variable. It is<br />

possible to write a given value („PresetValue“), inside the valid operating<br />

range, directly to the influenced variable.<br />

After activation, with „Enable“, the influenced variable can be changed via<br />

inputs „Inc“ (positive direction) and „Dec“ (negative direction). While input<br />

„Inc“or Dec is set, the influenced variable is continuously increased (or<br />

decreased) with the given velocity. (StepsPerSecond * StepWidth).<br />

Note:<br />

The influenced variable can only be set to the specified preset<br />

value when it is within the valid range between „HighLimit“ and<br />

„LowLimit“.<br />

Errorhandling<br />

„Active“ signals that the adjustment procedure is not yet completed.<br />

“Done = TRUE signals the adjustment completed without error. If an error<br />

occurs during processing of the function block, it is indicated with „Error“ =<br />

TRUE, with the details in the output structure „ErrorIdent“.<br />

The function block generates the following error messages in<br />

Additional1/Additional2 of the table "F_RELATED_TABLE", 16#0170:<br />

ErrorID Additional1 Additional2 <strong>Description</strong><br />

INPUT_RANGE_ERROR<br />

(16#0006)<br />

16#0002 16#0000 Inputs are outside permitted range<br />

RESOURCE_ERROR (16#0003) 16#0004 16#0000 Drive firmware not supported<br />

STATE_MACHINE_ERROR<br />

(16#0005)<br />

16#0006 16#0000 Invalid status of the function block<br />

Fig. 1-74 Error numbers, caused by MX_IncrementalAdjustType01<br />

Required Hardware<br />

Required Software<br />

Required Parameterization<br />

Required IndraLogic Steps<br />

• IndraDrive C or M (MPx03 Firmware)<br />

• IndraWorks Drive with IndraLogic<br />

• No special parameterization required<br />

• Include library ML(X)_<strong>Tech</strong>nology.lib in the IndraLogic-Project<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-54 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

1.10 Measuring Wheel Function Blocks<br />

Introduction and Overview<br />

The Measuring Wheel <strong>Tech</strong>nology Function Block (<strong>Tech</strong>-<strong>FB</strong>’s) enhance<br />

the basic functionality of <strong>MLD</strong>-S by provide a prepackaged application<br />

specific functionality that has been pre-tested and reduces the learning<br />

curve for the user.<br />

The Measuring wheel is the most common device used in a closed loop<br />

servo system to compensate for material slippage in a feeder application.<br />

For example as the material is fed into at machine/process slippage may<br />

occur between the feed rolls and material due to an oily film or<br />

containments on the material or fluctuations in back tension on the web or<br />

in the case of a corrugated feeder where the rolls are serpentine and the<br />

point of contact (pitch diameter) varies, these as well as many other<br />

mechanical constraints can cause slippage to occur. BRC based systems<br />

will overcome this by using the drive based measuring wheel operation<br />

mode, this is a specialized drive positioning mode that compensates for<br />

slippage or stretch by placing a measurement device directly on the<br />

moving material, it is connected to the drives optional encoder port. This<br />

signal is used to close the position loop to the drive so the actual length of<br />

the commanded move profile can be monitored to assure the required<br />

accuracy is maintained. The measuring wheel utilizes frictional forces<br />

between the wheel and the material surface for engagement, it must be in<br />

100% contact before the position control loop is closed via the measuring<br />

wheel encoder, if not the system can oscillate or run away. Most feeder<br />

system need to switch back between motor and measuring wheel<br />

encoder to accommodate special operations like initial material threading,<br />

run-out or roll-lift. To provide as means to easily switch between the two<br />

feedback devices the MX_MeasuringWheel <strong>FB</strong> will be supplied.<br />

Fig. 1-75:<br />

Measuring Wheel Application<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-55<br />

MX_MeasuringWheel<br />

Short <strong>Description</strong><br />

The function block MX_MeasuringWheel can enable and disable the<br />

measuring wheel command in the drive.<br />

Interface <strong>Description</strong><br />

Fig. 1-76:<br />

MX_MeasuringWheel<br />

Name Type Comment<br />

VAR_IN_OUT Axis AXIS_REF Reference to the axis<br />

VAR_INPUT Enable BOOL Start the command for MW operation<br />

VAR_OUTPUT Active BOOL Function Block is active -> MW is active<br />

Error BOOL Signals that error has occurred<br />

ErrorID<br />

ERROR_C<br />

ODE<br />

Short error description<br />

ErrorIdent<br />

ERROR_S<br />

TRUCT<br />

Fig. 1-77:<br />

Detail error description<br />

Interface of MX_MeasuringWheel<br />

Timing Diagram<br />

The following diagram shows the reaction of the Enable bit of the<br />

MX_MeasuringWheel <strong>FB</strong> if it has been configured properly.<br />

Fig. 1-78:<br />

Timing of MX_MasterSimulator<br />

ErrorID Table Additional1 Additional2 <strong>Description</strong><br />

RESOURCE_ERR<br />

OR<br />

SYSTEM_ERROR<br />

Errorhandling<br />

F_RELATED<br />

_TABLE<br />

F_RELATED<br />

_TABLE<br />

16#00000001 16#00000000 Drive is not enabled or drive error<br />

16#00000004 16#00000000 Drive-Firmware not supported -> MPH03 or<br />

MPB03, release >= 10 required<br />

Fig. 1-79:<br />

MX_MeasuringWheel Error Codes<br />

Required Components and<br />

Parametrization<br />

Required Hardware<br />

• IndraDrive C or M<br />

• Additional second encoder interface card required for measuring<br />

wheel<br />

• Additional second encoder (according to drive project planning<br />

manual)<br />

Required Firmware<br />

• Drive firmware MPH03V10 or higher<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


1-56 <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

• The following functional packages are required<br />

• Closed Loop<br />

• Synchronization<br />

• Drive PLC<br />

Required Software<br />

• IndraWorks Drives or DriveTop16V09 or higher<br />

• IndraLogic 1.2 or higher<br />

Required Parameterization<br />

Prior to using measuring wheel operation the drive must be properly<br />

configured using DriveTop. The following diagram shows the pertinent<br />

drive parameters for MW operation. The values that will be entered for<br />

setup are based on the actual machine design. After determining the<br />

actual mechanical configuration use DriveTop to set the values.<br />

Fig. 1-80:<br />

Drive Parametrization<br />

• Set-up Measuring Wheel Encoder Parameters: DriveTop →Drive<br />

Functions → Encoder Systems →Optional Encoder… and the<br />

following screen will open. Enter the correct values based on the<br />

encoder type, drive interface options and measuring wheels<br />

mechanical configuration on the machine. The effective feed constant<br />

of the servo driven feed-rolls and the MW must be equal or the feed<br />

length will not be accurate.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> <strong>MLD</strong>-S <strong>Tech</strong>nology <strong>Library</strong> 1-57<br />

Fig. 1-81:<br />

Measuring Wheel Encoder Parameters Dialog<br />

Required IndraLogic Steps<br />

• Include the library MX_<strong>Tech</strong>nology.lib in your IndraLogic project<br />

• Call the provided <strong>FB</strong> in your IndraLogic project. The <strong>FB</strong>’s should run in<br />

a high priority cyclic task with a cycle time ≤ 4ms<br />

• Enable drive first (MX_Power) before execution of the Measuring<br />

Wheel <strong>FB</strong>.<br />

• When the Measuring Wheel <strong>FB</strong> is enabled in the IndraLogic project it<br />

will switch the drive from encoder-1 to encoder-2, but this switch also<br />

causes the drives reference bit (Homed) to be canceled. It is not<br />

possible issue a Move Absolute without having the drive referenced or<br />

you will get an error in the PLC program. This means that you can not<br />

use the MX_MoveAbsolute <strong>FB</strong> in conjunction with MW operation, all<br />

moves must be relative.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> Service & Support 2-1<br />

2 Service & Support<br />

2.1 Helpdesk<br />

Unser Kundendienst-Helpdesk im Hauptwerk Lohr<br />

am Main steht Ihnen mit Rat und Tat zur Seite.<br />

Sie erreichen uns<br />

Our service helpdesk at our headquarters in Lohr am<br />

Main, Germany can assist you in all kinds of inquiries.<br />

Contact us<br />

- telefonisch - by phone: +49 (0) 9352 40 50 60<br />

über Service Call Entry Center Mo-Fr 07:00-18:00<br />

- via Service Call Entry Center Mo-Fr 7:00 am - 6:00 pm<br />

- per Fax - by fax: +49 (0) 9352 40 49 41<br />

- per e-Mail - by e-mail: service.svc@boschrexroth.de<br />

2.2 Service-Hotline<br />

Außerhalb der Helpdesk-Zeiten ist der Service<br />

direkt ansprechbar unter<br />

After helpdesk hours, contact our service<br />

department directly at<br />

+49 (0) 171 333 88 26<br />

oder - or +49 (0) 172 660 04 06<br />

2.3 Internet<br />

Unter www.boschrexroth.com finden Sie<br />

ergänzende Hinweise zu Service, Reparatur und<br />

Training sowie die aktuellen Adressen *) unserer<br />

auf den folgenden Seiten aufgeführten Vertriebsund<br />

Servicebüros.<br />

Verkaufsniederlassungen<br />

Niederlassungen mit Kundendienst<br />

Außerhalb Deutschlands nehmen Sie bitte zuerst Kontakt mit<br />

unserem für Sie nächstgelegenen Ansprechpartner auf.<br />

*) Die Angaben in der vorliegenden Dokumentation können<br />

seit Drucklegung überholt sein.<br />

At www.boschrexroth.com you may find<br />

additional notes about service, repairs and training<br />

in the Internet, as well as the actual addresses *) of<br />

our sales- and service facilities figuring on the<br />

following pages.<br />

sales agencies<br />

offices providing service<br />

Please contact our sales / service office in your area first.<br />

*) Data in the present documentation may have become<br />

obsolete since printing.<br />

2.4 Vor der Kontaktaufnahme... - Before contacting us...<br />

Wir können Ihnen schnell und effizient helfen wenn<br />

Sie folgende Informationen bereithalten:<br />

1. detaillierte Beschreibung der Störung und der<br />

Umstände.<br />

2. Angaben auf dem Typenschild der betreffenden<br />

Produkte, insbesondere Typenschlüssel und<br />

Seriennummern.<br />

3. Tel.-/Faxnummern und e-Mail-Adresse, unter<br />

denen Sie für Rückfragen zu erreichen sind.<br />

For quick and efficient help, please have the<br />

following information ready:<br />

1. Detailed description of the failure and<br />

circumstances.<br />

2. Information on the type plate of the affected<br />

products, especially type codes and serial<br />

numbers.<br />

3. Your phone/fax numbers and e-mail address,<br />

so we can contact you in case of questions.<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


2-2 Service & Support <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

2.5 Kundenbetreuungsstellen - Sales & Service Facilities<br />

Deutschland – Germany vom Ausland: (0) nach Landeskennziffer weglassen!<br />

from abroad: don’t dial (0) after country code!<br />

Vertriebsgebiet Mitte<br />

Germany Centre<br />

SERVICE AUTOMATION<br />

SERVICE AUTOMATION<br />

SERVICE AUTOMATION<br />

<strong>Rexroth</strong> Indramat GmbH<br />

Bgm.-Dr.-Nebel-Str. 2 / Postf. 1357<br />

97816 Lohr am Main / 97803 Lohr<br />

Kompetenz-Zentrum Europa<br />

Tel.: +49 (0)9352 40-0<br />

Fax: +49 (0)9352 40-4885<br />

CALL ENTRY CENTER<br />

H e l p d e s k<br />

MO – FR<br />

von 07:00 - 18:00 Uhr<br />

from 7 am – 6 pm<br />

Tel. +49 (0) 9352 40 50 60<br />

Fax +49 (0) 9352 40 49 41<br />

service.svc@boschrexroth.de<br />

HOTLINE 24 / 7 / 365<br />

außerhalb der Helpdesk-Zeit<br />

out of helpdesk hours<br />

Tel.: +49 (0)172 660 04 06<br />

oder / or<br />

Tel.: +49 (0)171 333 88 26<br />

ERSATZTEILE / SPARES<br />

verlängerte Ansprechzeit<br />

- extended office time -<br />

♦ nur an Werktagen<br />

- only on working days -<br />

♦ von 07:00 - 18:00 Uhr<br />

- from 7 am - 6 pm -<br />

Tel. +49 (0) 9352 40 42 22<br />

Vertriebsgebiet Süd<br />

Germany South<br />

Vertriebsgebiet West<br />

Germany West<br />

Gebiet Südwest<br />

Germany South-West<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AG<br />

Landshuter Allee 8-10<br />

80637 München<br />

Tel.: +49 (0)89 127 14-0<br />

Fax: +49 (0)89 127 14-490<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AG<br />

Regionalzentrum West<br />

Borsigstrasse 15<br />

40880 Ratingen<br />

Tel.: +49 (0)2102 409-0<br />

Fax: +49 (0)2102 409-406<br />

+49 (0)2102 409-430<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AG<br />

Service-Regionalzentrum Süd-West<br />

Siemensstr.1<br />

70736 Fellbach<br />

Tel.: +49 (0)711 51046–0<br />

Fax: +49 (0)711 51046–248<br />

Vertriebsgebiet Nord<br />

Germany North<br />

Vertriebsgebiet Mitte<br />

Germany Centre<br />

Vertriebsgebiet Ost<br />

Germany East<br />

Vertriebsgebiet Ost<br />

Germany East<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AG<br />

Walsroder Str. 93<br />

30853 Langenhagen<br />

Tel.: +49 (0) 511 72 66 57-0<br />

Service: +49 (0) 511 72 66 57-256<br />

Fax: +49 (0) 511 72 66 57-93<br />

Service: +49 (0) 511 72 66 57-783<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AG<br />

Regionalzentrum Mitte<br />

Waldecker Straße 13<br />

64546 Mörfelden-Walldorf<br />

Tel.: +49 (0) 61 05 702-3<br />

Fax: +49 (0) 61 05 702-444<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AG<br />

Beckerstraße 31<br />

09120 Chemnitz<br />

Tel.: +49 (0)371 35 55-0<br />

Fax: +49 (0)371 35 55-333<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AG<br />

Regionalzentrum Ost<br />

Walter-Köhn-Str. 4d<br />

04356 Leipzig<br />

Tel.: +49 (0)341 25 61-0<br />

Fax: +49 (0)341 25 61-111<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> Service & Support 2-3<br />

Europa (West) - Europe (West)<br />

vom Ausland: (0) nach Landeskennziffer weglassen, Italien: 0 nach Landeskennziffer mitwählen<br />

from abroad: don’t dial (0) after country code, Italy: dial 0 after country code<br />

Austria - Österreich<br />

Austria – Österreich<br />

Belgium - Belgien<br />

Denmark - Dänemark<br />

<strong>Bosch</strong> <strong>Rexroth</strong> GmbH<br />

Electric Drives & Controls<br />

Stachegasse 13<br />

1120 Wien<br />

Tel.: +43 (0)1 985 25 40<br />

Fax: +43 (0)1 985 25 40-93<br />

<strong>Bosch</strong> <strong>Rexroth</strong> GmbH<br />

Electric Drives & Controls<br />

Industriepark 18<br />

4061 Pasching<br />

Tel.: +43 (0)7221 605-0<br />

Fax: +43 (0)7221 605-21<br />

<strong>Bosch</strong> <strong>Rexroth</strong> NV/SA<br />

Henri Genessestraat 1<br />

1070 Bruxelles<br />

Tel: +32 (0) 2 451 26 08<br />

Fax: +32 (0) 2 451 27 90<br />

info@boschrexroth.be<br />

service@boschrexroth.be<br />

BEC A/S<br />

Zinkvej 6<br />

8900 Randers<br />

Tel.: +45 (0)87 11 90 60<br />

Fax: +45 (0)87 11 90 61<br />

Great Britain – Großbritannien<br />

Finland - Finnland<br />

France - Frankreich<br />

France - Frankreich<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Ltd.<br />

Electric Drives & Controls<br />

Broadway Lane, South Cerney<br />

Cirencester, Glos GL7 5UH<br />

Tel.: +44 (0)1285 863000<br />

Fax: +44 (0)1285 863030<br />

sales@boschrexroth.co.uk<br />

service@boschrexroth.co.uk<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Oy<br />

Electric Drives & Controls<br />

Ansatie 6<br />

017 40 Vantaa<br />

Tel.: +358 (0)9 84 91-11<br />

Fax: +358 (0)9 84 91-13 60<br />

<strong>Bosch</strong> <strong>Rexroth</strong> SAS<br />

Electric Drives & Controls<br />

Avenue de la Trentaine<br />

(BP. 74)<br />

77503 Chelles Cedex<br />

Tel.: +33 (0)164 72-63 22<br />

Fax: +33 (0)164 72-63 20<br />

Hotline: +33 (0)608 33 43 28<br />

<strong>Bosch</strong> <strong>Rexroth</strong> SAS<br />

Electric Drives & Controls<br />

ZI de Thibaud, 20 bd. Thibaud<br />

(BP. 1751)<br />

31084 Toulouse<br />

Tel.: +33 (0)5 61 43 61 87<br />

Fax: +33 (0)5 61 43 94 12<br />

France – Frankreich<br />

Italy - Italien<br />

Italy - Italien<br />

Italy - Italien<br />

<strong>Bosch</strong> <strong>Rexroth</strong> SAS<br />

Electric Drives & Controls<br />

91, Bd. Irène Joliot-Curie<br />

69634 Vénissieux – Cedex<br />

Tel.: +33 (0)4 78 78 53 65<br />

Fax: +33 (0)4 78 78 53 62<br />

<strong>Bosch</strong> <strong>Rexroth</strong> S.p.A.<br />

Via G. Di Vittorio, 1<br />

20063 Cernusco S/N.MI<br />

Hotline: +39 02 92 365 563<br />

Tel.: +39 02 92 365 1<br />

Service: +39 02 92 365 300<br />

Fax: +39 02 92 365 500<br />

Service: +39 02 92 365 516<br />

<strong>Bosch</strong> <strong>Rexroth</strong> S.p.A.<br />

Via Paolo Veronesi, 250<br />

10148 Torino<br />

Tel.: +39 011 224 88 11<br />

Fax: +39 011 224 88 30<br />

<strong>Bosch</strong> <strong>Rexroth</strong> S.p.A.<br />

Via Mascia, 1<br />

80053 Castellamare di Stabia NA<br />

Tel.: +39 081 8 71 57 00<br />

Fax: +39 081 8 71 68 85<br />

Italy - Italien<br />

Italy - Italien<br />

Netherlands - Niederlande/Holland<br />

Netherlands – Niederlande/Holland<br />

<strong>Bosch</strong> <strong>Rexroth</strong> S.p.A.<br />

Via del Progresso, 16 (Zona Ind.)<br />

35020 Padova<br />

Tel.: +39 049 8 70 13 70<br />

Fax: +39 049 8 70 13 77<br />

<strong>Bosch</strong> <strong>Rexroth</strong> S.p.A.<br />

Via Isonzo, 61<br />

40033 Casalecchio di Reno (Bo)<br />

Tel.: +39 051 29 86 430<br />

Fax: +39 051 29 86 490<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Services B.V.<br />

<strong>Tech</strong>nical Services<br />

Kruisbroeksestraat 1<br />

(P.O. Box 32)<br />

5281 RV Boxtel<br />

Tel.: +31 (0) 411 65 16 40<br />

+31 (0) 411 65 17 27<br />

Fax: +31 (0) 411 67 78 14<br />

+31 (0) 411 68 28 60<br />

services@boschrexroth.nl<br />

<strong>Bosch</strong> <strong>Rexroth</strong> B.V.<br />

Kruisbroeksestraat 1<br />

(P.O. Box 32)<br />

5281 RV Boxtel<br />

Tel.: +31 (0) 411 65 19 51<br />

Fax: +31 (0) 411 65 14 83<br />

www.boschrexroth.nl<br />

Norway - Norwegen<br />

Spain - Spanien<br />

Spain – Spanien<br />

Sweden - Schweden<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AS<br />

Electric Drives & Controls<br />

Berghagan 1 or: Box 3007<br />

1405 Ski-Langhus 1402 Ski<br />

Tel.: +47 (0) 64 86 41 00<br />

Fax: +47 (0) 64 86 90 62<br />

Hotline: +47 (0)64 86 94 82<br />

jul.ruud@rexroth.no<br />

<strong>Bosch</strong> <strong>Rexroth</strong> S.A.<br />

Electric Drives & Controls<br />

Centro Industrial Santiga<br />

Obradors s/n<br />

08130 Santa Perpetua de Mogoda<br />

Barcelona<br />

Tel.: +34 9 37 47 94 00<br />

Fax: +34 9 37 47 94 01<br />

Goimendi S.A.<br />

Electric Drives & Controls<br />

Parque Empresarial Zuatzu<br />

C/ Francisco Grandmontagne no.2<br />

20018 San Sebastian<br />

Tel.: +34 9 43 31 84 21<br />

- service: +34 9 43 31 84 56<br />

Fax: +34 9 43 31 84 27<br />

- service: +34 9 43 31 84 60<br />

sat.indramat@goimendi.es<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AB<br />

Electric Drives & Controls<br />

- Varuvägen 7<br />

(Service: Konsumentvägen 4, Älfsjö)<br />

125 81 Stockholm<br />

Tel.: +46 (0)8 727 92 00<br />

Fax: +46 (0)8 647 32 77<br />

Sweden - Schweden<br />

Switzerland East - Schweiz Ost<br />

Switzerland West - Schweiz West<br />

<strong>Bosch</strong> <strong>Rexroth</strong> AB<br />

Electric Drives & Controls<br />

Ekvändan 7<br />

254 67 Helsingborg<br />

Tel.: +46 (0) 42 38 88 -50<br />

Fax: +46 (0) 42 38 88 -74<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Schweiz AG<br />

Electric Drives & Controls<br />

Hemrietstrasse 2<br />

8863 Buttikon<br />

Tel. +41 (0) 55 46 46 111<br />

Fax +41 (0) 55 46 46 222<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Suisse SA<br />

Av. Général Guisan 26<br />

1800 Vevey 1<br />

Tel.: +41 (0)21 632 84 20<br />

Fax: +41 (0)21 632 84 21<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


2-4 Service & Support <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Europa (Ost) - Europe (East)<br />

vom Ausland: (0) nach Landeskennziffer weglassen<br />

from abroad: don’t dial (0) after country code<br />

Czech Republic - Tschechien<br />

Czech Republic - Tschechien<br />

Hungary - Ungarn<br />

Poland – Polen<br />

<strong>Bosch</strong> -<strong>Rexroth</strong>, spol.s.r.o.<br />

Hviezdoslavova 5<br />

627 00 Brno<br />

Tel.: +420 (0)5 48 126 358<br />

Fax: +420 (0)5 48 126 112<br />

DEL a.s.<br />

Strojírenská 38<br />

591 01 Zdar nad Sázavou<br />

Tel.: +420 566 64 3144<br />

Fax: +420 566 62 1657<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Kft.<br />

Angol utca 34<br />

1149 Budapest<br />

Tel.: +36 (1) 422 3200<br />

Fax: +36 (1) 422 3201<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Sp.zo.o.<br />

ul. Staszica 1<br />

05-800 Pruszków<br />

Tel.: +48 22 738 18 00<br />

– service: +48 22 738 18 46<br />

Fax: +48 22 758 87 35<br />

– service: +48 22 738 18 42<br />

Poland – Polen<br />

Romania - Rumänien<br />

Romania - Rumänien<br />

Russia - Russland<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Sp.zo.o.<br />

Biuro Poznan<br />

ul. Dabrowskiego 81/85<br />

60-529 Poznan<br />

Tel.: +48 061 847 64 62 /-63<br />

Fax: +48 061 847 64 02<br />

East Electric S.R.L.<br />

Bdul Basarabia no.250, sector 3<br />

73429 Bucuresti<br />

Tel./Fax:: +40 (0)21 255 35 07<br />

+40 (0)21 255 77 13<br />

Fax: +40 (0)21 725 61 21<br />

eastel@rdsnet.ro<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Sp.zo.o.<br />

Str. Drobety nr. 4-10, app. 14<br />

70258 Bucuresti, Sector 2<br />

Tel.: +40 (0)1 210 48 25<br />

+40 (0)1 210 29 50<br />

Fax: +40 (0)1 210 29 52<br />

<strong>Bosch</strong> <strong>Rexroth</strong> OOO<br />

Wjatskaja ul. 27/15<br />

127015 Moskau<br />

Tel.: +7-095-785 74 78<br />

+7-095 785 74 79<br />

Fax: +7 095 785 74 77<br />

laura.kanina@boschrexroth.ru<br />

Russia Belarus - Weissrussland<br />

Turkey - Türkei<br />

Turkey - Türkei<br />

Slowenia - Slowenien<br />

ELMIS<br />

10, Internationalnaya<br />

246640 Gomel, Belarus<br />

Tel.: +375/ 232 53 42 70<br />

+375/ 232 53 21 69<br />

Fax: +375/ 232 53 37 69<br />

elmis_ltd@yahoo.com<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Otomasyon<br />

San & Tic. A..S.<br />

Fevzi Cakmak Cad No. 3<br />

34630 Sefaköy Istanbul<br />

Tel.: +90 212 413 34 00<br />

Fax: +90 212 413 34 17<br />

www.boschrexroth.com.tr<br />

Servo Kontrol Ltd. Sti.<br />

Perpa Ticaret Merkezi B Blok<br />

Kat: 11 No: 1609<br />

80270 Okmeydani-Istanbul<br />

Tel: +90 212 320 30 80<br />

Fax: +90 212 320 30 81<br />

remzi.sali@servokontrol.com<br />

www.servokontrol.com<br />

DOMEL<br />

Otoki 21<br />

64 228 Zelezniki<br />

Tel.: +386 5 5117 152<br />

Fax: +386 5 5117 225<br />

brane.ozebek@domel.si<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> Service & Support 2-5<br />

Africa, Asia, Australia – incl. Pacific Rim<br />

Australia - Australien<br />

Australia - Australien<br />

China<br />

China<br />

AIMS - Australian Industrial<br />

Machinery Services Pty. Ltd.<br />

28 Westside Drive<br />

Laverton North Vic 3026<br />

Melbourne<br />

Tel.: +61 3 93 14 3321<br />

Fax: +61 3 93 14 3329<br />

Hotlines: +61 3 93 14 3321<br />

+61 4 19 369 195<br />

enquires@aimservices.com.au<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Pty. Ltd.<br />

No. 7, Endeavour Way<br />

Braeside Victoria, 31 95<br />

Melbourne<br />

Tel.: +61 3 95 80 39 33<br />

Fax: +61 3 95 80 17 33<br />

mel@rexroth.com.au<br />

Shanghai <strong>Bosch</strong> <strong>Rexroth</strong><br />

Hydraulics & Automation Ltd.<br />

Waigaoqiao, Free Trade Zone<br />

No.122, Fu Te Dong Yi Road<br />

Shanghai 200131 - P.R.China<br />

Tel.: +86 21 58 66 30 30<br />

Fax: +86 21 58 66 55 23<br />

richard.yang_sh@boschrexroth.com.cn<br />

gf.zhu_sh@boschrexroth.com.cn<br />

Shanghai <strong>Bosch</strong> <strong>Rexroth</strong><br />

Hydraulics & Automation Ltd.<br />

4/f, Marine Tower<br />

No.1, Pudong Avenue<br />

Shanghai 200120 - P.R.China<br />

Tel: +86 21 68 86 15 88<br />

Fax: +86 21 58 40 65 77<br />

China<br />

China<br />

China<br />

China<br />

<strong>Bosch</strong> <strong>Rexroth</strong> China Ltd.<br />

15/F China World Trade Center<br />

1, Jianguomenwai Avenue<br />

Beijing 100004, P.R.China<br />

Tel.: +86 10 65 05 03 80<br />

Fax: +86 10 65 05 03 79<br />

<strong>Bosch</strong> <strong>Rexroth</strong> China Ltd.<br />

Guangzhou Repres. Office<br />

Room 1014-1016, Metro Plaza,<br />

Tian He District, 183 Tian He Bei Rd<br />

Guangzhou 510075, P.R.China<br />

Tel.: +86 20 8755-0030<br />

+86 20 8755-0011<br />

Fax: +86 20 8755-2387<br />

<strong>Bosch</strong> <strong>Rexroth</strong> (China) Ltd.<br />

A-5F., 123 Lian Shan Street<br />

Sha He Kou District<br />

Dalian 116 023, P.R.China<br />

Tel.: +86 411 46 78 930<br />

Fax: +86 411 46 78 932<br />

Melchers GmbH<br />

BRC-SE, Tightening & Press-fit<br />

13 Floor Est Ocean Centre<br />

No.588 Yanan Rd. East<br />

65 Yanan Rd. West<br />

Shanghai 200001<br />

Tel.: +86 21 6352 8848<br />

Fax: +86 21 6351 3138<br />

Hongkong<br />

India - Indien<br />

India - Indien<br />

India - Indien<br />

<strong>Bosch</strong> <strong>Rexroth</strong> (China) Ltd.<br />

6 th Floor,<br />

Yeung Yiu Chung No.6 Ind Bldg.<br />

19 Cheung Shun Street<br />

Cheung Sha Wan,<br />

Kowloon, Hongkong<br />

Tel.: +852 22 62 51 00<br />

Fax: +852 27 41 33 44<br />

alexis.siu@boschrexroth.com.hk<br />

<strong>Bosch</strong> <strong>Rexroth</strong> (India) Ltd.<br />

Electric Drives & Controls<br />

Plot. No.96, Phase III<br />

Peenya Industrial Area<br />

Bangalore – 560058<br />

Tel.: +91 80 51 17 0-211...-218<br />

Fax: +91 80 83 94 345<br />

+91 80 83 97 374<br />

mohanvelu.t@boschrexroth.co.in<br />

<strong>Bosch</strong> <strong>Rexroth</strong> (India) Ltd.<br />

Electric Drives & Controls<br />

Advance House, II Floor<br />

Ark Industrial Compound<br />

Narol Naka, Makwana Road<br />

Andheri (East), Mumbai - 400 059<br />

Tel.: +91 22 28 56 32 90<br />

+91 22 28 56 33 18<br />

Fax: +91 22 28 56 32 93<br />

singh.op@boschrexroth.co.in<br />

<strong>Bosch</strong> <strong>Rexroth</strong> (India) Ltd.<br />

S-10, Green Park Extension<br />

New Delhi – 110016<br />

Tel.: +91 11 26 56 65 25<br />

+91 11 26 56 65 27<br />

Fax: +91 11 26 56 68 87<br />

koul.rp@boschrexroth.co.in<br />

Indonesia - Indonesien<br />

Japan<br />

Japan<br />

Korea<br />

PT. <strong>Bosch</strong> <strong>Rexroth</strong><br />

Building # 202, Cilandak<br />

Commercial Estate<br />

Jl. Cilandak KKO, Jakarta 12560<br />

Tel.: +62 21 7891169 (5 lines)<br />

Fax: +62 21 7891170 - 71<br />

rudy.karimun@boschrexroth.co.id<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Automation Corp.<br />

Service Center Japan<br />

Yutakagaoka 1810, Meito-ku,<br />

NAGOYA 465-0035, Japan<br />

Tel.: +81 52 777 88 41<br />

+81 52 777 88 53<br />

+81 52 777 88 79<br />

Fax: +81 52 777 89 01<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Automation Corp.<br />

Electric Drives & Controls<br />

2F, I.R. Building<br />

Nakamachidai 4-26-44, Tsuzuki-ku<br />

YOKOHAMA 224-0041, Japan<br />

Tel.: +81 45 942 72 10<br />

Fax: +81 45 942 03 41<br />

<strong>Bosch</strong> <strong>Rexroth</strong>-Korea Ltd.<br />

Electric Drives and Controls<br />

Bongwoo Bldg. 7FL, 31-7, 1Ga<br />

Jangchoong-dong, Jung-gu<br />

Seoul, 100-391<br />

Tel.: +82 234 061 813<br />

Fax: +82 222 641 295<br />

Korea<br />

<strong>Bosch</strong> <strong>Rexroth</strong>-Korea Ltd.<br />

1515-14 Dadae-Dong, Saha-gu<br />

Electric Drives & Controls<br />

Pusan Metropolitan City, 604-050<br />

Tel.: +82 51 26 00 741<br />

Fax: +82 51 26 00 747<br />

eunkyong.kim@boschrexroth.co.kr<br />

Malaysia<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Sdn.Bhd.<br />

11, Jalan U8/82, Seksyen U8<br />

40150 Shah Alam<br />

Selangor, Malaysia<br />

Tel.: +60 3 78 44 80 00<br />

Fax: +60 3 78 45 48 00<br />

hockhwa@hotmail.com<br />

rexroth1@tm.net.my<br />

Singapore - Singapur<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Pte Ltd<br />

15D Tuas Road<br />

Singapore 638520<br />

Tel.: +65 68 61 87 33<br />

Fax: +65 68 61 18 25<br />

sanjay.nemade<br />

@boschrexroth.com.sg<br />

South Africa - Südafrika<br />

TECTRA Automation (Pty) Ltd.<br />

71 Watt Street, Meadowdale<br />

Edenvale 1609<br />

Tel.: +27 11 971 94 00<br />

Fax: +27 11 971 94 40<br />

Hotline: +27 82 903 29 23<br />

georgv@tectra.co.za<br />

Taiwan<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Co., Ltd.<br />

Taichung Industrial Area<br />

No.19, 38 Road<br />

Taichung, Taiwan 407, R.O.C.<br />

Tel : +886 - 4 -235 08 383<br />

Fax: +886 - 4 -235 08 586<br />

jim.lin@boschrexroth.com.tw<br />

david.lai@boschrexroth.com.tw<br />

Taiwan<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Co., Ltd.<br />

Tainan Branch<br />

No. 17, Alley 24, Lane 737<br />

Chung Cheng N.Rd. Yungkang<br />

Tainan Hsien, Taiwan, R.O.C.<br />

Tel : +886 - 6 –253 6565<br />

Fax: +886 - 6 –253 4754<br />

charlie.chen@boschrexroth.com.tw<br />

Thailand<br />

NC Advance <strong>Tech</strong>nology Co. Ltd.<br />

59/76 Moo 9<br />

Ramintra road 34<br />

Tharang, Bangkhen,<br />

Bangkok 10230<br />

Tel.: +66 2 943 70 62<br />

+66 2 943 71 21<br />

Fax: +66 2 509 23 62<br />

Hotline +66 1 984 61 52<br />

sonkawin@hotmail.com<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


2-6 Service & Support <strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong><br />

Nordamerika – North America<br />

USA<br />

Headquarters - Hauptniederlassung<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

5150 Prairie Stone Parkway<br />

Hoffman Estates, IL 60192-3707<br />

Tel.: +1 847 6 45 36 00<br />

Fax: +1 847 6 45 62 01<br />

servicebrc@boschrexroth-us.com<br />

repairbrc@boschrexroth-us.com<br />

USA Central Region - Mitte<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

Central Region <strong>Tech</strong>nical Center<br />

1701 Harmon Road<br />

Auburn Hills, MI 48326<br />

Tel.: +1 248 3 93 33 30<br />

Fax: +1 248 3 93 29 06<br />

USA Southeast Region - Südwest<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

Southeastern <strong>Tech</strong>nical Center<br />

3625 Swiftwater Park Drive<br />

Suwanee, Georgia 30124<br />

Tel.: +1 770 9 32 32 00<br />

Fax: +1 770 9 32 19 03<br />

USA SERVICE-HOTLINE<br />

- 7 days x 24hrs -<br />

+1-800-REX-ROTH<br />

+1 800 739 7684<br />

USA East Region – Ost<br />

USA Northeast Region – Nordost<br />

USA West Region – West<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

Charlotte Regional Sales Office<br />

14001 South Lakes Drive<br />

Charlotte, North Carolina 28273<br />

Tel.: +1 704 5 83 97 62<br />

+1 704 5 83 14 86<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

Northeastern <strong>Tech</strong>nical Center<br />

99 Rainbow Road<br />

East Granby, Connecticut 06026<br />

Tel.: +1 860 8 44 83 77<br />

Fax: +1 860 8 44 85 95<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Corporation<br />

7901 Stoneridge Drive, Suite 220<br />

Pleasant Hill, California 94588<br />

Tel.: +1 925 227 10 84<br />

Fax: +1 925 227 10 81<br />

Canada East - Kanada Ost<br />

Canada West - Kanada West<br />

Mexico<br />

Mexico<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Canada Corporation<br />

Burlington Division<br />

3426 Mainway Drive<br />

Burlington, Ontario<br />

Canada L7M 1A8<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Canada Corporation<br />

5345 Goring St.<br />

Burnaby, British Columbia<br />

Canada V7J 1R1<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Mexico S.A. de C.V.<br />

Calle Neptuno 72<br />

Unidad Ind. Vallejo<br />

07700 Mexico, D.F.<br />

<strong>Bosch</strong> <strong>Rexroth</strong> S.A. de C.V.<br />

Calle Argentina No 3913<br />

Fracc. las Torres<br />

64930 Monterrey, N.L.<br />

Tel.: +1 905 335 5511<br />

Fax: +1 905 335 4184<br />

Hotline: +1 905 335 5511<br />

michael.moro@boschrexroth.ca<br />

Tel. +1 604 205 5777<br />

Fax +1 604 205 6944<br />

Hotline: +1 604 205 5777<br />

david.gunby@boschrexroth.ca<br />

Tel.: +52 55 57 54 17 11<br />

Fax: +52 55 57 54 50 73<br />

mariofelipe.hernandez@boschrexroth.com.m<br />

x<br />

Tel.: +52 81 83 65 22 53<br />

+52 81 83 65 89 11<br />

+52 81 83 49 80 91<br />

Fax: +52 81 83 65 52 80<br />

mario.quiroga@boschrexroth.com.mx<br />

Südamerika – South America<br />

Argentina - Argentinien<br />

Argentina - Argentinien<br />

Brazil - Brasilien<br />

Brazil - Brasilien<br />

<strong>Bosch</strong> <strong>Rexroth</strong> S.A.I.C.<br />

"The Drive & Control Company"<br />

Rosario 2302<br />

B1606DLD Carapachay<br />

Provincia de Buenos Aires<br />

Tel.: +54 11 4756 01 40<br />

+54 11 4756 02 40<br />

+54 11 4756 03 40<br />

+54 11 4756 04 40<br />

Fax: +54 11 4756 01 36<br />

+54 11 4721 91 53<br />

victor.jabif@boschrexroth.com.ar<br />

NAKASE<br />

Servicio Tecnico CNC<br />

Calle 49, No. 5764/66<br />

B1653AOX Villa Balester<br />

Provincia de Buenos Aires<br />

Tel.: +54 11 4768 36 43<br />

Fax: +54 11 4768 24 13<br />

Hotline: +54 11 155 307 6781<br />

nakase@usa.net<br />

nakase@nakase.com<br />

gerencia@nakase.com (Service)<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Ltda.<br />

Av. Tégula, 888<br />

Ponte Alta, Atibaia SP<br />

CEP 12942-440<br />

Tel.: +55 11 4414 56 92<br />

+55 11 4414 56 84<br />

Fax sales: +55 11 4414 57 07<br />

Fax serv.: +55 11 4414 56 86<br />

alexandre.wittwer@rexroth.com.br<br />

<strong>Bosch</strong> <strong>Rexroth</strong> Ltda.<br />

R. Dr.Humberto Pinheiro Vieira, 100<br />

Distrito Industrial [Caixa Postal 1273]<br />

89220-390 Joinville - SC<br />

Tel./Fax: +55 47 473 58 33<br />

Mobil: +55 47 9974 6645<br />

prochnow@zaz.com.br<br />

Columbia - Kolumbien<br />

Reflutec de Colombia Ltda.<br />

Calle 37 No. 22-31<br />

Santafé de Bogotá, D.C.<br />

Colombia<br />

Tel.: +57 1 368 82 67<br />

+57 1 368 02 59<br />

Fax: +57 1 268 97 37<br />

reflutec@etb.net.co<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


<strong>Rexroth</strong> <strong>MLD</strong>-S <strong>Tech</strong>-<strong>FB</strong> <strong>Library</strong> Index 3-1<br />

3 Index<br />

A<br />

Adjustment Function Blocks 1-44<br />

C<br />

Crosscutter Function Blocks 1-19<br />

F<br />

Flying Shear Function Block 1-3<br />

M<br />

MB_RegisterControllerType1 1-35<br />

MC_AbortTrigger 1-17<br />

MC_TouchProbe 1-15<br />

ML(X)_Crosscutter 1-19<br />

MLC <strong>Tech</strong>nology <strong>Library</strong> 1-1<br />

MX(L)_FlyingShear 1-3<br />

MX_ContinuousAdjustType01 1-46<br />

MX_ContinuousAdjustType02 1-49<br />

MX_IncrementalAdjustType01 1-51<br />

R<br />

Register-Controller Function Blocks 1-35<br />

T<br />

Touch Probe Function Blocks 1-13<br />

DOK-<strong>MLD</strong>-S*-<strong>Tech</strong><strong>FB</strong>*****-AW01-EN-D


Printed in Germany

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!