14.11.2012 Views

Arctic plant ecology: From tundra to polar desert in Svalbard - Unis

Arctic plant ecology: From tundra to polar desert in Svalbard - Unis

Arctic plant ecology: From tundra to polar desert in Svalbard - Unis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Arctic</strong> <strong>plant</strong> <strong>ecology</strong>:<br />

<strong>From</strong> <strong>tundra</strong> <strong>to</strong> <strong>polar</strong> <strong>desert</strong> <strong>in</strong> <strong>Svalbard</strong><br />

AB­326 report 2007<br />

Course leaders: Inger Greve Alsos, Christian Körner and David Murray<br />

2007­1<br />

ISBN 978­82­481­0009­6


Content<br />

<strong>Arctic</strong> <strong>plant</strong> <strong>ecology</strong>: <strong>From</strong> <strong>tundra</strong> <strong>to</strong> <strong>polar</strong> <strong>desert</strong> <strong>in</strong> <strong>Svalbard</strong> – summary<br />

Inger Greve Alsos, Christian Körner and David Murray<br />

1. Biodiversity <strong>in</strong> the high <strong>Arctic</strong>: species richness at selected sites <strong>in</strong> <strong>Svalbard</strong>,<br />

78­80°N<br />

Henrik An<strong>to</strong>nsson, Marte Holten Jørgensen and Ane Christensen Tange<br />

2. Life <strong>in</strong> the <strong>Arctic</strong> – a struggle for survival?<br />

Simone Lang, Merete Wiken Dees and Kathr<strong>in</strong> Bockmühl<br />

3. Recruitment along retreat<strong>in</strong>g glaciers<br />

Unni Vik, Ingel<strong>in</strong>n Aarnes and Eike Müller<br />

4. High nutrient levels can compensate for the growth­limit<strong>in</strong>g effect of low<br />

temperatures<br />

Elke Morgner and Christian E. Pettersen<br />

5. Reproductive allocation <strong>in</strong> the high <strong>Arctic</strong><br />

Heike Baldeweg and Emma Bengtsson<br />

6. Freez<strong>in</strong>g resistance <strong>in</strong> high arctic <strong>plant</strong> species of <strong>Svalbard</strong> <strong>in</strong> mid­summer<br />

Christian Körner, Inger Greve Alsos and AB­326 students<br />

2<br />

3<br />

11<br />

33<br />

55<br />

73<br />

83<br />

93


<strong>Arctic</strong> <strong>plant</strong> <strong>ecology</strong>: <strong>From</strong> <strong>tundra</strong> <strong>to</strong> <strong>polar</strong> <strong>desert</strong> <strong>in</strong><br />

<strong>Svalbard</strong> – summary<br />

Inger Greve Alsos 1 , Christian Körner 2 and David Murray 3<br />

1 UNIS – The University Centre <strong>in</strong> <strong>Svalbard</strong>, P.O.Box 156, NO­9171 Longyearbyen, Norway, 2 Institute<br />

of Botany, University of Basel, Schönbe<strong>in</strong>strasse 6, CH­4056 Basel, Switzerland, 3 University of Alaska<br />

Museum of the North, Fairbanks, Alaska, 99775­6960 USA<br />

Introduction<br />

With<strong>in</strong> the <strong>Arctic</strong>, there is a strong climatic gradient from the southern arctic <strong>tundra</strong><br />

zone forest eco<strong>to</strong>ne <strong>to</strong> the <strong>polar</strong> <strong>desert</strong> zone found <strong>to</strong> the very edge of the arctic<br />

landmass (Walker et al. 2005). Three of these zones are present on <strong>Svalbard</strong>, the mid<br />

arctic <strong>tundra</strong> zone (zone C), the northern arctic <strong>tundra</strong> zone (zone B) and the <strong>polar</strong><br />

<strong>desert</strong> zone (zone A, Elvebakk 2005). The mean air temperature dur<strong>in</strong>g the warmest<br />

month <strong>in</strong> these three zones <strong>in</strong> <strong>Svalbard</strong> are 4­6 ºC , 2.5­4 ºC and 1­2.5 ºC, respectively<br />

(Elvebakk 2005). Because temperature is a major fac<strong>to</strong>r determ<strong>in</strong><strong>in</strong>g <strong>plant</strong> diversity <strong>in</strong><br />

the <strong>Arctic</strong> (Rannie 1986, Walker 1995), global climate warm<strong>in</strong>g is expected <strong>to</strong> have<br />

an impact on arctic flora and vegetation. Dur<strong>in</strong>g our course, the focus was thus on<br />

changes <strong>in</strong> <strong>plant</strong> diversity, <strong>plant</strong> distribution, and <strong>plant</strong> traits along the climatic<br />

gradient from bioclimatic zone C <strong>to</strong> A.<br />

Fac<strong>to</strong>rs other than temperature have strong impacts on <strong>plant</strong> life and diversity, e.g.<br />

soil moisture (Raup 1969, Gould & Walker 1999), soil acidity (Gould & Walker<br />

1999, Gough et al. 2000, Karlsen & Elvebakk 2003), nutrient <strong>in</strong>put (Körner 2003),<br />

<strong>plant</strong> productivity (Fox 1992, Jonasson 1992, van der Welle et al. 2003), age of the<br />

terra<strong>in</strong> (Matthews 1992, Moreau 2005) and natural disturbance (Raup 1969). Our site<br />

selection covered a suite of such co­variables.<br />

<strong>Arctic</strong> <strong>plant</strong> communities are expected <strong>to</strong> undergo species turnover due <strong>to</strong> climate<br />

change (Walker et al.2006, Kullman 2000, Alsos et al. 2007). This could cause local<br />

loss or <strong>in</strong>crease <strong>in</strong> <strong>plant</strong> diversity. Although more than 100 hypotheses have been<br />

raised <strong>to</strong> address fac<strong>to</strong>rs determ<strong>in</strong><strong>in</strong>g biodiversity (Grime 1973, Palmer 1994),<br />

variance <strong>in</strong> species diversity is often poorly expla<strong>in</strong>ed by predic<strong>to</strong>r variables (Grace<br />

1999). Understand<strong>in</strong>g this issue is importance <strong>to</strong> predict<strong>in</strong>g short and long­term<br />

effects of climate change on arctic <strong>tundra</strong>. In project 1, we <strong>in</strong>vestigated how soil<br />

temperature, soil moisture, soil pH, exposure, slope angle, bioclimatic zones, and<br />

productivity were related <strong>to</strong> vascular <strong>plant</strong> diversity <strong>in</strong> <strong>Svalbard</strong>.<br />

Species may have different amplitudes of <strong>to</strong>lerance <strong>to</strong> environmental fac<strong>to</strong>rs (Raup<br />

1969, Karlsen & Elvebakk 2003). Some have wide amplitudes, are broadly <strong>to</strong>lerant,<br />

whereas others have more narrow amplitude. The question is whether widespread<br />

species have a wide ecological amplitude or could they have a narrow <strong>to</strong>lerance for<br />

specific habitats, but these habitats are widespread? This is <strong>in</strong>vestigated <strong>in</strong> project 2.<br />

Special emphasis was on Euphrasia wettste<strong>in</strong>ii, a thermophilic annual which seems <strong>to</strong><br />

have spread locally <strong>in</strong> <strong>Svalbard</strong> dur<strong>in</strong>g recent years, a period with warmer than<br />

average temperatures.<br />

3


It is expected that northward expansion of southern species dom<strong>in</strong>at<strong>in</strong>g <strong>in</strong> the Low<br />

<strong>Arctic</strong>, could cause problems <strong>to</strong> high arctic species with low competitive abilities.<br />

However, retreat<strong>in</strong>g glaciers may provide new habitats <strong>in</strong> which the high arctic<br />

species may colonise and persist dur<strong>in</strong>g periods of warmer climate . The ability <strong>to</strong><br />

colonise newly deglaciated terra<strong>in</strong> varies among species (Matthews 1992). In project<br />

3 we studied glacial succession patterns <strong>in</strong> the three bioclimatic zones <strong>to</strong> identify high<br />

arctic species that are not represented <strong>in</strong> up <strong>to</strong> 100 years old successional stages and<br />

therefore might be at risk of ext<strong>in</strong>ction <strong>in</strong> a warmer climate.<br />

Low temperatures dur<strong>in</strong>g a short grow<strong>in</strong>g season reduce soil nutrient availability.<br />

S<strong>in</strong>ce low temperature and low nutrient availability may <strong>in</strong>teract, it is difficult <strong>to</strong><br />

dist<strong>in</strong>guish the impact of each of these variables (Körner 2003). Counter­<strong>in</strong>tuitively,<br />

leaves from <strong>plant</strong>s from extremely cold climates had been found <strong>to</strong> be richer <strong>in</strong><br />

macronutients (N, P) than <strong>plant</strong>s from warmer environments, which had been<br />

expla<strong>in</strong>ed as 'luxurious consumption' (Körner 1989). Locally, the <strong>in</strong>put of nutrient<br />

can be high <strong>in</strong> <strong>Svalbard</strong> due <strong>to</strong> birds or mammals. Especially high levels of nutrients<br />

are found under bird cliffs. The aim of study 4 was <strong>to</strong> test whether temperature per se<br />

controls <strong>plant</strong> growth or whether growth is constra<strong>in</strong>ed by temperature­<strong>in</strong>duced<br />

nutrient shortage.<br />

In cold climates, <strong>plant</strong>s are generally smaller than <strong>in</strong> warm climates, and as life<br />

conditions become more adverse m<strong>in</strong>iaturization of <strong>plant</strong>s progresses. Are the<br />

vegetative and reproductive structures similarly affected (isometric allocation), or do<br />

<strong>plant</strong>s give priority <strong>to</strong> one of the two (asymmetric allocation), which would h<strong>in</strong>t at<br />

selective pressure (evolutionary adaptation)? In alp<strong>in</strong>e environments it has been found<br />

that the allocation of resources shifts <strong>to</strong>wards the reproductive structures as altitudes<br />

<strong>in</strong>creases (Fabbro & Körner 2003). In study 5, we explore this for the first time <strong>in</strong> the<br />

<strong>Arctic</strong>.<br />

Climate change is not only expected <strong>to</strong> result <strong>in</strong> warmer conditions <strong>in</strong> the arctic, but<br />

also more extreme weather. This may even <strong>in</strong>clude more frequent or more <strong>in</strong>tense<br />

freez<strong>in</strong>g events dur<strong>in</strong>g the grow<strong>in</strong>g period due <strong>to</strong> changed atmospheric circulation,<br />

despite overall (mean) warm<strong>in</strong>g. Freez<strong>in</strong>g resistance is the first and most fundamental<br />

environmental filter <strong>plant</strong> species have <strong>to</strong> pass <strong>to</strong> establish susta<strong>in</strong>able growth <strong>in</strong> the<br />

<strong>Arctic</strong>. However, even arctic <strong>plant</strong>s are susceptible <strong>to</strong> freez<strong>in</strong>g when they are active,<br />

i.e. dur<strong>in</strong>g the grow<strong>in</strong>g season. Tissues of arctic and alp<strong>in</strong>e <strong>plant</strong>s may <strong>to</strong>lerate almost<br />

any temperature (some even liquid nitrogen) when they are dormant, but might be<br />

killed by temperatures between ­2 and ­9 °C, when actively grow<strong>in</strong>g and flower<strong>in</strong>g.<br />

Hence, it is well established that extreme summer events are the critical issue <strong>to</strong> look<br />

at (for a review see Körner 2003). Dur<strong>in</strong>g the course, we tested the freez<strong>in</strong>g resistance<br />

of 12 species.<br />

Material and methods<br />

Thirteen students from Norway, Sweden and Germany, study<strong>in</strong>g at n<strong>in</strong>e different<br />

<strong>in</strong>stitutions, participated <strong>in</strong> the course. The students worked <strong>in</strong> groups of two or three.<br />

All students participated <strong>in</strong> data collection for all projects, whereas each group was<br />

responsible for study design, analys<strong>in</strong>g and writ<strong>in</strong>g about their study. Data were<br />

collected dur<strong>in</strong>g a seven days cruise with M/S S<strong>to</strong>ckholm. We visited 10 different<br />

4


localities <strong>in</strong> western and northern <strong>Svalbard</strong>. We visited one bird cliff and one glacier<br />

foreland <strong>in</strong> each bioclimatic zone as well as sites with vegetation typical for each<br />

zone.<br />

Two <strong>to</strong> six sites were visited with<strong>in</strong> each of the ten localities, and a <strong>to</strong>tal of 88 plots<br />

were analysed among sites. The plots were randomly chosen for unbiased application<br />

of plot sampl<strong>in</strong>g. The po<strong>in</strong>t <strong>in</strong>tercept method was used <strong>to</strong> record the vascular species<br />

with<strong>in</strong> each plot (Bråthen & Hagberg 2004). At each site, 50 cm x 50 cm quadrats<br />

with 25 po<strong>in</strong>ts of equal <strong>in</strong>tercepts of 10 cm were used. In most cases three replicates<br />

were analysed per sites but sometimes two or four replicates were recorded depend<strong>in</strong>g<br />

on time and heterogeneity of the vegetation. Additional species <strong>in</strong> the plot were also<br />

recorded. The percentage cover of vascular <strong>plant</strong>s, bryophytes, lichens, bare<br />

ground/rocks, and cryp<strong>to</strong>gram crust was estimated for each plot. The follow<strong>in</strong>g<br />

environmental fac<strong>to</strong>rs were recorded at each plot: soil temperature, soil moisture, soil<br />

pH, exposure, slope angle, bioclimatic zones, and productivity. Species list for each<br />

site were compiled. These data were shared among project 1 (all sites except the<br />

glacier forelands), 2 (all sites) and 3 (only glacier foreland sites).<br />

To explore whether high nutrient <strong>in</strong>put could compensate for low temperatures, and <strong>to</strong><br />

f<strong>in</strong>d out how <strong>plant</strong>s allocate resources <strong>in</strong><strong>to</strong> growth and reproduction, biometric <strong>plant</strong><br />

traits were collected for as many species as possible. Data were collected from 18<br />

species below bird cliffs and <strong>in</strong> areas with no additional nutrients <strong>in</strong>put. For the<br />

reproduction project, data were collected for a <strong>to</strong>tal of 37 species: 17 species <strong>in</strong><br />

bioclimatic zone A, 19 species <strong>in</strong> bioclimatic zone B and 23 species <strong>in</strong> bioclimatic<br />

zone C. Aboveground <strong>plant</strong> height, longest leaf length (without petiole) or width (if<br />

the width was larger than the length), and largest blossom diameter (or length of the<br />

whole <strong>in</strong>florescence for gram<strong>in</strong>oids) were measured. At least three samples of each<br />

herbaceous species were harvested. In addition, 18 samples of aboveground biomass<br />

was harvested <strong>in</strong> representative full cover 10 x 10 cm plots, dried and weighed.<br />

For the cold resistance test, at least five mature leaves and five non­senescent, fully<br />

open <strong>in</strong>florescences of 12 species were collected for each of the follow<strong>in</strong>g treatments:<br />

a cool room at +5 °C (control), a freezer set at ­18 °C (guaranteed freez<strong>in</strong>g damage)<br />

and a freezer set <strong>to</strong> the expected critical range of ­7 °C. Damage was visually<br />

<strong>in</strong>spected.<br />

The students had ten days for analys<strong>in</strong>g all data and writ<strong>in</strong>g their reports. Some<br />

modifications were made on the reports after the course.<br />

Results and discussion<br />

Species diversity, on a landscape as well as at a more local scale, tended <strong>to</strong> decrease<br />

from bioclimatic zone C <strong>to</strong> A (An<strong>to</strong>nsson, Jørgensen and Tange). This can be<br />

expla<strong>in</strong>ed by a decrease <strong>in</strong> vegetation cover from bioclimatic zones C <strong>to</strong> A, as<br />

supported by ANOVA analyses show<strong>in</strong>g significant relations between species density<br />

and the proportion of bare ground <strong>to</strong> <strong>plant</strong> cover. In addition, fewer <strong>plant</strong>s are adapted<br />

<strong>to</strong> the harsh conditions present there (Körner 2003, PAF 2007). This decrease, though<br />

not significant, agrees with previous studies from <strong>Svalbard</strong> (Marte<strong>in</strong>sdòttir & Arnesen<br />

2006) and the <strong>Arctic</strong> (Young 1971, Walker 1995). The relation between species<br />

diversity and the other environmental fac<strong>to</strong>rs was less clear.<br />

5


Our results suggest that: species diversity, on a landscape as well as local scale,<br />

decreases <strong>in</strong> relation <strong>to</strong> bioclimatic zones (from C <strong>to</strong> A); whereas the number of<br />

species <strong>in</strong> different vegetation types rema<strong>in</strong>s fairly constant throughout the <strong>Arctic</strong>.<br />

Data on ecological amplitude were collected for 67 vascular <strong>plant</strong> species (Lang, Dees<br />

and Bockmühl). The most important fac<strong>to</strong>rs determ<strong>in</strong><strong>in</strong>g distribution of <strong>plant</strong> species<br />

<strong>in</strong> <strong>Svalbard</strong> were pH and bioclimatic zones. There was no species with a pH<br />

amplitude rang<strong>in</strong>g from low <strong>to</strong> high pH <strong>to</strong>lerance <strong>in</strong> bioclimatic zone C, but one and<br />

three <strong>in</strong> bioclimatic zone B and A, respectively. The ecological amplitude of the<br />

species found <strong>in</strong> <strong>Svalbard</strong> were with<strong>in</strong> the range recorded <strong>in</strong> Greenland (Böcher 1963,<br />

Gelt<strong>in</strong>g 1934, Raup 1965, Raup 1969, Sørensen 1933, Karlsen & Elvebakk. 2003). A<br />

m<strong>in</strong>ority of species was found <strong>to</strong> be widely spread and cover<strong>in</strong>g a wide amplitudes<br />

regard<strong>in</strong>g pH. The majority of the species studied possessed narrow <strong>to</strong> medium wide<br />

amplitudes regard<strong>in</strong>g pH, yet they were widespread on <strong>Svalbard</strong>. No significant<br />

correlation was found between the number of localities where the species was found<br />

and the potential distribution area based on substrate type. Thus, the hypothesis that<br />

widespread species possess a wide ecological amplitude was rejected.<br />

On the glacier forelands <strong>in</strong> bioclimatic zone C and B, the flora differed on mora<strong>in</strong>es of<br />

different ages (Vik, Aarnes and Müller). Thus, these glacier forelands follow the<br />

succession pattern of species substitution with time as observed <strong>in</strong> other studies<br />

(Moreau 2005, Hodk<strong>in</strong>son & Coulson 2003, Jones & Henry 2003). In bioclimatic<br />

zone A however, the vascular <strong>plant</strong> flora of the mora<strong>in</strong>es were very similar<br />

irrespective of mora<strong>in</strong>es’ age and no clear succession pattern could be found. Species<br />

richness <strong>in</strong>creases <strong>in</strong> bioclimatic zone C and B with time whilst <strong>in</strong> bioclimatic zone A<br />

it was comparatively constant. The vegetation <strong>in</strong> bioclimatic zone A is scattered and<br />

often consists of only s<strong>in</strong>gle, <strong>in</strong>dividual <strong>plant</strong>s. Thus, these marg<strong>in</strong>al populations of<br />

vascular <strong>plant</strong>s rarely develop beyond <strong>in</strong>itial succession phases (Svoboda & Henry<br />

1987). To our knowledge, no other glacial forelands <strong>in</strong> bioclimatic zone A have been<br />

studied, but we expect that lack of clear, successional stages is a general feature of<br />

glaciers forelands <strong>in</strong> such extreme environments. The high arctic species M<strong>in</strong>uartia<br />

rossii, Festuca hyperborea and Poa abbreviata were not found on the glacier<br />

forelands. More glacier forelands should be <strong>in</strong>vestigated <strong>to</strong> see if these habitats could<br />

provide a refugia, at least temporary, for these species <strong>in</strong> a warmer climate.<br />

Measurements of 778 <strong>in</strong>dividuals of 19 different vascular <strong>plant</strong> species showed a<br />

decrease <strong>in</strong> <strong>plant</strong> height, leaf size, and biomass from bioclimatic zone C <strong>to</strong> A<br />

(Morgner and Pettersen). There was a positive correlation between <strong>plant</strong> height, leaf<br />

size, and biomass with temperature, as well as nutrient availability. However, there<br />

was also a significant <strong>in</strong>teraction between temperature and nutrient availability <strong>in</strong> their<br />

effect on <strong>plant</strong> growth. Increased nutrient levels seemed <strong>to</strong> compensate for the growth<br />

limit<strong>in</strong>g effect of temperature <strong>in</strong> bioclimatic zone B and C, but not so <strong>in</strong> zone A. Thus,<br />

this study provides support <strong>to</strong> the hypothesis that high nutrient availability can<br />

compensate for the growth limit<strong>in</strong>g effect of low temperatures, but at the thermal limit<br />

for <strong>plant</strong> growth, temperature itself sets the limit rather than nutrients. Further support<br />

for this hypothesis was evident from the biomass samples. The biomass per unit land<br />

area of full cover plots decl<strong>in</strong>ed slightly from bioclimatic zone C <strong>to</strong> A, and bird cliffs<br />

showed much higher biomass than nearby reference sites. The relative fertilizer effect<br />

6


seamed <strong>to</strong> decrease from zone C <strong>to</strong> A, but the low number of replicates did not allow<br />

a statistical test of this.<br />

As <strong>plant</strong> size decreases from bioclimatic zone C <strong>to</strong> A, the relative <strong>in</strong>vestment <strong>in</strong><br />

reproductive structure <strong>in</strong>creased <strong>in</strong> forbs (Baldeweg and Bengtsson). Gram<strong>in</strong>oids on<br />

the other hand, change isometrically along the same gradient. This is probably due <strong>to</strong><br />

different poll<strong>in</strong>ation systems. Insect poll<strong>in</strong>ated species have <strong>to</strong> attract poll<strong>in</strong>a<strong>to</strong>rs <strong>in</strong> an<br />

<strong>in</strong>creas<strong>in</strong>gly barren landscape with overproportionally showy flowers. Poll<strong>in</strong>a<strong>to</strong>r­<br />

driven poll<strong>in</strong>ation thus appears <strong>to</strong> select <strong>in</strong>florescence size differently from w<strong>in</strong>d­<br />

driven poll<strong>in</strong>ation.<br />

The cold resistance test showed that the 12 species tested exhibited a broad damage<br />

spectrum from zero <strong>to</strong> 100% (Körner and Alsos). We concluded that dur<strong>in</strong>g the<br />

grow<strong>in</strong>g season, freez<strong>in</strong>g temperatures of ­7 °C would damage a significant fraction<br />

of the arctic flora. Given that ­10 °C has been recorded for air temperature <strong>in</strong><br />

bioclimatic zone C <strong>in</strong> June, this means that earlier spr<strong>in</strong>g growth <strong>in</strong> the course of<br />

global warm<strong>in</strong>g at an otherwise unchanged likelihood of the occurrence of such an<br />

extreme events would lead <strong>to</strong> massive losses of tissue and above ground productivity.<br />

Our survey confirms knowledge from the Alps for the critical range of temperature <strong>to</strong><br />

be explored <strong>in</strong> a more detailed assessment The study also <strong>in</strong>dicates that it matters a<br />

lot which species are exam<strong>in</strong>ed. Overall, the data appear <strong>to</strong> match the summer<br />

freez<strong>in</strong>g <strong>to</strong>lerance known for alp<strong>in</strong>e <strong>plant</strong>s of the temperate zone (Körner 2003) and<br />

do not <strong>in</strong>dicate a greater frost hard<strong>in</strong>ess for these high arctic <strong>plant</strong>s as had been<br />

suggested from experiments with Saxifraga oppositifolia under controlled growth<br />

conditions (Robberecht and Junttila 1992).<br />

References<br />

Alsos, I.G., Eidesen, P.B., Ehrich, D., Skrede, I., Westergaard, K., Jacobsen, G.H.,<br />

Landvik, J.Y., Taberlet, P., Brochmann, C. 2007: Frequent Long­Distance Plant<br />

Colonization <strong>in</strong> the Chang<strong>in</strong>g <strong>Arctic</strong>. Science 316: 1606 – 1609<br />

Bråthen, K. A. & Hagberg, O. 2004: More efficient estimation of <strong>plant</strong> biomass.<br />

Journal of Vegetation Science, 15: 653­660<br />

Böcher, T. W. 1963: Phy<strong>to</strong>geography of middle west Greenland. Meddelelser om<br />

Grønland, 148<br />

Elvebakk, A. 2005: A vegetation map of <strong>Svalbard</strong> on the scale 1 : 3.5 mill.<br />

Phy<strong>to</strong>coenologia 35: 951­967<br />

Fabbro T. & Körner C. 2004: Altitud<strong>in</strong>al differences <strong>in</strong> flower traits and reproductive<br />

allocation. Flora 199: 70­81<br />

Fox, J.F. 1992: Responses of diversity and growth form dom<strong>in</strong>ance <strong>to</strong> fertility <strong>in</strong><br />

Alaskan <strong>tundra</strong> fellfield communities. <strong>Arctic</strong> and Alp<strong>in</strong>e research 24:233­237<br />

Gelt<strong>in</strong>g, P. 1934: Studies on the vascular <strong>plant</strong>s of east Greenland between Franz<br />

Joseph Fjord and Dove Bay (Lat. 73° 15’ – 76° 20’ N.). Meddelelser om Grønland,<br />

101<br />

7


Gough, L., Shaver, G.R., Carroll, J., Royer, D.L. & Laundre, J.A. 2000: Vascular<br />

<strong>plant</strong> species richness <strong>in</strong> Alaskan arctic <strong>tundra</strong>: the importance of soil pH. Journal of<br />

Ecology 88: 54­66<br />

Gould, W.A. & Walker, M.D. 1999: Plant communities and landscape diversity along<br />

a Canadian <strong>Arctic</strong> river. Journal of Vegetation Science 10: 537­548<br />

Grace, J. B. 1999: The fac<strong>to</strong>rs controll<strong>in</strong>g species density <strong>in</strong> herbaceous <strong>plant</strong><br />

communities: an assessment. Perspectives <strong>in</strong> Plant Ecology, Evolution and<br />

Systematics 2: 1­28<br />

Grime, J.P. 1973: Control of species density <strong>in</strong> herbaceous vegetation. J. Environ.<br />

Manage. 1: 151–167<br />

Hodk<strong>in</strong>son, I. D., Coulson, S. J. & Webb, N. R. 2003: Community assembly along<br />

proglacial chronosequences <strong>in</strong> the high Arcic: vegetation and soil development <strong>in</strong><br />

north­west <strong>Svalbard</strong>. Journal of Ecology 91, 651­663<br />

Jonasson, S. 1992: Plant­responses <strong>to</strong> fertilization and species removal <strong>in</strong> <strong>tundra</strong><br />

related <strong>to</strong> ommunity structure and clonality. Oikos 63: 420­429<br />

Jones. G. & Henry, G. H. R. 2003: Primary <strong>plant</strong> succession on recently deglaciated<br />

terra<strong>in</strong> <strong>in</strong> the Canadian High <strong>Arctic</strong>. Journal of Biogeography 30, 277­296<br />

Karlsen, S. R. & A. Elvebakk 2003: A method us<strong>in</strong>g <strong>in</strong>dica<strong>to</strong>r <strong>plant</strong>s <strong>to</strong> map local<br />

climatic variation <strong>in</strong> the Kangerlussuaq/Scoresby Sund area, East Greenland.<br />

Journal of Biogeography 30: 1469­1491<br />

Kullman, L. 2000. Tree­limit rise and recent warm<strong>in</strong>g: a geoecological case study from the<br />

Swedish Scandes. Norsk. geografisk Tidsskrift 54: 49­59<br />

Körner C. 1989. The nutritional status of <strong>plant</strong>s from high altitudes. A worldwide<br />

comparison. Oecologia: 81: 379­391<br />

Körner, C. 2003: Alp<strong>in</strong>e <strong>plant</strong> Life. Spr<strong>in</strong>ger, Berl<strong>in</strong><br />

Marte<strong>in</strong>sdóttir, B. & Arnesen, G. 2006: Species richness of vascular <strong>plant</strong>s and<br />

cryp<strong>to</strong>games <strong>in</strong> the High <strong>Arctic</strong>: no universal pattern observed <strong>in</strong> relation <strong>to</strong> primary<br />

productivity. Pp. 11­22 <strong>in</strong> I.S. Jónsdóttir: Explor<strong>in</strong>g <strong>plant</strong>­ecological patterns at different<br />

spatial scales <strong>in</strong> <strong>Svalbard</strong>. UNIS publication series 2006­1, www.unis.no<br />

Matthews, J. A. 1992: The <strong>ecology</strong> of recently deglaciated terra<strong>in</strong>. A geoecological<br />

approach <strong>to</strong> glacier forelands and primary succession. Cambridge, Cambridge<br />

University Press<br />

Moreau, M., Laffly, D., Joly, D. & Brossard, T. 2005: Analysis of <strong>plant</strong> colonization<br />

on an arctic mora<strong>in</strong>e s<strong>in</strong>ce the end of the little Ice Age us<strong>in</strong>g remotely sensed data<br />

and a Bayesian approach. Remote Sens<strong>in</strong>g of Environment 99, 244­253<br />

PAF. 2007: Checklist of the Panarctic Flora (PAF). Draft version. I: Elven, R.,<br />

Murray, D. F., Razzhiv<strong>in</strong>, V. & Yurtsev, B. A. (red.). Oslo, Univ. of Oslo<br />

Palmer, M.W. 1994: Variation <strong>in</strong> species richness: <strong>to</strong>wards a unification of<br />

hypotheses. Folia Geobotanica & Phy<strong>to</strong>taxonomica 29: 511–530<br />

Rannie, W. F. 1986: Summer air temperature and number of vascular species <strong>in</strong> arctic<br />

Canada. <strong>Arctic</strong> 39: 133­137<br />

8


Raup, H. M. 1965: The flower<strong>in</strong>g <strong>plant</strong>s and ferns of the Mesters Vig district,<br />

northeast Greenland. Meddelelser om Grønland, 166<br />

Raup, H. M. 1969: The relation of the vascular flora <strong>to</strong> some fac<strong>to</strong>rs of site <strong>in</strong> the<br />

Mester Vig district, northeast Greenland. Meddelelser om Grønland, 176: 1­80<br />

Robberecht, R. & Junttila, O. 1992: The Freez<strong>in</strong>g Response of an <strong>Arctic</strong> Cushion<br />

Plant, Saxifraga caespi<strong>to</strong>sa L.: Acclimation, Freez<strong>in</strong>g Tolerance and Ice Nucleation.<br />

Ann Bot 70:129­135<br />

Svoboda, J., Henry, G. H. R. 1987: Succession <strong>in</strong> marg<strong>in</strong>al arctic environments.<br />

<strong>Arctic</strong> and Alp<strong>in</strong>e Research 19, No 4, 373­384<br />

Sørensen, T. 1933: The vascular <strong>plant</strong>s of East Greenland from 71° 00’ <strong>to</strong> 73° 30’ N.<br />

Meddelelser om Grønland. 101<br />

Walker, M. D. 1995: Patterns and causes of <strong>Arctic</strong> <strong>plant</strong> community diversity. <strong>Arctic</strong><br />

and alp<strong>in</strong>e biodiversity: Pattern, causes and ecosystem consequences. In : F. S.<br />

Chap<strong>in</strong> III and C. Körner. Berl<strong>in</strong>, Spr<strong>in</strong>ger­Verlag: 3­20<br />

Walker, M. D., Wahren, H. C., Hollister R. D., Henry, G. H. R., Ahlquist, L. E.,<br />

Alatalo,<br />

J. M., Bret­Harte, S. M., Calef, M. P., Callaghan, T. V., Carroll, A. B., Epste<strong>in</strong>, H.<br />

E., Jónsdóttir, I. S., Kle<strong>in</strong>, J. A., Magnússon, B., Molau, U., Oberbauer, S. F., Rewa<br />

S. P., Rob<strong>in</strong>son, C. H., Shaver, G. R., Sud<strong>in</strong>g, K. N., Thompson, , C. C., Tolvanen,<br />

A., Totland, Ø., Turner, P. L., Tweedie, C. E., Webber, P. J. & Wookey, P. A. 2006:<br />

Plant community responses <strong>to</strong> experimental warm<strong>in</strong>g across the <strong>tundra</strong> biome.<br />

Proceed<strong>in</strong>gs of the National Academy of Sciences of the Unites States of America<br />

103, 1342­1346<br />

van der Welle, M.E.W., Vermeulen, P.J., Shaver, G.R. & Berendse, F. 2003: Fac<strong>to</strong>rs<br />

determ<strong>in</strong><strong>in</strong>g <strong>plant</strong> species richness <strong>in</strong> Alaskan arctic <strong>tundra</strong>. Journal of Vegetation<br />

Science 14: 711­720<br />

Young S.B. 1971: The vascular flora of St. Lawrence Island with special reference <strong>to</strong><br />

floristic zonation <strong>in</strong> the arctic regions. Contrib Gray Herb 201:11­115<br />

9


Biodiversity <strong>in</strong> the High <strong>Arctic</strong>: species richness at<br />

selected sites <strong>in</strong> <strong>Svalbard</strong>, 78­80°N<br />

Henrik An<strong>to</strong>nsson 1 , Marte Holten Jørgensen 2 , and Ane Christensen Tange 3<br />

1 Department of Plant and Environmental Sciences, Göteborg University. Box 460 S­405 30 Göteborg,<br />

Sweden. E­mail: henrik.an<strong>to</strong>nsson@dpes.gu.se. 2 Program for Molecular Ecology and Biosystematics,<br />

Department of Biology, University of Oslo, P.O. Box 1066 Bl<strong>in</strong>dern, NO­0316 Oslo, Norway.<br />

3 Department of Biology, Norwegian University of Science and Technology, NTNU NO­7491<br />

Trondheim, Norway.<br />

Abstract<br />

Biodiversity is <strong>to</strong>day greatly endangered by human activities, particularly <strong>in</strong> the<br />

vulnerable <strong>Arctic</strong>. We studied 15 <strong>plant</strong> communities <strong>in</strong> the arctic archipelago of<br />

<strong>Svalbard</strong> (78­80°N) distributed <strong>in</strong> three different bioclimatic zones <strong>in</strong> search for<br />

differences <strong>in</strong> species richness, and causes for these. We recorded biodiversity as po<strong>in</strong>t<br />

frame <strong>in</strong>terceptions (0.25 m 2 ; 25 po<strong>in</strong>ts), species present <strong>in</strong> frames, and species lists<br />

for each site visited, and compared them with major environmental fac<strong>to</strong>rs; soil<br />

temperature, soil moisture, soil pH, exposure, slope angle, bioclimatic zones, and<br />

productivity. The result<strong>in</strong>g dataset was analysed us<strong>in</strong>g Kruskal­Wallis tests, Kendall’s<br />

τ correlations, ANOVA and ord<strong>in</strong>ation methods (PCA and RDA). Our results suggest<br />

that: species diversity, on a landscape as well as local scale, decreases <strong>in</strong> relation <strong>to</strong><br />

bioclimatic zones (from C <strong>to</strong> A). Ord<strong>in</strong>ation methods implied that species richness is<br />

correlated with bioclimatic zones, soil temperature, production and ground cover. We<br />

conclude that biodiversity <strong>in</strong> the <strong>Arctic</strong> is highly scale­dependent and that this model<br />

needs more test<strong>in</strong>g, <strong>in</strong> order for policymakers <strong>to</strong> make wise decisions on conservation<br />

of <strong>Arctic</strong> environments.<br />

Keywords: <strong>Arctic</strong>, bioclimatic zones, biodiversity, <strong>plant</strong>s, species richness, <strong>Svalbard</strong><br />

Introduction<br />

Human activities are reduc<strong>in</strong>g the number of species worldwide at a rapid pace with<br />

potentially devastat<strong>in</strong>g effects on ecosystem services, and <strong>in</strong> the long run economical<br />

and social consequences (Hooper et al. 2005). Climate changes <strong>in</strong>duce migration of<br />

species, loss of some species, replacement of some and arrival of <strong>in</strong>vad<strong>in</strong>g species <strong>in</strong><strong>to</strong><br />

<strong>plant</strong> communities. Proof for this pattern has been published from numerous sites<br />

along the <strong>tundra</strong> and the <strong>Arctic</strong>, from experimental warn<strong>in</strong>g experiments (Walker et<br />

al.2006), as well as real changes <strong>in</strong> vegetation (Kullman 2000, Truong 2003). This<br />

may cause large­scale changes <strong>in</strong> community composition, which surely will have a<br />

detrimental effect on arctic and alp<strong>in</strong>e ecosystems. Concerns for loss of biodiversity<br />

are raised throughout the world and <strong>in</strong>vestigations on what fac<strong>to</strong>rs are most important<br />

<strong>in</strong> determ<strong>in</strong><strong>in</strong>g biodiversity are heavily debated <strong>in</strong> the scientific community. Increas<strong>in</strong>g<br />

our knowledge on this issue is not merely of academic <strong>in</strong>terest, but of great importance<br />

<strong>in</strong> order <strong>to</strong> predict short and long­term effects of climate change on arctic <strong>tundra</strong>.<br />

The first general model concern<strong>in</strong>g what determ<strong>in</strong>es <strong>plant</strong> diversity was developed by<br />

Grime (1973). His humpback or <strong>in</strong>termediate disturbance model of <strong>plant</strong> species<br />

density predicted that species richness is depend<strong>in</strong>g on level of stress and production.<br />

Follow<strong>in</strong>g Grime, a large number of studies on this <strong>to</strong>pic have been published, most of<br />

11


them support<strong>in</strong>g his theory (e.g., Hus<strong>to</strong>n 1979, Tilman 1982, Taylor 1990). In<br />

summary, the majority of theories and hypotheses accentuate <strong>in</strong>termediate levels of<br />

productivity, disturbance, pH and other abiotic fac<strong>to</strong>rs as yield<strong>in</strong>g the highest levels of<br />

species richness. The issue is, however, very complex, and more than 100 hypotheses<br />

on variables controll<strong>in</strong>g species richness have been presented throughout the years<br />

(Palmer 1994), and variance <strong>in</strong> species density is often poorly expla<strong>in</strong>ed by predic<strong>to</strong>r<br />

variables (Grace 1999).<br />

Although conta<strong>in</strong><strong>in</strong>g a vascular <strong>plant</strong> flora of about 2000 taxa of vascular <strong>plant</strong>s<br />

(Elven et al. 2007), and at least another 1000 taxa of bryophytes and lichens, the arctic<br />

flora conta<strong>in</strong>s fewer species than ecosystems of lower latitudes (Gas<strong>to</strong>n et al. 1998).<br />

Walker (1995) propose that there is a f<strong>in</strong>e­pored filter of the extreme environmental<br />

conditions present <strong>in</strong> the <strong>Arctic</strong>, effectively exclud<strong>in</strong>g many <strong>plant</strong> species from<br />

establishment <strong>in</strong> this region. Studies on variation of species richness along abiotic<br />

gradients <strong>in</strong> arctic and alp<strong>in</strong>e communities po<strong>in</strong>t out temperature (Young 1971, Rannie<br />

1986, Walker 1995), soil moisture (Gould & Walker 1999, Michalet et al. 2002), soil<br />

acidity (Gould & Walker 1999, Gough et al. 2000, Roem & Berendse 2000),<br />

productivity (Fox 1992, Jonasson 1992, Theodose & Bowman 1997, Gough et al.<br />

2002, Grytnes 2002, van der Welle et al. 2003, Constanza et al. 2007) as important<br />

fac<strong>to</strong>rs for species richness, and that local conditions play a crucial role (e.g., Gough et<br />

al. 2000).<br />

Our aim was <strong>to</strong> <strong>in</strong>vestigate the major fac<strong>to</strong>rs determ<strong>in</strong><strong>in</strong>g vascular <strong>plant</strong> diversity <strong>in</strong><br />

different communities along a latitud<strong>in</strong>al gradient <strong>in</strong> the High <strong>Arctic</strong>, expect<strong>in</strong>g a<br />

decrease <strong>in</strong> species richness mov<strong>in</strong>g northwards through the bioclimatic zones C, B,<br />

and A (CAVM Team 2003). <strong>From</strong> our general hypothesis, the follow<strong>in</strong>g predictions<br />

were outl<strong>in</strong>ed: Biodiversity is correlated with bioclimatic zone, community biovolume<br />

(as a substitute for biomass) is correlated with bioclimatic zone and species richness,<br />

and species richness is correlated with soil moisture and soil acidity.<br />

Material and methods<br />

Study sites and data collection<br />

Sites were chosen accord<strong>in</strong>g <strong>to</strong> latitude, bioclimatic zone (Elvebakk et al. 1999,<br />

CAVM team 2003, Elvebakk 2005), vegetation type, and microclimatic conditions<br />

along the western and northern coast of <strong>Svalbard</strong> (Table 1; Figure 1).<br />

In our study we <strong>in</strong>cluded Florabukta as bioclimatic zone A, even though it is <strong>in</strong> the<br />

border between zone A and B. For vegetation analysis three different measures were<br />

used for biodiversity; 1.) Species density: not<strong>in</strong>g every vascular <strong>plant</strong> <strong>in</strong>dividual hit<br />

when us<strong>in</strong>g a needle and po<strong>in</strong>t frames (50x50 cm 2 ; 25 po<strong>in</strong>ts; see Bråthen & Hagberg<br />

2004), 2.) Species richness: not<strong>in</strong>g all vascular <strong>plant</strong> species found with<strong>in</strong> the frame<br />

and 3.) Total species list: not<strong>in</strong>g all vascular <strong>plant</strong> species found <strong>in</strong> each site, an area of<br />

roughly 300 x 300 m, consist<strong>in</strong>g of the same vegetation type. For each frame the<br />

follow<strong>in</strong>g abiotic fac<strong>to</strong>rs were measured; slope angle, exposure, organic soil depth,<br />

soil temperature, soil moisture, and soil pH. Slope angle was measured with an<br />

<strong>in</strong>cl<strong>in</strong>ometer with the precision of 2°; exposure was recorded with a compass, def<strong>in</strong>ed<br />

as the direction <strong>in</strong> which the slope was fac<strong>in</strong>g; organic soil depth was measured with a<br />

ruler after digg<strong>in</strong>g a soil profile, soil temperature was measured with a thermometer at<br />

approximately 10 cm depth <strong>to</strong> calibrate for recent and rapid changes. Soil moisture<br />

was estimated <strong>in</strong> the field by digg<strong>in</strong>g the f<strong>in</strong>gers <strong>in</strong> the soil and determ<strong>in</strong><strong>in</strong>g moisture<br />

12


along a scale where 1 = dry, 2 = mesic, and 3 = wet. For soil pH, soil samples were<br />

taken <strong>in</strong> the field and analyzed <strong>in</strong>doors with a pH meter. Cover was estimated <strong>in</strong> the<br />

field as percentage of the frame, for vascular <strong>plant</strong>s, lichens, bryophytes, cryp<strong>to</strong>gam<br />

crust, and bare ground. In addition, mean canopy height of vascular <strong>plant</strong>s was<br />

estimated (<strong>in</strong> centimetres) <strong>in</strong> the frame. As a substitute for biomass, vascular<br />

biovolume was calculated for each site and frame as the canopy height (cm) multiplied<br />

by vascular <strong>plant</strong> cover (%). It has been shown <strong>in</strong> a study by L<strong>in</strong>dblad (2007), that<br />

vascular <strong>plant</strong> height was a better measure than biomass <strong>to</strong> expla<strong>in</strong> vascular <strong>plant</strong><br />

diversity <strong>in</strong> a mid­alp<strong>in</strong>e, Sub­<strong>Arctic</strong> <strong>plant</strong> community. Similarly, Gough et al. (2000),<br />

found a unimodal­shaped correlation of canopy height and species richness and<br />

density. This suggests that us<strong>in</strong>g biovolume is a measure at least as good as biomass.<br />

Lady Frankl<strong>in</strong>fjorden<br />

Biscayarhuken<br />

Florabukta<br />

Re<strong>in</strong>sdyrflya<br />

Mayerbreen<br />

Fjortende julibreen<br />

Ossian Sarsfjellet<br />

Colesdalen<br />

Kapp Thordsen<br />

Figure 1. Sites <strong>in</strong>cluded <strong>in</strong> this study.<br />

At each site, at least three replicate frame analyses were made (Table 1). For some of<br />

the measures (cover and soil moisture), subjective estimations were used. This was<br />

carried out by a large group of people tak<strong>in</strong>g turns and the preced<strong>in</strong>g calibration of<br />

methods may have been <strong>in</strong>sufficient <strong>to</strong> make sure that everybody carried out<br />

measurements <strong>in</strong> the exact same way. This should be kept <strong>in</strong> m<strong>in</strong>d when <strong>in</strong>terpret<strong>in</strong>g<br />

the data.<br />

13


Site ID<br />

Table 1. Sites analysed <strong>in</strong> this study.<br />

Name<br />

Date<br />

1607/1/1 Kapp Thordsen 16.07.2007 8709800, 33X 0511516 C Mesic heath 3<br />

1607/1/2 Kapp Thordsen 16.07.2007 8709858, 33X 0511838 C Calcarious fen 3<br />

1707/1/2­3 Mayerbreen 17.07.2007 8800608, 33X 0440870 B Old mora<strong>in</strong>e area 7<br />

1707/2/1 Fjortende Julibreen 17.07.2007 8786090, 33X 0439992 B Birdcliff 3<br />

1707/2/2 Fjortende Julibreen 17.07.2007 8786090, 33X 0433912 B Dry heath 3<br />

1807/1/1­2 Biscayarhuken 18.07.2007 8864496, 33X 0448709 B Dry heath 5<br />

1807/2/1­2 Re<strong>in</strong>sdyrflya 18.07.2007 8863020, 33X 0478260 B Mesic heath 6<br />

1907/1/1 Florabukta 19.07.2007 8888054, 33X 0571330 A Birdcliff 3<br />

1907/1/2 Florabukta 19.07.2007 8887920, 33X 0571369 A Mesic heath 3<br />

1907/1/3 Florabukta 19.07.2007 8887344, 33X 0571431 A Polar <strong>desert</strong> 3<br />

2007/1/3 Lady Frankl<strong>in</strong>fjorden 20.07.2007 8901644, 33X 0587985 A Mesic heath 3<br />

2107/1/3 Ossian Sarsfjellet 21.07.2007 8762902, 33X 0445660 C Mesic heath 3<br />

2107/2/1­2 Ossian Sarsfjellet 21.07.2007 8763388, 33X 0445378 C Birdcliff 4<br />

2207/1/1­5 Colesdalen 22.07.2007 8670162, 33X 0502830 C Mesic heath 18<br />

2207/1/6 Colesdalen 22.07.2007 8670038, 33X 0502916 C Mire 4<br />

14<br />

UTM<br />

coord<strong>in</strong>ates<br />

Bioclimatic<br />

zone<br />

Vegetation<br />

type<br />

Data analysis<br />

Shannon’s diversity <strong>in</strong>dex H was calculated us<strong>in</strong>g the species density results and the<br />

statistical package PAST (Hammer et al. 2001). The <strong>in</strong>dex was used as a measure of<br />

species diversity <strong>in</strong> all analyses. Kruskal­Wallis one­criterion variance analysis<br />

(Kruskal & Wallis 1952) was run with the same program, group<strong>in</strong>g the plots accord<strong>in</strong>g<br />

<strong>to</strong> bioclimatic zones a priori (zone A=1, B=2, C=3). Both species composition and<br />

number of species was tested, as well as a comparison of the different sites. Kendall’s<br />

τ correlations (e.g., Conover, 1998) were calculated for chosen measures us<strong>in</strong>g PAST.<br />

Significance level was reduced with Bonferonni corrections for multiple tests of<br />

<strong>in</strong>dependent variables (e.g., Abdi, 2007). The species richness dataset was clustered<br />

us<strong>in</strong>g simple match<strong>in</strong>g similarity and unweighted pair group method with arithmetic<br />

mean (UPGMA) <strong>in</strong> NTSYSpc 2.02h (Rohlf, 1999).<br />

Ord<strong>in</strong>ation analyses of results per site were performed us<strong>in</strong>g Canoco 4.5 (Biometris –<br />

Plant Research International, Wagen<strong>in</strong>gen). Environmental fac<strong>to</strong>rs were chosen based<br />

on the Kendall’s τ correlations, and all data <strong>in</strong>cluded were transformed<br />

logarithmically. A detrended correspondence analysis (DCA) was run <strong>to</strong> test<br />

distribution of the data. Be<strong>in</strong>g l<strong>in</strong>ear, the species data (Shannon’s H, species density,<br />

species richness, and <strong>to</strong>tal species list) were analysed with a pr<strong>in</strong>cipal component<br />

analysis (PCA), and environmental data were added a posteriori. Redundancy analysis<br />

(RDA) was used <strong>to</strong> f<strong>in</strong>d explana<strong>to</strong>ry effects of the environmental fac<strong>to</strong>rs, and these<br />

were tested with a Markov Cha<strong>in</strong> Monte Carlo (MCMC) permutation test.<br />

Analysis of variance (one way ANOVA) was run us<strong>in</strong>g S PLUS 6.2 for W<strong>in</strong>dows<br />

(Insightful Corp.). All data were transformed logarithmically before runn<strong>in</strong>g the<br />

analysis. All species measures were compared with the abiotic measures <strong>in</strong>cluded <strong>in</strong><br />

the ord<strong>in</strong>ation analyses. In the ANOVA, fac<strong>to</strong>rs were divided <strong>in</strong><strong>to</strong> evenly sized groups.<br />

Tukey HSD post hoc analyses were run when ANOVA gave significant results (for<br />

No. of plots


details see Crawley 2002). The PCA, RDA and ANOVA analysis were performed<br />

us<strong>in</strong>g site means <strong>in</strong> order <strong>to</strong> <strong>in</strong>clude the <strong>to</strong>tal species list.<br />

Results<br />

Species richness, species density and <strong>to</strong>tal species list are summarised <strong>in</strong> Figure 2, and<br />

complete lists are <strong>in</strong> Appendix 1. We found 25, 32, and 49 species <strong>in</strong> <strong>to</strong>tal <strong>in</strong> zones A,<br />

B, and C, respectively. More species were registered us<strong>in</strong>g presence/absence <strong>in</strong> frame<br />

(species richness) as measure, than the po<strong>in</strong>t frame hits (species density) <strong>in</strong> all sites<br />

(Figure 2). The Kruskal­Wallis test gave no significant results when group<strong>in</strong>g the<br />

species richness per frame accord<strong>in</strong>g <strong>to</strong> bioclimatic zones (H=5.039; Hc=5.11;<br />

p=0.0805). Species richness was, however, significantly different among sites<br />

(H=30.48; Hc=30.91; p=0.0066).<br />

Figure 2. Summary of species data. Box plot of species density, species richness and <strong>to</strong>tal<br />

species lists grouped accord<strong>in</strong>g <strong>to</strong> bioclimatic zones.<br />

Kendall’s τ correlations are given <strong>in</strong> Table 2. The only biodiversity measure<br />

significantly correlated with any environmental fac<strong>to</strong>rs, was species density which was<br />

positively correlated with bioclimatic zones, mean<strong>in</strong>g that the number of species<br />

decreases go<strong>in</strong>g from zone C <strong>to</strong> B <strong>to</strong> A, and negatively correlated with latitude.<br />

The UPGMA analysis clustered the sites more or less accord<strong>in</strong>g <strong>to</strong> bioclimatic zones<br />

and vegetation types (not shown). The sites from zone A and B were clustered<br />

<strong>to</strong>gether and <strong>in</strong>cluded also a small cluster with zone C (the heath sites 1607/1/1 and<br />

2107/1/3, and the calcareous fen site 1607/1/2), whereas the rema<strong>in</strong><strong>in</strong>g sites from zone<br />

C clustered <strong>to</strong>gether; the species rich sites <strong>in</strong> Colesdalen (2207) and the birdcliff site <strong>in</strong><br />

Ossian Sarsfjellet.<br />

15


Table 2. Kendall’s τ correlations among selected measures. The lower triangle gives the correlation coefficients, the upper gives the probabilities. Significance is<br />

calculated with Bonferonni corrections for multiple tests (p


The significant results from ANOVA are given <strong>in</strong> Table 3. The Shannon’s H <strong>in</strong>dex as<br />

well as the species density was highest where there was low (0.00­6.00%) and<br />

<strong>in</strong>termediate (7.00­36.00%) amount of bare ground and <strong>in</strong> sparse (10.00 cm) organic soil.<br />

Table 3. Significant results from ANOVA analysis.<br />

Bare ground cover Organic soil depth<br />

df F­value p­value df F­value p­value<br />

Shannon’s H 2 7.56 0.008 3 5.36 0.016<br />

Species density 2 6.65 0.011 3 5.65 0.013<br />

The PCA ord<strong>in</strong>ation showed correlation between species richness and <strong>to</strong>tal species list,<br />

and between Shannon’s H and species density (Fig. 3). 81.6% of the variation <strong>in</strong> the<br />

data was expla<strong>in</strong>ed by the first axis and 11.8% by the second axis. There was a<br />

positive correlation between all of the follow<strong>in</strong>g variables: organic soil depth,<br />

bioclimatic zone, temperature and vascular biovolume. Bare ground was negatively<br />

correlated with the variables mentioned above. pH was not correlated with the other<br />

environmental variables. The sites were not significantly distributed accord<strong>in</strong>g <strong>to</strong> the<br />

environmental data.<br />

­0.8 1.0<br />

<strong>to</strong>tal species list<br />

species richness<br />

13<br />

org. soil depth<br />

2<br />

bioclimatic zone<br />

14 4<br />

9<br />

15<br />

Shannon's H<br />

species density<br />

temperature 8<br />

1<br />

pH<br />

­1.0 1.0<br />

17<br />

7<br />

3<br />

vasc. biovolume<br />

5<br />

6<br />

12<br />

10<br />

bare ground<br />

Figure 3. PCA analysis of biodiversity and chosen environmental data. Axis 1 spans 81.6% of<br />

the variation and axis 2 spans 11.8%. The sites are marked accord<strong>in</strong>g <strong>to</strong> bioclimatic<br />

zones: A – black, B – grey, and C – white.<br />

11


The RDA ord<strong>in</strong>ation (Fig. 4) showed overall the same trends as the PCA ord<strong>in</strong>ation.<br />

The MCMC run <strong>in</strong> RDA gave no significant result for the degree of explanation<br />

(p=0.0740) from the environmental data. 26.0% of the variation <strong>in</strong> the data was<br />

expla<strong>in</strong>ed by the first axis and 4.4% of the variation <strong>in</strong> the data was expla<strong>in</strong>ed by the<br />

second axis <strong>in</strong> RDA. The sites were somewhat separated accord<strong>in</strong>g <strong>to</strong> bioclimatic<br />

zones along the first axis, and bioclimatic zones expla<strong>in</strong>ed 20% of the variation <strong>in</strong> the<br />

MCMC test, although not significantly (p=0.0740). All measures of diversity showed a<br />

positive correlation with <strong>in</strong>creas<strong>in</strong>g bioclimatic zone (from A <strong>to</strong> C), although not<br />

significantly. There was a relationship between bioclimatic zones and the degree of<br />

bare ground and the layer of organic soil. There was less bare ground (3 ± 2 %) and a<br />

deeper layer of organic soil (10.21 ± 6.21 cm) <strong>in</strong> zone C, than zone A (49 ± 35 %, 2.54<br />

± 2.95 cm, respectively). Zone B was <strong>in</strong>termediate (12 ± 13 %, 5.00 ± 3.22 cm,<br />

respectively). There was also a trend <strong>in</strong> <strong>in</strong>creased soil temperature and vascular<br />

biovolume <strong>in</strong> zone C (6.59 ± 1.68ºC, 1.56 ± 0.58, respectively) compared <strong>to</strong> zone A<br />

(3.93 ± 0.49ºC, 0.39 ± 0.25, respectively).<br />

­1.0 1.0<br />

11<br />

8<br />

bare ground<br />

10<br />

9<br />

3<br />

5<br />

7<br />

vasc. biovolume<br />

6<br />

13<br />

temperature<br />

12<br />

4<br />

­0.8 1.0<br />

14<br />

18<br />

Shannon's H<br />

species density org. soil depth<br />

bioclimatic zone<br />

15<br />

2<br />

species richness<br />

pH<br />

<strong>to</strong>tal species list<br />

Figure 4. RDA analysis of biodiversity and chosen environmental fac<strong>to</strong>rs. Axis 1 spans 26.0%<br />

of the variation, and axis 2 spans 4.4%. The sites are marked accord<strong>in</strong>g <strong>to</strong> bioclimatic<br />

zones: A – black, B – grey, and C – white.<br />

Discussion<br />

Our measures of biodiversity (species richness, species density, Shannon’s H <strong>in</strong>dex<br />

and <strong>to</strong>tal species list) did not correspond perfectly <strong>to</strong> the different abiotic variables, but<br />

we feel the follow<strong>in</strong>g statements are robust: 1) the value of the <strong>to</strong>tal species list is<br />

1


different among the three bioclimatic zones; 2) mean species richness per site is not<br />

significantly different among zones; and 3) species density is different among zones.<br />

Important when discuss<strong>in</strong>g biodiversity is the scale on which <strong>in</strong>vestigation is made.<br />

Compar<strong>in</strong>g biodiversity among sites is only possible when us<strong>in</strong>g the same scale. All<br />

three of our measures of biodiversity are records of α­diversity, def<strong>in</strong>ed as the<br />

diversity with<strong>in</strong> a stand or community. To make a mean<strong>in</strong>gful comparison between<br />

regions, it is important <strong>to</strong> operate on the same scale.<br />

The <strong>to</strong>tal species list showed an <strong>in</strong>crease <strong>in</strong> numbers when mov<strong>in</strong>g from bioclimatic<br />

zone A <strong>to</strong> C. This trend, though not significant <strong>in</strong> our study, is <strong>in</strong> l<strong>in</strong>e with previous<br />

studies from <strong>Svalbard</strong> (Marte<strong>in</strong>sdòttir & Arnesen 2006) and the <strong>Arctic</strong> <strong>in</strong> general<br />

(Young 1971, Walker 1995). This is a measure of the diversity at landscape level,<br />

<strong>in</strong>clud<strong>in</strong>g several sites with different vegetation types. Compar<strong>in</strong>g our data with the<br />

database for vascular <strong>plant</strong>s found on <strong>Svalbard</strong> (<strong>Svalbard</strong>databasen), there is a <strong>to</strong>tal of<br />

110 vascular <strong>plant</strong>s recorded from Colesdalen, situated <strong>in</strong> bioclimatic zone C, while<br />

Gustav V Land (zone A) has a record of 85 species, although the area is significantly<br />

larger. See also Table 4 for comparison with other arctic areas.<br />

On a smaller scale, when look<strong>in</strong>g at mean species richness per site, there is no<br />

significant difference between sites <strong>in</strong> different regions <strong>in</strong> our study. Most sites<br />

conta<strong>in</strong> between 17 and 27 species, which is correlat<strong>in</strong>g very well with a study from<br />

the Canadian <strong>Arctic</strong> by Franzen & Molau (1999). They found no trends of changes <strong>in</strong><br />

species richness when go<strong>in</strong>g from latitude 62° <strong>to</strong> 78°. In our study, cover<strong>in</strong>g a large<br />

gradient, we visited a restricted number of different vegetation types, and hence could<br />

not capture the full <strong>plant</strong> diversity of every site. In the field the plots were chosen <strong>to</strong><br />

cover one particular k<strong>in</strong>d of habitat (vegetation type) <strong>in</strong> each site.<br />

Species density (mean per site) is <strong>in</strong>creas<strong>in</strong>g when go<strong>in</strong>g from zone A <strong>to</strong> C (Table 2,<br />

Figure 2). This can be expla<strong>in</strong>ed by more scattered vegetation <strong>in</strong> bioclimatic zones A<br />

and B compared <strong>to</strong> C (Table 2), as supported by ANOVA analyses show<strong>in</strong>g significant<br />

relations between species density and bare ground, as well as the fact that fewer <strong>plant</strong>s<br />

are adapted <strong>to</strong> the harsh conditions present there (Körner 2003).<br />

Our results largely supported our first prediction, that biodiversity is correlated with<br />

bioclimatic zone and highlight the importance of scale when discuss<strong>in</strong>g biodiversity,<br />

as shown <strong>in</strong> the discussion above. <strong>From</strong> our results, and also when compar<strong>in</strong>g with<br />

Franzen & Molau (1999), it seems likely that most vegetation types <strong>in</strong> the <strong>Arctic</strong><br />

conta<strong>in</strong> roughly the same number of species, but differences among regions rema<strong>in</strong> on<br />

a larger scale (among bioclimatic zones), due <strong>to</strong> the degree of landscape heterogeneity<br />

and the number of different habitats available for <strong>plant</strong> species (see Table 4).<br />

The first part of our second prediction, concern<strong>in</strong>g community biovolume and<br />

bioclimatic zone also ga<strong>in</strong>ed support from our data. We found community biovolume<br />

<strong>to</strong> decrease with bioclimatic zone, but <strong>in</strong>creased biovolume did not significantly relate<br />

<strong>to</strong> any measure of biodiversity. This is consistent with the work of van der Welle et al.<br />

(2003), and Gough & al. (2000), which showed no correlation of biodiversity and<br />

productivity <strong>in</strong> the <strong>Arctic</strong>. On the other hand, a large number of studies support the<br />

view of a ‘hump back’ relationship of productivity and species richness <strong>in</strong> alp<strong>in</strong>e and<br />

arctic areas (Grytnes 2002, Theodose & Bowman 1997, Jonasson 1992). Constanza et<br />

19


al. (2007) found that at low temperatures (−2.1 °C annual mean), biodiversity was<br />

negatively correlated with net primary production. In <strong>Svalbard</strong> the annual mean<br />

temperature range from ­7°C <strong>to</strong> ­15°C, so our study does not confirm this view. In a<br />

fertilization experiment <strong>in</strong> boreal­alp<strong>in</strong>e Alaska, Fox (1992) found a change <strong>in</strong> growth<br />

form and species composition rather than effects on species richness. It is possible that<br />

community productivity, as well as other abiotic variables, may have a larger <strong>in</strong>fluence<br />

on species composition, rather than direct effects on species richness. Although our<br />

different measures of biodiversity is not clearly concordant, the observed pattern was<br />

that the dom<strong>in</strong>ant species, ma<strong>in</strong>ly woody perennials and dwarf shrubs, were the first <strong>to</strong><br />

disappear <strong>in</strong> the areas with harsher environmental conditions (zone B and A), whereas<br />

a fairly large number of species persist, but with very few <strong>in</strong>dividuals.<br />

Our prediction concern<strong>in</strong>g pH and species richness was not supported by our data,<br />

although the relationship between pH and species richness has been positively<br />

correlated <strong>in</strong> numerous studies from different vegetation types, such as arctic <strong>tundra</strong><br />

(Gough et al. 2000, Gould & Walker 1999), temperate heath­ and grassland (Roem &<br />

Berendse 2000) as well as <strong>Svalbard</strong> (Wenche et al. 2002). Our sample sites were,<br />

however, distributed with<strong>in</strong> a relatively narrow range of pH (5.5­8.5), thus the full<br />

effect of pH on species richness could not be studied.<br />

The prediction on soil moisture was not supported <strong>in</strong> our study. Explanations for this<br />

could be that it was measured on a coarse scale, where<strong>in</strong> most estimations of moisture<br />

turned out <strong>to</strong> be medium. In addition these measures also were heavily <strong>in</strong>fluenced by<br />

precipitation <strong>in</strong> the preced<strong>in</strong>g 24 hours.<br />

Our ord<strong>in</strong>ation tests (PCA and RDA) gave no significant results, but <strong>in</strong>dicated which<br />

fac<strong>to</strong>rs are most important <strong>in</strong> expla<strong>in</strong><strong>in</strong>g species richness. Bioclimatic zone and<br />

organic soil depth expla<strong>in</strong> the <strong>in</strong>creased species diversity. Bare ground cover is<br />

negatively correlated <strong>to</strong> all of our diversity measures. This is also <strong>in</strong> l<strong>in</strong>e with the<br />

results of our ANOVA. As <strong>to</strong> why we could not get a significant explanation, we<br />

suggest that different fac<strong>to</strong>rs may be act<strong>in</strong>g with different strength <strong>in</strong> different zones.<br />

Conclusion<br />

Differences <strong>in</strong> biodiversity are found when look<strong>in</strong>g at a landscape level and not at plot<br />

(α­) level, among frames at different sites. Hence, what creates high biodiversity <strong>in</strong> the<br />

<strong>Arctic</strong> seems <strong>to</strong> be variation of habitats and vegetation types on the landscape. We<br />

welcome further studies on this explanation model, and conclude that if supported by<br />

more general data, this may be an important f<strong>in</strong>d<strong>in</strong>g concern<strong>in</strong>g vulnerable <strong>Arctic</strong><br />

ecosystems. If landscape heterogeneity is the major source of <strong>Arctic</strong> biodiversity,<br />

policymakers need <strong>to</strong> take this <strong>in</strong><strong>to</strong> consideration for future conservation of the <strong>Arctic</strong><br />

environment<br />

Acknowledgements<br />

We thank Inger Greve Alsos and David F. Murray for advices and comments through<br />

all the process, and the participants <strong>in</strong> the course AB326 <strong>Arctic</strong> Plant Ecology 2007<br />

for fruitful discussions.<br />

References<br />

Abdi, H. 2007: The Bonferonni and Šidák corrections for multiple comparisons. In:<br />

Salk<strong>in</strong>d, N. (Ed), Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks<br />

20


Barrett, P.E. & Teeri, J.A. 1973: Vascular <strong>plant</strong>s of the Truelove Inlet region, Devon<br />

Island. <strong>Arctic</strong> 26: 58­67<br />

Bay, C. 1992: A phy<strong>to</strong>geographical study of the vascular <strong>plant</strong>s of northern Greenland<br />

­ north of 74 degrees northern latitude. Meddelelser om Grønland Bioscience 36<br />

Beschel, R.E. 1963: Geobotanical studies on Axel Heiberg Island <strong>in</strong> 1962. Pp. 1­18 <strong>in</strong>:<br />

Müller, F. (Ed), Axel Heiberg Prelim<strong>in</strong>ary Rept. 1961­1962. McGill University<br />

Bill<strong>in</strong>gs, W.D. 1992: Phy<strong>to</strong>geographic and evolutionary potential of the arctic flora <strong>in</strong><br />

a chang<strong>in</strong>g climate. Pp: 59­89 <strong>in</strong>: Chap<strong>in</strong> FS III, Jefferies RL, Reynolds, JF, Shaver<br />

GS, Svoboda J (Eds) <strong>Arctic</strong> ecosystems <strong>in</strong> a chang<strong>in</strong>g climate: an ecophysiological<br />

perspective. Academic Press, San Diego<br />

Bird, C.D. 1975: The lichen, bryophyte, and vascular <strong>plant</strong> flora and vegetation of the<br />

Land<strong>in</strong>g Lake area, Pr<strong>in</strong>ce Patrick Island, arctic Canada. Canadian Journal of Botany<br />

53: 719­744<br />

Brassard, G. & Beschel, R.E. 1968: The vascular flora of Tanquary Fiord, northern<br />

Ellesmere Island, N.W.T. Canadian Field­Naturalist 82: 103­113<br />

Brassard, G. & Lang<strong>to</strong>n, R.E. 1970: The flora and vegetation of Van Hauen Pass,<br />

northwestern Ellesmere Island. Canadian Field­Naturalist 84: 357­364<br />

Bruggermann, P.F. & Calder, J.A. 1953: Botanical <strong>in</strong>vestigation <strong>in</strong> northeast<br />

Ellesmere Island, 1951. Canadian Field­Naturalist 67: 157­174<br />

Bråthen, K.A. & Hagberg, O. 2004: more efficient estimation of <strong>plant</strong> biomass.Journal<br />

of Vegetation Science 15:653­660<br />

CAVM(Circum<strong>polar</strong> <strong>Arctic</strong> Vegetation Map) Team. 2003: Circum<strong>polar</strong> <strong>Arctic</strong><br />

Vegetation Map. Scale 1:7 500 000. Conservation of <strong>Arctic</strong> Flora and Fauna (CAFF)<br />

Map no. 1 U.S. Fish and Wildlife service, Anchorage, Alaska<br />

Conover, W.J. 1998: Practical non­parametric statistics. John Wiley and Sons, New<br />

York<br />

Costanza, R., Fisher, B., Mulder, K., Liu, S. & Chris<strong>to</strong>pher, T. 2007: Biodiversity and<br />

ecosystem services: A multi­scale empirical study of the relationship between<br />

species richness and net primary production. Ecological Economics 61: 478­491<br />

Crawley, M. J. 2002: Staistical comput<strong>in</strong>g: an <strong>in</strong>troduction <strong>to</strong> data analysis us<strong>in</strong>g S­<br />

plus. John Wiley and Sons Ltd., Chichester<br />

Elvebakk, A. 2005: A vegetation map of <strong>Svalbard</strong> on the scale 1:3.5 mill.<br />

Phy<strong>to</strong>coenologia 35: 951­967<br />

Elvebakk, A., Elven, R. & Razzhiv<strong>in</strong>, V.Y. 1999: Delimitation, zonal and sec<strong>to</strong>rial<br />

subdivision of the <strong>Arctic</strong> for the Panarctic Flora Project. Det Norske Vitenskaps­<br />

Akademi. I. Matematisk Naturvitenskapelig Klasse. Skrifter. Ny serie 38: 375­386<br />

Elven, R., Murrey, D.F., Razzhiv<strong>in</strong>, V. & Yurtsev, B.A. 2007: Checklist for the<br />

Panarctic Flora (PAF): Vascular Plants. Draft Version. University of Oslo, Oslo<br />

Fox, J.F. 1992: Responses of diversity and growth form dom<strong>in</strong>ance <strong>to</strong> fertility <strong>in</strong><br />

Alaskan <strong>tundra</strong> fellfield communities. <strong>Arctic</strong> and Alp<strong>in</strong>e research 24:233­237<br />

21


Franzèn, D. & Molau, U. 1999: Vascular <strong>plant</strong> diversity patterns <strong>in</strong> the Canadian<br />

<strong>Arctic</strong>. Polarforskn<strong>in</strong>gssekretariatets årsbok 1999: S<strong>to</strong>ckholm<br />

Gas<strong>to</strong>n, K.J, Blackburn, T.M, & Spicer, J.I. 1998: Rapoport’s rule: time for an<br />

epitaph? Trends <strong>in</strong> Ecology and Evolution 13: 70­74<br />

Gough, L., Shaver, G.R., Carroll, J., Royer, D.L. & Laundre, J.A. 2000: Vascular <strong>plant</strong><br />

species richness <strong>in</strong> Alaskan arctic <strong>tundra</strong>: the importance of soil pH. Journal of<br />

Ecology 88: 54­66<br />

Gould, W.A. & Walker, M.D. 1999: Plant communities and landscape diversity along<br />

a Canadian <strong>Arctic</strong> river. Journal of Vegetation Science 10: 537­548<br />

Grace, J.B. 1999: The fac<strong>to</strong>rs controll<strong>in</strong>g species density <strong>in</strong> herbaceous <strong>plant</strong><br />

communities: an assessment. Perspectives <strong>in</strong> Plant Ecology, Evolution and<br />

Systematics 2: 1­28<br />

Grime, J.P. 1973: Control of species density <strong>in</strong> herbaceous vegetation. Journal of<br />

Environmental Management 1: 151–167<br />

Grytnes, J.A. 2002: F<strong>in</strong>e­scale vascular <strong>plant</strong> species richness <strong>in</strong> different alp<strong>in</strong>e<br />

vegetation types: relationships with biomass and cover. Journal of Vegetation<br />

Science 11:87­92<br />

Hammer, Ø., Harper, D.A.T. & Ryan, P.D. 2001: PAST: Paleon<strong>to</strong>logical statistics<br />

software package for education and data analysis. Palaeon<strong>to</strong>logia Electronica 4: 9 pp<br />

Hooper, D.U., Chap<strong>in</strong>, F.S. III, Ewel, J.J., Hec<strong>to</strong>r, A., Inchausti, T., Lavorel, S.,<br />

Law<strong>to</strong>n, J.H., Lodge, D.M., Lorau, M., Naeem, S., Schmid, B., Setälä, H., Symstad,<br />

A.J., Vandermeer, J. & Wardle, D.A. 2005: Effects of biodiversity on ecosystem<br />

function<strong>in</strong>g: a consensus of current knowledge. Ecological Monographs 75: 3­35<br />

Hus<strong>to</strong>n, M.A. 1979: A general hypothesis of species diversity. American Naturalist<br />

113: 81–101<br />

Jonasson, S. 1992: Plant responses <strong>to</strong> fertilization and species removal <strong>in</strong> <strong>tundra</strong><br />

related <strong>to</strong>community structure and clonality. Oikos 63: 420­429<br />

Kullman, L. 2000: Tree­limit rise and recent warm<strong>in</strong>g: a geoecological case study<br />

from the Swedish Scandes. Norsk. geografisk Tidsskrift 54: 49­59<br />

Körner, C. 2003: Alp<strong>in</strong>e <strong>plant</strong> life : functional <strong>plant</strong> <strong>ecology</strong> of high mounta<strong>in</strong><br />

ecosystems : Spr<strong>in</strong>ger Verlag, Berl<strong>in</strong><br />

Kruskal, W.H. & Wallis, W.A. 1952: Use of ranks <strong>in</strong> one­criterion variance analysis.<br />

Journal of the American Statistical Association 47: 583­621<br />

L<strong>in</strong>dblad, K. 2007: Tundra Landscape Ecology – Diversity across scales. PhD thesis, Göteborg<br />

University. pp 48<br />

Marte<strong>in</strong>sdòttir, B. & Arnesen, G. 2006: Species richness of vascular <strong>plant</strong>s and<br />

cryp<strong>to</strong>gams <strong>in</strong> the High <strong>Arctic</strong>: no universal pattern observed <strong>in</strong> relation <strong>to</strong> primary<br />

productivity. Pp 11­21 <strong>in</strong> Jònsdòttir, I.S. (ed), Explor<strong>in</strong>g <strong>plant</strong>­ecological patterns at<br />

different spatial scales on <strong>Svalbard</strong>. <strong>Unis</strong> Publication Series 2006:1<br />

22


Michalet, R., Gandoy, C., Joud, D., Pages, J.P. & Choler, P. 2002: Plant community<br />

composition and biomass on calcareous and siliceous substrates <strong>in</strong> the northern<br />

French Alps: Comparative effects of soil chemistry and water status. <strong>Arctic</strong>,<br />

Antarctic and Alp<strong>in</strong>e Research 34: 102­113<br />

Muc, M., Freedman, B. & Svoboda, J. 1989: Vascular <strong>plant</strong> communities of a <strong>polar</strong><br />

oasis at Alexandra Fiord (79 N), Ellesmere Island, Canada. Canadian Journal of<br />

Botany 67: 1126­1136<br />

Murray, D.F. 1997: Regional and local vascular <strong>plant</strong> diversity <strong>in</strong> the <strong>Arctic</strong>. Opera<br />

Botanica 132: 9­18<br />

Palmer, M.W. 1994: Variation <strong>in</strong> species richness: <strong>to</strong>wards a unification of<br />

hypotheses. Folia Geobotanica & Phy<strong>to</strong>taxonomica 29: 511–530<br />

Roem, W.J., Berendse, F. 2000: Soil acidity and nutrient supply ratio as possible<br />

fac<strong>to</strong>rs determ<strong>in</strong><strong>in</strong>g changes <strong>in</strong> <strong>plant</strong> species diversity <strong>in</strong> grassland and heathland<br />

communities. Biological Conservation 92: 151­161<br />

Rohlf, F. 1999: NTSYS­pc. Numerical taxonomy and multivariate analysis system.<br />

Exeter Software, New York<br />

Safronova, I.N. 1980: On the flora of Koteln'y Island (Novosibirsk Islands).<br />

Botanicheskiy Zhurnal 65: 544­551. [In Russian]<br />

Safronova, I.N. 1983: Materials for the flora of Mebel and Hooker Islands (Franz<br />

Joseph Land). Botanicheskiy Zhurnal 68: 513­518. [In Russian]<br />

Safronova, I.N. 1993: On the flora of Bolshevik Island (Severnaya Zemlya<br />

Archipelago). Botanicheskiy Zhurnal 78: 79­84. [In Russian]<br />

Safronova, I.N. & Khodachek, E.A. 1989: On the flora and vegetation of Andrey,<br />

Uyed<strong>in</strong>eniya and Vize islands (northern <strong>Arctic</strong> Ocean). Botanicheskiy Zhurnal 74:<br />

1003­1011. [In Russian]<br />

Savile, D.B.O. 1959: The botany of Somerset Island, District of Frankl<strong>in</strong>. Canadian<br />

Journal of Botany 37: 959­1002<br />

Savile, D.B.O. 1961: The botany of the northwestern Queen Elizabeth Islands.<br />

Canadian Journal of Botany 39: 909­942<br />

Schofield, W.B. & Cody, W.J. 1955: Botanical <strong>in</strong>vestigations on coastal sourthern<br />

Cornwallis Island, Frankl<strong>in</strong> District, NTW. Canadian Field­Naturalist 69: 116­128<br />

Soper, J.H. & Powell, J.M. 1985: Botanical studies <strong>in</strong> the Lake Hazon region, northern<br />

Ellesmere Island, Northwest Terri<strong>to</strong>ries, Canada. Canada National Museum of<br />

Natural Sciences Publications <strong>in</strong> Natural Sciences 5: 1­67<br />

Taylor, D.R., Aarssen, L.W. & Loehle, C. 1990: On the relationship between r/K<br />

selection and environmental carry capacity: a new habitat templet for <strong>plant</strong> life<br />

his<strong>to</strong>ry strategies. Oikos 58: 239–250<br />

Theodose , T.A. & Bowman, W.­D. 1997: Nutrient availability, <strong>plant</strong> abundance, and<br />

species diversity <strong>in</strong> two alp<strong>in</strong>e <strong>tundra</strong> communities. Ecology 78: 1861­1872<br />

23


Tilman, D. 1982: Resource Competition and Community Structure. Pr<strong>in</strong>ce<strong>to</strong>n<br />

University Press, Pr<strong>in</strong>ce<strong>to</strong>n<br />

Truong, C. 2003: Ecology and genetics of the mounta<strong>in</strong> birch Betula pubescens ssp. <strong>to</strong>rtuosa at the limit<br />

of its geographical range <strong>in</strong> Northern Sweden: implication for treel<strong>in</strong>e ris<strong>in</strong>g <strong>in</strong> relation <strong>to</strong> climate<br />

change. Diploma Thesis, University of Neuchâtel, 56 pp<br />

Walker, M.D. 1995: Patterns and causes of arctic <strong>plant</strong> community diversity. Pp. 1­20<br />

<strong>in</strong> Chap<strong>in</strong>, F.S. III & Körner, C. (Eds). <strong>Arctic</strong> and Alp<strong>in</strong>e Biodiversity. Spr<strong>in</strong>ger<br />

Verlag, New York<br />

Walker, M. D., Wahren, H. C., Hollister R. D., Henry, G. H. R., Ahlquist, L. E.,<br />

Alatalo, J. M., Bret­Harte, S. M., Calef, M. P., Callaghan, T. V., Carroll, A. B.,<br />

Epste<strong>in</strong>, H. E., Jónsdóttir, I. S., Kle<strong>in</strong>, J. A., Magnússon, B., Molau, U., Oberbauer,<br />

S. F., Rewa S. P., Rob<strong>in</strong>son, C. H., Shaver, G. R., Sud<strong>in</strong>g, K. N., Thompson, , C.<br />

C., Tolvanen, A., Totland, Ø., Turner, P. L., Tweedie, C. E., Webber, P. J. &<br />

Wookey, P. A. 2006: Plant community responses <strong>to</strong> experimental warm<strong>in</strong>g across<br />

the <strong>tundra</strong> biome. Proceed<strong>in</strong>gs of the National Academy of Sciences of the Unites<br />

States of America 103, 1342­1346<br />

Wenche, E., Klanderud, K & Tommelstad, R. 2002: Plant community diversity at<br />

different scales <strong>in</strong> six localities on <strong>Svalbard</strong>. Pp 22­40 <strong>in</strong> Jònsdòttir, I.S. (ed),<br />

Biodiversity <strong>in</strong> arctic <strong>plant</strong> communities. <strong>Unis</strong> Publication Series 2002:3<br />

van der Welle, M.E.W., Vermeulen, P.J., Shaver, G.R. & Berendse, F. 2003: Fac<strong>to</strong>rs<br />

determ<strong>in</strong><strong>in</strong>g <strong>plant</strong> species richness <strong>in</strong> Alaskan arctic <strong>tundra</strong>. Journal of Vegetation<br />

Science 14: 711­720<br />

Young, S.B. 1971: The vascular flora of St. Lawrence Island with special reference <strong>to</strong><br />

floristic zonation <strong>in</strong> the arctic regions. Contributions from the Gray Herbarium 201:<br />

11­115<br />

24


Appendix 1. Complete species lists from all sites. # means presens <strong>in</strong> the frames<br />

analysed at the site, * means po<strong>in</strong>t frame hit.<br />

1607/1/1; Kapp Thordsen; mesic heath; 8709800, 33X 0511516<br />

Alopecusus borealis Tr<strong>in</strong>.<br />

Arenaria pseudofrigida (Ostenf. & Dahl) Juz.<br />

*Bis<strong>to</strong>rta vivipara (L.) S.F.Gray<br />

Carex fulig<strong>in</strong>osa Schkuhr subsp. misandra (R.Br.) Nyman<br />

*Carex rupestris All.<br />

Cerastium arcticum Lange coll.<br />

Cochlearia groenlandica L. coll.<br />

#Draba fladnizensis Wulf.<br />

Draba lactea Adams<br />

Draba oxycarpa Sommerf.<br />

Draba subcapitata Simm.<br />

Dryas oc<strong>to</strong>petala L.<br />

#Equisetum arvense L. subsp. alpestre (Wahlenb.) Schönswetter & Elven<br />

*Equisetum variegatum Schleich. ex Weber & Mohr subsp. variegatum<br />

Juncus biglumis L.<br />

Luzula confusa L<strong>in</strong>deb.<br />

#Luzula nivalis (Laest.) Spreng.<br />

M<strong>in</strong>uartia rubella (Wahlenb.) Hiern<br />

Oxyria digyna (L.) Hill<br />

Papaver dahlianum Nordh. subsp. <strong>polar</strong>e (Tolm.) Elven & Ö.Nilsson<br />

Pedicularis dasyantha (Trautv.) Hadac<br />

*Pedicularis hirsuta L.<br />

Poa arctica R.Br.<br />

Potentilla pulchella R.Br. subsp. pulchella<br />

Pucc<strong>in</strong>ellia vahliana (Liebm.) Scribn. & Merr.<br />

Ranunculus sulphureus Sol.<br />

Sag<strong>in</strong>a nivalis (L<strong>in</strong>dbl.) Fr.<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

Salix reticulata L.<br />

Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

#Saxifraga hirculus L. subsp. compacta Hedberg<br />

*Saxifraga oppositifolia L. subsp. oppositifolia<br />

*Silene acaulis (L.) Jacq.<br />

Silene uralensis (Rupr.) Bocquet subsp. arctica (Th.Fr.) Bocquet<br />

*Stellaria longipes Goldie s.l.<br />

1607/1/2; Kapp Thordsen; calcarious fen, 8709858, 33X 0511838<br />

Alopecusus borealis Tr<strong>in</strong>.<br />

*Bis<strong>to</strong>rta vivipara (L.) S.F.Gray<br />

#Carex rupestris All.<br />

*Cerastium arcticum Lange coll.<br />

Cochlearia groenlandica L. coll.<br />

Coptidium lapponicum (L.) Tzvelev<br />

Coptidium x spitsbergense (Hadac) Elven<br />

*Equisetum arvense L. subsp. alpestre (Wahlenb.) Schönswetter & Elven<br />

Equisetum variegatum Schleich. ex Weber & Mohr subsp. variegatum<br />

25


Juncus biglumis L.<br />

Luzula confusa L<strong>in</strong>deb.<br />

Luzula nivalis (Laest.) Spreng.<br />

Oxyria digyna (L.) Hill<br />

*Pedicularis dasyantha (Trautv.) Hadac<br />

#Poa alp<strong>in</strong>a (L.) var. vivipara L.<br />

*Poa arctica R.Br.<br />

*Poa pratensis L. alpigena (Fr.) Hiit.<br />

Ranunculus sulphureus Sol.<br />

Ranunculus wilanderi (Nath.) Á.Löve & D.Löve<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

Salix reticulata L.<br />

Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

Saxifraga hieracifolia Waldst. & Kit. ex Willd. subsp. hieracifolia<br />

*Saxifraga hirculus L. subsp. compacta Hedberg<br />

*Saxifraga oppositifolia L. subsp. oppositifolia<br />

Saxifraga svalbardensis Øvstedal<br />

*Stellaria longipes Goldie s.l.<br />

1707/1/2­3; Mayerbreen; old mora<strong>in</strong>e area; 8800608, 33X 0440870<br />

*Cerastium arcticum Lange coll.<br />

Cochlearia groenlandica L. coll.<br />

#Draba alp<strong>in</strong>a L.<br />

*Draba corymbosa R.Br. ex DC.<br />

*Draba lactea Adams<br />

Draba oxycarpa Sommerf.<br />

*Luzula confusa L<strong>in</strong>deb.<br />

#Oxyria digyna (L.) Hill<br />

Papaver dahlianum Nordh. subsp. <strong>polar</strong>e (Tolm.) Elven & Ö.Nilsson<br />

*Poa alp<strong>in</strong>a (L.) var. vivipara L.<br />

*Poa arctica R.Br.<br />

*Poa pratensis L. alpigena (Fr.) Hiit.<br />

*Saxifraga cernua L.<br />

*Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

*Saxifraga hyperborea R.Br.<br />

*Saxifraga nivalis L.<br />

*Stellaria longipes Goldie s.l.<br />

1707/2/1; Fjortende julibreen; birdcliff; 8786090, 33X 0439992<br />

Bis<strong>to</strong>rta vivipara (L.) S.F.Gray<br />

*Cerastium arcticum Lange coll.<br />

#Cerastium regelii Ostenf.<br />

Chrysosplenium tetrandrum (N. Lund) Th.Fr.<br />

#Cochlearia groenlandica L. coll.<br />

Draba corymbosa R.Br. ex DC.<br />

Draba nivalis Liljebl.<br />

*Draba norvegica Gunn.<br />

Erigeron humilis R.C.Graham<br />

Festuca rubra L. subsp. richardsonii (Hook.) Hultén<br />

Oxyria digyna (L.) Hill<br />

26


*Poa arctica R.Br.<br />

Potentilla hyparctica Malte subsp. hyparctica<br />

Ranunculus pygmaeus Wahlenb.<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

Saxifraga cernua L.<br />

*Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

*Saxifraga hieracifolia Waldst. & Kit. ex Willd. subsp. hieracifolia<br />

Saxifraga nivalis L.<br />

*Saxifraga oppositifolia L. subsp. oppositifolia<br />

*Silene acaulis (L.) Jacq.<br />

*Stellaria longipes Goldie s.l.<br />

Taraxacum brachycera<br />

s Dahlst.<br />

Trisetum spicatum (L.) K.Richt. subsp. spicatum<br />

1707/2/2; Fjortende julibreen; dry heath; 8786090, 33X 0433912<br />

*Cerastium arcticum Lange coll.<br />

Cerastium regelii Ostenf.<br />

Chrysosplenium tetrandrum (N.Lund) Th.Fr.<br />

Cochlearia groenlandica L. coll.<br />

Draba L. sp.<br />

Draba alp<strong>in</strong>a L.<br />

*Draba norvegica Gunn.<br />

Draba oxycarpa Sommerf.<br />

Luzula confusa L<strong>in</strong>deb.<br />

*Oxyria digyna (L.) Hill<br />

#Poa alp<strong>in</strong>a L. var. vivipara L.<br />

*Poa arctica R.Br.<br />

*Poa pratensis L. subsp. alpigena (Fr.) Hiit.<br />

Salix <strong>polar</strong>is Wahlenb.<br />

#Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

Saxifraga hieracifolia Waldst. & Kit. ex Willd. subsp. hieracifolia<br />

Saxifraga oppositifolia L. subsp. oppositifolia<br />

Silene acaulis (L.) Jacq.<br />

Stellaria longipes Goldie s.l.<br />

#Taraxacum brachyceras Dahlst.<br />

1807/1/1­2; Biscayarhuken; dry heath; 8864496, 33X 0448709<br />

#Cardam<strong>in</strong>e bellidifolia L. subsp. bellidifolia<br />

*Cerastium arcticum Lange coll.<br />

*Cochlearia groenlandica L. coll.<br />

Draba corymbosa R.Br. ex DC.<br />

#Draba micropetala Hook.<br />

Draba subcapitata Simm.<br />

Luzula confusa L<strong>in</strong>deb.<br />

*Luzula nivalis (Laest.) Spreng.<br />

Oxyria digyna (L.) Hill<br />

Papaver dahlianum Nordh. subsp. <strong>polar</strong>e (Tolm.) Elven & Ö.Nilsson<br />

*Poa arctica R.Br.<br />

Potentilla hyparctica Malte subsp. hyparctica<br />

27


Pucc<strong>in</strong>ellia phryganodes (Tr<strong>in</strong>.) Scribn. & Merr. subsp. neoarctica<br />

Ranunculus pygmaeus Wahlenb.<br />

Ranunculus sulphureus Sol.<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

#Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

Saxifraga nivalis L.<br />

*Saxifraga rivularis L. subsp. rivularis<br />

*Silene acaulis (L.) Jacq.<br />

#Stellaria longipes Goldie s.l.<br />

Taraxacum arcticum (Trautv.) Dahlst.<br />

Trisetum spicatum (L.) K.Richt. subsp. spicatum<br />

1807/2/1­2; Re<strong>in</strong>sdyrflya; mesic heath; 8863020, 33X 0478260<br />

#Cardam<strong>in</strong>e bellidifolia L. subsp. bellidifolia<br />

*Cerastium arcticum Lange coll.<br />

*Cerastium regelii Ostenf.<br />

#Cochlearia groenlandica L. coll.<br />

*Draba corymbosa R.Br. ex DC.<br />

Draba fladnizensis Wulf.<br />

Draba oxycarpa Sommerf.<br />

*Draba subcapitata Simm.<br />

Equisetum variegatum Schleich. ex Weber & Mohr subsp. variegatum<br />

#Juncus biglumis L.<br />

Luzula confusa L<strong>in</strong>deb.<br />

*Luzula nivalis (Laest.) Spreng.<br />

M<strong>in</strong>uartia biflora (L.) Sch<strong>in</strong>tz. & Thell.<br />

*Oxyria digyna (L.) Hill<br />

Poa alp<strong>in</strong>a L. var. vivipara L.<br />

*Ranunculus pygmaeus Wahlenb.<br />

#Ranunculus sulphureus Sol.<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

#Saxifraga cernua L.<br />

#Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

*Saxifraga oppositifolia L. subsp. oppositifolia<br />

Saxifraga platysepala (Trautv.) Tolm.<br />

#Saxifraga tenuis (Wahlenb.) H.Sm.<br />

*Stellaria longipes Goldie s.l.<br />

1907/1/1; Florabukta, birdcliff; 8888054, 33X 0571330<br />

*Bis<strong>to</strong>rta vivipara (L.) S.F.Gray<br />

Cardam<strong>in</strong>e bellidifolia L. subsp. bellidifolia<br />

*Carex maritima Gunn. coll.<br />

*Cerastium arcticum Lange coll.<br />

Cerastium regelii Ostenf.<br />

*Cochlearia groenlandica L. coll.<br />

*Festuca rubra L. subsp. richardsonii (Hook.) Hultén<br />

Juncus biglumis L.<br />

#Luzula confusa L<strong>in</strong>deb.<br />

Luzula nivalis (Laest.) Spreng.<br />

M<strong>in</strong>uartia biflora (L.) Sch<strong>in</strong>tz. & Thell.<br />

28


*Poa arctica R.Br.<br />

Poa pratensis L. alpigena (Fr.) Hiit.<br />

Potentilla hyparctica Malte subsp. hyparctica<br />

*Ranunculus sulphureus Sol.<br />

Salix <strong>polar</strong>is Wahlenb.<br />

Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

Saxifraga oppositifolia L. subsp. oppositifolia<br />

Saxifraga rivularis L. subsp. rivularis<br />

Stellaria humifusa Rottb.<br />

Stellaria longipes Goldie s.l.<br />

Taraxacum arcticum (Trautv.) Dahlst.<br />

1907/1/2; Florabukta; mesic heath; 8887920, 33X 0571369<br />

*Bis<strong>to</strong>rta vivipara (L.) S.F.Gray<br />

Cardam<strong>in</strong>e bellidifolia L. subsp. bellidifolia<br />

Carex maritima Gunn. coll.<br />

*Cerastium arcticum Lange coll.<br />

Cerastium regelii Ostenf.<br />

#Draba lactea Adams<br />

*Festuca rubra L. subsp. richardsonii (Hook.) Hultén<br />

*Luzula confusa L<strong>in</strong>deb.<br />

*Luzula nivalis (Laest.) Spreng.<br />

#M<strong>in</strong>uartia biflora (L.) Sch<strong>in</strong>tz. & Thell.<br />

#M<strong>in</strong>uartia rubella (Wahlenb.) Hiern<br />

Papaver dahlianum Nordh. subsp. <strong>polar</strong>e (Tolm.) Elven & Ö.Nilsson<br />

*Poa arctica R.Br.<br />

Potentilla hyparctica Malte subsp. hyparctica<br />

Ranunculus pygmaeus Wahlenb.<br />

#Ranunculus sulphureus Sol.<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

*Saxifraga cernua L.<br />

*Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

Saxifraga nivalis L.<br />

Saxifraga oppositifolia L. subsp. oppositifolia<br />

1907/1/3; Florabukta; <strong>polar</strong> <strong>desert</strong>; 8887344, 33X 0571431<br />

*Cerastium arcticum Lange coll.<br />

#Cochlearia groenlandica L. coll.<br />

#Draba subcapitata Simm.<br />

Juncus biglumis L.<br />

*Luzula nivalis (Laest.) Spreng.<br />

*M<strong>in</strong>uartia biflora (L.) Sch<strong>in</strong>tz. & Thell.<br />

#M<strong>in</strong>uartia rubella (Wahlenb.) Hiern<br />

#Papaver dahlianum Nordh. subsp. <strong>polar</strong>e (Tolm.) Elven & Ö.Nilsson<br />

#Poa hartzii Gand.<br />

#Potentilla hyparctica Malte subsp. hyparctica<br />

Pucc<strong>in</strong>ellia angustata (R.Br.) E.L.Rand & Redfield<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

#Saxifraga cernua L.<br />

#Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

29


#Saxifraga nivalis L.<br />

*Saxifraga oppositifolia L. subsp. oppositifolia<br />

#Saxifraga platysepala (Trautv.) Tolm.<br />

Saxifraga tenuis (Wahlenb.) H.Sm.<br />

2007/1/3; Lady Frankl<strong>in</strong>fjorden; mesic heath; 8901644, 33X 0587985<br />

#Cardam<strong>in</strong>e bellidifolia L. subsp. bellidifolia<br />

#Draba micropetala Hook.<br />

*Luzula confusa L<strong>in</strong>deb.<br />

#Papaver dahlianum Nordh. subsp. <strong>polar</strong>e (Tolm.) Elven & Ö.Nilsson<br />

#Saxifraga cernua L.<br />

Saxifraga foliolosa R.Br.<br />

Saxifraga rivularis L. subsp. rivularis<br />

*Stellaria longipes Goldie s.l.<br />

2107/1/3; Ossian Sarsfjellet; mesic heath; 8762902, 33X 0445660<br />

Arenaria pseudofrigida (Ostenf. & Dahl) Juz.<br />

#Bis<strong>to</strong>rta vivipara (L.) S.F.Gray<br />

Carex fulig<strong>in</strong>osa Schkuhr subsp. misandra (R.Br.) Nyman<br />

Carex nard<strong>in</strong>a Fr. subsp. hepburnii (Boott) Á.Löve, D.Löve & B.M.Kapoor<br />

*Carex rupestris All.<br />

*Cassiope tetragona (L.) D.Don subsp. tetragona<br />

*Dryas oc<strong>to</strong>petala L.<br />

#Luzula nivalis (Laest.) Spreng.<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

Saxifraga cernua L.<br />

*Saxifraga oppositifolia L. subsp. oppositifolia<br />

*Silene acaulis (L.) Jacq.<br />

Trisetum spicatum (L.) K.Richt. subsp. spicatum<br />

2107/2/1­2; Ossian Sarsfjellet; birdcliff; 8763388, 33X 0445378<br />

Arenaria pseudofrigida (Ostenf. & Dahl) Juz.<br />

*Bis<strong>to</strong>rta vivipara (L.) S.F.Gray<br />

Carex maritima Gunn. coll.<br />

*Cerastium arcticum Lange coll.<br />

*Cerastium regelii Ostenf.<br />

Chrysosplenium tetrandrum (N.Lund) Th.Fr.<br />

Cochlearia groenlandica L. coll.<br />

*Comas<strong>to</strong>ma tenellum (Rottb.) Toyok.<br />

Deschampsia alp<strong>in</strong>a (L.) Roem & Schultes<br />

Draba arctica J.Vahl subsp. arctica<br />

#Draba glabella Pursh<br />

Draba norvegica Gunn.<br />

Dryas oc<strong>to</strong>petala L.<br />

*Erigeron humilis R.C.Graham<br />

*Euphrasia wettste<strong>in</strong>ii G.Gussarova<br />

*Festuca rubra L. subsp. richardsonii (Hook.) Hultén<br />

Oxyria digyna (L.) Hill<br />

*Poa alp<strong>in</strong>a L. var. vivipara L.<br />

*Poa arctica R.Br.<br />

30


*Poa glauca J.Vahl.<br />

*Poa pratensis L. alpigena (Fr.) Hiit.<br />

*Potentilla hyparctica Malte subsp. hyparctica<br />

Potentilla pulchella R.Br. subsp. pulchella<br />

*Ranunculus aff<strong>in</strong>is R.Br.<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

*Saxifraga cernua L.<br />

#Saxifraga cespi<strong>to</strong>sa L. subsp. cespi<strong>to</strong>sa<br />

Saxifraga hieracifolia Waldst. & Kit. ex Willd. subsp. hieracifolia<br />

Saxifraga oppositifolia L. subsp. oppositifolia<br />

#Silene acaulis (L.) Jacq.<br />

Silene <strong>in</strong>volucrata (Cham. & Schltdl.) Bocquet subsp. furcata (Raf.) V.V.Petrovsky &<br />

Elven<br />

Silene uralensis (Rupr.) Bocquet subsp. arctica (Th.Fr.) Bocquet<br />

*Stellaria longipes Goldie s.l.<br />

*Taraxacum brachyceras Dahlst.<br />

#Trisetum spicatum (L.) K.Richt. subsp. spicatum<br />

2207/1/1­5; Colesdalen; mesic heath; 8670162, 33X 0502830<br />

*Alopecusus borealis Tr<strong>in</strong>.<br />

*Betula nana L. subsp. <strong>tundra</strong>rum (Perfil.) Á.Löve & D.Löve<br />

#Bis<strong>to</strong>rta vivipara (L.) S.F.Gray<br />

Campanula rotundifolia L. subsp. gieseckiana (Vest) Mela & Cajander<br />

#Cardam<strong>in</strong>e bellidifolia L. subsp. bellidifolia<br />

Cassiope tetragona (L.) D.Don subsp. tetragona<br />

*Cerastium arcticum Lange coll.<br />

*Cerastium arcticum x regelii<br />

*Dryas oc<strong>to</strong>petala L.<br />

*Equisetum arvense L. subsp. alpestre (Wahlenb.) Schönswetter & Elven<br />

*Euphrasia wettste<strong>in</strong>ii G.Gussarova<br />

*Festuca rubra L. subsp. richardsonii (Hook.) Hultén<br />

*Hierochloe alp<strong>in</strong>a (Sw.) Roem. & Schult. subsp. alp<strong>in</strong>a<br />

Koeniga islandica L.<br />

*Luzula confusa L<strong>in</strong>deb.<br />

Luzula nivalis (Laest.) Spreng.<br />

#M<strong>in</strong>uartia rubella (Wahlenb.) Hiern<br />

*Pedicularis hirsuta L.<br />

#Poa alp<strong>in</strong>a L. var. vivipara L.<br />

*Poa arctica R.Br.<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

#Saxifraga hieracifolia Waldst. & Kit. ex Willd. subsp. hieracifolia<br />

Saxifraga svalbardensis Øvstedal<br />

*Stellaria longipes Goldie s.l.<br />

Trisetum spicatum (L.) K.Richt. subsp. spicatum<br />

*Vacc<strong>in</strong>ium ulig<strong>in</strong>osum L. subsp. microphyllum Lange<br />

2207/1/6; Colesdalen; mire; 8670038, 33X 0502916<br />

*Alopecusus borealis Tr<strong>in</strong>.<br />

*Bis<strong>to</strong>rta vivipara (L.) S.F.Gray<br />

*Cerastium arcticum x regelii<br />

31


*Coptidium lapponicum (L.) Tzvelev<br />

Coptidium x spitsbergense (Hadac) Elven<br />

#Dupotia fisheri R.Br.<br />

*Equisetum arvense L. subsp. alpestre (Wahlenb.) Schönswetter & Elven<br />

#Eriophorum scheuchzeri Hoppe subsp. arcticum Novoselova<br />

*Euphrasia wettste<strong>in</strong>ii G.Gusarova<br />

*Luzula confusa L<strong>in</strong>deb.<br />

#Luzula nivalis (Laest.) Spreng.<br />

#Pedicularis hirsuta L.<br />

*Poa arctica R.Br.<br />

*Ranunculus hyperboreus Rottb. subsp. arnellii Scheutz<br />

*Salix <strong>polar</strong>is Wahlenb.<br />

#Saxifraga foliolosa R.Br.<br />

#Saxifraga hieracifolia Waldst. & Kit. ex Willd subsp. hieracifolia<br />

*Saxifraga svalbardensis Øvstedal<br />

32


Life <strong>in</strong> the <strong>Arctic</strong> – a struggle for survival?<br />

Simone Lang 1 , Merete Wiken Dees 2 and Kathr<strong>in</strong> Bockmühl 3<br />

1 Systems Ecology, Faculteit der Aard­ en Levenswetensschappen, Vrije Universiteit Amsterdam, De<br />

Boelelaan 1085, NL­1081 HV Amsterdam, The Netherlands, simone.lang@<strong>ecology</strong>.falw.vu.nl,<br />

2 Institutt for <strong>plant</strong>e og miljøvitenskap, Universitetet for miljø og biovitenskap, NO­1432 Ås, Norway,<br />

mwdees@student.umb.no, 3 Department of biology, University of Bergen, Allégaten 41, NO­5001<br />

Bergen, Norway, kathr<strong>in</strong>.bockmuhl@student.uib.no<br />

Abstract<br />

Are widespread <strong>plant</strong>s <strong>in</strong> the <strong>Arctic</strong> widespread due <strong>to</strong> their wide ecological amplitude<br />

or due <strong>to</strong> a widespread habitat? To address this question, ecological amplitudes of<br />

<strong>plant</strong> species across the <strong>Arctic</strong> were <strong>in</strong>vestigated. Vascular <strong>plant</strong> species composition<br />

and abiotic fac<strong>to</strong>rs were recorded <strong>in</strong> 88 plots at 29 sites <strong>in</strong> 10 different regions on<br />

<strong>Svalbard</strong>. For each species the ecological amplitude was recorded accord<strong>in</strong>g <strong>to</strong> Raups<br />

study carried out at Mesters Vig on North East Greenland <strong>in</strong> 1969. The ecological<br />

amplitudes of <strong>plant</strong> species occurr<strong>in</strong>g on both <strong>Svalbard</strong> and Mesters Vig district were<br />

compared. Some differences were found, but this was not the case when <strong>Svalbard</strong> was<br />

compared <strong>to</strong> the entire Greenland. pH and bioclimatic zones proved <strong>to</strong> be the driv<strong>in</strong>g<br />

fac<strong>to</strong>rs for <strong>plant</strong> distribution on <strong>Svalbard</strong>. The thermophilic annual Euphrasia<br />

wettste<strong>in</strong>ii seems <strong>to</strong> be a sensitive <strong>in</strong>dica<strong>to</strong>r for current climate change scenarios. Our<br />

study showed that widespread taxa do not au<strong>to</strong>matically possess wide amplitudes on<br />

<strong>Svalbard</strong> and vice versa.<br />

Introduction<br />

Climate change at high latitudes is predicted <strong>to</strong> be greater and more rapid than <strong>in</strong> any<br />

other region on Earth. Accord<strong>in</strong>g <strong>to</strong> the (ACIA 2006) not only will temperatures<br />

change (Przybylak 2007) but also precipitation is expected <strong>to</strong> <strong>in</strong>crease <strong>in</strong> wide regions<br />

<strong>in</strong> the <strong>Arctic</strong>. Recent observations and experimental studies have supplied evidence<br />

that arctic <strong>plant</strong>s and ecosystems react substantially <strong>to</strong> ris<strong>in</strong>g temperatures (Walker et<br />

al. 2006). Increas<strong>in</strong>g temperatures and ra<strong>in</strong>fall might <strong>in</strong>duce permafrost melt<strong>in</strong>g,<br />

lead<strong>in</strong>g <strong>to</strong> a changed hydrology and unstable substrates.<br />

<strong>Arctic</strong> <strong>plant</strong>s are exposed <strong>to</strong> extreme amplitudes of environmental fac<strong>to</strong>rs: early snow<br />

and frost, drought, w<strong>in</strong>d abrasion and extreme temperatures on open patches (Bill<strong>in</strong>gs<br />

& Mooney 1968). Slope <strong>in</strong>stability can occur as s<strong>to</strong>chastic mass flows as well as slow<br />

cont<strong>in</strong>uous process, depend<strong>in</strong>g upon the geomorphic circumstances. Low temperature<br />

and short grow<strong>in</strong>g seasons result <strong>in</strong> vegetation dom<strong>in</strong>ated by long­lived perennials<br />

that reproduce through vegetative growth, while annuals are rare (Bill<strong>in</strong>gs & Mooney<br />

1968, Savile 1972). The flora of <strong>Svalbard</strong> consists of about 170 flower<strong>in</strong>g <strong>plant</strong><br />

species and only two of those are annual species: the cold <strong>to</strong>lerant Koenigia islandica<br />

and the rare, thermophilic hemiparasitic species Euphrasia wettste<strong>in</strong>ii (Brochmann &<br />

Steen 1999). Euphrasia wettste<strong>in</strong>ii occurs at its northern limit on <strong>Svalbard</strong>.<br />

Thermophilic annuals may be good <strong>in</strong>dica<strong>to</strong>rs for climate change due <strong>to</strong> their short<br />

33


esponse curve. With ris<strong>in</strong>g temperatures an <strong>in</strong>crease <strong>in</strong> population size can be<br />

expected.<br />

What are the limits for <strong>plant</strong> distribution <strong>in</strong> the <strong>Arctic</strong>? Various biotic and abiotic<br />

fac<strong>to</strong>rs such as temperature and moisture regimes, nutrient supply, competition,<br />

dispersal limitation, seedl<strong>in</strong>g survival, <strong>to</strong> name only a few, restrict <strong>plant</strong> life <strong>in</strong> the<br />

<strong>Arctic</strong>. Yet can we conclude a ‘struggle for survival’ or are we observ<strong>in</strong>g rather well­<br />

adapted <strong>plant</strong> species be<strong>in</strong>g able <strong>to</strong> withstand extremely harsh conditions? Alsos et al.<br />

(2007) showed that dispersal of <strong>plant</strong>s is not a limit<strong>in</strong>g fac<strong>to</strong>r <strong>in</strong> the <strong>Arctic</strong>. A variety<br />

of studies on ecological amplitudes of <strong>plant</strong> species has been conducted <strong>in</strong> various<br />

parts of the <strong>Arctic</strong> and elsewhere (Coudun & Gegout 2005, Saetersdal & Birks 1997).<br />

Karlsen & Elvebakk (2003) grouped species <strong>in</strong> Greenland accord<strong>in</strong>g <strong>to</strong> their m<strong>in</strong>imum<br />

temperature and soil pH preferences. Are ecological amplitudes derived from such<br />

studies applicable across the <strong>Arctic</strong>? Ellenbergs (Ellenberg et al. 1991) <strong>in</strong>dica<strong>to</strong>r<br />

values, be<strong>in</strong>g developed for middle Europe <strong>in</strong>clud<strong>in</strong>g the Alps, needed <strong>to</strong> be modified<br />

when applied <strong>to</strong> other regions such as England (Hill et al. 2000). The same situation<br />

may arise when compar<strong>in</strong>g <strong>plant</strong> taxa occurr<strong>in</strong>g at different locations <strong>in</strong> the <strong>Arctic</strong>.<br />

Raup (1969) conducted a study of <strong>plant</strong> behaviour at Mester Vig, North East<br />

Greenland where he <strong>in</strong>vestigated the effects of disturbance, moisture and <strong>to</strong>tal <strong>plant</strong><br />

cover on <strong>plant</strong> distribution. No attempt has been made <strong>to</strong> replicate his study <strong>in</strong> other<br />

parts of the <strong>Arctic</strong> compar<strong>in</strong>g the ecological amplitudes of the same <strong>plant</strong> taxa. If we<br />

are <strong>to</strong> understand, generalise and model <strong>plant</strong> responses <strong>to</strong> climate change we will<br />

need <strong>to</strong> identify their ecological amplitudes <strong>in</strong> response <strong>to</strong> numerous biotic and abiotic<br />

fac<strong>to</strong>rs at a multitude of locations <strong>in</strong> the <strong>Arctic</strong>.<br />

In this study we attempt <strong>to</strong> assess the ecological amplitudes of arctic vascular <strong>plant</strong><br />

species on <strong>Svalbard</strong> <strong>in</strong> terms of their site fac<strong>to</strong>rs such as substrate, moisture,<br />

disturbance and temperature range. <strong>Svalbard</strong> is especially suitable for this study s<strong>in</strong>ce<br />

it covers three <strong>Arctic</strong> bioclimatic zones from <strong>polar</strong> <strong>desert</strong>s <strong>in</strong> zone A with extremely<br />

low productivity <strong>to</strong> relatively productive <strong>tundra</strong> <strong>in</strong> zone C. In addition, a great variety<br />

of substrates and geomorphological processes facilitates a record<strong>in</strong>g of species at their<br />

ecological optimum and also at their extremes (Jónsdóttir 2005). We furthermore<br />

compare the amplitudes of the species found both on <strong>Svalbard</strong> and the Mesters Vig<br />

District <strong>in</strong> Greenland accord<strong>in</strong>g <strong>to</strong> Raup’s record<strong>in</strong>g method.<br />

In our study we address the follow<strong>in</strong>g questions:<br />

1. Are widespread <strong>plant</strong>s <strong>in</strong> the <strong>Arctic</strong> widespread due <strong>to</strong> their wide ecological<br />

amplitude or due <strong>to</strong> a widespread habitat?<br />

1. Do the same species from <strong>Svalbard</strong> and Greenland on similar landscapes differ<br />

<strong>in</strong> their ecological amplitude?<br />

2. Will the thermophilic species Euphrasia wettste<strong>in</strong>ii expand its range if the<br />

mean July isotherme <strong>in</strong>creases by 1 degree Kelv<strong>in</strong>?<br />

Methods<br />

Study area<br />

<strong>Svalbard</strong> is an archipelago situated <strong>in</strong> the High <strong>Arctic</strong> at 74­/81°N and 10­/30°E. Ten<br />

localities along the north­west coast of Spitsbergen and the west­coast of<br />

34


Nordaustlandet (78­80°N) were studied dur<strong>in</strong>g the period of 16.­22. July 2007 (Figure<br />

1). The localities covered the three bioclimatic zones of <strong>Svalbard</strong> accord<strong>in</strong>g <strong>to</strong><br />

Elvebakk (Elvebakk 1999, Elvebakk 2005) <strong>in</strong>clud<strong>in</strong>g a wide variety of habitats. Two<br />

of the sites were located <strong>in</strong> zone A, four were located <strong>in</strong> zone B and four <strong>in</strong> zone C<br />

(Table 1). Zone A, B and C represent the arctic <strong>polar</strong> <strong>desert</strong> zone, the northern arctic<br />

<strong>tundra</strong> zone and the middle arctic <strong>tundra</strong> zone, respectively.<br />

Table 1. Bioclimatic zones, general vegetation and bedrock type for the regions <strong>in</strong> <strong>Svalbard</strong><br />

assessed <strong>in</strong> the study.<br />

Region Bioclimatic<br />

zone<br />

Site<br />

(# of<br />

plots)<br />

General<br />

vegetation<br />

35<br />

Site<br />

description<br />

Bedrock pH1<br />

Lady<br />

1 (3) 5,25<br />

Frankl<strong>in</strong>fjorden A 2 (3) Luzula confusa Polar <strong>desert</strong> Acidic 5,27<br />

3 (3)<br />

5,47<br />

1 (3)<br />

5,45<br />

Florabukta B (A)2<br />

Mesic Luzula Underneath Alkal<strong>in</strong>e<br />

nivalis Bird cliff circumneutral<br />

2 (3) Next <strong>to</strong><br />

Bird cliff<br />

6,21<br />

3 (3)<br />

Polar <strong>desert</strong><br />

7,90<br />

1 (5) Young<br />

6,53<br />

Mayerbreen B<br />

Mesic Luzula mora<strong>in</strong>e Acidic<br />

2 (3) confusa Old mora<strong>in</strong>e<br />

6,73<br />

3 (4)<br />

6,93<br />

Fjortende<br />

1 (3) Bird cliff Acidic 7,16<br />

Julibreen B 2 (3)<br />

7,06<br />

1 (3) Hill, north<br />

5,46<br />

Biscayarhuken B<br />

Mesic Luzula fac<strong>in</strong>g slope Acidic<br />

2 (2) confusa Hill, south<br />

fac<strong>in</strong>g slope<br />

5,46<br />

1 (3) Poa alp<strong>in</strong>a Snow bed Sligthly acidic 6,10<br />

Re<strong>in</strong>sdyrsflya B 2 (3)<br />

6,51<br />

1 (3) Mesic Dryas Heath Weakly acidic 7,33<br />

Kapp Thordsen C 2 (3) Calcarious fens 6,48<br />

1 (3)<br />

8,31<br />

Kongsbreen C<br />

Cassiope Very young Acidic <strong>to</strong><br />

tetragona mora<strong>in</strong>e alkal<strong>in</strong>e<br />

2 (3) Intermediate<br />

mora<strong>in</strong>e<br />

cirucumneutral 8,41<br />

3 (3)<br />

Established<br />

vegetation<br />

7,92<br />

1 (2) Luzula confusa Underneath Acidic <strong>to</strong> 7,78<br />

Ossian Sars C 2 (2)<br />

bird cliff alkal<strong>in</strong>e<br />

cirucumneutral<br />

7,99<br />

1 (4) 5,84<br />

C 2 (4) Dryas­ Heath<br />

5,75<br />

3 (4) Cassiope<br />

5,72<br />

Colesdalen<br />

4 (4) tetragona<br />

Weakly acidic 5,57<br />

5 (2)<br />

5,41<br />

6 (4)<br />

Fen<br />

5,71<br />

1<br />

pH was measured <strong>in</strong> this study<br />

2<br />

At the border between A and B


N<br />

Biscayarhuken<br />

Florabukta<br />

Re<strong>in</strong>sdyrsflya<br />

Mayerbreen<br />

Fjortende Julibreen<br />

Ossian Sars<br />

Kongsbreen<br />

Kapp Thordsen<br />

Colesdalen<br />

Figure 1. Map of <strong>Svalbard</strong> show<strong>in</strong>g the sampl<strong>in</strong>g sites.<br />

36<br />

Lady Frankl<strong>in</strong>fjorden


The percentage area of different substrate types of <strong>Svalbard</strong> was estimated by means<br />

of the prelim<strong>in</strong>ary substrate map of <strong>Svalbard</strong> (Arnesen, personal communication)<br />

us<strong>in</strong>g GIPM Version 2.2.1.1. The pixels of each substrate category were counted and<br />

expressed as percentage area <strong>in</strong> relation <strong>to</strong> the pixel sum of entire <strong>Svalbard</strong>. The<br />

dom<strong>in</strong>ant substrate type is weakly acidic and covers 14.1% of entire <strong>Svalbard</strong>. Acidic<br />

substrates cover 6.1%, followed by the alkal<strong>in</strong>e circumneutral type with 5.4%. The<br />

rema<strong>in</strong><strong>in</strong>g substrate consists of sediments (3.6%), sal<strong>in</strong>e steppe substrate (0.1%) and<br />

undef<strong>in</strong>ed substrate (0.2%). <strong>Svalbard</strong> is dom<strong>in</strong>ated by glaciers occupy<strong>in</strong>g 67.5% of<br />

the surface area.<br />

Meteorological data<br />

Data from the meteorological station at <strong>Svalbard</strong> Airport (MET 2007) were used <strong>to</strong><br />

calculate the <strong>in</strong>crease <strong>in</strong> mean summer temperatures for the last ten years (1997­<br />

2007). Figure 2 shows a simplified model of the temperature data us<strong>in</strong>g a l<strong>in</strong>ear<br />

regression. In the period 1997­2007 mean summer temperatures <strong>in</strong>creased with a rate<br />

of 0.16 K per year. As a comparison the mean summer temperature of the last normal<br />

period (1961­1990) is <strong>in</strong>cluded <strong>in</strong> the diagram.<br />

Degrees Celsius<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1997<br />

1998<br />

Mean summer temperature at <strong>Svalbard</strong> Airport<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

37<br />

2005<br />

2006<br />

2007<br />

Mean temperatures<br />

Regression model<br />

Mean summer temperature<br />

1961­1990<br />

Figure 2. Mean summer (June, July and august) temperature at <strong>Svalbard</strong> airport (R 2 = 0.52).<br />

Study species<br />

The annual thermophilic Euphrasia wettste<strong>in</strong>ii G.Gusarova belongs <strong>to</strong> the family<br />

Scrophulariaceae. The species was earlier treated as E. frigida Pugsley (PAF 2007).<br />

Euphrasia wettste<strong>in</strong>ii is a root hemiparasite, but it is still unclear which hosts the<br />

<strong>Svalbard</strong>­populations are parasitis<strong>in</strong>g (Alsos et al. 2004). Some hemiparasites are<br />

reported with only one host. However, E. wettste<strong>in</strong>ii is found physically connected <strong>to</strong><br />

a variety of hosts or it may grow unconnected <strong>to</strong> a host (Seel & Press 1993).<br />

Euphrasia wettste<strong>in</strong>ii is ma<strong>in</strong>ly self­poll<strong>in</strong>at<strong>in</strong>g. The <strong>plant</strong>s are found <strong>in</strong> closed <strong>plant</strong><br />

communites, therefore open<strong>in</strong>gs <strong>in</strong> the cover are needed <strong>to</strong> expose the soil and provide<br />

a seed bed. Some disturbance which causes small open patches <strong>in</strong> the growth sites is<br />

needed for establishment of the seeds (Molau 1993, Seel & Press 1993). Reproduc<strong>in</strong>g<br />

by seeds may be of advantage <strong>to</strong> survive unfavourable w<strong>in</strong>ter times, but a long series


of cold summers can be term<strong>in</strong>al for a population of Euphrasia depend<strong>in</strong>g on their<br />

seed longevity which may only last for a few years.<br />

Euphrasia wettste<strong>in</strong>ii was first recorded near the hot spr<strong>in</strong>g <strong>in</strong> Bockfjord (Rønn<strong>in</strong>g<br />

1961). In 1998 one patch of E. wettste<strong>in</strong>ii was discovered <strong>in</strong> Colesdalen (Alsos et al.<br />

2004) and one at Ossian Sars five years later (Alsos). In 2002 a detailed <strong>in</strong>vestigation<br />

of the flora <strong>in</strong> Colesdalen was carried out and n<strong>in</strong>e patches of E. wettste<strong>in</strong>ii were<br />

discovered. All the patches except two were less than 2 m 2 . E. wettste<strong>in</strong>ii is assigned<br />

<strong>to</strong> the Red List category endangered (Bakken et al. 2006).<br />

Vegetation data<br />

Two <strong>to</strong> six sites were selected with<strong>in</strong> each of the ten localities and a <strong>to</strong>tal of 88 plots<br />

were chosen among sites. The plots were randomly chosen for unbiased application of<br />

plot sampl<strong>in</strong>g. Exceptions from the random selection of plots were the Euphrasia­<br />

sites on Ossian Sars and Colesdalen. The plots <strong>in</strong> these two regions were subjectively<br />

selected <strong>to</strong> <strong>in</strong>clude patches of E. wettste<strong>in</strong>ii. The size of the entire patch of E.<br />

wettste<strong>in</strong>ii at Ossian Sars was 1m x 2m. Thus only two plots with and two without E.<br />

wettste<strong>in</strong>ii were recorded. Ten plots with E. wettste<strong>in</strong>ii and ten exclud<strong>in</strong>g the species<br />

were assessed <strong>in</strong> Colesdalen. The po<strong>in</strong>t <strong>in</strong>tercept method was used <strong>to</strong> record the<br />

vascular species with<strong>in</strong> each plot (Bråthen & Hagberg 2004). At each site, 50 cm x 50<br />

cm plots with 25 po<strong>in</strong>ts of equal <strong>in</strong>tercepts of 10 cm were used. All vascular <strong>plant</strong>s<br />

<strong>to</strong>uched by the needle at each po<strong>in</strong>t were recorded. Each taxon was counted only once<br />

at any one po<strong>in</strong>t. Two <strong>to</strong> four replicate plots per site were recorded <strong>to</strong> obta<strong>in</strong> an<br />

adequate representation of the community. Additional species <strong>in</strong> the plot were<br />

recorded and counted as 0.5 hits. The <strong>to</strong>tal vegetation cover <strong>in</strong> the plots was estimated<br />

<strong>in</strong> percent vascular <strong>plant</strong> cover, bryophyte cover, lichen cover, bare ground/rocks and<br />

cryp<strong>to</strong>gram crust cover. The black and white cryp<strong>to</strong>gam crust consisted of a mixture<br />

of cyanobacteria, white crus<strong>to</strong>se lichens and a few m<strong>in</strong>ute bryophytes. Species names<br />

of the vascular <strong>plant</strong>s followed PAF (2007).<br />

A distribution estimate for each species was calculated <strong>to</strong> test whether species are<br />

truly widespread on <strong>Svalbard</strong>. <strong>Svalbard</strong> is divided <strong>in</strong> 26 districts. For the species<br />

encountered <strong>in</strong> the field a count per district was carried out us<strong>in</strong>g the <strong>Svalbard</strong><br />

database (Alsos, personal communication). The <strong>Svalbard</strong> database <strong>in</strong>cludes all<br />

specimens recorded <strong>in</strong> Norwegian herbaria as well as a list of species for particular<br />

sites. The count per district was used as a distribution estimate of each species. Poa<br />

alp<strong>in</strong>a var. vivipara and P. alp<strong>in</strong>a var. alp<strong>in</strong>a were comb<strong>in</strong>ed <strong>to</strong> P. alp<strong>in</strong>a. The<br />

northernmost distribution limit was based on P. alp<strong>in</strong>a var. vivipara which extends<br />

further north. In the district count of Poa arctica both P. arctica ssp. caespitans and<br />

P. arctica var. vivipara were <strong>in</strong>cluded.<br />

Abiotic data<br />

Abiotic data were assessed per plot. Organic soil depth was measured and divided <strong>in</strong><strong>to</strong><br />

the three categories of low (0­2 cm), medium (2­5 cm) and high (>5 cm) organic soil<br />

depth. Permafrost measurements could not be consistently taken at all sites and were<br />

therefore not <strong>in</strong>cluded <strong>in</strong> the analysis. Soil temperature was measured at 10 cm soil<br />

depth us<strong>in</strong>g a handheld digital thermometer. Slope and exposure of the plots were<br />

assessed us<strong>in</strong>g a compass. For pH measurements soil samples were taken from the<br />

uppermost 5 cm of the soil regardless of organic or m<strong>in</strong>eral orig<strong>in</strong> s<strong>in</strong>ce this layer<br />

constitutes the ma<strong>in</strong> root<strong>in</strong>g zone for the <strong>plant</strong>s. The samples were kept cool and<br />

38


processed with<strong>in</strong> 24 hours. Equal amounts <strong>in</strong> volume of both soil and deionised water<br />

were mixed <strong>in</strong> a flask. After repeated shak<strong>in</strong>g for 1 hour, pH was measured by us<strong>in</strong>g<br />

an electronic pH­meter. The pH values were divided <strong>in</strong><strong>to</strong> three categories of low (<<br />

5.2), medium (5.2­7.0) and high (> 7.0) pH. This division corresponds <strong>to</strong> Karlsen and<br />

Elvebakk (2003). The def<strong>in</strong>ition of substrates follows the prelim<strong>in</strong>ary substrate map<br />

of <strong>Svalbard</strong> (Arnesen, personal communication). Raup did not <strong>in</strong>clude pH­<br />

measurements <strong>in</strong> his study at the Mesters Vig district. Data from Karlsen & Elvebakk<br />

(2003) were used for the <strong>Svalbard</strong> ­ Greenland comparison.<br />

The soil moisture with<strong>in</strong> each plot was assessed accord<strong>in</strong>g <strong>to</strong> Raup (1969) by feel<strong>in</strong>g<br />

the soil with the f<strong>in</strong>gers. Follow<strong>in</strong>g categories were used:<br />

1. low (dry, no feel<strong>in</strong>g of dampness <strong>to</strong> the f<strong>in</strong>gers)<br />

2. medium (moist, wet the f<strong>in</strong>gers when handled)<br />

3. high (wet, water can be squeezed from the soil)<br />

4. very high (wet, water is freely dripp<strong>in</strong>g from soil sample)<br />

The disturbance gradient was separated <strong>in</strong><strong>to</strong> two categories established by Raup<br />

(1969). He dist<strong>in</strong>guished between frost disturbance (sorted or non­sorted circles) and<br />

non­frost disturbance (erosion, slope <strong>in</strong>stability). Although be<strong>in</strong>g a frost­<strong>in</strong>itiated<br />

process, Raup <strong>in</strong>cluded solifluction <strong>in</strong><strong>to</strong> the non­frost disturbance processes s<strong>in</strong>ce<br />

<strong>plant</strong> roots are located <strong>in</strong> the upper layer of the slid<strong>in</strong>g soil and thus not disturbed by<br />

the slow soil movement. The categories for both frost and non­frost disturbance were<br />

divided <strong>in</strong><strong>to</strong>:<br />

1. stable (no visual disturbance, no bare ground)<br />

2. medium (bare ground visible <strong>in</strong>dicat<strong>in</strong>g cryoturbation and enabl<strong>in</strong>g erosion)<br />

3. unstable (bare ground dom<strong>in</strong>at<strong>in</strong>g, active cryoturbation or erosion, no<br />

consolidation of soil recognisable)<br />

Statistical analysis<br />

To f<strong>in</strong>d the ma<strong>in</strong> abiotic fac<strong>to</strong>rs determ<strong>in</strong><strong>in</strong>g species distribution, a DCA, CA and<br />

CCA ord<strong>in</strong>ation were carried out us<strong>in</strong>g Canoco (Canoco for W<strong>in</strong>dows 4.5, 1999). Hits<br />

per species obta<strong>in</strong>ed by the po<strong>in</strong>t <strong>in</strong>tercept method were used as the species fac<strong>to</strong>r.<br />

Environmental fac<strong>to</strong>rs <strong>in</strong>cluded pH, soil temperature, organic soil depth, moisture,<br />

frost and non­frost disturbance and <strong>to</strong>tal vascular <strong>plant</strong> cover. For ord<strong>in</strong>ation the<br />

values and not the categories for pH and organic soil depth were used. S<strong>in</strong>ce soil<br />

temperature was measured only once at each site be<strong>in</strong>g strongly dependant on current<br />

weather conditions, bioclimatic zones A <strong>to</strong> C were used <strong>to</strong> replace soil temperature <strong>in</strong><br />

a second ord<strong>in</strong>ation. Bioclimatic zones are def<strong>in</strong>ed as subdivisions of the <strong>Arctic</strong><br />

reflect<strong>in</strong>g climatic gradients (Elvebakk 1999). They <strong>in</strong>tegrate climatic measurements<br />

over a longer time period thus greatly improv<strong>in</strong>g the comparison between the different<br />

localities used <strong>in</strong> this study. The dummy variables for bioclimatic zones were<br />

numbered 1 <strong>to</strong> 3 for zone A <strong>to</strong> C accord<strong>in</strong>g <strong>to</strong> ris<strong>in</strong>g temperatures. Subdivision of<br />

arctic reflect<strong>in</strong>g climatic gradients.<br />

We assumed that the species was temperature dependant so we wanted <strong>to</strong> test whether<br />

soil temperature could be a fac<strong>to</strong>r differ<strong>in</strong>g between plots. Differences <strong>in</strong> soil<br />

temperature for the plots at Colesdalen where E. wettste<strong>in</strong>ii was grow<strong>in</strong>g compared <strong>to</strong><br />

the plots exclud<strong>in</strong>g the species were tested by carry<strong>in</strong>g out a t­test us<strong>in</strong>g S­Plus® 6.2<br />

for W<strong>in</strong>dows (Insightful Corp. Seattle, WA, USA, 2003).<br />

39


Results<br />

Ecological amplitudes of vascular <strong>plant</strong> species on <strong>Svalbard</strong><br />

The DCA ord<strong>in</strong>ation revealed that the length of the gradient was larger than four.<br />

Thus a PCA based on species show<strong>in</strong>g a l<strong>in</strong>ear response along a gradient could not be<br />

carried out. The Monte Carlo Permutation test obta<strong>in</strong>ed from a CCA proved that soil<br />

temperature was not significant (p = 0.078) whereas bioclimatic zones used as a<br />

temperature proxy showed high significance (p = 0.002). The variable bioclimatic<br />

zone was consequently used <strong>in</strong> the follow<strong>in</strong>g analysis. The Monte Carlo Permutation<br />

test showed that all environmental variables except frost and non­frost were<br />

significant (Table 2).<br />

Table 2. Significance values of the environmental variables <strong>in</strong> the Monte Carlo Permutation<br />

test.<br />

p­value F­ratio<br />

pH 0.002 3.93<br />

Bioclimatic zone 0.002 3.89<br />

Vascular <strong>plant</strong> cover 0.002 2.84<br />

Organic soil depth 0.002 2.51<br />

Moisture 0.024 1.84<br />

Frost disturbance 0.158 1.26<br />

Non­frost disturbance 0.362 1.04<br />

The CA correlation matrix revealed that the bioclimatic zone was weakly correlated<br />

with all other fac<strong>to</strong>rs except pH (Table 3).<br />

Table 3. CA correlation matrix based on hits per species. Environmental variables used are<br />

bioclimatic zones, organic soil depth, moisture, non­frost disturbance, frost<br />

disturbance, pH and <strong>to</strong>tal vascular <strong>plant</strong> cover.<br />

Bioclimatic Organic Soil Non­frost Frost pH Vascular<br />

zone<br />

soil depth moisture disturbace disturbance<br />

Plant Cover<br />

Bioclimatic zone 1<br />

Organic soil depth 0.2106 1<br />

Soil moisture<br />

Non­frost<br />

0.2990 0.1529 1<br />

disturbance 0.2093 ­0.1290 ­0.0554 1<br />

Frost disturbance 0.1469 0.1441 0.1514 0.0524 1<br />

pH<br />

Vascular <strong>plant</strong><br />

0.0965 0.0820 ­0.2484 ­0.1482 ­0.0170 1<br />

cover 0.3060 ­0.0954 0.0203 0.0791 ­0.1125 0.1192 1<br />

Figure 3 illustrates the driv<strong>in</strong>g fac<strong>to</strong>rs of <strong>plant</strong> distribution on <strong>Svalbard</strong>. The first and<br />

second axis expla<strong>in</strong>ed 7.8% and 7% of the variation, respectively.<br />

The two non­correlated fac<strong>to</strong>rs pH and bioclimatic zone were regarded as the ma<strong>in</strong><br />

fac<strong>to</strong>rs for <strong>plant</strong> distribution on <strong>Svalbard</strong>. Species were sorted accord<strong>in</strong>g <strong>to</strong> their pH<br />

ranges and each pH range subsequently divided <strong>in</strong><strong>to</strong> four groups follow<strong>in</strong>g their<br />

northernmost (scattered or frequent) occurrence <strong>in</strong> the bioclimatic zones A – D (PAF<br />

2007). Thus both the ma<strong>in</strong> distribution limit and the temperature limitation were<br />

comb<strong>in</strong>ed <strong>in</strong> one table (Table 4). Bioclimatic zone D does not occur on <strong>Svalbard</strong>. It is<br />

<strong>in</strong>cluded <strong>in</strong> the table <strong>to</strong> be consistent regard<strong>in</strong>g the northernmost ma<strong>in</strong> <strong>plant</strong><br />

40


distribution. The complete results for the ecological amplitudes of 67 species on<br />

<strong>Svalbard</strong> are found <strong>in</strong> Appendix 1.<br />

As can be seen <strong>in</strong> Table 4, the smallest group consists of <strong>plant</strong>s with the widest<br />

amplitude <strong>in</strong> pH range, most of them with a northernmost occurrence <strong>in</strong> bioclimatic<br />

zone A.<br />

Twenty­eight species show a medium range for pH values medium <strong>to</strong> high whereas<br />

only one <strong>plant</strong>, Luzula confusa, has a medium range for pH levels from low <strong>to</strong><br />

medium. The emphasis of the distribution limit focuses on the northernmost<br />

bioclimatic zone A.<br />

No taxon can be found for the group with narrow range and low pH. Twenty­one<br />

species show a narrow range for medium pH. Thirteen taxa are found <strong>in</strong> the group<br />

with preferences for high pH only. In all groups a tendency can be seen that the<br />

category <strong>in</strong>clud<strong>in</strong>g most taxa for a given pH range displays its northernmost ma<strong>in</strong><br />

distribution limit <strong>in</strong> bioclimatic zone A.<br />

Figure 3. CA ord<strong>in</strong>ation of hits per species (67 <strong>in</strong> <strong>to</strong>tal) <strong>in</strong> 88 plots, located on <strong>Svalbard</strong>, <strong>in</strong><br />

relation <strong>to</strong> environmental variables. Stars <strong>in</strong>dicate significant variables. Sample and<br />

species labels were omitted <strong>in</strong> the figure. First and second axis expla<strong>in</strong>ed 7.8% and<br />

7%, respectively.<br />

41


A potential substrate area could be calculated for each species know<strong>in</strong>g the species­<br />

specific pH range by summ<strong>in</strong>g the percentage area of acidic, weakly acidic and/or<br />

alkal<strong>in</strong>e circumneutral substrate occurr<strong>in</strong>g on <strong>Svalbard</strong>. These were set <strong>in</strong> relation <strong>to</strong><br />

the distribution estimate of each species (Figure 4).<br />

The number of species occurr<strong>in</strong>g on all substrates is low and corresponds <strong>to</strong> the<br />

species with the widest pH range from acidic <strong>to</strong> alkal<strong>in</strong>e circumneutral substrate<br />

material (Table 4). All of the species <strong>in</strong> this group show a wide distribution. On all<br />

substrate type comb<strong>in</strong>ations more than half of the species of each group are<br />

distributed over ten districts, except the acidic ­ weakly acidic with Luzula confusa as<br />

the only group member.<br />

42


High pH amplitude<br />

Medium pH amplitude<br />

Narrow pH amplitude<br />

Table 4. pH <strong>to</strong>lerance of 67 <strong>plant</strong> species on <strong>Svalbard</strong> sorted by bioclimatic zones.<br />

Low <strong>to</strong> high pH<br />

zone A zone B zone C zone D<br />

Cerastium arcticum Salix <strong>polar</strong>is None None<br />

Poa arctica<br />

Saxifraga cespi<strong>to</strong>sa ssp. cespi<strong>to</strong>sa<br />

Low <strong>to</strong> medium pH<br />

zone A zone B zone C zone D<br />

Luzula confusa None None None<br />

medium <strong>to</strong> high pH<br />

zone A zone B zone C zone D<br />

Bis<strong>to</strong>rta vivipara Equisetum arvense ssp. alpestre<br />

Equisetum variegatum ssp.<br />

Carex maritima<br />

Cerastium regelii<br />

variegatum Carex rupestris<br />

Cochlearia groenlandica Festuca rubra ssp. richardsonii Draba norvegica<br />

Luzula nivalis Poa alp<strong>in</strong>a Dryas oc<strong>to</strong>petala<br />

Micranthes nivalis Poa pratensis ssp. alpigena Euphrasia wettste<strong>in</strong>ii<br />

Micranthes hieracifolia ssp.<br />

M<strong>in</strong>uartia rubella<br />

hieracifolia<br />

Oxyria digyna M<strong>in</strong>uartia biflora<br />

Papaver dahlianum ssp.<strong>polar</strong>e Pedicularis dasyantha<br />

Saxifraga cernua Taraxacum brachyceras<br />

Saxifraga hirculus ssp. compacta<br />

Saxifraga oppositifolia ssp.<br />

oppositifolia Unknown zone:<br />

Silene acaulis Cerastium regelii x arcticum<br />

Stellaria crassipes<br />

Low pH<br />

None<br />

Medium pH<br />

zone B zone B zone C zone D<br />

Alopecurus borealis Dupontia fisheri Coptidium lapponicum<br />

Vacc<strong>in</strong>ium ulig<strong>in</strong>osum ssp.<br />

Betula nana ssp. <strong>tundra</strong>rum<br />

Cardam<strong>in</strong>e bellidifolia ssp. bellidifolia Eriophorum scheuchzeri coll. microphyllum<br />

Draba alp<strong>in</strong>a Hierochloe alp<strong>in</strong>a ssp. alp<strong>in</strong>a<br />

Draba corymbosa Pedicularis hirsuta<br />

Ranunculus hyperboreus ssp.<br />

Draba lactea<br />

arnellii<br />

Draba micropetala Saxifraga rivularis ssp. rivularis<br />

Juncus biglumis<br />

Micranthes foliolosa<br />

Micranthes tenuis<br />

Ranunculus pygmaeus<br />

Ranunculus sulphureus<br />

Saxifraga hyperborea<br />

high pH<br />

zone A zone B zone C<br />

Cassiope tetragona ssp.<br />

zone D<br />

Draba subcapitata Draba glabella<br />

tetragona Comas<strong>to</strong>ma tenellum<br />

Phippsia algida Poa glauca Draba fladnizensis<br />

Poa abbreviata ssp. abbreviata Trisetum spicatum ssp. spicatum Erigeron humilis<br />

Potentilla hyparctica ssp. hyparctica Ranunculus arcticus<br />

Saxifraga platysepala<br />

43


no. of districts<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

alkal<strong>in</strong>e<br />

circumneutral (5.4%)<br />

weakly acidic (14.1%)<br />

<strong>in</strong>creas<strong>in</strong>g substrate area def<strong>in</strong>ed by species pH range<br />

44<br />

Weakly acidic – alkal<strong>in</strong>e<br />

circumneutral (19.5%)<br />

acidic – weakly<br />

acidic (20.2%)<br />

acidic – alkal<strong>in</strong>e<br />

Circumneutral Circumneutral (25.6%)<br />

Figure 4. Occurrence of species <strong>in</strong> districts <strong>in</strong> relation <strong>to</strong> sum of pH def<strong>in</strong>ed substrate area.<br />

Comparison of ecological amplitudes of selected species from <strong>Svalbard</strong> and<br />

Greenland, with special emphasis on the Mesters Vig district, NE Greenland<br />

Dur<strong>in</strong>g the fieldwork on <strong>Svalbard</strong> 67 species were observed <strong>in</strong> <strong>to</strong>tal, of which 45 had<br />

previously also been studied <strong>in</strong> Greenland. The ecological amplitudes of the species<br />

present on both <strong>Svalbard</strong> and at Mesters Vig were compared. Different ecological<br />

amplitudes were found for ten species (Table 5). For the complete list and ecological<br />

amplitude of <strong>plant</strong> taxa occurr<strong>in</strong>g on both <strong>Svalbard</strong> and Mesters Vig, NE Greenland,<br />

see Appendix 2.<br />

Betula nana ssp. <strong>tundra</strong>rum on <strong>Svalbard</strong> was observed <strong>in</strong> plots with 80­90 % <strong>to</strong>tal<br />

vascular <strong>plant</strong> cover. At Mesters Vig, the species was found <strong>to</strong> be grow<strong>in</strong>g at all<br />

categories from low <strong>to</strong> high density of <strong>to</strong>tal vascular <strong>plant</strong> cover. In addition, B. nana<br />

showed a broader amplitude on <strong>Svalbard</strong> regard<strong>in</strong>g non­frost disturbance than at<br />

Mesters Vig. Cardam<strong>in</strong>e bellidifolia ssp. bellidifolia on <strong>Svalbard</strong> was found <strong>to</strong> grow<br />

on stable <strong>to</strong> medium stable ground with respect <strong>to</strong> frost disturbance whereas at<br />

Mesters Vig the species only occurred on stable substrate. On <strong>Svalbard</strong>, Cochlearia<br />

groenlandica displayed a broader amplitude regard<strong>in</strong>g <strong>to</strong>tal vascular <strong>plant</strong> cover than<br />

the species at Mesters Vig. M<strong>in</strong>uartia rubella and Poa abbreviata ssp. abbreviata<br />

were both grow<strong>in</strong>g on medium moist soil on <strong>Svalbard</strong>, while they occurred on soil<br />

with low moisture content at Mesters Vig. Phippsia algida was found on <strong>Svalbard</strong> on<br />

stable ground with frost disturbance whereas it occurred on medium disturbed<br />

substrate at Mesters Vig. Poa pratensis ssp. alpigena and Saxifraga cespi<strong>to</strong>sa ssp.<br />

cespi<strong>to</strong>sa possessed on <strong>Svalbard</strong> a broader amplitude regard<strong>in</strong>g the vascular <strong>plant</strong><br />

cover than at Mesters Vig. Micranthes foliolosa ssp. foliolosa was present <strong>in</strong> this<br />

study at a s<strong>in</strong>gle site occurr<strong>in</strong>g with 50­60 % <strong>to</strong>tal vascular <strong>plant</strong> cover. At Mesters


Vig, the species was recorded <strong>in</strong> places with 1­20 % vascular <strong>plant</strong> cover. Micranthes<br />

hieracifolia ssp. hieracifolia on <strong>Svalbard</strong> showed a lower <strong>to</strong>lerance <strong>to</strong> frost<br />

disturbance and a slightly higher <strong>to</strong>lerance with respect <strong>to</strong> non­frost­disturbance<br />

compared <strong>to</strong> the Mesters Vig district.<br />

Table 5. Ecological amplitude of ten selected species occurr<strong>in</strong>g on both <strong>Svalbard</strong> (blue) and<br />

Greenland (red). The th<strong>in</strong> l<strong>in</strong>es represent not observed but suggested parts of the<br />

respective amplitudes. The discussed differences are marked <strong>in</strong> light blue.<br />

Species<br />

1­10<br />

11­20<br />

21­30<br />

<strong>to</strong>tal <strong>plant</strong> cover moisture frost dist.<br />

31­40<br />

41­50<br />

51­60<br />

61­70<br />

Regard<strong>in</strong>g the pH, Karlsen & Elvebakk (2003) did not f<strong>in</strong>d any species grow<strong>in</strong>g<br />

solely on acidic substrates which corresponds <strong>to</strong> our f<strong>in</strong>d<strong>in</strong>gs. Table 6 shows a<br />

comparison of the results for species be<strong>in</strong>g present <strong>in</strong> both the Karlsen & Elvebakk<br />

study and ours. The assigned pH range for species on <strong>Svalbard</strong> is narrower for Betula<br />

nana ssp. <strong>tundra</strong>rum, Draba alp<strong>in</strong>a, Draba glabella and Eriophorum scheuchzeri<br />

coll. Different pH ranges were found for the species Cassiope tetragona ssp.<br />

45<br />

71­80<br />

81­90<br />

low<br />

medium<br />

high<br />

stable<br />

medium<br />

unstable<br />

stable<br />

non­frost<br />

dist.<br />

Betula nana ssp. <strong>tundra</strong>rum 2 1<br />

Cardam<strong>in</strong>e bellidifolia ssp.<br />

Bellidifolia 9 6<br />

Cochlearia groenlandica 8 5<br />

Micranthes foliolosa 1 1<br />

Micranthes hieracifolia ssp.<br />

Hieracifolia 5 3<br />

M<strong>in</strong>uartia rubella 4 4<br />

Phippsia algida 1 1<br />

Poa abbreviata ssp.<br />

Abbreviate 1 1<br />

Poa pratensis ssp. alpigena 6 5<br />

Saxifraga cespi<strong>to</strong>sa ssp.<br />

Cespi<strong>to</strong>sa 24 12<br />

medium<br />

unstable<br />

presence <strong>in</strong> plots (<strong>to</strong>tal: 88)<br />

presence per site (<strong>to</strong>tal: 29)


tetragona, Erigeron humilis, M<strong>in</strong>uartia biflora and Trisetum spicatum ssp. spicatum.<br />

These species occurred at one site with a pH greater than 7.<br />

Table 6. Comparison of pH ranges (C: calcareous (pH >7); N: neutral (pH 5.2­7.0); A: acidic<br />

(pH


Table 7. Presents of possible host species of Euphrasia wettste<strong>in</strong>ii <strong>in</strong> the plots at Ossian Sars<br />

and Colesdalen.<br />

Species Plot with<br />

Euphrasia<br />

(n = 2)<br />

47<br />

Ossian Sars Colesdalen<br />

Plot without<br />

Euphrasia<br />

(n = 2)<br />

Plot with<br />

Euphrasia<br />

(n = 10)<br />

Plot without<br />

Euphrasia<br />

(n = 10)<br />

Bis<strong>to</strong>rta vivipara 100% 100% 100% 90%<br />

Festuca rubra ssp. richardsonii 100% 50% 100% 80%<br />

Poa arctica 50% ­ 20% 10%<br />

Salix <strong>polar</strong>is ­ 50% 90% 70%<br />

Equisetum arvense ssp. alpestre ­ ­ 100% 100%<br />

Stellaria crassipes 50% 50% 90% 80%<br />

Trisetum spicatum ssp. spicatum 100% ­ 30% 30%<br />

Luzula confusa ­ ­ ­<br />

Alopecurus borealis ­ ­ 80% 80%<br />

Mean soil temperature (10 cm depth) 8,5°C 7,8°C 6,1°C 5,0°C<br />

Discussion<br />

Comparison of ecological amplitudes of selected species from <strong>Svalbard</strong> and<br />

Greenland, with special emphasis on the Mesters Vig district, NE Greenland<br />

The range of this study limited our observations of the habitat types <strong>in</strong> which species<br />

might be able <strong>to</strong> grow. Species with narrow ecological amplitudes might show<br />

broader amplitudes than recorded here. To avoid mis<strong>in</strong>terpretation or generalization of<br />

a species’ ecological amplitude we focused <strong>in</strong> this comparison on species with<br />

broader ecological amplitudes or different non­congruent amplitudes vis­à­vis<br />

Mesters Vig.<br />

Ten of the observed species <strong>in</strong> <strong>Svalbard</strong> showed differences <strong>in</strong> their ecological<br />

amplitudes <strong>in</strong> comparison <strong>to</strong> the same species found at Mesters Vig. However,<br />

comparisons with the distribution map of <strong>Svalbard</strong> (Elvebakk 2005, Hultén & Fries<br />

1986) revealed that all but Poa pratensis ssp. alpigena and Saxifraga cespi<strong>to</strong>sa ssp.<br />

cespi<strong>to</strong>sa, were widespread beyond the areas we visited. Poa pratensis ssp. alpigena<br />

and Saxifraga cespi<strong>to</strong>sa ssp. cespi<strong>to</strong>sa displayed wider ecological amplitudes on<br />

<strong>Svalbard</strong> than at Mesters Vig. Cardam<strong>in</strong>e bellidifolia ssp. bellidifolia and Micranthes<br />

hieracifolia ssp. hieracifolia showed broader ecological amplitudes on <strong>Svalbard</strong> than<br />

at Mesters Vig <strong>in</strong> terms of their <strong>to</strong>lerance <strong>to</strong> frost disturbance. Cochlearia<br />

groenlandica and Micranthes foliolosa were associated with a wider range of <strong>to</strong>tal<br />

vascular <strong>plant</strong> cover be<strong>in</strong>g wider on <strong>Svalbard</strong>. However, literature research (Böcher<br />

1963, Gelt<strong>in</strong>g 1934, Raup 1965, Raup 1969, Sørensen 1933) provided evidence that<br />

no difference <strong>in</strong> ecological amplitudes exists for a given taxon present on both<br />

<strong>Svalbard</strong> and Greenland when compar<strong>in</strong>g all of Greenland (Böcher 1963, Raup 1965).<br />

The ma<strong>in</strong> difference found was the <strong>plant</strong>s <strong>to</strong>lerance <strong>to</strong> frost disturbance. The species<br />

at Mesters Vig seem <strong>to</strong> have wider amplitudes regard<strong>in</strong>g frost disturbance compared


with the species occurr<strong>in</strong>g on <strong>Svalbard</strong>. Although Mesters Vig is located slightly more<br />

south than <strong>Svalbard</strong>, frost disturbance is the major geomorphologic process<br />

determ<strong>in</strong><strong>in</strong>g <strong>plant</strong> life there. Frost crack<strong>in</strong>g and heav<strong>in</strong>g are widespread processes<br />

operat<strong>in</strong>g <strong>in</strong> the Mesters Vig (Washburn 1969). Most of the localities we sampled on<br />

<strong>Svalbard</strong> did not show a high degree of frost disturbance. The process of frost<br />

disturbance depends on <strong>to</strong>pography, rock material, temperature, moisture and snow<br />

cover. Time may be of importance when frost patterns develop very slowly<br />

(Washburn 1973). Old exposed landscape surfaces where frost features are<br />

predom<strong>in</strong>ant were not assessed <strong>in</strong> this study expla<strong>in</strong><strong>in</strong>g part of the differences <strong>in</strong> the<br />

results.<br />

The species at Mesters Vig tend <strong>to</strong> exhibit a wider <strong>to</strong>lerance on the moisture gradient<br />

compared <strong>to</strong> <strong>Svalbard</strong>. This may be due <strong>to</strong> the limited dataset of this study. Soil<br />

moisture measurements were conducted only once with most measurements show<strong>in</strong>g<br />

medium soil moisture. M<strong>in</strong>uartia rubella and Poa abbreviata ssp. abbreviata were<br />

grow<strong>in</strong>g on medium moist substrate on <strong>Svalbard</strong> <strong>in</strong> contrast <strong>to</strong> the Mesters Vig district<br />

where both species were present at low soil moisture. At Florabukta where the plots<br />

were recorded, precipitation led <strong>to</strong> overestimation of soil moisture. If low soil<br />

moisture contents is typical at this location, an underestimation of the moisture<br />

amplitude for all species present at this site is likely.<br />

For Betula nana ssp. <strong>tundra</strong>rum broader amplitudes with respect <strong>to</strong> <strong>to</strong>tal <strong>plant</strong> cover<br />

were observed on Greenland compared <strong>to</strong> <strong>Svalbard</strong>. S<strong>in</strong>ce this species is rare on<br />

<strong>Svalbard</strong>, these differences may be due simply <strong>to</strong> limited observations.<br />

Phippsia algida was found on <strong>Svalbard</strong> on stable with respect <strong>to</strong> frost disturbance <strong>in</strong><br />

contrast <strong>to</strong> the Mesters Vig district where the species was grow<strong>in</strong>g on medium<br />

disturbed substrates. This difference can partly be due <strong>to</strong> limited observations on<br />

<strong>Svalbard</strong>. In the Mesters Vig district it is possible that stable, non­frost disturbed<br />

ground is rarely present.<br />

Ow<strong>in</strong>g <strong>to</strong> the fact that its taxonomy has been heavily revised dur<strong>in</strong>g past years,<br />

Cerastium arcticum was not compared s<strong>in</strong>ce we cannot be certa<strong>in</strong> what we found on<br />

<strong>Svalbard</strong> is the same taxon as at Mesters Vig. Morphological variation is high with<strong>in</strong><br />

the complex, and the species are not clearly dist<strong>in</strong>guishable (Hagen 2001). Thus it<br />

rema<strong>in</strong>s unclear <strong>to</strong> which species Raup referred <strong>in</strong> his study at Mesters Vig.<br />

Different pH ranges for the species Cassiope tetragona ssp. tetragona, Erigeron<br />

humilis, M<strong>in</strong>uartia biflora and Trisetum spicatum ssp. spicatum were observed at one<br />

site with a pH clearly higher than 7, <strong>in</strong> contrast <strong>to</strong> the report by Karlsson & Elvebakk<br />

(2003) of acidic <strong>to</strong> weakly acidic pH ranges for the same taxa. However, Cassiope<br />

tetragona ssp. tetragona is known <strong>to</strong> grow at sites with limes<strong>to</strong>ne <strong>in</strong>fluence <strong>in</strong> sub­<br />

arctic habitats <strong>in</strong> northern Sweden (Lid et al. 2005).<br />

The pH range recorded <strong>in</strong> this study seems <strong>to</strong> be <strong>to</strong>o narrow for the species Betula<br />

nana ssp. <strong>tundra</strong>rum, Draba alp<strong>in</strong>a, Draba glabella and Eriophorum scheuchzeri<br />

coll. when compar<strong>in</strong>g <strong>to</strong> Karlsson & Elvebakk (2003). This may be due <strong>to</strong> the fact that<br />

these species were recorded at one site only. These differences might disappear when<br />

apply<strong>in</strong>g a larger dataset.<br />

48


Tak<strong>in</strong>g all of Greenland <strong>in</strong><strong>to</strong> account taxa occurr<strong>in</strong>g both on <strong>Svalbard</strong> and Greenland<br />

tend <strong>to</strong> show the same overall ecological amplitude regardless of low or high arctic<br />

environment. However, further studies are necessary <strong>to</strong> verify this statement. As yet,<br />

generalisations of ecological amplitudes of <strong>plant</strong> taxa for the entire <strong>Arctic</strong> should be<br />

considered with care.<br />

Ecological amplitudes of vascular <strong>plant</strong> species on <strong>Svalbard</strong><br />

The results show that the majority of the species over all pH ranges exhibit their ma<strong>in</strong><br />

distribution limit <strong>in</strong> bioclimatic zone A. Regard<strong>in</strong>g pH amplitudes very few <strong>plant</strong>s<br />

(five species) seem <strong>to</strong> be able <strong>to</strong> grow at low pH (< 5.2) values. Most prefer medium<br />

<strong>to</strong> high pH substrates (62 species). This reflects the substrate availability on <strong>Svalbard</strong><br />

with weakly acidic substrates (pH 5.2­7.0) cover<strong>in</strong>g the largest area.<br />

Cerastium arcticum, Poa arctica, Saxifraga cespi<strong>to</strong>sa ssp. cespi<strong>to</strong>sa and Salix <strong>polar</strong>is<br />

are truly widespread species with a wide ecological amplitude <strong>in</strong> terms of both pH and<br />

temperature. In addition, they show a wide <strong>to</strong>lerance concern<strong>in</strong>g <strong>to</strong>tal <strong>plant</strong> cover (10­<br />

90%) and a medium range for disturbance and moisture (s. Appendix 1). Species<br />

which are restricted <strong>to</strong> bioclimatic zone C or D and exhibit a narrow pH amplitude are<br />

less widespread.<br />

More than half of the species <strong>in</strong> each substrate group except the acidic and weakly<br />

acidic substrate group are widespread on <strong>Svalbard</strong>. All three substrate types occur <strong>in</strong><br />

each bioclimatic zone on <strong>Svalbard</strong>. Thus the substrate type does not appear <strong>to</strong> limit<br />

distribution of species on <strong>Svalbard</strong>.<br />

Luzula confusa and Poa arctica, although widespread on the species distribution map<br />

of <strong>Svalbard</strong>, received relatively low values <strong>in</strong> the district count per species. This may<br />

be due <strong>to</strong> an underrepresentation of the taxa <strong>in</strong> the <strong>Svalbard</strong> database which served as<br />

a basis for the district count.<br />

Ecological amplitudes of a few selected species were compared <strong>to</strong> the vegetation type<br />

map (Arnesen, personal communication), species distribution map and substrate map<br />

of <strong>Svalbard</strong> (Arnesen, personal communication) <strong>to</strong> verify our f<strong>in</strong>d<strong>in</strong>gs. Our study<br />

shows that Luzula confusa prefers substrates of low <strong>to</strong> medium pH. The substrate on<br />

Nordaustlandet, where the Luzula confusa vegetation type is dom<strong>in</strong>ant, consists<br />

ma<strong>in</strong>ly of acidic substrate types reflect<strong>in</strong>g the species preferences. In addition, the<br />

distribution map shows that Luzula confusa doesn’t occur <strong>in</strong> the area of alkal<strong>in</strong>e<br />

circumneutral substrates but is present on acidic and weakly acidic substrates. The<br />

medium <strong>to</strong> high pH values which were recorded for Papaver dahlianum ssp. <strong>polar</strong>e,<br />

are congruent with its occurrence <strong>in</strong> the Papaver <strong>polar</strong> <strong>desert</strong> where partly alkal<strong>in</strong>e<br />

and weakly acidic substrates are dom<strong>in</strong>ant. The mesic Luzula nivalis vegetation type<br />

of bioclimatic zone B relates <strong>to</strong> weakly acidic and alkal<strong>in</strong>e substrates and the assigned<br />

pH range of Luzula nivalis. The distribution of the Poa alp<strong>in</strong>a snow beds corresponds<br />

<strong>to</strong> a substrate higher <strong>in</strong> pH which is expressed <strong>in</strong> the species pH <strong>to</strong>lerance of medium<br />

<strong>to</strong> high pH values. On the species distribution map, Papaver dahlianum ssp. <strong>polar</strong>e,<br />

Luzula nivalis and Poa alp<strong>in</strong>a are ma<strong>in</strong>ly distributed <strong>in</strong> areas with weakly acidic <strong>to</strong><br />

alkal<strong>in</strong>e circumneutral substrates match<strong>in</strong>g their ecological pH amplitudes. The<br />

Cassiope tetragona ssp. tetragona vegetation type, occurr<strong>in</strong>g on weakly acidic<br />

substrates, is less well expressed <strong>in</strong> our data where a narrow pH range of high pH<br />

values was recorded for C. tetragona ssp. tetragona. However, the species distribution<br />

49


and substrate map show a clear occurrence of Cassiope tetragona ssp. tetragona on<br />

alkal<strong>in</strong>e circumneutral substrates. Overall, the data from this study are consistent<br />

despite the relatively small dataset.<br />

We concentrated on the variables pH and bioclimatic zone s<strong>in</strong>ce zone was weakly<br />

correlated <strong>to</strong> all other fac<strong>to</strong>rs except pH. Accord<strong>in</strong>gly, species categories could have<br />

been devised <strong>in</strong> relation <strong>to</strong> the variables be<strong>in</strong>g significant <strong>in</strong> the Monte Carlo<br />

Permutation Test (s. Table 2) such as <strong>to</strong>tal vascular <strong>plant</strong> cover, organic soil depth and<br />

moisture. Moisture, though measured on a s<strong>in</strong>gle day can be expected <strong>to</strong> be an<br />

important fac<strong>to</strong>r separat<strong>in</strong>g <strong>plant</strong> species distribution. The non­significance of frost<br />

and non­frost disturbance <strong>in</strong> the CCA might be expla<strong>in</strong>ed by our choice of habitats.<br />

The study sites were often situated <strong>in</strong> areas with fairly well established vegetation.<br />

Highly unstable non­frost conditions were rarely recorded even <strong>in</strong> newly deglaciated<br />

areas <strong>in</strong> the forefront of glaciers. Old landscape surfaces, hav<strong>in</strong>g long been<br />

deglaciated and therefore show<strong>in</strong>g features of high frost activity, are absent <strong>in</strong> this<br />

study, thus unstable frost disturbance conditions were not recorded.<br />

Despite above mentioned restrictions and a limited dataset for vascular <strong>plant</strong>s we were<br />

able <strong>to</strong> draw some conclusions about <strong>plant</strong> species distribution on <strong>Svalbard</strong>. Plant<br />

distribution <strong>in</strong> the <strong>Arctic</strong> is limited by a variety of abiotic fac<strong>to</strong>rs (Savile 1960). A few<br />

of them like pH, temperature, organic soil depth, soil moisture and the biotic fac<strong>to</strong>r<br />

vascular <strong>plant</strong> cover were analysed. A m<strong>in</strong>ority of species was found <strong>to</strong> be widely<br />

spread and cover<strong>in</strong>g a wide pH amplitude. The majority of species possessed narrow<br />

<strong>to</strong> medium amplitudes regard<strong>in</strong>g pH, yet they were widespread on <strong>Svalbard</strong>.<br />

Widespread <strong>plant</strong>s <strong>in</strong> the <strong>Arctic</strong> are not necessarily widespread due <strong>to</strong> their wide<br />

ecological amplitude but due <strong>to</strong> a widespread habitat. Plants with narrow ecological<br />

amplitudes might even have advantages regard<strong>in</strong>g niche differentiation of <strong>plant</strong><br />

species as has been shown by McKane et al. (2002) concern<strong>in</strong>g nitrogen sources <strong>in</strong><br />

arctic <strong>tundra</strong>. Instead of struggl<strong>in</strong>g for survival <strong>plant</strong> taxa seem well adapted <strong>to</strong> their<br />

often harsh environmental conditions <strong>in</strong> the <strong>Arctic</strong>. Alternative lifestyles of both<br />

generalists’ and specialists’ behaviour with respect <strong>to</strong> their ecological amplitude<br />

facilitates this adaptation.<br />

Study species Euphrasia wettste<strong>in</strong>ii<br />

Possible host species of E. wettste<strong>in</strong>ii were exam<strong>in</strong>ed <strong>in</strong> this study. Bis<strong>to</strong>rta vivipara,<br />

Salix <strong>polar</strong>is and the gram<strong>in</strong>oids Poa arctica and Luzula confusa were the most frequent<br />

species. However, only Bis<strong>to</strong>rta vivipara and Poa arctica were present with ≥ 50% at<br />

both Ossian Sars and Colesdalen suggest<strong>in</strong>g that Bis<strong>to</strong>rta vivipara and Poa arctica are<br />

host species of E. wettste<strong>in</strong>ii. This is be supported by previous studies on <strong>Svalbard</strong><br />

and the mounta<strong>in</strong> Sandalsnuten at F<strong>in</strong>se (Euphrasia frigida was studied at F<strong>in</strong>se. Due<br />

<strong>to</strong> taxonomical changes, E. wettste<strong>in</strong>ii is the new name used for the species found <strong>in</strong><br />

<strong>Svalbard</strong>). Studies from <strong>Svalbard</strong> proposed that Salix <strong>polar</strong>is and Bis<strong>to</strong>rta vivipara<br />

among others, are with<strong>in</strong> host range of E. wettste<strong>in</strong>ii (Alsos & Lund 1999, Alsos et al.<br />

2004). Results from Sandalsnuten at F<strong>in</strong>se revealed that Bis<strong>to</strong>rta vivipara and species<br />

from the genera Poa and Salix are likely host species of E. wettste<strong>in</strong>ii (Nyléhn &<br />

Totland 1999). Plots with E. wettste<strong>in</strong>ii were similar <strong>in</strong> species composition <strong>to</strong> those<br />

plots without E. wettste<strong>in</strong>ii. Thus E. wettste<strong>in</strong>ii may have the potential <strong>to</strong> spread <strong>to</strong> a<br />

wider area with use of different host species.<br />

50


The temperature measurements at 10 cm soil depth <strong>in</strong> the plots with E. wettste<strong>in</strong>ii<br />

showed a higher temperature (~0.5­1 °C) <strong>in</strong> comparison <strong>to</strong> the plots without E.<br />

wettste<strong>in</strong>ii, however, the t­test showed no significance.<br />

One patch of E. wettste<strong>in</strong>ii was found at Colesdalen <strong>in</strong> 1998 and n<strong>in</strong>e patches were<br />

discovered <strong>in</strong> 2002 (Alsos & Lund 1999, Alsos et al. 2004). This <strong>in</strong>crease <strong>in</strong> patches<br />

correlates with the temperature diagram which shows a peak <strong>in</strong> 1998 and one <strong>in</strong> 2002<br />

due <strong>to</strong> <strong>in</strong>creased summer temperature. By July 2007 the n<strong>in</strong>e patches had spread <strong>to</strong><br />

one big cont<strong>in</strong>uous patch. Is the spread of E. wettste<strong>in</strong>ii <strong>in</strong> Colesdalen a consequence<br />

of <strong>in</strong>creased mean summer temperature on <strong>Svalbard</strong>? It is worth not<strong>in</strong>g on the<br />

mounta<strong>in</strong> Sandalsnuten at F<strong>in</strong>se <strong>in</strong> Norway, growth and seed production of E.<br />

wettste<strong>in</strong>ii were largely temperature dependent (Nyléhn & Totland 1999). However,<br />

the effect of temperature on the spread of E. wettste<strong>in</strong>ii must be <strong>in</strong>direct due <strong>to</strong><br />

<strong>in</strong>creased growth and quality of the host <strong>plant</strong> caused by elevated temperature. As a<br />

consequence, the population of E. wettste<strong>in</strong>ii could actually decrease due <strong>to</strong> <strong>in</strong>creased<br />

competition if we assume that a warmer climate leads <strong>to</strong> a denser vegetation cover.<br />

However, temperatures on <strong>Svalbard</strong> may have <strong>to</strong> rise substantially before this process<br />

will take effect. Increased temperatures and changes <strong>in</strong> species composition can lead<br />

<strong>to</strong> disappearance of some of the host species of E. wettste<strong>in</strong>ii and <strong>in</strong>troduction of new<br />

species. Due <strong>to</strong> the broad host range of E. wettste<strong>in</strong>ii one can assume that this might<br />

not <strong>in</strong>fluence the ability <strong>to</strong> have proper species <strong>in</strong> the surround<strong>in</strong>gs <strong>to</strong> parasitise<br />

(Nyléhn & Totland 1999, Seel & Press 1993).<br />

Dense patches of E. wettste<strong>in</strong>ii <strong>in</strong> Colesdalen were observed near bare ground ma<strong>in</strong>ly<br />

caused by frost disturbance. Open soil patches are needed for seed establishment<br />

(Molau 1993, Seel & Press 1993). Long­term consequences of climatic changes may<br />

lead <strong>to</strong> less frost disturbance and, consequently, fewer open soil patches. The result<strong>in</strong>g<br />

dense vegetation cover may limit the growth of E. wettste<strong>in</strong>ii <strong>in</strong> some places.<br />

The thermophilic annual E. wettste<strong>in</strong>ii has not only the potential <strong>to</strong> spread when mean<br />

July temperatures are ris<strong>in</strong>g by 1 degree Kelv<strong>in</strong>, this be<strong>in</strong>g the temperature <strong>in</strong>crease<br />

be<strong>in</strong>g observed for the last ten years, but is already expand<strong>in</strong>g its habitat.<br />

Conclusion<br />

Species on <strong>Svalbard</strong> and Greenland possess the same ecological amplitudes,<br />

regardless of their occurrence <strong>in</strong> the Low or High <strong>Arctic</strong>. Widespread species on<br />

<strong>Svalbard</strong> do not necessarily possess wide ecological amplitudes and widespread <strong>plant</strong>s<br />

do not naturally display wide ecological amplitudes. These conclusions may be of<br />

major <strong>in</strong>terest when consider<strong>in</strong>g species responses <strong>to</strong> climate change. A variety of<br />

arctic species may have ecological amplitudes large enough <strong>to</strong> accommodate for<br />

climate change. A population of the thermophilic annual Euphrasia wettste<strong>in</strong>ii seems<br />

<strong>to</strong> be spread<strong>in</strong>g, perhaps due <strong>to</strong> ris<strong>in</strong>g temperatures on <strong>Svalbard</strong>, thereby <strong>in</strong>dicat<strong>in</strong>g<br />

early signs of climate change <strong>in</strong> the <strong>Arctic</strong>.<br />

References<br />

ACIA. 2006: <strong>Arctic</strong> Climate Impact Assessment: Scientific Report Cambridge.<br />

51


Alsos, I. G. 2007: Frequent Long­Distance Plant Colonization <strong>in</strong> the Chang<strong>in</strong>g <strong>Arctic</strong>.<br />

Science, 316.<br />

Alsos, I. G. personal communication: Euphrasia wettste<strong>in</strong>ii.<br />

Alsos, I. G. & Lund, L. 1999: Fjelløyentrøst Euphrasia frigida funnet i Colesdalen,<br />

<strong>Svalbard</strong>. Blyttia, 57: 36.<br />

Alsos, I. G., Westergaard, K., Lund, L. & Sandbakk, B. E. 2004: Floraen i Colesdalen,<br />

<strong>Svalbard</strong>. Blyttia, 62: 142­150.<br />

Arnesen, G. personal communication: Substrate map of <strong>Svalbard</strong>.<br />

Bakken, T., Kålås, J. & Viken, Å. 2006: Norsk Rødliste 2006.<br />

Bill<strong>in</strong>gs, W. D. & Mooney, H. A. 1968: The <strong>ecology</strong> of arctic and alp<strong>in</strong>e <strong>plant</strong>s.<br />

Biological Reviews, 43: 481­529.<br />

Brochmann, C. & Steen, S. W. 1999: Sex and genes <strong>in</strong> the flora of <strong>Svalbard</strong>—<br />

implications for conservation biology and climate change. Matematisk<br />

Naturvitenskapelig Klasse, Skrifter, 38: 33­72.<br />

Bråthen, K. A. & Hagberg, O. 2004: More efficient estimation of <strong>plant</strong> biomass.<br />

Journal of Vegetation Science, 15: 653­660.<br />

Böcher, T. W. 1963: Phy<strong>to</strong>geography of middle west Greenland. Meddelelser om<br />

Grønland, 148.<br />

Canoco for W<strong>in</strong>dows 4.5. 1999<br />

Coudun, C. & Gegout, J. C. 2005: Ecological behaviour of herbaceous forest species<br />

along a pH gradient: a comparison between oceanic and semicont<strong>in</strong>ental regions <strong>in</strong><br />

northern France. Global Ecology and Biogeography, 14: 263­270.<br />

Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W. & Paulissen, D. (red.).<br />

1991: Zeigerwerte der Pflanzen <strong>in</strong> Mitteleuropa. Scripta Geobotanica 18 (Lehrstul<br />

für Geobotanik der Universität Gött<strong>in</strong>gen). Gött<strong>in</strong>gen.<br />

Elvebakk, A. 1999: Bioclimatic delimitation and subdivision of the <strong>Arctic</strong>.<br />

Matematisk Naturvitenskaplig Klasse, skrifter, 38: 81­112.<br />

Elvebakk, A. 2005: A vegetation map of <strong>Svalbard</strong> on the scale 1:3.5 mill.<br />

Phy<strong>to</strong>coenologia, 35: 951­967.<br />

Gelt<strong>in</strong>g, P. 1934: Studies on the vascular <strong>plant</strong>s of east Greenland between Franz<br />

Joseph Fjord and Dove Bay (Lat. 73° 15’ – 76° 20’ N.). Meddelelser om Grønland,<br />

101.<br />

Hagen, A. R. 2001: Trans­atlantic dispersal and phylogeography of Cerastium<br />

arcticum (Caryophyllaceae) <strong>in</strong>ferred from RAPD and SCAR markers. American<br />

Journal of Botany, 88: 103­112.<br />

Hill, M., Roy, D., Mountford, J. & Bunce, R. 2000: Extend<strong>in</strong>g Ellenberg's Indica<strong>to</strong>r<br />

Values <strong>to</strong> a New Area: An Algorithmic Approach. The Journal of Applied Ecology,<br />

37: 3­15.<br />

52


Hultén, E. & Fries, M. 1986: Atlas of North European Vascular Plants North of the<br />

Tropic of Cancer. Königste<strong>in</strong>, Koeltz Scientific Books.<br />

Jónsdóttir, I. S. 2005: Terrestrial ecosystems on <strong>Svalbard</strong>: heterogeneity, complexity<br />

and fragility from an arctic island perspective. Biology and Environmen:<br />

proceed<strong>in</strong>gs of the Royal Irish Academy, 105B: 155­165.<br />

Karlsen, S. R. & Elvebakk, A. 2003: A method us<strong>in</strong>g <strong>in</strong>dica<strong>to</strong>r <strong>plant</strong>s <strong>to</strong> map local<br />

climatic variation <strong>in</strong> the Kangerlussuaq/Scoresby Sund area, East Greenland.<br />

Journal of Biogeography, 30: 1469­1491.<br />

Lid, J., Lid, D. T. & Elven, R. 2005: Norsk flora, Det Norske Samlaget. 1014 s.<br />

McKane, R., Johnson, L., Shaver, G. & Nadelhoffer, K. 2002: Resource­based niches<br />

provide a basis for <strong>plant</strong> species diversity and dom<strong>in</strong>ance <strong>in</strong> arctic <strong>tundra</strong>. Nature,<br />

415: 68­71.<br />

MET. 2007: Døgnverdier <strong>Svalbard</strong> Lufthavn, Me<strong>to</strong>rologisk <strong>in</strong>stitutt. Lokalisert 26.07.<br />

2007 på World Wide Web:<br />

http://met.no/observasjoner/svalbard/<strong>Svalbard</strong>Lufthavn/<strong>in</strong>dex.html?stasjon.<br />

Molau, U. 1993: Phenology and reproductive <strong>ecology</strong> <strong>in</strong> six subalp<strong>in</strong>e species of<br />

Rh<strong>in</strong>anthoideae (Scrophulariaceae). Opera Bot., 121: 7­17.<br />

Nyléhn, J. & Totland, Ø. 1999: Effects of temperature and natural disturbance on<br />

growth, reproduction and population density <strong>in</strong> the alp<strong>in</strong>e annual hemiparasite<br />

Euphrasia frigida. <strong>Arctic</strong>, Antarctic and Alp<strong>in</strong>e Research, 31: 259­263.<br />

PAF. 2007: Checklist of the Panarctic Flora (PAF). Draft version. I: Elven, R.,<br />

Murray, D. F., Razzhiv<strong>in</strong>, V. & Yurtsev, B. A. (red.). Oslo, Univ. of Oslo.<br />

Przybylak, R. 2007: Recent air temperature changes <strong>in</strong> the arctic. Annals of<br />

Glaciology, 46: 316­324.<br />

Raup, H. M. 1965: The flower<strong>in</strong>g <strong>plant</strong>s and ferns of the Mesters Vig district,<br />

northeast Greenland. Meddelelser om Grønland, 166.<br />

Raup, H. M. 1969: The relation of the vascular flora <strong>to</strong> some fac<strong>to</strong>rs of site <strong>in</strong> the<br />

Mester Vig district, northeast Greenland. Meddelelser om Grønland, 176: 1­80.<br />

Rønn<strong>in</strong>g, O. I. 1961: Some new contributions <strong>to</strong> the flora of <strong>Svalbard</strong>. Norsk<br />

Polar<strong>in</strong>stitutt Skrifter, 124: 1­20.<br />

Saetersdal, M. & Birks, H. J. 1997: A comparative ecological study of Norwegian<br />

mounta<strong>in</strong> <strong>plant</strong>s <strong>in</strong> relation <strong>to</strong> possible future climatic change. Journal of<br />

Biogeography, 24: 127­152.<br />

Savile, D. B. O. 1960: Limitations of the competitive exclusion pr<strong>in</strong>ciple. Science,<br />

132: 1761.<br />

Savile, D. B. O. 1972: <strong>Arctic</strong> Adaptations <strong>in</strong> Plants. Småtrykk, 20.<br />

Seel, W. E. & Press, M. C. 1993: Influence of the host on three sub­<strong>Arctic</strong> annual<br />

facultative root hemiparasites. New Phy<strong>to</strong>logist, 125: 131­138.<br />

Sørensen, T. 1933: The vascular <strong>plant</strong>s of East Greenland from 71° 00’ <strong>to</strong> 73° 30’ N.<br />

Meddelelser om Grønland. 101.<br />

53


Walker, M., Wahren, C., Hollister, R., Henry, G., Ahlquist, L., Alatalo, J., Bret­<br />

Harte, M., Calef, M., Callaghan, T., Carroll, A., Epste<strong>in</strong>, H., Jonsdottir, I., Kle<strong>in</strong>, J.,<br />

Magnusson, B., Molau, U., Oberbauer, S., Rewa, S., Rob<strong>in</strong>son, C., Shaver, G.,<br />

Sud<strong>in</strong>g, K., Thompson, C., Tolvanen, A., Totland, O., Turner, P., Tweedie, C.,<br />

Webber, P. & Wookey, P. 2006: <strong>From</strong> The Cover: Plant community responses <strong>to</strong><br />

experimental warm<strong>in</strong>g across the <strong>tundra</strong> biome. Proceed<strong>in</strong>gs of the National<br />

Academy of Sciences of the United States of America, 103: 1342­1346.<br />

Washburn, A. L. 1969: Weather<strong>in</strong>g, frost action, and patterned ground <strong>in</strong> the Mesters<br />

Vig district, northeast Greenland. Denmark. Meddelelser om Grönland, 176:1­303.<br />

Washburn, A. L. 1973: Periglacial processes and environment. New York, St.<br />

Mart<strong>in</strong>'s Press. 320 s.<br />

54


Recruitment along retreat<strong>in</strong>g glaciers<br />

Unni Vik 1 Ingel<strong>in</strong>n Aarnes 2 Eike Müller 3<br />

1 University of Oslo, Department of Biology, Program for Molecular Ecology and Biosystematics, 0316<br />

Oslo,NO, 2 University of Bergen, Department of Biology, Ecological and Environmental Change<br />

Research Group, 5020 Bergen, NO 3 The University Centre <strong>in</strong> <strong>Svalbard</strong>, <strong>Arctic</strong> Biology, 9171<br />

Longyearbyen, NO<br />

Abstract<br />

Glacier forelands are excellent models for study<strong>in</strong>g primary successions but relatively<br />

few have been <strong>in</strong>vestigated <strong>in</strong> the High <strong>Arctic</strong>. This study <strong>in</strong>vestigates differences <strong>in</strong><br />

the succession patterns <strong>in</strong> three bioclimatic zones on <strong>Svalbard</strong>. The species occurrence<br />

was recorded on mora<strong>in</strong>es of different ages at Nordre Frankl<strong>in</strong>breen, Mayerbreen, and<br />

Kongsbreen situated <strong>in</strong> bioclimatic zone A (<strong>Arctic</strong> <strong>polar</strong> <strong>desert</strong>), B (Northern arctic<br />

<strong>tundra</strong>) and C (Middle arctic <strong>tundra</strong>). Species composition was sampled us<strong>in</strong>g three <strong>to</strong><br />

six plots (50 x 50 cm) on each mora<strong>in</strong>e as well as by compil<strong>in</strong>g a <strong>to</strong>tal species list.<br />

The glacier forelands <strong>in</strong> bioclimatic zone B and C follow the expected succession<br />

pattern of species substitution with time. In bioclimatic zone A no clear succession<br />

pattern could be found. Species richness <strong>in</strong>creases <strong>in</strong> bioclimatic zone B and C with<br />

time whilst <strong>in</strong> bioclimatic zone A it is comparatively constant and several species<br />

occur irrespective of mora<strong>in</strong>es’ age. Additional studies of glacier foreland <strong>in</strong><br />

bioclimatic zone A are needed <strong>to</strong> confirm the generality of this pattern.<br />

Introduction<br />

<strong>Arctic</strong> areas are expected <strong>to</strong> experience major changes due <strong>to</strong> global warm<strong>in</strong>g <strong>in</strong> the<br />

com<strong>in</strong>g years (ACIA 2005). Apart from the major climate alternations (ice ages),<br />

arctic <strong>plant</strong>s must have experienced rapid climate oscillations (Brochmann & Steen<br />

1999) as they occurred more frequent than expected both with<strong>in</strong> colder and warmer<br />

stages (Taylor et al. 1993). Strategies of arctic <strong>plant</strong>s <strong>to</strong> survive and ma<strong>in</strong>ta<strong>in</strong> genetic<br />

diversity dur<strong>in</strong>g rapid changes are predom<strong>in</strong>antly those <strong>in</strong>volv<strong>in</strong>g modes of<br />

reproduction (sexual or clonal) and development of high ploidy levels.<br />

Plants have <strong>in</strong>dividualistic responses <strong>to</strong> this expected change (Erschbamer 2007). A<br />

study <strong>in</strong> the Alps revealed that pioneer species are particularly vulnerable <strong>to</strong> global<br />

warm<strong>in</strong>g (Erschbamer 2007). Walker et al. (2006) tested the responses of <strong>tundra</strong><br />

species <strong>to</strong> experimental warm<strong>in</strong>g and projected a possible loss of as much as 40% of<br />

the current <strong>tundra</strong> vegetation by 2100. It is likely that freshly deglaciated terra<strong>in</strong> will<br />

provide pioneer species with a sanctuary dur<strong>in</strong>g climate change, and conserve parts of<br />

the biodiversity <strong>in</strong> the <strong>Arctic</strong> (Moreau, submitted). If this is the case, then it is<br />

probable that arctic species which are unable <strong>to</strong> colonize mora<strong>in</strong>es are more<br />

vulnerable <strong>to</strong> climate changes.<br />

Polyploidy represents a mechanism of adaptation and speciation (Stebb<strong>in</strong>s 1971,<br />

Lumaret 1988). Estimated numbers of polyploid angiosperms are between 47% and<br />

70% (Grant 1981). The proportion of <strong>plant</strong> taxa with a higher ploidy level<br />

(polyploids) is <strong>in</strong> general show<strong>in</strong>g an <strong>in</strong>creas<strong>in</strong>g trend at higher latitudes <strong>in</strong> the<br />

55


northern hemisphere (Brochmann et al. 2004). In addition, the proportion of<br />

polyploids seems <strong>to</strong> be particularly high <strong>in</strong> previously glaciated areas. Out of the 161<br />

species <strong>in</strong>digenous <strong>to</strong> <strong>Svalbard</strong>, 78% are polyploids (Brochmann & Steen 1999). One<br />

reason for this high number is that polyploidy secures the ma<strong>in</strong>tenance of genetic<br />

diversity <strong>in</strong> marg<strong>in</strong>al and climatically unstable environments (Brochmann & Steen<br />

1999). Therefore, it can be expected that polyploid species occur more frequently on<br />

newly deglaciated terra<strong>in</strong> than diploid species.<br />

In harsh environments, such as the <strong>Arctic</strong>, with high variability <strong>in</strong> space and time,<br />

particularly <strong>in</strong> the length of the grow<strong>in</strong>g season, sexual reproduction appears <strong>to</strong> be<br />

selected for (Bliss & Gold 1999). However, it has been found that seedl<strong>in</strong>g mortality<br />

is very high on glacier forelands (Niederfr<strong>in</strong>iger et al. 2000), and thus it is possible<br />

that there is a difference <strong>in</strong> the extent of sexual reproduction amongst species that<br />

specialize <strong>in</strong> coloniz<strong>in</strong>g freshly deglaciated terra<strong>in</strong> compared <strong>to</strong> other areas <strong>in</strong> the<br />

High <strong>Arctic</strong>.<br />

The most significant characteristic of the <strong>Arctic</strong> is the absence of trees for climatic<br />

reasons (Körner 2003). In the High <strong>Arctic</strong> (bioclimatic zone A, B and C) even erect<br />

shrubs are absent. Thus, the succession <strong>in</strong> the High <strong>Arctic</strong> differs significantly from<br />

vegetation development <strong>in</strong> tree­ and shrub­dom<strong>in</strong>ated areas. Vegetations without trees<br />

and erect shrubs can be <strong>in</strong>fluenced and altered by fac<strong>to</strong>rs more easily and have<br />

different pathways for succession depend<strong>in</strong>g on the fac<strong>to</strong>rs alter<strong>in</strong>g the development.<br />

The use of glacier forelands <strong>to</strong> study succession by substitut<strong>in</strong>g space for time is a<br />

well established approach (Matthews 1992). Primary succession <strong>in</strong> the <strong>Arctic</strong> follows<br />

patterns that are also seen <strong>in</strong> glacier forefields <strong>in</strong> Norway and the Alps (Matthews<br />

1992). Species richness <strong>in</strong>creases with time <strong>in</strong> <strong>Svalbard</strong>, despite a loss of mid<br />

successional species (Hodk<strong>in</strong>son et al. 2003). Oppositely, studies <strong>in</strong> the central Alps<br />

found that species richness reaches a peak at 40­50 years and decl<strong>in</strong>es <strong>to</strong>wards the<br />

climax (Raff et al. 2006). This early peak <strong>in</strong> species richness has been observed <strong>in</strong><br />

studies conducted <strong>in</strong> Norway, the Alps (Matthews 1992) and <strong>in</strong> the Canadian <strong>Arctic</strong><br />

(bioclimatic zone C) (Jones & Henry 2003). This fall <strong>in</strong> richness after the early peak<br />

is often attributed <strong>to</strong> competition <strong>in</strong> areas where environmental conditions are<br />

favourable and ground cover is close <strong>to</strong> 100%, whilst <strong>in</strong> more severe conditions an<br />

absence of a dist<strong>in</strong>ct peak can reflect that <strong>plant</strong>s at all successional stages experience<br />

rather uniform conditions (Matthews 1992).<br />

Observations of succession on glacial forelands on <strong>Svalbard</strong> <strong>in</strong> bioclimatic zone B and<br />

C have shown that there is a clear relationship between species changes and time<br />

(Moreau, submitted). However, Jones and Henry (2003) concluded that succession<br />

may not follow the expected directional replacement of species with time <strong>in</strong> more<br />

extreme <strong>polar</strong>­<strong>desert</strong> environments. There have been few studies <strong>in</strong> the High <strong>Arctic</strong><br />

and so far no studies have been conducted <strong>in</strong> bioclimatic zone A.<br />

This study used glacial forelands <strong>to</strong> record primary succession patterns <strong>in</strong> three<br />

bioclimatic zones on <strong>Svalbard</strong> <strong>in</strong>vestigated whether or not species richness <strong>in</strong>creases<br />

with time <strong>in</strong> the High <strong>Arctic</strong>. Is there is a difference <strong>in</strong> the extent of sexual<br />

reproduction and polyploidy among species, occurr<strong>in</strong>g on freshly deglaciated terra<strong>in</strong><br />

than elsewhere on <strong>Svalbard</strong>?<br />

56


Figure 1. Location of the three glacier forelands and a site rich <strong>in</strong> species.<br />

Sites<br />

<strong>Svalbard</strong> is highly <strong>in</strong>fluenced by warm north Atlantic currents and is warmer than<br />

other areas at such high latitudes. The Archipelago covers several bioclimatic zones<br />

(Elvebakk 1999) and has a varied climate: The mean (1961­1990) July temperature<br />

varies between 1.9° – 6.5° C and the mean annual precipitation is between 190­490<br />

mm (Norsk meterologisk <strong>in</strong>stitutt). There are 164 vascular species present at <strong>Svalbard</strong><br />

(Rønn<strong>in</strong>g 1996) (161 accord<strong>in</strong>g <strong>to</strong> Brochmann & Steen 1999).<br />

Three glacier forelands (Fig. 1) were studied. The three bioclimatic regions are very<br />

different <strong>in</strong> both climate and vegetation (see Tab.1 and 2). Nordre Frankl<strong>in</strong>breen <strong>in</strong><br />

Frankl<strong>in</strong>fjorden at Nordaustlandet is situated <strong>in</strong> bioclimatic zone A. With the<br />

exception of the youngest mora<strong>in</strong>e it was difficult <strong>to</strong> dist<strong>in</strong>guish <strong>in</strong>dividual mora<strong>in</strong>e<br />

ridges. Four sites were picked <strong>in</strong> this area; only the youngest mora<strong>in</strong>e was a clearly<br />

def<strong>in</strong>ed ridge. The ma<strong>in</strong> vegetation <strong>in</strong> the region is Luzula confusa <strong>polar</strong> <strong>desert</strong><br />

(Elvebakk 2005).<br />

In zone B, Mayerbreen <strong>in</strong> Krossfjorden, two lateral mora<strong>in</strong>es were studied. The young<br />

mora<strong>in</strong>e has gentle slopes and consists of bedrock with a relatively th<strong>in</strong> mora<strong>in</strong>al<br />

cover. The analysis was conducted on stable summits. The older mora<strong>in</strong>e extends <strong>to</strong><br />

approximately 100 meters above sea level and has a steep north­west fac<strong>in</strong>g slope.<br />

The ma<strong>in</strong> vegetation <strong>in</strong> the region is mesic acidic Luzula confusa <strong>tundra</strong> (Elvebakk<br />

2005)<br />

At Kongsbreen <strong>in</strong> Kongsfjorden three mora<strong>in</strong>es were studied. A very recently<br />

deglaciated mora<strong>in</strong>e, an <strong>in</strong>termediate­age mora<strong>in</strong>e, that represents the glacier front <strong>in</strong><br />

1869 (Lamont 1876 <strong>in</strong> Lefauconnier 1991,) and an old mora<strong>in</strong>e. These occur with<strong>in</strong><br />

57


an enclave of bioclimatic zone C with<strong>in</strong> zone B. Cassiope tetragona <strong>tundra</strong> is the ma<strong>in</strong><br />

vegetation type (Elvebakk 2005).<br />

Colesdalen <strong>in</strong> Isfjorden is not a glacier foreland area; it is situated <strong>in</strong> bioclimatic zone<br />

C and is considered among the most species rich sites <strong>in</strong> all of <strong>Svalbard</strong>. The site was<br />

<strong>in</strong>cluded <strong>to</strong> have a diversity reference for well established, rich arctic <strong>tundra</strong><br />

vegetation. One south­fac<strong>in</strong>g slope dom<strong>in</strong>ated by Cassiope tetragona was analysed.<br />

For appropriate comparison 9 out of 22 plots were used.<br />

Table 1. Characteristics of study sites <strong>in</strong>clud<strong>in</strong>g ma<strong>in</strong> vegetation types.<br />

Vegetation Type<br />

Estimated<br />

distance <strong>to</strong> Bioclimatic<br />

Site Slope of Mora<strong>in</strong>e<br />

(Elvebakk, 2005)<br />

Glacier* Zone Date<br />

Nordre<br />

Frankl<strong>in</strong>breen<br />

Northwest Luzula confusa Polar Desert 300 m ­ 1200 m A 20.07.2007<br />

Mayerbreen Southwest Luzula confusa Mesic acidic Tundra 300 m ­ 650 m B 17.07.2007<br />

Kongsbreen South / southwest Cassiope tetragona Tundra 800 m ­ 2500 m C 21.07.2007<br />

*Distances estimated us<strong>in</strong>g ArcGIS, lowest number represents the distance from the youngest mora<strong>in</strong><br />

<strong>to</strong> tha glacier, highest the distance <strong>to</strong> plots <strong>in</strong> established vegetation.<br />

Table 2. Overview of all sites studied <strong>in</strong> the survey and coord<strong>in</strong>ates of sample plot areas.<br />

Site Abbreviation Location (UTM)<br />

Altitude<br />

(masl) Age # Plots<br />

Nordre<br />

Frankl<strong>in</strong>breen<br />

N1 33x 0588861/8901802 53 Younger mora<strong>in</strong>e 3<br />

Nordre<br />

Frankl<strong>in</strong>breen<br />

N2 33x 0588725/8901772 57 Older mora<strong>in</strong>e 3<br />

Nordre<br />

Frankl<strong>in</strong>breen<br />

N3** 33x 0588282/8901964 23<br />

Established vegetation with<br />

nutrient <strong>in</strong>put<br />

­<br />

Nordre<br />

Frankl<strong>in</strong>breen<br />

N4 33x 0587985/8901644 12 Established vegetation 3<br />

Mayerbreen M1 33x 0440859/8800766 25 Younger mora<strong>in</strong>e 5<br />

Mayerbreen M2* 33x 0440870/8800608 87 Older mora<strong>in</strong>e 3<br />

Mayerbreen M3* 33x 0440825/8800578 100 Older mora<strong>in</strong>e 4<br />

Kongsbreen K1 33x 0447365/8761710 22 Young mora<strong>in</strong>e 3<br />

Kongsbreen K2** 33x 0446509/8761654 47 Young mora<strong>in</strong>e ­<br />

Kongsbreen K3 33x 0445660/8762902 120 Intermediate mora<strong>in</strong>e 3<br />

Kongsbreen K4 33x 0445378/8763388 70 Established vegetation 3<br />

*At these two sites sample plots were taken but occur <strong>in</strong> the <strong>to</strong>tal species list as one site, ** Recorded<br />

at the <strong>to</strong>tal species list as separate site but no plots analysed<br />

58


Methods<br />

The vegetation was analysed with the <strong>in</strong>tercept po<strong>in</strong>t frame analysis (Bråthen &<br />

Hageberg 2004). At each site a number between three and six plots were analyzed<br />

us<strong>in</strong>g a 50 x 50 cm steel frame with a grid of 10 cm. Vascular <strong>plant</strong>s were recorded at<br />

25 cross sections of the grid, x. The plots were distributed randomly with<strong>in</strong> a specified<br />

homogenous vegetation unit. The overall vegetation cover <strong>in</strong>clud<strong>in</strong>g vascular <strong>plant</strong>s,<br />

bryophytes, lichens, cryp<strong>to</strong>gram crust and bare ground was estimated by eye on a ten<br />

percent step scale. Additionally, all species present at each site were recorded. Plant<br />

communities were visually evaluated and all <strong>plant</strong> species grow<strong>in</strong>g with<strong>in</strong> the<br />

homogenous communities were listed. The size of the homogenous areas varied<br />

depend<strong>in</strong>g on <strong>plant</strong> composition <strong>in</strong> the communities. Small scale changes <strong>in</strong> <strong>plant</strong><br />

communities result<strong>in</strong>g from microhabitats produce m<strong>in</strong>or dissimilarities, which were<br />

accepted with<strong>in</strong> homogenous areas.<br />

To obta<strong>in</strong> an approximate chronological control of the mora<strong>in</strong>es, aerial pho<strong>to</strong>s, maps<br />

with dated tem<strong>in</strong>al positions and lichenometry were used. Lichenometry is based on<br />

the assumption that the growth rate of crus<strong>to</strong>se lichen species (most often<br />

Rhizocarpon rhizocarpon) has a l<strong>in</strong>ear relationship with time (Matthews 1992), i.e.<br />

larger thalli are older than smaller ones. Growth curves have been constructed for<br />

many areas as the growth pattern varies <strong>in</strong> different areas (Bradwell and Armstrong<br />

2007). Growth curves are made by measur<strong>in</strong>g lichens grow<strong>in</strong>g on substrates of known<br />

ages, for example graves<strong>to</strong>nes (Matthews 1992). If crus<strong>to</strong>se lichen is found on the<br />

surface be<strong>in</strong>g studied, an age estimate can be made. In this study the mean of the five<br />

largest thalli of Rhizocarpon found on each site were compared <strong>to</strong> the local lichen<br />

growth curve for North­West Spitsbergen (Werner 1991).<br />

To compare <strong>plant</strong> diversity between sites the alpha (i.e. species richness) diversity of<br />

vascular <strong>plant</strong>s as described <strong>in</strong> Whittaker (1972) was calculated us<strong>in</strong>g presents/<br />

absence data. Additionally, the Shannon’s diversity <strong>in</strong>dex H and the species evenness<br />

(Shannon’s evenness <strong>in</strong>dex also known as Pielou's evenness <strong>in</strong>dex) were computed<br />

(see Tab. 3). For the derivation of Shannon’s <strong>in</strong>dex frequency data of the <strong>in</strong>tercept<br />

po<strong>in</strong>t frame analysis and the program PAST was applied (Hammer & Harper 2003).<br />

The different numbers of plots recorded at each site resulted <strong>in</strong> an unbalanced design,<br />

for data analysis only data of the first three recorded plots at each site were used. With<br />

a small number of plots recorded at each site, plot data were applied only for<br />

calculat<strong>in</strong>g α diversity, Shannon’s H and E <strong>in</strong>dices.<br />

Observed frequencies of polyploid and diploid species as well as clonal and sexual<br />

reproduction were compared <strong>to</strong> the data from <strong>Svalbard</strong> (Brochmann & Steen 1999)<br />

us<strong>in</strong>g the G­test for reasonable size (see Tab. 3). For analys<strong>in</strong>g diploid and polyploid<br />

ratios as well as sexual and clonal ratios, the <strong>to</strong>tal species list of each site has been<br />

used. The property of each species (polyploidy, reproduction mode) was derived from<br />

Brochmann & Steen’s (1999). Data for comparison were derived from Hodk<strong>in</strong>son et<br />

al. (2003).<br />

Spearmans­s rank­order correlation was chosen <strong>to</strong> analyse the relationships between<br />

<strong>plant</strong> succession stage, ploidy, and reproduction mode. S<strong>in</strong>ce this is a test requir<strong>in</strong>g an<br />

approximately cont<strong>in</strong>uous scale, data were tested apply<strong>in</strong>g the Kolmogorv­Smirnov<br />

Test. Calculations and tests were made us<strong>in</strong>g the software package SPSS 10.0.1.<br />

59


Table 3. Formulas of the different applied <strong>in</strong>dices (n­number of <strong>in</strong>dividuals, S­number of<br />

species, N­<strong>to</strong>tal numbers of <strong>in</strong>dividuals and p­relative abundance of each species) and<br />

G­test (Oi is the frequency observed <strong>in</strong> a cell, E is the frequency expected on the null<br />

hypothesis)<br />

Test/ Index Formula<br />

Shannon Index H H ' = − ∑<br />

Species Evenness E<br />

G­Test<br />

60<br />

S<br />

i = 1<br />

pi ln pi<br />

H '<br />

E =<br />

H ' max<br />

∑<br />

G =<br />

2 Oi o ln( Oi / Ei )<br />

i


Results<br />

Succession<br />

Nordre Frankl<strong>in</strong>fjorden – bioclimatic zone A<br />

Cerastium regelii and Saxifraga oppositifolia are found only on the earliest mora<strong>in</strong>e.<br />

No species grow exclusively on the <strong>in</strong>termediate stage surface. Saxifraga foliolosa<br />

and S. rivularis are present <strong>in</strong> both <strong>in</strong>termediate and mature vegetation assemblages.<br />

Cardam<strong>in</strong>e bellidifolia and Luzula confusa are found on all mora<strong>in</strong>es, whilst Papaver<br />

dahlianum as well as Stellaria longipes appear on three of four sites surveyed.<br />

Mayerbreen – bioclimatic zone B<br />

The very early colonizers on the young mora<strong>in</strong>e but not present on the <strong>in</strong>termediate<br />

stage surface are Draba alp<strong>in</strong>a, D. nivalis, Phippsia algida, Saxifraga oppositfolia,<br />

and Trisetum spicatum. Many species are present on both the early mora<strong>in</strong>e and <strong>in</strong> the<br />

<strong>in</strong>termediate mora<strong>in</strong>e such as Cochlearia groenlandica, Draba corymbosa, Luzula<br />

confusa, Oxyria digyna, Poa alp<strong>in</strong>a, Poa arctica, Saxifraga cernua, S. cespi<strong>to</strong>sa, S.<br />

hyperborea, S. nivalis, S. rivularis and Stellaria longipes. Only a few species are<br />

exclusively present on the <strong>in</strong>termediate vegetation, such as Draba lactea, D.<br />

oxycarpa, and Papaver dahlianum. Noteworthy absences <strong>in</strong> the <strong>in</strong>termediate stage are<br />

the otherwise ubiqui<strong>to</strong>us Saxifraga oppostitifolia and Salix <strong>polar</strong>is, which were not<br />

recorded at Mayerbreen at all.<br />

Due <strong>to</strong> the <strong>in</strong>stability of the steeply sloped <strong>in</strong>termediate/older mora<strong>in</strong>e the vegetation<br />

was very patchy, which consisted of gramnoids and pioneers.<br />

Kongsbreen – bioclimatic zone C<br />

At Kongsbreen the early colonizers were Braya purpurascens, Draba nivalis, D.<br />

subcapitata, Papaver dahlianum, Sag<strong>in</strong>a nivalis, Saxifraga aizoides, S. cespi<strong>to</strong>sa, S.<br />

oppositifolia and Silene uralensis. Only Draba spp., Sag<strong>in</strong>a nivalis and Silene<br />

uralensis grow exclusively on the young mora<strong>in</strong>es, while Braya purpurascens,<br />

Cerastium arcticum, and Saxifraga cespi<strong>to</strong>sa persist <strong>in</strong> the <strong>in</strong>termediate stages.<br />

Several species have been found only on <strong>in</strong>termediate mora<strong>in</strong>es (Cochlearia<br />

groenlandica, Draba arctica, D. corymbosa, Silene furcata and Saxifraga nivalis) or<br />

mature vegetation (Arenaria pseudofrigida, Bis<strong>to</strong>rta vivipara, Carex nard<strong>in</strong>a,<br />

Cassiope tetragona, Dryas oc<strong>to</strong>petala, Luzula nivalis, Silene acaulis and Trisetum<br />

spicatum). Some species are ubiqui<strong>to</strong>us at all successional stages and present on<br />

mora<strong>in</strong>es of all ages. Saxifraga oppositifolia and Salix <strong>polar</strong>is are present on the<br />

earliest mora<strong>in</strong>e and persist, albeit less abundantly, <strong>in</strong> the climax vegetation of Dryas­<br />

Cassiope heath.<br />

Diversity<br />

To get a general impression of the <strong>in</strong>crease <strong>in</strong> species from younger <strong>to</strong> older stages of<br />

the succession at all mora<strong>in</strong>es, the species numbers (alpha diversity) of the different<br />

bioclimatic zones are compared (Fig. 2a, b). It is evident (Fig. 2a) that the number of<br />

plots analysed were not sufficient as only the curve for cumulative species numbers<br />

for Nordre Frankl<strong>in</strong>breen flattens off. A non­flatted curve <strong>in</strong>dicates that the whole<br />

range of diversity were not present <strong>in</strong> the plots that were sampled at Mayerbreen and<br />

Kongsbreen.<br />

61


Figure 2. a: Cumulative number of species observed with the po<strong>in</strong>t <strong>in</strong>tercept frame surveys,<br />

every dot is a succeed<strong>in</strong>g plot. b: alpha diversity of different succession stadiums at<br />

three glacier forefields.<br />

In early pioneer stages the species numbers are low <strong>to</strong> zero (Fig. 2b). None or a very<br />

few vascular <strong>plant</strong>s and few scattered bryophytes were observed at the very recently<br />

deglaciated mora<strong>in</strong>es. At these young mora<strong>in</strong>es small streams seem <strong>to</strong> be important<br />

for start<strong>in</strong>g <strong>plant</strong> establishment. They offer numerous microhabitats that facilitates the<br />

establishment of pioneer <strong>plant</strong>s. Intermediate and older stages are characterised by an<br />

<strong>in</strong>crease <strong>in</strong> species numbers and greater <strong>plant</strong> cover. The cumulative number of<br />

species per plot <strong>in</strong>creased cont<strong>in</strong>uously except on an older mora<strong>in</strong>e at Nordre<br />

Frankl<strong>in</strong>sbreen (fig 2a). In bioclimatic zone B and C (Mayerbreen, Kongsbreen)<br />

species numbers <strong>in</strong>crease very little from <strong>in</strong>termediate <strong>to</strong> old stages (Fig. 2b). This<br />

pattern was not found <strong>in</strong> bioclimatic zone A, where species showed the greatest<br />

<strong>in</strong>crease from <strong>in</strong>termediate <strong>to</strong> old mora<strong>in</strong>es. Additionally, all stages <strong>in</strong> zone A are very<br />

similar <strong>in</strong> their species composition.<br />

Besides the <strong>in</strong>crease <strong>in</strong> species from younger <strong>to</strong> older stages, a highly significant<br />

correlation between the mora<strong>in</strong>e’s age and <strong>plant</strong> cover was observed (Fig. 3a).<br />

62


Figure 3. a: Total <strong>plant</strong> cover aga<strong>in</strong>st estimated age of the mora<strong>in</strong>es Spearman’s rank order<br />

correlation coefficient 0.758, significant at the 0.001 level, Rsq=0,79 b: Shannon <strong>in</strong>dex<br />

and species evenness for Colesdalen, Mayerbreen, Nordre Frankl<strong>in</strong>breen and<br />

Kongsbreen<br />

Although Mayerbreen is situated <strong>in</strong> the bioclimatic zone B, the mora<strong>in</strong>es have a<br />

higher alpha diversity than other mora<strong>in</strong>es <strong>in</strong> this study. The species evenness E and<br />

the Shannon <strong>in</strong>dex H differs little from Colesdalen, one of the richest places <strong>in</strong> flora<br />

on <strong>Svalbard</strong> situated <strong>in</strong> bioclimatic zone C (fig 3b). The lowest <strong>in</strong>dex as well as the<br />

lowest evenness was calculated for Nordre Frankl<strong>in</strong>sbreen which reflects the<br />

dom<strong>in</strong>ance of Luzula confusa and the low number of species and their scattered<br />

distribution.<br />

The glacier forefields of the colder arctic zones (A, B) favoured generalist species<br />

(Fig. 4). In bioclimatic zone A early colonizers are still present <strong>in</strong> later succession<br />

stages, whereas <strong>in</strong> bioclimatic zone C early colonizers are almost absent from well<br />

developed, closed communities. The high proportion of species present at both<br />

younger and older sites <strong>in</strong> bioclimatic zone B <strong>in</strong>dicates a high similarity or a failure <strong>to</strong><br />

visually classify the age of the mora<strong>in</strong>es and successional stage correctly.<br />

63


Figure 4. Presence and absence of all species observed <strong>in</strong> this study on glacier forefields. Species abbreviations consist of first the three genus and first three<br />

species letters<br />

64


Ploidy<br />

The frequencies of diploid/ polyploid species occurr<strong>in</strong>g on each mora<strong>in</strong>e have been<br />

plotted aga<strong>in</strong>st the estimated age of the mora<strong>in</strong>e (Fig 5a). The age of the mora<strong>in</strong>es and<br />

the number of polyploidy species are not significantly correlated. Nevertheless, the<br />

data <strong>in</strong>dicate a slight trend <strong>to</strong> a lower frequency of polyploids on older mora<strong>in</strong>es.<br />

Hodk<strong>in</strong>son et al. (2003) found a highly significant correlation (Tab. 4) for a lower<br />

level of polyploid species <strong>in</strong> older succession stages at glacier forefields (Fig 5b). A<br />

slight non­significant trend <strong>to</strong>wards a larger number of polyploids at glacier forefields<br />

was found from bioclimatic zone C <strong>to</strong> A (data not shown).<br />

Figure 5. a: Part of polyploid <strong>plant</strong>s <strong>in</strong> percent aga<strong>in</strong>st the estimated age of the mora<strong>in</strong>es own<br />

survey Rsq=0.16 b: part of polyploidy <strong>plant</strong>s aga<strong>in</strong>st radiocarbon dated mora<strong>in</strong>es<br />

derived from Hodk<strong>in</strong>son et al. (2003) Rsq=0.88.<br />

A G­test of the diploid/ polyploid frequencies between frequencies on mora<strong>in</strong>es<br />

observed <strong>in</strong> this study and published frequencies from all <strong>plant</strong>s present <strong>in</strong> <strong>Svalbard</strong><br />

(Brochmann & Steen 1999) revealed that the frequencies observed from the authors<br />

and frequencies from all <strong>plant</strong>s <strong>in</strong> <strong>Svalbard</strong> show no differences (p value 0.15; error<br />

probability 0.05). Exception is one observed frequency (Kongsbreen climax stage)<br />

which has been compared <strong>to</strong> the frequency of all <strong>plant</strong>s <strong>in</strong> <strong>Svalbard</strong>; this frequency<br />

differs significant from the frequency of all <strong>plant</strong>s <strong>in</strong> <strong>Svalbard</strong> (p value 0.012)<br />

Table 4. Correlations between estimated age of mora<strong>in</strong>es ground cover, ploidylevel, and sexual<br />

reproduction. AGE_EST­estimated age, ploidy%­percentage of polyploid <strong>plant</strong>s,<br />

sexual%­percentage of sexual reproduc<strong>in</strong>g <strong>plant</strong>s. First row own data, second row data<br />

Hodk<strong>in</strong>son et al. (2003).<br />

ploidy % sexual %<br />

Age estimation Correlation Coefficient 226 ­630<br />

Significance. (2­tailed) 530 51<br />

Number 10 10<br />

Age estimation Correlation Coefficient 0,919** ­,986**<br />

Significance. (2­tailed) 3 0<br />

Number 7 6<br />

** Correlation is significant at the 0.01 level<br />

Reproduction<br />

No significant correlation was found between the age of the mora<strong>in</strong>es and the mode of<br />

reproduction (Fig. 6a) but the frequency of sexually reproduc<strong>in</strong>g <strong>plant</strong>s is higher <strong>in</strong><br />

younger mora<strong>in</strong>es. These f<strong>in</strong>d<strong>in</strong>gs are supported by the data of Hodk<strong>in</strong>son et al.<br />

65


(2003), from which a highly significant correlation between proportion of sexual<br />

reproduc<strong>in</strong>g <strong>plant</strong>s and the age of the succession has been calculated (see Tab. 4). A<br />

higher proportion of <strong>plant</strong> species on younger mora<strong>in</strong>es reproduce sexually than on<br />

older terra<strong>in</strong>, where the number of clonally reproduc<strong>in</strong>g species <strong>in</strong>creases (Fig 6b).<br />

Figure 6. a: Plot of sexual reproducer aga<strong>in</strong>st the estimated age of the mora<strong>in</strong>es own survey<br />

Rsq=0.33 b: plot of sexual reproducer aga<strong>in</strong>st radiocarbon dated mora<strong>in</strong>es Hodk<strong>in</strong>son<br />

et al. (2003) Rsq=0.95<br />

The frequency of species ma<strong>in</strong>ly reproduc<strong>in</strong>g sexually tended <strong>to</strong> be higher <strong>in</strong> warmer<br />

zones than <strong>in</strong> colder zones (data not shown). A G­test demonstrates that the overall<br />

observed frequency for <strong>plant</strong>s on glacier forefields is not the same as for all <strong>plant</strong>s<br />

found <strong>in</strong> <strong>Svalbard</strong> (null hypothesis rejected). A smaller proportion of <strong>plant</strong>s grow<strong>in</strong>g<br />

<strong>in</strong> glacier forefields reproduce clonally than all <strong>plant</strong>s known <strong>to</strong> <strong>Svalbard</strong>.<br />

Discussion<br />

Succession and diversity<br />

The observed vegetation pattern and biodiversity level at the different mora<strong>in</strong>es <strong>in</strong><br />

bioclimatic zone B and C are generally congruent <strong>to</strong> earlier studies <strong>in</strong> high arctic areas<br />

(Moreau submitted, Moreau 2005, Hodk<strong>in</strong>son 2003, Jones & Henry 2003). At all<br />

bioclimatic zones (A­C) <strong>in</strong> the early stages Saxifraga spp. are frequent. The members<br />

of the Brassicacea family, <strong>in</strong> particular the genera Draba and Cardam<strong>in</strong>e, are less<br />

frequent but a constant part of the pioneer vegetation. Early pioneers were found <strong>to</strong> be<br />

the same as postulated by the mentioned authors (see results Fig. 5). Succession stages<br />

<strong>in</strong> zone C and B clearly differ <strong>in</strong> species composition with time, whilst zone A did not<br />

show the expected species substitution with time pattern.<br />

At both Kongsfjorden and Mayerbreen a species substitution succession occurs. This<br />

follows the general pattern expected <strong>in</strong> glacier forelands both <strong>in</strong> Europe (Matthews<br />

1992), and <strong>Svalbard</strong> (Moreau submitted, Moreau 2005 and Hodk<strong>in</strong>son et al. 2003).<br />

There are typical early colonizers like the widespread species Saxifraga oppositifolia<br />

as well as species like Sag<strong>in</strong>a nivalis and Draba spp. (Fig. 5). These species specialize<br />

<strong>in</strong> colonis<strong>in</strong>g fresh mora<strong>in</strong>es but are unable <strong>to</strong> persist <strong>in</strong> the <strong>in</strong>termediate and mature<br />

vegetation. It is difficult <strong>to</strong> estimate for certa<strong>in</strong> why these species are unable <strong>to</strong> persist<br />

<strong>in</strong> the <strong>in</strong>termediate stage mora<strong>in</strong>es as these are still open communities and have<br />

66


patchy vegetation so competition is not likely <strong>to</strong> be a fac<strong>to</strong>r. Hodk<strong>in</strong>son et al. (2003)<br />

found that there were changes over time with <strong>in</strong>creas<strong>in</strong>g soil organic matter, nitrogen<br />

and soil moisture as well as a decreas<strong>in</strong>g soil pH. The niche of these species can be<br />

related <strong>to</strong> all of these environmental variables.<br />

Several species are typical at <strong>in</strong>termediate stage mora<strong>in</strong>es, like Papaver dahlianum<br />

and Saxifraga spp., which do not appear <strong>in</strong> the more mature vegetation stage. This<br />

species substitution/ reduction can be related <strong>to</strong> the species demand for open areas or<br />

<strong>in</strong>terspecies competition, as <strong>in</strong> bioclimatic zone B and C <strong>in</strong> more developed stages the<br />

vegetation cover gets more dens. Similar, few early colonizers have been found with<strong>in</strong><br />

climax (e.g. Dryas oc<strong>to</strong>petala and Cassiope tetragona <strong>tundra</strong> communities),<br />

<strong>in</strong>dicat<strong>in</strong>g that they are poor competi<strong>to</strong>rs. In the stable vegetation of the Dryas –<br />

Cassiope heath communities on old mora<strong>in</strong>es at Kongsbreen, particularly, Draba spp.<br />

were not observed, which suggests that <strong>in</strong> stable climax vegetation the pioneer species<br />

might be out competed. The species that only appear at a s<strong>in</strong>gle stage may, <strong>to</strong> lesser or<br />

greater extent, represent specialist of particular habitats, although species like<br />

Cassiope tetragona are very widespread <strong>in</strong> <strong>Svalbard</strong> (www.svalbardflora.net).<br />

Some species are ubiqui<strong>to</strong>us, appear <strong>in</strong> all succession stages and are present on<br />

mora<strong>in</strong>es of all ages. Saxifraga oppositifolia and Salix <strong>polar</strong>is occur on the earliest<br />

mora<strong>in</strong>es and persist, less dom<strong>in</strong>ant, <strong>in</strong> the climax vegetation. S. <strong>polar</strong>is and S.<br />

oppositifolia as well as Luzula confusa (only <strong>in</strong> zone A and B) are seen as widespread<br />

(Moreau submitted, Hodk<strong>in</strong>son et al. 2003).<br />

At Mayerbreen the absence of the widespread S. oppostitifolia, and S. <strong>polar</strong>is is<br />

noteworthy and cannot be expla<strong>in</strong>ed with its steepness. S<strong>in</strong>ce both species are among<br />

the earliest colonizers on mora<strong>in</strong>es and thus must have a high degree of <strong>to</strong>lerance for<br />

disturbance. It may be related <strong>to</strong> other reasons as soil or a simple observation bias or<br />

<strong>to</strong> chance events. The steepness of the mora<strong>in</strong>e is the reason for the high species<br />

richness. The patchy slope caused by erosion seems <strong>to</strong> create many different micro<br />

habitats. Although situated <strong>in</strong> bioclimatic zone B the Shannon’s diversity <strong>in</strong>dex and<br />

the species evenness are similar <strong>to</strong> Colesdalen, with a rich flora <strong>in</strong> bioclimatic zone C<br />

(Alsos et al. 2004).<br />

At the Nordre Frankl<strong>in</strong>breen the succession development is very different from the<br />

general pattern seen <strong>in</strong> Kongsfjorden, Mayerbreen and also <strong>in</strong> the studies conducted at<br />

other glacier forelands <strong>in</strong> <strong>Svalbard</strong> (Moreau submitted, Moreau 2005 and Hodk<strong>in</strong>son<br />

et al. 2003). There is no clear species succession with time visible <strong>in</strong> the record, and<br />

many species appear <strong>in</strong> all stages seem<strong>in</strong>gly <strong>in</strong>dependent of the time fac<strong>to</strong>r. Polar<br />

<strong>desert</strong>s and semi<strong>desert</strong>s are marg<strong>in</strong>al for establishment of vascular <strong>plant</strong>s (Svoboda &<br />

Henry 1987), a major landscape feature of bioclimatic zone A. Obvious <strong>in</strong> the glacier<br />

foreland of Nordre Frankl<strong>in</strong>sbreen is that the <strong>plant</strong>s are scattered even at older<br />

mora<strong>in</strong>es and the vegetation consists of small patches.<br />

One mature site (N3) is clearly set apart <strong>in</strong> the Norde Frankl<strong>in</strong>breen foreland. Many<br />

species are present here that are absent elsewhere on this foreland However, this site<br />

is <strong>in</strong>fluenced by higher nutrient availability as there are small ponds with several eider<br />

ducks (Somateria mollissima) as well as re<strong>in</strong>deer (Rangifer tarandus platyrhynchus)<br />

judg<strong>in</strong>g from the dropp<strong>in</strong>gs present.<br />

67


The <strong>in</strong>termediate stages seem <strong>to</strong> have many specialized species <strong>in</strong> all sites with the<br />

exception of Nordre Frankl<strong>in</strong>breen where no particular species are on this stage. There<br />

is no overlap <strong>in</strong> the species that occur <strong>in</strong> the <strong>in</strong>termediate stage at both Mayerbreen<br />

and Kongsfjorden. Many species occur at <strong>in</strong>termediate stage <strong>in</strong> Kongsfjorden and at<br />

both stages <strong>in</strong> the Mayerbreen foreland. It is possible that this is related <strong>to</strong><br />

Mayerbreen’s <strong>in</strong>termediate stage mora<strong>in</strong>e be<strong>in</strong>g very steep and unstable. However,<br />

this can be evaluated as unlikely because most species present at more or less newly<br />

deglaciated terra<strong>in</strong> are generally adapted <strong>to</strong> a high disturbance regime. Another<br />

possible explanation is that the early mora<strong>in</strong>e at Mayerbreen may be slighlty older<br />

than the early mora<strong>in</strong>e <strong>in</strong> Kongsfjorden so that a direct comparison between them is<br />

complicated.<br />

As <strong>in</strong>dicated <strong>in</strong> the results chapter <strong>in</strong> the development of the <strong>plant</strong> communities (see<br />

Fig. 4) <strong>in</strong> bioclimatic zones A and B a higher number of widespread species occur <strong>in</strong><br />

both zones. And thus the glacier forelands <strong>in</strong> the colder arctic zones (A and B) are<br />

thought <strong>to</strong> favour generalist species.<br />

Polyploidy<br />

Hybridization and polyploidy generate new races and species, some which become<br />

adapted <strong>to</strong> the new conditions <strong>in</strong> regions vacated by ice (Brochmann et al. 2004). The<br />

frequency of polyploids <strong>in</strong>creases with latitude <strong>in</strong> the northern hemisphere and the<br />

proportion of polyploids is particulary high <strong>in</strong> previous glaciated areas (Brochmann &<br />

Steen 1999). In the <strong>Arctic</strong> polyploidy secures stable reproduction and ma<strong>in</strong>tenance of<br />

genetic diversity <strong>in</strong> marg<strong>in</strong>al and climatically unstable environments (Brochmann &<br />

Steen 1999). Our study spans from bioclimatic zone C <strong>in</strong> south (Kongsbreen) up <strong>to</strong><br />

the northern bioclimatic zone A at Nordre Frankl<strong>in</strong>breen and <strong>in</strong>cludes mora<strong>in</strong>es of<br />

different ages. The data obta<strong>in</strong>ed dur<strong>in</strong>g the study did not give any significant<br />

correlations on the polyploidy proportion <strong>in</strong>creas<strong>in</strong>g with neither bioclimatic zone nor<br />

with the age of mora<strong>in</strong>es. However, they show a trend <strong>to</strong>wards an <strong>in</strong>creas<strong>in</strong>g number<br />

of polyploid species with latitude, <strong>in</strong> accordance <strong>to</strong> studies of Brochmann et al.<br />

(2004), Brochmann & Steen (1999) and Stebb<strong>in</strong>s (1984). The high significant<br />

correlations calculated from data derived from Hodk<strong>in</strong>son at al. (2003) supports the<br />

trends mentioned above and also the hypothesis of Stebb<strong>in</strong>s (1985) that polyploids are<br />

more successful than diploids <strong>in</strong> coloniz<strong>in</strong>g terra<strong>in</strong> after deglaciation.<br />

Additionally, the result of the G­test supports the above mentioned hypothesis. In<br />

particular the observed frequencies at the climax vegetation of Kongsbreen, which<br />

show a significantly different poly/ diploid ratio than glacier forefield’s pioneer<br />

vegetation, confirm that polyploidy is the strategy of choice <strong>in</strong> such environments.<br />

Reproduction<br />

Most species found <strong>in</strong> <strong>Svalbard</strong> have mixed reproductive systems with vary<strong>in</strong>g<br />

frequencies of asexuality, sexual reproduction via self­poll<strong>in</strong>ation, and “normal”<br />

sexuality via cross­poll<strong>in</strong>ation (Brochmann & Steen 1999), although 97 of the 161<br />

species are ma<strong>in</strong>ly sexual reproducers (Brochmann & Steen 1999). However, a G­test<br />

revealed that the observed <strong>plant</strong>s <strong>in</strong> glacier forefields have not the same frequencies of<br />

reproduction modes as the sum of all <strong>plant</strong>s found <strong>in</strong> <strong>Svalbard</strong>. In addition, the trend<br />

<strong>to</strong>wards higher sexual reproduction <strong>in</strong> younger succession, which is confirmed by the<br />

correlation calculated from Hodk<strong>in</strong>son’s data (Hodk<strong>in</strong>son et al. 2003), suggests that a<br />

sexual reproduction strategy is advantageous for <strong>plant</strong> establishment on mora<strong>in</strong>es. The<br />

68


frequency of sexual reproduction of <strong>plant</strong>s at glacier forfields appears <strong>to</strong> be higher<br />

than the <strong>Svalbard</strong> average. It is likely that the number of species reproduc<strong>in</strong>g sexual<br />

on glacier forefields is higher because seeds are able <strong>to</strong> survive harder conditions,<br />

have a greater advantage <strong>in</strong> establishment and dispersal.<br />

The observed trend <strong>to</strong>wards lower frequencies of sexual reproduction <strong>in</strong> colder<br />

climates can be either expla<strong>in</strong>ed by the limited resources, which have <strong>to</strong> be allocated<br />

for sexual reproduction or shortcom<strong>in</strong>gs <strong>in</strong> this reproduction strategy (lack of<br />

poll<strong>in</strong>a<strong>to</strong>rs, establishment rate of seeds extremely low, lack of mature seeds because<br />

of season length or low temperature).<br />

Climate change<br />

How <strong>plant</strong> communities and succession will react <strong>to</strong> climate change is difficult <strong>to</strong><br />

predict, as there is a highly complex <strong>in</strong>teraction between species ecological amplitude<br />

and competition. The only possibility is <strong>to</strong> formulate assumptions about presence and<br />

absence <strong>in</strong> future <strong>plant</strong> communities. However, it is important <strong>to</strong> postulate which<br />

species are most vulnerable <strong>to</strong> climate change <strong>in</strong> high arctic areas. The chance is given<br />

that glacier forelands can become refugia for high arctic species that are highly<br />

adapted <strong>to</strong> cold climates and as such will probably suffer because of the predicted<br />

global warm<strong>in</strong>g. Therefore, the species with a northerly distribution that are rare and<br />

<strong>in</strong> addition not able <strong>to</strong> colonize newly deglaciated terra<strong>in</strong> are likely <strong>to</strong> be the species<br />

most vulnerable <strong>to</strong> climate change.<br />

By us<strong>in</strong>g data from glacier foreland studies it is possible <strong>to</strong> dist<strong>in</strong>guish which species<br />

are limited <strong>to</strong> colonize glacier forelands. By compar<strong>in</strong>g this <strong>to</strong> the species that are<br />

found <strong>in</strong> bioclimatic zone A (Elven et al. 2003), with distribution on <strong>Svalbard</strong><br />

(<strong>Svalbard</strong>flora.net 2007) as well as a narrow circum<strong>polar</strong> distribution (Hultèn 1962) it<br />

was found that the follow<strong>in</strong>g species could potentially be most vulnerable <strong>to</strong> climate<br />

change <strong>in</strong> <strong>Svalbard</strong>: Alopecurus borealis, Draba norvegica, Eutrema edwardsii,<br />

Festuca hyperborea, M<strong>in</strong>uartia rossii, Poa abbreviata ssp. abbreviate, Potentilla<br />

pulchella ssp. pulchella, Ranunculucs nivalis and Saxifraga hirculus. However,<br />

Alopecurus borealis, Draba norvegica, Eutrema edwvadsii, M<strong>in</strong>uartia rossii,<br />

Potentilla pulchella, and Ranunculus nivalis are more widespread on <strong>Svalbard</strong> than<br />

the other species mentioned. are more or less common <strong>in</strong> other areas than <strong>Svalbard</strong><br />

and are not considered <strong>to</strong> be particularly vulnerable on a circum<strong>polar</strong> basis. M<strong>in</strong>uartia<br />

rossii is on the red list of <strong>Svalbard</strong> and already a vulnerable species on the<br />

archipelago. It has a wide distribution (rang<strong>in</strong>g from bioclimatic zone A­E) and<br />

therefore difficult <strong>to</strong> predict how it will respond <strong>to</strong> an <strong>in</strong>crease <strong>in</strong> temperature. Festuca<br />

hyperborea and Poa abbreviata have a more narrow distribution and are not<br />

particularly thermophilic. An <strong>in</strong>crease <strong>in</strong> temperature may put these species at risk, <strong>in</strong><br />

particular Festuca hyperborea which already is on the red list of <strong>Svalbard</strong>.<br />

Conclusion<br />

Glacier forelands are excellent places for study<strong>in</strong>g primary succession by substitut<strong>in</strong>g<br />

space for time. The glacier forefield <strong>in</strong> bioclimatic zone A did not show the expected<br />

species substitution with time succession pattern. Instead many species occurred<br />

irrespective of the relative ages of the mora<strong>in</strong>es. Whereas species substitution dur<strong>in</strong>g<br />

succession follows general patterns <strong>in</strong> the arctic bioclimatic zones B and C. There is a<br />

significant difference <strong>in</strong> the extent of sexual reproducers <strong>in</strong> this study compared <strong>to</strong><br />

69


<strong>Svalbard</strong> <strong>in</strong> general. Moreover polyploidy frequencies are slightly higher <strong>in</strong> northern<br />

bioclimatic zones and on younger mora<strong>in</strong>es.<br />

References<br />

Alsos, I. G., Westergaard, K., Lund, L. & Sandbakk B. E. 2004: Floraen i Colesdalen.<br />

Blyttia 62, 142­150<br />

<strong>Arctic</strong> Climate Impact Assessment 2005: Cambridge University Press<br />

Bliss, L. C. & Gold, W. G. 1999: Vascular <strong>plant</strong> reproduction, establishment, and<br />

growth and the effects of cryp<strong>to</strong>grammic crusts with<strong>in</strong> <strong>polar</strong> <strong>desert</strong> ecosystems,<br />

Devon Islands, N. W. T., Canada. Canadian Journal of Botany 77, 623­636<br />

Bradwell, T., Armstrong, R. A. 2007: Growth rates of Rhizocarpon geographicum<br />

lichens: a review with new data from Iceland. Journal of Quaternary Science 22,<br />

311­320<br />

Brochmann, C., Bryst<strong>in</strong>g, A. K., Alsos, I. G., Borgen, L,. Grundt, H. H., Scheen, A­C.<br />

& Elven, R. 2004: Polyploidy <strong>in</strong> arctic <strong>plant</strong>s. Biological Journal of the L<strong>in</strong>nean<br />

Society 82, 521­536<br />

Bråthen, K. A. & Hageberg O. 2004: More efficient estimations of <strong>plant</strong> biomass.<br />

Journal of Vegetation Science 15, 653­660<br />

Cannone, N.,Guglielm<strong>in</strong>, M. & Gerdol, R. 2004: Relationships between vegetation<br />

patterns and periglacial landforms <strong>in</strong> northwestern <strong>Svalbard</strong>. Polar Biology 27: 562­<br />

571<br />

Elvebakk, A. 1999: Bioclimatic delimitation and subdivision of the <strong>Arctic</strong>. Det<br />

Norske Videnskaps­Akademi. I. Matematisk­Naturvitenskapelig Klasse. Skrifer. Ny<br />

serie 38, 81­112<br />

Elvebakk, A. 2005: A vegetation map of <strong>Svalbard</strong> on the scale 1:3.5 mill.<br />

Phy<strong>to</strong>coenologia 35, 951­967<br />

Elven, R., Murray, D. F., Razzhiv<strong>in</strong>, V. Y. & Yurtsev B.A. 2003: Checklist of the<br />

Pan­<strong>Arctic</strong> Flora (PAF). Vascular Plants, Draft Version. University of Oslo, Oslo<br />

Erschbamer, B. 2007: W<strong>in</strong>ners and losers of climate change <strong>in</strong> a central alp<strong>in</strong>e glacier<br />

foreland. <strong>Arctic</strong>, Antarctic and Alp<strong>in</strong>e Research 39, 237­244<br />

Gough, L. 2006: Neighbor effects on germ<strong>in</strong>ation, survival, and growth <strong>in</strong> two arctic<br />

<strong>tundra</strong> communities. Ecography 29, 44­56<br />

Grant V.1981: Plant Speciation. New York: Columbia Univ. Press. 2 nd ed<br />

Grundt, H. H., Kjølner, S., Borgen, L., Rieseberg, L. H. & Brochmann, C. 2006: High<br />

biological species diversity <strong>in</strong> the arctic flora. Proceed<strong>in</strong>gs of the National Academy<br />

of Sciences of the Unites States of America 103, 972­975<br />

Hammer, Ø., Harper, D. A. T. 2003: PAST, version 1.10<br />

http://folk.uio.no/ohammer/past<br />

70


Hodk<strong>in</strong>son, I. D., Coulson, S. J. & Webb, N. R. (2003) Community assembly along<br />

proglacial chronosequences <strong>in</strong> the high Arcic: vegetation and soil development <strong>in</strong><br />

north­west <strong>Svalbard</strong>. Journal of Ecology 91, 651­663<br />

Hultèn, E. 1962: The circum<strong>polar</strong> <strong>plant</strong>s. I: Vacsular cryp<strong>to</strong>gams, conifers,<br />

monocotyledons. S<strong>to</strong>ckholm, Almquist & Wiksell<br />

Jones. G. & Henry, G. H. R. 2003: Primary <strong>plant</strong> succession on recently deglaciated<br />

terra<strong>in</strong> <strong>in</strong> the Canadian High <strong>Arctic</strong>. Journal of Biogeography 30, 277­296<br />

Körner, C. 2003: Alp<strong>in</strong>e Plant Life. Functional Plant Ecology of High Mounta<strong>in</strong><br />

Ecosystems. Spr<strong>in</strong>ger­Verlag, Berl<strong>in</strong> Heidelberg<br />

Lefauconnier, B. 1991: Recent fluctuations of glaciers <strong>in</strong> Kongsfjorden, Spitsbergen,<br />

<strong>Svalbard</strong> (79 °N). Inter­Nord 19, 449­453<br />

Legendere, P., Borcard, D., Peres­Netro, P. R., 2005: Analyz<strong>in</strong>g beta diversity:<br />

partition<strong>in</strong>g the spatial variation of community composition data. Ecological<br />

Monographs, 75, 435­450<br />

Lumaret R. 1988: Adaptive strategies and ploidy levels. Acta Oecol. Oecol. Plant.<br />

9:83­93<br />

Matthews, J. A. 1992: The <strong>ecology</strong> of recently deglaciated terra<strong>in</strong>. A geoecological<br />

approach <strong>to</strong> glacier forelands and primary succession. Cambridge, Cambridge<br />

University Press<br />

Matthews, J. A. 2005: Little Ice Age glacier variations <strong>in</strong> Jotunheimen, southern<br />

Norway: a study <strong>in</strong> regionally controlled lichenometric dat<strong>in</strong>g of recessional<br />

mora<strong>in</strong>es with implications for climate and lichen growth rates. The Holocene 15, 1­<br />

19<br />

McCarthy, D. 1999: A biological basis for Lichenometry? Journal of Biogeography<br />

26, 379­386<br />

Moreau, M., Laffly, D., Joly, D. & Brossard, T. 2005: Analysis of <strong>plant</strong> colonization<br />

on an arctic mora<strong>in</strong>e s<strong>in</strong>ce the end of the little Ice Age us<strong>in</strong>g remotely sensed data<br />

and a Bayesian approach. Remote Sens<strong>in</strong>g of Environment 99, 244­253<br />

Niederfr<strong>in</strong>iger, R. & Erschbamer, B. 2000: Germ<strong>in</strong>ation and Establishment of<br />

Seedl<strong>in</strong>gs on a Glacier Foreland <strong>in</strong> the Central Alps, Austria. <strong>Arctic</strong>, Antarctic and<br />

Alp<strong>in</strong>e Research 32, 270­277<br />

Norsk Meterologisk Institutt.2007: www.met.no<br />

Raffl,C., Mallaun, M., Mayer, R., Erschbamer, B. 2006: Vegetation Succession<br />

Pattern and Diversity Changes <strong>in</strong> a Glacier Valley, Central Alps, Austria. <strong>Arctic</strong>,<br />

Antarctic, and Alp<strong>in</strong>e Research 38, 421­428<br />

Stebb<strong>in</strong>s, G. L. 1984: Polyploidy and the distribution of the arctic­alp<strong>in</strong>e flora: new<br />

evidence and a new approach. Botanica Helvetica 94, 1­13<br />

Stebb<strong>in</strong>s, G. L. 1971: Chromosomal Evolution <strong>in</strong> Higher Plants. London: Addison­<br />

Wesley<br />

<strong>Svalbard</strong>sflora. 2007: www.svalbardflora.net<br />

71


Svoboda, J., Henry, G. H. R. 1987: Succession <strong>in</strong> marg<strong>in</strong>al arctic environments.<br />

<strong>Arctic</strong> and Alp<strong>in</strong>e Research 19, No 4, 373­384<br />

Walker, M. D., Wahren, H. C., Hollister R. D., Henry, G. H. R., Ahlquist, L. E.,<br />

Alatalo, J. M., Bret­Harte, S. M., Calef, M. P., Callaghan, T. V., Carroll, A. B.,<br />

Epste<strong>in</strong>, H. E., Jónsdóttir, I. S., Kle<strong>in</strong>, J. A., Magnússon, B., Molau, U., Oberbauer,<br />

S. F., Rewa S. P., Rob<strong>in</strong>son, C. H., Shaver, G. R., Sud<strong>in</strong>g, K. N., Thompson, , C. C.,<br />

Tolvanen, A., Totland, Ø., Turner, P. L., Tweedie, C. E., Webber, P. J. & Wookey,<br />

P. A. 2006: Plant community responses <strong>to</strong> experimental warm<strong>in</strong>g across the <strong>tundra</strong><br />

biome. Proceed<strong>in</strong>gs of the National Academy of Sciences of the Unites States of<br />

America 103, 1342­1346<br />

Werner, A. L. 1990: Lichen growth rates for the northwest coast of Spitsbergen,<br />

<strong>Svalbard</strong>. <strong>Arctic</strong> and Alp<strong>in</strong>e Research 22, 129­140<br />

Whittaker, R.H. 1972: Evolution and measurement of species diversity. Taxon, 21,<br />

213­25<br />

72


High nutrient levels can compensate for the growth­<br />

limit<strong>in</strong>g effect of low temperatures<br />

Elke Morgner 1 and Christian E. Pettersen 2<br />

1 Department of Physical Geography and Quaternary Geology, S<strong>to</strong>ckholm University, SE­106 91<br />

S<strong>to</strong>ckholm, Sweden. 2 Department of Biology, University of Oslo, N­0316 Oslo, Norway .<br />

Abstract<br />

Plant growth <strong>in</strong> the <strong>Arctic</strong> is strongly <strong>in</strong>fluenced by low temperature and associated<br />

short grow<strong>in</strong>g season, both of which also reduce soil nutrient availability. S<strong>in</strong>ce low<br />

temperature and low nutrient availability may <strong>in</strong>teract, it is difficult <strong>to</strong> dist<strong>in</strong>guish the<br />

impact of each of these variables. The aim of this study was <strong>to</strong> test whether<br />

temperature per se controls <strong>plant</strong> growth or whether growth is constra<strong>in</strong>ed by<br />

temperature­<strong>in</strong>duced nutrient shortage. Us<strong>in</strong>g <strong>plant</strong> and leaf size as simple proxies for<br />

vigor, 778 <strong>in</strong>dividuals of 19 different vascular <strong>plant</strong> species were exam<strong>in</strong>ed <strong>in</strong> 10<br />

geographical regions on <strong>Svalbard</strong> differ<strong>in</strong>g <strong>in</strong> mid­summer temperature and nutrient<br />

availability. The results of this study <strong>in</strong>dicate that nutrient abundance under bird cliffs<br />

stimulates growth <strong>in</strong> all but the coldest site. We conclude that nutrient addition can<br />

mitigate low temperature effects on growth and productivity even <strong>in</strong> the high arctic,<br />

but when temperatures approach the thermal limit for higher <strong>plant</strong> life, temperature<br />

itself sets the limit rather than nutrients.<br />

Nomenclature: PAF 2007.<br />

Introduction<br />

The slow growth of <strong>plant</strong>s <strong>in</strong> the arctic and its causes have been the subject of many<br />

studies (Chap<strong>in</strong> 1983; Jonasson et al. 1993; Henry et al. 1986; Bill<strong>in</strong>gs 1987). Several<br />

of the abiotic fac<strong>to</strong>rs that are characteristic for arctic and alp<strong>in</strong>e environments are<br />

known <strong>to</strong> restrict <strong>plant</strong> growth, but the <strong>in</strong>teraction of these fac<strong>to</strong>rs and their <strong>in</strong>fluences<br />

on <strong>plant</strong> growth are complex and still subject <strong>to</strong> debate (Körner 1989). In this context<br />

it should be mentioned that the degree of <strong>in</strong>traspecific variation <strong>in</strong> phenotypic<br />

appearance, the phenotypic plasticity of a species, can differ between species, i.e.<br />

species exhibit different growth responses <strong>to</strong> changes <strong>in</strong> environmental conditions<br />

(Chap<strong>in</strong> & Shaver 1985).<br />

Plants <strong>in</strong> the arctic are physiologically extremely well adapted <strong>to</strong> low temperatures<br />

(Chap<strong>in</strong> 1983). As Chap<strong>in</strong> (1983) and Körner (2003) highlight, the maximum and<br />

average relative growth rate of certa<strong>in</strong> arctic and alp<strong>in</strong>e <strong>tundra</strong> species is as high as <strong>in</strong><br />

their temperate counterparts if expressed per day of grow<strong>in</strong>g season. Thus,<br />

productivity of arctic ecosystems can be as high as <strong>in</strong> any other non­water limited<br />

natural ecosystem on earth if one accounts for the duration of the grow<strong>in</strong>g periods<br />

(Körner 2003). In the extreme high <strong>Arctic</strong>, <strong>plant</strong>s get <strong>in</strong>creas<strong>in</strong>gly smaller until they<br />

ultimately vanish. Low nutrient levels, <strong>in</strong> particular low nitrogen availability (Henry<br />

et al. 1986, Odasz 1994), are known <strong>to</strong> be a major limitation for <strong>plant</strong> growth <strong>in</strong> arctic<br />

ecosystems, and it may well be that low temperature <strong>in</strong>duces nutrient limitation. On<br />

the other hand, <strong>plant</strong> nutrient absorption <strong>in</strong> cold climates was shown <strong>to</strong> be strongly<br />

73


limited by nutrient availability rather than by low temperature (Chap<strong>in</strong> 1983).<br />

Nitrogen availability <strong>in</strong> turn is <strong>in</strong>fluenced by a range of abiotic and biotic fac<strong>to</strong>rs<br />

which result from <strong>in</strong>direct effects of low temperatures such as slow chemical<br />

weather<strong>in</strong>g, poor soil aeration and slow organic matter decomposition (Chap<strong>in</strong> 1983).<br />

Thus temperature acts upon <strong>plant</strong> growth <strong>in</strong> various ways (Fig. 1). The <strong>in</strong>ternational<br />

<strong>tundra</strong> experiment “ITEX” (Arft et al. 1999) has shown that <strong>plant</strong>s from both arctic<br />

and alp<strong>in</strong>e <strong>tundra</strong> are sensitive <strong>to</strong> raised summer temperatures, and respond by<br />

<strong>in</strong>creas<strong>in</strong>g vegetative growth <strong>in</strong> the short term. In the long term however, such<br />

responses may be limited by nutrients.<br />

Figure 1. The direct and <strong>in</strong>direct effects of temperature upon<br />

processes affect<strong>in</strong>g <strong>plant</strong> growth (after Chap<strong>in</strong> 1983).<br />

Even though arctic ecosystems are characterized by low nitrogen availability,<br />

exceptionally rich areas exist under coastal cliffs, where nest<strong>in</strong>g birds transport<br />

nutrients from the sea <strong>to</strong> the land (Odasz 1994). In our study we chose <strong>to</strong> compare<br />

vegetation <strong>in</strong> these nutrient rich areas with vegetation <strong>in</strong> nutrient poor areas <strong>in</strong> similar<br />

temperature regimes. We also compared nutrient poor areas with relatively high<br />

temperatures with nutrient rich areas and low temperatures and areas with low<br />

nutrient level but differ<strong>in</strong>g temperatures. The aim of our <strong>in</strong>vestigation was <strong>to</strong> show ­­<br />

by us<strong>in</strong>g this “natural experiment” ­­ whether nutrients per se are limit<strong>in</strong>g growth of<br />

different arctic <strong>plant</strong> species, or whether the observed growth limitation is solely<br />

attributed <strong>to</strong> low temperature. We predict that nutrient addition is able <strong>to</strong> compensate<br />

for some of the growth constra<strong>in</strong>ts imposed by low temperature. Hence we assume<br />

that part of the growth limitation <strong>in</strong> cold regions is <strong>in</strong> fact a low temperature <strong>in</strong>duced<br />

nutrient limitation.<br />

74


Materials and methods<br />

Study localities<br />

This study was undertaken on <strong>Svalbard</strong>, an archipelago <strong>in</strong> the high arctic. 10 different<br />

geographical regions (table 1) <strong>in</strong> the western and northern parts of the archipelago<br />

were chosen as study areas. In this way a wide range of biotic and abiotic conditions<br />

was covered, <strong>in</strong> particular all of the three bioclimatic zones present on <strong>Svalbard</strong>.<br />

Localities were assigned <strong>to</strong> bioclimatic zones accord<strong>in</strong>g <strong>to</strong> Elvebakk (1999). For the<br />

region Florabukta this division was problematic as we observed Salix <strong>polar</strong>is grow<strong>in</strong>g<br />

there. This region should, accord<strong>in</strong>g <strong>to</strong> Jónsdóttir (2005), therefore have been placed<br />

<strong>in</strong> bioclimatic zone B. However, Salix <strong>polar</strong>is also occurred <strong>in</strong> Lady Frankl<strong>in</strong>fjorden,<br />

a region that accord<strong>in</strong>g <strong>to</strong> Elvebakk (2005) should be considered part of bioclimatic<br />

zone A. Moreover the flora and landscape <strong>in</strong> Florabukta <strong>in</strong>dicated a position closer <strong>to</strong><br />

bioclimatic zone A (pers. comm. D. F. Murray 2007) and we therefore assigned the<br />

region <strong>to</strong> this zone. Where necessary, <strong>in</strong> terms of differences <strong>in</strong> environmental<br />

conditions, each region was divided <strong>in</strong><strong>to</strong> different sites.<br />

Table 1. UTM coord<strong>in</strong>ates, bioclimatic zone, habitat, and mean 10cm soil temperatures for the<br />

study localities.<br />

Study locality (E/N) Bioclimatic<br />

zone<br />

(site code)<br />

Florabukta (0571/8887)<br />

Lady Frankl<strong>in</strong>fjorden<br />

(0588/8901)<br />

Lågøya (NA)<br />

Florabukta (0571/8888)<br />

Mayerbukta (0478/8863)<br />

Biscayarhuken (0448/8864)<br />

Re<strong>in</strong>sdyrflya (0478/8863)<br />

Fjortende juli breen (0433/8786)<br />

Colesdalen (0502/8670)<br />

Kapp Thordsen (0511/8709)<br />

Ossian Sars (0445/8763)<br />

Ossian Sars (0445/8763)<br />

A(1)<br />

A(2)<br />

A(3)<br />

A(4)<br />

B(5)<br />

B(6)<br />

B(7)<br />

B(8)<br />

C(9)<br />

C(10)<br />

C(11)<br />

C(12)<br />

Habitat 10cm soil<br />

temperature <strong>in</strong><br />

°C<br />

Mesic L. nivalis<br />

L. confusa <strong>polar</strong> <strong>desert</strong><br />

P. dahlianum <strong>polar</strong> <strong>desert</strong><br />

Birdcliff<br />

Glacier foreland<br />

Mesic Luzula confusa<br />

P. alp<strong>in</strong>a snow bed community<br />

Birdcliff<br />

Thermophilic heath<br />

Heath and calcerous fen<br />

C. tetragona heath<br />

Birdcliff<br />

75<br />

4,1<br />

3,3<br />

not measured<br />

4,1<br />

6,9<br />

Sampl<strong>in</strong>g and sample analysis<br />

Biometric <strong>plant</strong> traits from the follow<strong>in</strong>g vascular <strong>plant</strong> species were collected:<br />

Bis<strong>to</strong>rta vivipara, Cerastium arcticum, Cochlearia groenlandica, Dryas oc<strong>to</strong>petala,<br />

Juncus biglumis, Luzula confusa, Luzula nivalis, Micrantes nivalis, Oxyria digyna,<br />

Papaver dahlianum, Poa arctica, Poa pratensis, Ranunculus pygmaeus, Ranunculus<br />

sulphureus, Saxifraga cernua, Saxifraga rivularis, Silene acaulis and Taraxacum<br />

brachyceras. These species were selected due <strong>to</strong> their wide distribution on <strong>Svalbard</strong>.<br />

At each study site, maximum <strong>plant</strong> height and leaf size of <strong>plant</strong>s belong<strong>in</strong>g <strong>to</strong> our<br />

focal species were measured with a ruler. Maximum <strong>plant</strong> height was def<strong>in</strong>ed as the<br />

longest part of the <strong>plant</strong> measured from the base <strong>to</strong> the tip of either shoot, leaf or<br />

4,7<br />

4,4<br />

10<br />

5,5<br />

7,1<br />

9,3<br />

8,2


flower. Care was taken <strong>to</strong> measure only flower<strong>in</strong>g <strong>in</strong>dividuals <strong>to</strong> ensure that <strong>plant</strong>s<br />

were at the same phenological state. A phenotypic plasticity <strong>in</strong>dex (ppi) for each of<br />

the studied species was def<strong>in</strong>ed as 1 – (the ratio of measured m<strong>in</strong>imum<br />

height/maximum height).<br />

The study sites were characterized by soil moisture estimates and <strong>to</strong>tal vegetation<br />

cover, harvest<strong>in</strong>g aboveground biomass, and by measur<strong>in</strong>g the pH and soil<br />

temperature. The moisture content of the soil was estimated by squeez<strong>in</strong>g soil<br />

between the f<strong>in</strong>gers and assign<strong>in</strong>g the results <strong>to</strong> a four­po<strong>in</strong>t scale (sensu Raup 1969).<br />

Total vegetation cover was estimated per 0.5 x 0.5 m 2 by eye. Aboveground biomass<br />

was harvested <strong>in</strong> representative full cover 10 x 10 cm plots, dried and weighed. The<br />

biomass data was then scaled up <strong>to</strong> g/m 2 . Soil temperature measurements were taken<br />

at 10 cm depth and were used as <strong>in</strong>dica<strong>to</strong>rs for mid­summer temperature. These<br />

values should be used with caution because of their sensitivity <strong>to</strong> variation <strong>in</strong> weather<br />

conditions. But given the soil depth and 24 h day length (i.e. small diurnal amplitude),<br />

the temperatures are somewhat buffered from short­term fluctuations and will<br />

approximate the mean of the recent (few days) past with an accuracy of better than ±1<br />

K. M<strong>in</strong>eral soil samples from each site were collected <strong>in</strong> the field and pH was<br />

measured electronically <strong>in</strong> a labora<strong>to</strong>ry. In cases where more than one value for the<br />

abiotic fac<strong>to</strong>rs mentioned above was obta<strong>in</strong>ed, the average value of these was used.<br />

F<strong>in</strong>ally the sites were divided accord<strong>in</strong>g <strong>to</strong> a two­po<strong>in</strong>t nutrient level scale (1=nutrient<br />

poor, 2=nutrient rich). All bird cliff sites as well as one site <strong>in</strong> Colesdalen close <strong>to</strong> an<br />

old stable were assigned <strong>to</strong> nutrient level 2.<br />

Statistical analysis<br />

For the statistical analysis the statistics­software R 2.6.1 (R Development Core Team)<br />

was used. L<strong>in</strong>ear regression and ANCOVA were used <strong>to</strong> test for significance between<br />

height/leaf size and temperature, nutrient level, moisture, pH, cover and bioclimatic<br />

zone. The data was log­transformed <strong>to</strong> normalize distribution before runn<strong>in</strong>g the<br />

statistical tests.<br />

Results<br />

Biotic and abiotic fac<strong>to</strong>rs<br />

When all species were pooled and tested statistically, ANCOVA results showed a<br />

positive correlation between <strong>plant</strong> height or leaf size and soil temperature as well as<br />

nutrient level (Table 2, Fig 2). In addition these two analysis showed a significant<br />

<strong>in</strong>teraction between temperature and nutrient level (temperature x nutrients) <strong>in</strong> their<br />

effect on <strong>plant</strong> height and leaf size. Plant height is also correlated with bioclimatic<br />

zone, whereas leaf size is not. Accord<strong>in</strong>g <strong>to</strong> the results, moisture also has a significant<br />

effect on <strong>plant</strong> height, but not on leaf size, but we cannot separate the direct moisture<br />

effect from the <strong>in</strong>direct effect on soil development and nutrient availability.<br />

Furthermore, a significant relationship between pH and <strong>plant</strong> height but not leaf size<br />

was found. Vegetation cover has a significant effect on both <strong>plant</strong> height and leaf size.<br />

The denser the <strong>plant</strong> community, the higher were the <strong>plant</strong>s and the longer were the<br />

leaves.<br />

76


Figure 2. Overall <strong>plant</strong> height <strong>in</strong> areas with low nutrient availability (Low N) as well as areas<br />

with high nutrient availability (High N) related <strong>to</strong> soil temperature <strong>in</strong> 10 cm depth.<br />

Data po<strong>in</strong>ts for means per species and site.<br />

Table 2. Results of ANCOVA test<strong>in</strong>g for significant correlations between several abiotic<br />

parameters and overall <strong>plant</strong> height and leaf size among the studied sites. Bold font =<br />

only s<strong>in</strong>gle fac<strong>to</strong>rs <strong>in</strong> the model, asterisk = model <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>teraction, NS = not<br />

significant.<br />

Plant height Leaf size<br />

Parameter F df p F df p<br />

Temperature<br />

Nutrient level<br />

temp* nut<br />

Bioclimatic zone<br />

Soil moisture<br />

Soil pH<br />

Vegetation cover<br />

197.8 1,761


Biomass<br />

Biomass per unit land area of full cover plots decl<strong>in</strong>ed slightly from bioclimatic zone<br />

C <strong>to</strong> A, and bird cliffs showed much higher biomass than nearby reference sites. The<br />

relative fertilizer effect seamed <strong>to</strong> decrease from zone C <strong>to</strong> A, but the low number of<br />

replicates did not allow a statistical test of this (Fig. 3).<br />

Figure 3. Mean biomass <strong>in</strong> g d.m. m ­2 grouped <strong>in</strong><strong>to</strong> bioclimatic zones (A, B and C, i.e. from<br />

cold <strong>to</strong> less cold). The means for each region lach data for region 1, 3 and 6. Data<br />

from bird cliffs <strong>in</strong> black.<br />

Biomass was nearly always >100 gm ­2 , and <strong>in</strong> two cases from bird cliffs 500­600 gm ­<br />

2 , with the length of the grow<strong>in</strong>g season rang<strong>in</strong>g from ca. 40 days (bioclimatic zone A)<br />

<strong>to</strong> 80 days (bioclimatic zone C).<br />

Phenotypic plasticity<br />

The phenotypic plasticity <strong>in</strong>dex (ppi) for each of the studied species is shown <strong>in</strong> Fig.<br />

4. The plasticity <strong>in</strong>dex calculated on the basis of measured m<strong>in</strong>imum and maximum<br />

leaf size shows a similar pattern like that <strong>in</strong> <strong>plant</strong> size and is therefore not shown here.<br />

High values for the plasticity <strong>in</strong>dex <strong>in</strong>dicate high variation <strong>in</strong> maximum <strong>plant</strong> height.<br />

The mean plasticity value obta<strong>in</strong>ed from the measurements <strong>in</strong> this study is 0.83.<br />

Species with relatively high variation <strong>in</strong> <strong>plant</strong> height are: Bis<strong>to</strong>rta vivipara (ppi =<br />

0.91), Cerastium arcticum p(pi = 0.96) Cochlearia groenlandica (ppi = 0.99), Oxyria<br />

digyna (ppi = 0.96), Ranunculus sulphureus (ppi = 0.97), Ranunculus pygmaeus (ppi =<br />

0.90) and Saxifraga cernua (ppi = 0.88) (Fig.4). Except for the Ranunculaceae, all of<br />

these species are found among the tallest <strong>plant</strong>s (Table 4).<br />

78


1,00<br />

0,95<br />

0,90<br />

0,85<br />

0,80<br />

0,75<br />

0,70<br />

0,65<br />

0,60<br />

0,55<br />

0,50<br />

B. vivipara<br />

C. arcticum<br />

C. groenlandica<br />

D. oc<strong>to</strong>petala<br />

J. biglumis<br />

L. confusa<br />

L. nivalis<br />

O. digyna<br />

P. dahlianum<br />

P. arctica<br />

P. pratensis<br />

79<br />

R. pygmaeus<br />

R. sulphureus<br />

S. cernua<br />

M. nivalis<br />

S. rivalis<br />

S. acaulis<br />

S. uralensis<br />

T. brachyceras<br />

mean plasticity<br />

plasticity <strong>in</strong>dex<br />

Figure 4. Phenotypic plasticity <strong>in</strong>dex (1­m<strong>in</strong> height/max height) for the studied <strong>plant</strong> species.<br />

The l<strong>in</strong>e <strong>in</strong>dicates mean ppi. The two species with the lowest <strong>in</strong>dex (


Luzula nivalis<br />

Juncus biglumis<br />

Dryas oc<strong>to</strong>petala<br />

Ranunculus pygmaeus<br />

Silene acaulis<br />

Saxifraga rivularis<br />

114<br />

111<br />

70<br />

70<br />

55<br />

25<br />

80<br />

0.38 1.10<br />

1.33 1.37<br />

0.63 1.02<br />

1.18 2.35<br />

Figure 5. Plant height of Bis<strong>to</strong>rta vivipara related <strong>to</strong> soil temperature <strong>in</strong> 10 cm depth <strong>in</strong> areas<br />

with low nutrient levels (low nutrient) compared <strong>to</strong> areas with high nutrient levels<br />

(high nutrient).<br />

Discussion<br />

As expected there was a positive correlation between the three variables <strong>plant</strong> height,<br />

leaf size, and biomass with temperature, as well as nutrient availability. Plant height,<br />

leaf size, and biomass also <strong>in</strong>creased from bioclimatic zone A <strong>to</strong> C. Our data shows<br />

also a significant <strong>in</strong>teraction between temperature and nutrient availability <strong>in</strong> their<br />

effect on <strong>plant</strong> growth. Moreover, the results <strong>in</strong>dicate that <strong>in</strong> accordance with our<br />

hypothesis, <strong>in</strong>creased nutrient levels can compensate for the growth limit<strong>in</strong>g effect of<br />

temperature <strong>in</strong> bioclimatic zone B and C, but not so <strong>in</strong> zone A. However, the impact<br />

of differential temperature and nutrient level on the growth response of the studied<br />

<strong>plant</strong>s was not uniform among the different species.<br />

Opportunists are supposed <strong>to</strong> respond faster and <strong>to</strong> greater extent <strong>to</strong> changes <strong>in</strong><br />

environmental parameters. Odasz (1994) used measures of nitrate reductase activity <strong>in</strong><br />

different <strong>plant</strong> species as an <strong>in</strong>dica<strong>to</strong>r for their ability <strong>to</strong> utilize nitrogen (Table 4). In<br />

her rank<strong>in</strong>g Oxyria digyna, Cochlearia groenlandica and Cerastium arcticum had a<br />

high ability <strong>to</strong> utilize nitrogen. This should facilitate fast growth response when<br />

nitrogen availability <strong>in</strong>crease, a reaction that is especially pronounced <strong>in</strong> our data for<br />

Oxyria digyna and Cochlearia groenlandica. Our results <strong>in</strong>dicate that both Oxyria


digyna, Cochlearia groenlandica, but also Cerastium arcticum have high phen<strong>to</strong>typic<br />

plasticity <strong>in</strong> response <strong>to</strong> nutrient availability, so this study supports the data and<br />

suggestions by Odasz (1994).<br />

Where our data allowed us <strong>to</strong> compare <strong>plant</strong>s from nutrient rich localities <strong>in</strong><br />

bioclimatic zone B and C with <strong>in</strong>dividuals from nutrient poor sites <strong>in</strong> the same regions<br />

we detected <strong>in</strong>creased height <strong>in</strong> the nutrient rich sites. This f<strong>in</strong>d<strong>in</strong>g can be <strong>in</strong>terpreted<br />

as a compensat<strong>in</strong>g effect of high nutrient levels for moderately low temperatures.<br />

However, our data from nutrient rich and nutrient poor sites <strong>in</strong> bioclimatic zone A<br />

does not show this pattern. There were strong signs of graz<strong>in</strong>g by re<strong>in</strong>deer and geese<br />

<strong>in</strong> the area (dune), but s<strong>in</strong>ce we sampled the tallest undamaged <strong>in</strong>dividuals, this should<br />

not have affected our height data. The lack of a clear response of <strong>plant</strong> height <strong>to</strong><br />

<strong>in</strong>creased nutrient availability <strong>in</strong> bioclimatic zone A could also relate <strong>to</strong> a priority for<br />

reproduction rather than vegetative growth. Arft et al. (1999) supposed that high arctic<br />

species would respond <strong>to</strong> more favorable conditions <strong>in</strong> terms of temperature and<br />

nutrients with an <strong>in</strong>crease <strong>in</strong> reproductive effort rather than more growth (Baldeweg<br />

and Bengtsson, AB­326 2007).<br />

The fact that <strong>in</strong>dividuals of 11 out of 19 species, when grow<strong>in</strong>g <strong>in</strong> nutrient poor sites,<br />

seemed <strong>to</strong> reach their maximum height <strong>in</strong> areas that did not have the highest measured<br />

temperatures dur<strong>in</strong>g our sampl<strong>in</strong>g is surpris<strong>in</strong>g. One explanation could be that denser<br />

vegetation reduces soil heat flux. Another possible explanation could be unexpected<br />

nutrient rich conditions at the moderate temperature site <strong>in</strong> Mayerbukta, <strong>in</strong>dicated not<br />

only by the observed higher <strong>plant</strong> growth but also by the high Shannon <strong>in</strong>dex (i.e.<br />

high species diversity) observed at this site (An<strong>to</strong>nsson, Jørgensen and Tange, AB­<br />

326 2007).<br />

A problem <strong>in</strong> the analysis and <strong>in</strong>terpretation of our data is the unbalanced replication<br />

of the different species and the fact that many species did not occur <strong>in</strong> all<br />

sites/regions. In particular, we lack sufficient data from N­rich sites (near bird cliffs)<br />

for species that had been sampled elsewhere.<br />

Conclusion<br />

This study lends support <strong>to</strong> our hypothesis that high nutrient availability can<br />

compensate for the growth limit<strong>in</strong>g effect of low temperatures <strong>in</strong> the high <strong>Arctic</strong> as<br />

long as temperatures are not <strong>to</strong>o low. The nutrient addition effect seems <strong>to</strong> decl<strong>in</strong>e at<br />

the coldest sites, which suggests that an ultimate (extreme) thermal limitation cannot<br />

be mitigated by better nutrient supply.<br />

Acknowledgements<br />

S<strong>in</strong>cere thanks <strong>to</strong> Ane and Emma for their <strong>in</strong>valuable help with the statistics. Thanks<br />

also <strong>to</strong> Inger Greve Alsos and Christian Körner for help <strong>in</strong> design<strong>in</strong>g this project and<br />

fruitful comments on the manuscript, as well as <strong>to</strong> our course mates for help with data<br />

collection and a very nice time. Last but not least we would like <strong>to</strong> thank the crew on<br />

“MS S<strong>to</strong>ckholm”.<br />

81


References<br />

Arft, A. M., Walker, M. D., Gurevitch, J., Alatalo, J. M., Bret­Harte, M. S., Dale, M,<br />

Diemer, M., Gugerli, F., Henry, G. H. R., Jones, M. H., Hollister, R. D., Jonsdottir,<br />

I. S., La<strong>in</strong>e, K., Levesque, E., Marion, G. M., Molau, U., Molgaard, P., Nordenhall,<br />

U., Raszhiv<strong>in</strong>, V., Rob<strong>in</strong>son, C. H., Starr, G., Stenstrom, A., Stenstrom, M., Totland,<br />

O., Turner, P. L., Walker, L. J., Webber, P. J., Welker, J. M., Wookey, P. A. 1999:<br />

Responses of <strong>tundra</strong> <strong>plant</strong>s <strong>to</strong> experimental warm<strong>in</strong>g: Meta­analysis of the<br />

<strong>in</strong>ternational <strong>tundra</strong> experiment. Ecological Monographs 69, 491­511<br />

Bill<strong>in</strong>gs, W. D. 1987: Constra<strong>in</strong>ts <strong>to</strong> <strong>plant</strong> growth, reproduction, and establishment <strong>in</strong><br />

arctic environments. <strong>Arctic</strong> and Alp<strong>in</strong>e Research 19, 357­3<br />

Chap<strong>in</strong> III, F. S. 1983: Direct and <strong>in</strong>direct effects of temperature on arctic <strong>plant</strong>s.<br />

Polar Biology 2, 47­52<br />

Chap<strong>in</strong> III, F. S. & Shaver, G. R. 1985: Growth response of <strong>tundra</strong> <strong>plant</strong> species <strong>to</strong><br />

environmental manipulations <strong>in</strong> the field. Ecology 66, 564­576<br />

Elvebakk, A. 1999: Bioclimatic delimitation and subdivision of the arctic. In Nordal I<br />

& Razzhiv<strong>in</strong> VY. The species concept <strong>in</strong> the high north – A panarctic flora <strong>in</strong>itiative.<br />

Det Norske Videnskaps­kademi, Oslo<br />

Elvebakk, A. 2005: A vegetation map of <strong>Svalbard</strong> on the scale 1:3.5 mill.<br />

Phy<strong>to</strong>coenologia 35, 951­967<br />

Elven, R., Murray, D. F., Razzhiv<strong>in</strong>, V. & Yurtsev, B. A. Checklist of the Panarctic<br />

Flora (PAF). Vascular Plants (Univ. of Oslo, Oslo, Norway, 2007)<br />

Henry, G. H. R., Freedman, B. & Svoboda, J. 1986: Effects of fertilization on three<br />

<strong>tundra</strong> <strong>plant</strong>­communities of a <strong>polar</strong> <strong>desert</strong> oasis. Canadian Journal of Botany 64,<br />

2502­2507<br />

Jonasson, S., Havstrøm, M., Jensen, M. & Callaghan, T. V. 1993: In­situ<br />

m<strong>in</strong>eralization of nitrogen and phosphorus of arctic soils after perturbations<br />

simulat<strong>in</strong>g climate­change. Oecologia 95, 179­186<br />

Jónsdóttir, I. S. 2005: Terrestrial ecosystems on <strong>Svalbard</strong>. Heterogeneity, Complexity,<br />

and Fragility from an <strong>Arctic</strong> Island Perspective. Biology and Environment:<br />

Proceed<strong>in</strong>gs of the Royal Irish Academy 105B, 155­165<br />

Körner, C. 1989: The nutritional status of <strong>plant</strong>s from high altitudes. A worldwide<br />

comparison. Oecologia 81, 379­391<br />

Körner, C. 2003: Alp<strong>in</strong>e Plant Life. Functional Plant Ecology of High Mounta<strong>in</strong><br />

Ecosystems. Spr<strong>in</strong>ger­Verlag, Berl<strong>in</strong> Heidelberg<br />

Odasz, A. M. 1994: Nitrate reductase­activity <strong>in</strong> vegetation below an arctic bird cliff,<br />

<strong>Svalbard</strong>, Norway. Journal of vegetation science 5, 913­920<br />

R Development Core Team 2007: R: A Language and Environment for Statistical<br />

Comput<strong>in</strong>g. Vienna, Austria. http://www.R­project.org<br />

Raup, H. M. 1969: The relation of the vascular flora <strong>to</strong> some fac<strong>to</strong>rs of site <strong>in</strong> the<br />

Mester Vig district, northeast Greenland. Meddelelse om Grønland, 176: 1­80<br />

82


Reproductive allocation <strong>in</strong> the high <strong>Arctic</strong><br />

Heike Baldeweg 1 and Emma Bengtsson 2 , project leader Christian Körner 3<br />

1 Institute of Ecology, Friedrich­Schiller­University Jena, Dornburgerstraße 159, D­07743, Germany<br />

helia.antha@gmail.de, 2 Institute of Biology, NTNU, NO­7491 Trondheim, Norway<br />

bengtson@stud.ntnu.no, 3 Institute of Botany, University of Basel, Schönbe<strong>in</strong>strasse 6, 4056 Basel,<br />

Switzerland, ch.koerner@unibas.ch<br />

Abstract<br />

<strong>From</strong> a given pool of resources, <strong>plant</strong>s need <strong>to</strong> <strong>in</strong>vest <strong>in</strong> vegetative or reproductive<br />

structures, with obvious trade­offs between the two. In cold climates, <strong>plant</strong>s are<br />

generally smaller than <strong>in</strong> warm climates, and as life conditions become more adverse<br />

m<strong>in</strong>iaturization of <strong>plant</strong>s progresses. Does this affect vegetative and reproductive<br />

structures similarly (isometric allocation), or do <strong>plant</strong>s give priority <strong>to</strong> one of the two<br />

(asymmetric allocation), which would h<strong>in</strong>t at selective pressure (evolutionary<br />

adaptation)? In the high <strong>Arctic</strong> this has never been explored. S<strong>in</strong>ce sexual<br />

reproduction through out­cross<strong>in</strong>g <strong>in</strong>creases the genetic variation and enables a<br />

species <strong>to</strong> adapt <strong>to</strong> chang<strong>in</strong>g environments, we hypothesize that arctic <strong>plant</strong>s prioritize<br />

on reproduction, as has been shown for <strong>in</strong>creas<strong>in</strong>g altitude <strong>in</strong> the Alps. We tested this<br />

hypothesis <strong>in</strong> <strong>Svalbard</strong> <strong>in</strong> summer 2007 along a climatic gradient between 78° N and<br />

80° N. By us<strong>in</strong>g ratios between <strong>in</strong>florescence size vs. <strong>plant</strong> height or leaf length we<br />

found that forbs on average <strong>in</strong>vest proportionally more <strong>in</strong> reproductive than vegetative<br />

growth as it gets colder. In the gram<strong>in</strong>oids studied along the same gradient, size<br />

changes were isometric. We expla<strong>in</strong> this by the different mode of sexual reproduction.<br />

Insect poll<strong>in</strong>ation dependent species have <strong>to</strong> attract poll<strong>in</strong>a<strong>to</strong>rs <strong>in</strong> an <strong>in</strong>creas<strong>in</strong>gly<br />

barren landscape with overproportionally showy flowers. The trend we observed <strong>in</strong><br />

<strong>in</strong>sect poll<strong>in</strong>ated species matches the trend seen <strong>in</strong> the Alps. We may thus conclude<br />

that arctic and alp<strong>in</strong>e forbs prioritize dry matter allocation <strong>in</strong> favor of sexual<br />

reproduction. Similar <strong>to</strong> the Alps, this does not hold for the w<strong>in</strong>d poll<strong>in</strong>ated<br />

gram<strong>in</strong>oids.<br />

Introduction<br />

The way <strong>in</strong> which <strong>plant</strong>s reproduce determ<strong>in</strong>es the evolutionary processes and thus<br />

the <strong>plant</strong>s’ ability <strong>to</strong> respond <strong>to</strong> their environment. In alp<strong>in</strong>e environments it has been<br />

found that the allocation of resources changes <strong>to</strong>wards the reproductive structures as<br />

altitudes <strong>in</strong>creases (Fabbro & Körner 2003). The <strong>Arctic</strong> is often compared with high<br />

alp<strong>in</strong>e environment assum<strong>in</strong>g that there can be seen similar patterns <strong>in</strong> reproductive<br />

allocation, but this has never been <strong>in</strong>vestigated.<br />

With <strong>in</strong>creas<strong>in</strong>g latitude, as well as with <strong>in</strong>creas<strong>in</strong>g altitude, <strong>plant</strong>s experience a<br />

similar change <strong>in</strong> environmental conditions such as decreas<strong>in</strong>g mean temperatures, a<br />

shorten<strong>in</strong>g of grow<strong>in</strong>g season and a reduction <strong>in</strong> nutrient availability (Körner 2003). It<br />

is widely known that <strong>plant</strong>s liv<strong>in</strong>g <strong>in</strong> cold climates adjust their morphology <strong>to</strong> better<br />

cope with the predom<strong>in</strong>ant local conditions (Körner et al. 1989). Plants trans<strong>plant</strong>ed<br />

from high <strong>to</strong> low altitudes and from high <strong>to</strong> low latitude tend <strong>to</strong> grow bigger and<br />

83


partly lose their high altitude/latitude characteristics, <strong>in</strong>dicat<strong>in</strong>g a high phenotypic<br />

plasticity (Prock & Körner 1996).<br />

Plant growth is almost always limited by some resources and once acquired, these are<br />

<strong>in</strong>vested <strong>in</strong><strong>to</strong> below and above ground structures. The above ground structures are<br />

normally divided <strong>in</strong><strong>to</strong> the vegetative, pho<strong>to</strong>synthesiz<strong>in</strong>g parts and the reproductive<br />

parts or shoots (Seger & Eckhart 1996). Vegetative parts are the basis for further<br />

resource acquisition and for growth and s<strong>to</strong>rage. The fraction of resources allocated <strong>to</strong><br />

reproductive parts does not produce such returns, but exerts costs. Hence there is a<br />

trade­off between <strong>in</strong>vestment <strong>in</strong> structures which enhance vegetative growth versus<br />

those which enhance reproduction.<br />

There are three ma<strong>in</strong> strategies for <strong>plant</strong>s <strong>to</strong> cope with this trade­off <strong>in</strong> cold climates<br />

(Jonsdóttir 2005, Körner 2003):<br />

1. Enhanced sexual reproduction: Resource <strong>in</strong>vestment <strong>to</strong> gametes, seeds and<br />

seed dispersal<br />

2. Clonal reproduction: Growth of vegetative structures that detach and grow <strong>in</strong><strong>to</strong><br />

new <strong>in</strong>dividuals with exactly the same genome as the mother <strong>plant</strong><br />

3. Space­holder strategy: ma<strong>in</strong>ta<strong>in</strong> a position as long as possible (long life)<br />

2 and 3 also need some sexual reproduction <strong>in</strong> the long run, but it is not essential on a<br />

year­<strong>to</strong>­year basis.<br />

A short grow<strong>in</strong>g season is disadvantageous for many flower<strong>in</strong>g <strong>plant</strong>s. It gives the<br />

<strong>plant</strong> a very limited time span <strong>to</strong> develop blossoms, get poll<strong>in</strong>ated and set seeds. In<br />

addition, the short season limits seedl<strong>in</strong>g establishment. A shift <strong>to</strong> an alternative<br />

strategy such as clonal propagation might be favourable. Bill<strong>in</strong>gs (1974) proposed that<br />

clonal propagation is an important advantageous fac<strong>to</strong>r <strong>in</strong> arctic environments. Clonal<br />

reproduction (e.g. bulbils, runners and s<strong>to</strong>lons) competes with sexual reproduction for<br />

resources. Interconnected clones are more robust aga<strong>in</strong>st disturbance and harshen<strong>in</strong>g<br />

climates, because connected ramets can share resources ( Jonsdottir & Callaghan<br />

1990, Carlsson & Callaghan 1990).<br />

It has been suggested that sexual reproduction is the predom<strong>in</strong>ant, sometimes<br />

the only reproductive mode, <strong>in</strong> as many as 60% of the 163 known <strong>Svalbard</strong> flower<strong>in</strong>g<br />

<strong>plant</strong>s (Brochmann & Steen 1999). Sexual reproduction secures high rates of<br />

evolutionary adaptation and, thus, better survival <strong>in</strong> stress­dom<strong>in</strong>ated environments,<br />

i.e. greater fitness (Raffl et al. 2006). However, this needs outbreed<strong>in</strong>g reproductive<br />

systems which require cross­poll<strong>in</strong>ation, hence <strong>in</strong>sect visitation. As a result of pollen<br />

(poll<strong>in</strong>a<strong>to</strong>r) limitation, many high arctic species are shown <strong>to</strong> be highly selfcompatible<br />

(Brochmann & Steen 1999). Self<strong>in</strong>g (fertilization of egg with pollen from the same<br />

<strong>in</strong>dividual) has many disadvantages. The ma<strong>in</strong> disadvantage is <strong>in</strong>breed<strong>in</strong>g that reduces<br />

heterozygosity. The loss of heterozygosity <strong>in</strong>creases the expression of deleterious<br />

alleles lead<strong>in</strong>g <strong>to</strong> <strong>in</strong>breed<strong>in</strong>g depression (Heshel et al. 2005). As negative this might<br />

seem, <strong>in</strong>breed<strong>in</strong>g still generates some genetic variation because gamets are never<br />

genetically identical (as result of meisosis), hence there is still a mix<strong>in</strong>g of alleles <strong>in</strong><br />

each gamete relative <strong>to</strong> the other. This yields a small genetic diversification of the<br />

offspr<strong>in</strong>g, which still might select for a better ability <strong>to</strong> cope with specific<br />

environmental conditions (Mart<strong>in</strong> & Hospital 2005).<br />

84


Plants produc<strong>in</strong>g superior offspr<strong>in</strong>g are more widespread and have a higher over all<br />

success. As long as there are events of <strong>in</strong>sect poll<strong>in</strong>ation, the cost of <strong>in</strong>vest<strong>in</strong>g <strong>in</strong><br />

reproductive organs is outweighed by the benefit of out cross<strong>in</strong>g. Therefore, we<br />

expect <strong>plant</strong>s liv<strong>in</strong>g <strong>in</strong> the high <strong>Arctic</strong> <strong>to</strong> <strong>in</strong>vest more <strong>in</strong> their sexually reproductive<br />

traits as Fabbro & Körner (2003) found <strong>in</strong> their comparison of lowland and alp<strong>in</strong>e<br />

<strong>plant</strong>s <strong>in</strong> the Swiss Alps. They found that blossom­display area did not changed<br />

between lowland and high alp<strong>in</strong>e areas. At the same time they found that shoot size is<br />

reduced nearly 10­fold. One of our objectives with this study was <strong>to</strong> see whether the<br />

same can be found <strong>in</strong> the high <strong>Arctic</strong>, us<strong>in</strong>g a bioclimatical gradient <strong>in</strong> the archipelago<br />

of <strong>Svalbard</strong>.<br />

We hypothesize that high arctic <strong>plant</strong>s, similar <strong>to</strong> alp<strong>in</strong>e <strong>plant</strong>s, <strong>in</strong>vest relatively more<br />

<strong>in</strong> reproductive structures than temperate low­land <strong>plant</strong>s. In addition we expect that<br />

with<strong>in</strong> the arctic zone there is a trend <strong>to</strong>wards greater allocation <strong>to</strong> <strong>in</strong>florescences as<br />

the climate gets harsher. In summary, we expect that<br />

1. <strong>plant</strong>s will become smaller <strong>in</strong> harsher climates<br />

2. blossom diameter will not differ between bioclimatic zones<br />

These predictions should hold for forbs, i.e. non­w<strong>in</strong>d poll<strong>in</strong>ated species. Whether this<br />

holds for w<strong>in</strong>d poll<strong>in</strong>ated species depends on whether <strong>in</strong>florescence size has similar<br />

effects on captur<strong>in</strong>g w<strong>in</strong>d­driven pollen flow, which we will explore as well.<br />

Materials and methods<br />

A <strong>to</strong>tal of 37 species have been studied <strong>in</strong> ten different localities (see table 1) on the<br />

northwest coast of the <strong>Svalbard</strong> archipelago. <strong>Svalbard</strong> spans over several degrees of<br />

latitude and therefore has a wide range of temperatures. In addition the golf stream<br />

affects climatic conditions at the west coast . In this <strong>in</strong>vestigation we followed the<br />

def<strong>in</strong>ition of bioclimatic zones (BZ) by Elvebakk et al. (1999). Accord<strong>in</strong>gly, places<br />

with a mean July temperature between 0° and 2.5°C belong <strong>to</strong> BZ A, 2.5 <strong>to</strong> 4°C <strong>to</strong> B<br />

and 4 <strong>to</strong> 6°C <strong>to</strong> BZ C.<br />

In <strong>to</strong>tal 37 species were measured, the majority of them <strong>in</strong> at least two BZ. Seventeen<br />

species have been measured <strong>in</strong> BZ A (localities 6, 7 and 8), 19 species <strong>in</strong> BZ B<br />

(localities 2, 3, 4 and 5) and 23 species <strong>in</strong> BZ C (localities 1, 9 and 11).But because<br />

the changes between the BZ’s that were <strong>in</strong>terest<strong>in</strong>g only use data for n<strong>in</strong>e species (five<br />

forbes and four gram<strong>in</strong>oids) which were found <strong>in</strong> all the three BZ. Each species of<br />

these were measured 15 <strong>to</strong> 95 times, <strong>in</strong> <strong>to</strong>tal 353 measurements.<br />

In the <strong>Svalbard</strong> flora, most forbs can be divided <strong>in</strong><strong>to</strong> <strong>to</strong> major growth forms: cushion<br />

<strong>plant</strong>s and rosette <strong>plant</strong>s. In the rosette <strong>plant</strong>s the vegetative and reproductive organs<br />

are not as easy <strong>to</strong> dist<strong>in</strong>guish as is the case of cushion <strong>plant</strong>s. The leaf rosette makes<br />

up the vegetative part whereas the blossom is the reproductive part, but the stem often<br />

shows pho<strong>to</strong>synthetic activity, sometimes has leaves, but it is also the <strong>in</strong>strument of<br />

expos<strong>in</strong>g the blossom <strong>to</strong> the poll<strong>in</strong>at<strong>in</strong>g vec<strong>to</strong>r. The reproductive parts can be clonal<br />

or sexual and many species, e.g. Saxifraga cernua, have both. For our study we<br />

decided <strong>to</strong> measure only species <strong>in</strong> which <strong>in</strong>dividuals were easy <strong>to</strong> dist<strong>in</strong>guish and<br />

85


preferably grow <strong>in</strong> rosettes, which excludes cuhions. Cerastium arcticum had <strong>to</strong> be<br />

<strong>in</strong>cluded <strong>to</strong> enhance our dataset, even though it is mat­form<strong>in</strong>g.<br />

Table 1. Locality description.<br />

Locality Latitude Longitude Characteristics (bedrock; vegetation type) Bioclimatic<br />

zone<br />

9 Ossian Sarsfjellet 78°93’ 12°47’ acidic <strong>to</strong> alkal<strong>in</strong>e circumneutral;<br />

Cassiope tetragona heath<br />

C<br />

10 Colesdalen 78°11’ 15°13’ weakly acidic; Dryas­Cassiope heath C<br />

1 Kapp Thordsen 78°46’ 15°51’ weakly acidic; calcareous fens C<br />

2 Mayerbukta 79°26’ 12°16’ acidic mora<strong>in</strong>e B<br />

3 Fjortende Julibreen 79°13’ 11°86’ acidic; mesic Luzula confusa B<br />

4 Biskayabukta 79°84’ 12°40’ acidic; mesic Luzula confusa B<br />

5 Re<strong>in</strong>sdyrsflya 79°83’ 13°90’ slightly acidic; Poa alp<strong>in</strong>a snow bed comm. B<br />

6 Florabukta 80°04’ 18°70’ alkal<strong>in</strong>e circumneutral; mesic Luzula nivalis A/B<br />

7 Nordre<br />

Frankl<strong>in</strong>breen<br />

80°15’ 19°66’ acidic; Luzula confusa <strong>polar</strong> <strong>desert</strong> A<br />

8 Lågøya 80°21’ 18°17’ weakly acidic; Papaver <strong>polar</strong> <strong>desert</strong> A<br />

Only <strong>plant</strong>s that were mature but not senescent were measured. Measurements with a<br />

ruler (<strong>to</strong> 1mm accuracy) <strong>in</strong>cluded aboveground <strong>plant</strong> height, longest leaf length<br />

(without petiole) or width, respectively (if the width was larger than the length) and<br />

largest blossom diameter or length of the whole <strong>in</strong>florescence <strong>in</strong> gram<strong>in</strong>oids,<br />

respectively. At least three samples of each forb species were harvested. The largest<br />

s<strong>in</strong>gle <strong>in</strong>dividuals from each species were chosen <strong>in</strong> each locality. The three <strong>plant</strong>s<br />

harvested for biomass determ<strong>in</strong>ation were separated <strong>in</strong><strong>to</strong> stem fraction, leaf fraction<br />

(<strong>in</strong>clud<strong>in</strong>g petioles) and blossom fraction, dried and weighed (only forbs, not<br />

gram<strong>in</strong>oids).<br />

The blossom area (A) of forbs was calculated from diameter by assum<strong>in</strong>g a circular<br />

shape. A Person product­moment correlation was used <strong>to</strong> test the correlation between<br />

biomass and biometric data. Differences <strong>in</strong> the ratios of height­leaf, blossom­leaf and<br />

blossom height versus zones were tested with (one way) ANOVA. The same analysis<br />

was taken <strong>to</strong> test differences <strong>in</strong> the biomass fractions vs. zones. In these statistical<br />

tests we chose the ten biggest <strong>in</strong>dividual <strong>plant</strong>s when we had more than ten<br />

<strong>in</strong>dividuals. For the comparison between the bioclimatic zone­specific general means<br />

across species were used. For the comparisons at the species level we used mean<br />

86


values per species. A t­test was used <strong>to</strong> compare the gram<strong>in</strong>oids of the Alps with the<br />

gram<strong>in</strong>oids of <strong>Svalbard</strong>. For all tests the program S­Plus 7.0 was used.<br />

Results<br />

Forbs<br />

The correlation between biomass and biometrics measures was high for all traits<br />

(blossom area p=0.013, R 2 =0.52; height: p=0.023, R 2 =0.71; leaf length p=0.016,<br />

R 2 =0.68). Thus, for further analyses the biometric data for which we have larger<br />

sample size were used only (rather than the biomass data).<br />

For forbs, blossom size <strong>to</strong> leaf length ratio is significantly larger <strong>in</strong> harsher climates.<br />

Also the blossom area <strong>to</strong> <strong>plant</strong> height ratio <strong>in</strong>creases with harsher climate, but the<br />

<strong>plant</strong> height <strong>to</strong> leaf ratio shows the opposite result and is decreas<strong>in</strong>g (Table 2). In<br />

other words, <strong>plant</strong>s <strong>in</strong>vest relatively more <strong>in</strong> blossoms when the climate gets more<br />

adverse, and <strong>plant</strong> size is affected more than leaf size, which commonly means that<br />

blossoms are displayed closer <strong>to</strong> the ground (Fig. 1). For <strong>in</strong>dividual species, the<br />

blossom <strong>to</strong> <strong>plant</strong> height ratio was higher <strong>in</strong> BZ A than <strong>in</strong> C for most species (Table 3).<br />

Figure 1. Reproductive allocation of <strong>plant</strong>s <strong>in</strong> <strong>Svalbard</strong>. Inflorescence size corresponds <strong>to</strong><br />

blossom diameter <strong>in</strong> forbs and <strong>to</strong> spike length <strong>in</strong> gram<strong>in</strong>oids. The temperatures are<br />

accord<strong>in</strong>g <strong>to</strong> Walker et al 2005 for the <strong>to</strong>tal arctic. The accord<strong>in</strong>g temperatures for<br />

<strong>Svalbard</strong> (oceanic climate are somewhat lower accord<strong>in</strong>g <strong>to</strong> Elvebakk 1999, see<br />

above.<br />

87


Forbs<br />

Gram<strong>in</strong>oid<br />

Gram<strong>in</strong>oids<br />

In gram<strong>in</strong>oids only the <strong>plant</strong> height/leaf length ratio shows a decrease <strong>in</strong> harsher<br />

climates (Table 2 and 4), which means that <strong>to</strong>tal <strong>plant</strong> height is more reduced than leaf<br />

length. The <strong>in</strong>florescence length/<strong>plant</strong> height ratio is unaffected (Fig. 1).<br />

Table 2. Biometric ratios of forbs and gram<strong>in</strong>oid species from the three bioclimatic zones on<br />

<strong>Svalbard</strong>. * = p


Table 4. Species level comparison of ratios <strong>in</strong> gram<strong>in</strong>oids <strong>in</strong> different bioclimatic zones on<br />

<strong>Svalbard</strong>. No significant differences were found.<br />

Zone A<br />

mean±SE (n)<br />

Zone B<br />

mean±SE (n)<br />

89<br />

Zone C<br />

mean±SE (n)<br />

F­value<br />

<strong>in</strong>florescence length/leaf<br />

length ratio<br />

Juncus biglumis 0.23±0.074 (10) 0.15±0.05 (2) 0.236±0.036 (10) 0.41<br />

Luzula confusa 0.12±0.013 (46) 0.24±0.02 (34) 0.232±0.021 (15) 21.47<br />

Luzula nivalis 0.27±0.075 (6) 0.29±0.04 (4) 0.202±0.023 (10) 1.57<br />

Poa arctica 0.76±0.11 (21) 0.93±0.13 (11) 1.256±0.098 (14) 6.27<br />

<strong>in</strong>florescence length/<strong>plant</strong><br />

height ratio<br />

Juncus biglumis 0.11±0.01 (10) 0.09±0.02 (2) 0.117±0.017 (10) 0.15<br />

Luzula confusa 0.08±0.01 (46) 0.14±0.01 (34) 0.106±0.016 (15) 12.52<br />

Luzula nivalis 0.15±0.04 (6) 0.30±0.05 (4) 0.104±0.006 (10) 14.09<br />

Poa arctica 0.35±0.02 (21) 0.40±0.02 (11) 0.386±0.029 (14) 1.20<br />

<strong>plant</strong> height/leaf length<br />

ratio<br />

Juncus biglumis 1.83±0.35 (10) 1.61±0.18 (2) 2.097±0.224 (10) 0.65<br />

Luzula confusa 1.59±0.09 (46) 1.66±0.08 (34) 2.697±0.367 (15) 6.91<br />

Luzula nivalis 1.80±0.12 (6) 0.98±0.048 (4) 1.934±0.178 (10) 12.89<br />

Poa arctica 2.20±0.315 (21) 2.26±0.28 (11) 3.429±0.280 (14) 5.73<br />

Discussion<br />

In our <strong>in</strong>vestigation we found that forbs allocated resources <strong>in</strong> favour of reproductive<br />

structures as it gets colder. As predicted we found a significant reduction <strong>in</strong> overall<br />

<strong>plant</strong> size and leaf size as climate gets harsher. However, blossom size of forbs<br />

decl<strong>in</strong>ed much less whereas gram<strong>in</strong>oid <strong>in</strong>florescences decl<strong>in</strong>ed more or less<br />

proportional <strong>to</strong> <strong>plant</strong> size (isometrically). Hence our hypothesis (2) was not falsified<br />

for forbs, but it was falsified for gram<strong>in</strong>oids.<br />

On species level blossom area did not change <strong>in</strong> a homogenous way. Our results were<br />

either non­significant, humped or showed a decrease <strong>to</strong>wards BZ A. For P. dahlianum<br />

and R. pygmaeus the hump might depend on higher competition <strong>in</strong> BZ C or optimal<br />

habitat conditions <strong>in</strong> BZ B. We also have <strong>to</strong> consider the very small sample sizes for<br />

these species <strong>in</strong> BZ C. In S. cernua we see the same decrease <strong>to</strong>wards BZ A as <strong>in</strong> the<br />

overall species comparison. In BZ C we measured only two <strong>plant</strong>s of S. cernua and<br />

they might not be representative, s<strong>in</strong>ce they also reproduces asexually <strong>in</strong> form of<br />

bulbils. Therefore it is difficult <strong>to</strong> draw valid conclusions about resource allocation <strong>in</strong><br />

this species.<br />

There are few <strong>in</strong>sect species and no bumblebees or bees <strong>in</strong> <strong>Svalbard</strong> (Coulson et al.<br />

2003). Hence, the species assemblage <strong>in</strong> <strong>Svalbard</strong> lacks the species that are the most<br />

important poll<strong>in</strong>a<strong>to</strong>rs <strong>in</strong> temperate regions. This may enhance the evolutionary<br />

pressure <strong>to</strong> produce showy flowers.<br />

Diptera function as the ma<strong>in</strong> poll<strong>in</strong>a<strong>to</strong>rs (Coulson et al. 2003). As most of them are<br />

small, they have <strong>to</strong> stay close <strong>to</strong> the ground <strong>to</strong> avoid gett<strong>in</strong>g blown away by strong<br />

w<strong>in</strong>ds that are typical for the archipelago. It seems that there is no reason for high


latitude <strong>plant</strong>s on <strong>Svalbard</strong> <strong>to</strong> keep a long stem for attract<strong>in</strong>g poll<strong>in</strong>a<strong>to</strong>rs. Rather it is<br />

the other way around. If the blossom gets closer <strong>to</strong> the ground they get closer <strong>to</strong> their<br />

poll<strong>in</strong>a<strong>to</strong>rs. Even if there were poll<strong>in</strong>a<strong>to</strong>rs that might respond <strong>to</strong> taller flower<strong>in</strong>g<br />

stems, frost damage and mechanical damage by strong w<strong>in</strong>ds could impose higher<br />

costs than the <strong>plant</strong> would benefit from expos<strong>in</strong>g the blossom <strong>to</strong> potential poll<strong>in</strong>a<strong>to</strong>r.<br />

Gram<strong>in</strong>oid <strong>plant</strong> species are mostly poll<strong>in</strong>ated by w<strong>in</strong>d. If a w<strong>in</strong>d poll<strong>in</strong>ated <strong>plant</strong> is<br />

not tall enough, the pollen falls on the ground, hence reduc<strong>in</strong>g dispersal. Hav<strong>in</strong>g the<br />

soike sheltered below the surround<strong>in</strong>g vegetation, pollen would not be captured by<br />

w<strong>in</strong>d. Our data illustrate the aerodynamic demands of gram<strong>in</strong>oids and h<strong>in</strong>t at different<br />

evolutionary forces <strong>in</strong> forbs and gram<strong>in</strong>oids.<br />

A comparison with the data published by Fabbro & Körner (2003) <strong>in</strong>dicates a<br />

significant difference only <strong>in</strong> the blossom mass with a smaller mean blossom size <strong>in</strong><br />

the <strong>Svalbard</strong> archipelago, but <strong>in</strong> both cases blossoms are relatively larger <strong>in</strong> cold areas<br />

(higher altitude or higher latitude, Figure 2). However, the effect is more pronounced<br />

<strong>in</strong> the Alps (relatively bigger blossoms). Statistically tests of this comparison were not<br />

possible, s<strong>in</strong>ce we did not have sufficient data from the Alps. The rough estimate is<br />

based on Figure 3 <strong>in</strong> the publication of Fabbro & Körner (2003).<br />

The gram<strong>in</strong>oid data collected <strong>in</strong> <strong>Svalbard</strong> were compared with the gram<strong>in</strong>oid data<br />

from the Alps (pers. communication by B. Krummen, Basel). T­tests showed no<br />

difference <strong>in</strong> height and no difference <strong>in</strong> <strong>in</strong>florescence length between the alp<strong>in</strong>e belt<br />

<strong>in</strong> the Alps and the high <strong>Arctic</strong>. The ratios show some difference though, with<br />

<strong>in</strong>florescence length­leaf ratio be<strong>in</strong>g statistically different (t = ­2.086, df = 45, p­value<br />

= 0.0427). The <strong>in</strong>florescence length <strong>plant</strong> height ratio does not differ and neither does<br />

the <strong>plant</strong> height­leaf length ratio. S<strong>in</strong>ce leaf size measures were done differently <strong>in</strong> the<br />

Alps, this is not surpris<strong>in</strong>g. Still the general conclusion for gram<strong>in</strong>oids is that there is<br />

no divergence between the Alps and the high <strong>Arctic</strong>. In both cases, gram<strong>in</strong>oids and<br />

their <strong>in</strong>florescences decl<strong>in</strong>e <strong>in</strong> size isometrically.<br />

The reason why we see such contrast<strong>in</strong>g patterns between the two growth forms <strong>in</strong><br />

this comparison might be due <strong>to</strong> the different strategies of poll<strong>in</strong>ation, by w<strong>in</strong>d or<br />

animals. W<strong>in</strong>d dispersal probably does not differ that much between the high <strong>Arctic</strong><br />

and high altitudes <strong>in</strong> the Alps. On the other hand the <strong>in</strong>sect poll<strong>in</strong>ated species<br />

experience a completely different set of poll<strong>in</strong>a<strong>to</strong>rs that changes the selective pressure<br />

on blossom morphology <strong>to</strong>wards <strong>in</strong>creas<strong>in</strong>g display area <strong>in</strong> the Alps.<br />

90


Blossom<br />

Stem<br />

Leaf<br />

17,1%<br />

20,2%<br />

24,6%<br />

33,8%<br />

91<br />

49,1%<br />

55,2%<br />

0,000 0,100 0,200 0,300 0,400 0,500 0,600 0,700<br />

High latitude species High alp<strong>in</strong>e species<br />

Figure 2. Plant dry biomas fractions from the Alps and <strong>Svalbard</strong> (from Fabbro and Körner<br />

2003). Biomass data from <strong>Svalbard</strong> not shown <strong>in</strong> the previous text, because they<br />

show the same patterns as the size data.<br />

Conclusion<br />

As the general <strong>plant</strong> size decreases with harshen<strong>in</strong>g climate, the reproductive<br />

<strong>in</strong>vestment is enlarged <strong>in</strong> forbs. Gram<strong>in</strong>oids on the other hand, change isometrically<br />

along the same gradient. This is probably due <strong>to</strong> different poll<strong>in</strong>ation systems. The<br />

comparison between the Alps and <strong>Svalbard</strong> revealed that the blossom size relative <strong>to</strong><br />

vegetative traits <strong>in</strong> forbs is bigger <strong>in</strong> the Alps than <strong>in</strong> <strong>Svalbard</strong>, but the trend goes <strong>in</strong><br />

the same direction. Gram<strong>in</strong>oids show the same patterns <strong>in</strong> <strong>Svalbard</strong> as <strong>in</strong> the Alps.<br />

Poll<strong>in</strong>a<strong>to</strong>r­driven poll<strong>in</strong>ation thus selects <strong>in</strong>florescence size differently from w<strong>in</strong>d­<br />

driven poll<strong>in</strong>ation.<br />

Further studies <strong>in</strong> <strong>Svalbard</strong> on reproductive allocation should be more related <strong>to</strong> the<br />

poll<strong>in</strong>at<strong>in</strong>g species, the possibility of self<strong>in</strong>g as well as the ability of clonal<br />

reproduction.<br />

For comparison between the alp<strong>in</strong>e and arctic regions same genus should be<br />

considered <strong>to</strong> reduce effects of basic morphological differences.<br />

References<br />

Bill<strong>in</strong>gs, W. D. 1974: Adaptations and orig<strong>in</strong>s of alp<strong>in</strong>e <strong>plant</strong>s. <strong>Arctic</strong> and Alp<strong>in</strong>e<br />

Research 6:129­142<br />

Brochmann, C. & Steen, S. 1999: Sex and Genes <strong>in</strong> he Flora of <strong>Svalbard</strong>­<br />

Implications for Conservation Biology and Climate Change. Det Norske<br />

Vitenskaps­Akademi. I. Matematisk Naturvitenskapelig Klasse, Skrifter, Ny Serie<br />

38: 33­72<br />

Carlsson, B. A. & Callaghan, T. V. 1990: Effects of flower<strong>in</strong>g on the shoot dynamics<br />

of Carex bigelowii along an altitud<strong>in</strong>al gradient <strong>in</strong> Swedish Lapland. Journal of<br />

Ecology 78:152­165<br />

Coulson, S.J., Hodk<strong>in</strong>son, I. D. & Webb N. R. 2003: Aerial dispersal over a high<br />

arctic glacier foreland: Midtre Lovénbreen, <strong>Svalbard</strong>. Polar biology 26: 530­537


Elvebakk A. 1999: Bioclimatic delimitation and subdivision of the arctic. Det Norske<br />

Vitenskaps­Akademi. I. Matematisk Naturvitenskapelig Klasse, Skrifter, Ny Serie<br />

38: 81­112<br />

Elvebakk, A. 2005: A vegetation map of <strong>Svalbard</strong> on the scale 1 : 3.5 mill.<br />

Phy<strong>to</strong>coenologia 35: 951­967<br />

Fabbro, T. & Körner, C. 2004: Altitud<strong>in</strong>al differences <strong>in</strong> flower traits and<br />

reproductive allocation. Flora 199: 70­81<br />

Heschel, M. S., Hausmann, N. & Schmitt, J. 2005: Test<strong>in</strong>g for stress­dependent<br />

Inbreed<strong>in</strong>g Depression <strong>in</strong> Impatiens capensis (Balsam<strong>in</strong>aceae). American Journal of<br />

Botany 92: 1322­1329<br />

Jonsdottir, I. S. & Callaghan, T. V. 1990: Intraclonal translocation of ammonium and<br />

nitrate nitrogen <strong>in</strong> Carex bigelowii Torr. ex Schwe<strong>in</strong>. us<strong>in</strong>g 15N and nitrate<br />

reductase assays. New Phy<strong>to</strong>logist 114: 419­428<br />

Jónsdóttir, I. S. 2005: Terrestrial ecosystems on <strong>Svalbard</strong>: heterogeneity, complexity<br />

and fragility from an arctic island perspective. Biology and Environmen:<br />

proceed<strong>in</strong>gs of the Royal Irish Academy, 105B: 155­165<br />

Körner, C., Neumayer, M., Pelaez Menendez­Riedl, S. & Smeets­Scheel, A. 1989:<br />

Functional morphology of mounta<strong>in</strong> <strong>plant</strong>s. Flora 182: 353­383<br />

Körner, C. 1999: Alp<strong>in</strong>e <strong>plant</strong> life­ Functional Plant Ecology if High Mounta<strong>in</strong><br />

Ecosystems­ Spr<strong>in</strong>ger Berl<strong>in</strong><br />

Mart<strong>in</strong>, O. C. & Hospital, F. 2005: Two and Tree­Locus Tests for L<strong>in</strong>kage Analysis<br />

Us<strong>in</strong>g Recomb<strong>in</strong>ant Inbred L<strong>in</strong>es. Genetics Society of America 173: 451­459<br />

Prock, S. & Körner, C. 1996: A cross­cont<strong>in</strong>ental comparison of phenology, leaf<br />

dynamics and dry matter allocation <strong>in</strong> arctic and temperate zone herbaceous <strong>plant</strong>s<br />

from contrast<strong>in</strong>g altitudes. Ecological Bullet<strong>in</strong>s 45: 93­103<br />

Raffl, C., Marcante, S. & Erschbamer, B. 2007: The role of spontaneous self<strong>in</strong>g <strong>in</strong> the<br />

pioneer species Saxifraga aizoides. Flora 202: 128­132<br />

Seger, J. & Eckhart, V.M. 1996: Evolution of sexual systems and sex allocation <strong>in</strong><br />

<strong>plant</strong>s when growth and reproduction overlap. Proceed<strong>in</strong>gs of the Royal Society of<br />

London series b­Biological Sciences 263: 833<br />

92


Freez<strong>in</strong>g resistance <strong>in</strong> high arctic <strong>plant</strong> species of<br />

<strong>Svalbard</strong> <strong>in</strong> mid­summer<br />

Christian Körner 1,3 and Inger Greve Alsos 2,3<br />

1 Institute of Botany, University of Basel, Schönbe<strong>in</strong>strasse 6, 4056 Basel, Switzerland,<br />

ch.koerner@unibas.ch, 2 UNIS ­ The University Centre <strong>in</strong> <strong>Svalbard</strong>, P.O. Box 156, 9171 Longyearbyen,<br />

Norway, <strong>in</strong>gera@unis.no, 3 Results of the summer course <strong>Arctic</strong> Plant Ecology (AB 326) at UNIS with<br />

13 students: Ane Christensen Tange, Christian Engebretsen Pettersen, Eike Müller, Elke Morgner,<br />

Emma Krist<strong>in</strong>a Bengtsson, Heike Baldeweg, Henrik An<strong>to</strong>nsson, Ingel<strong>in</strong>n Aarnes, Kathr<strong>in</strong> Bockmühl,<br />

Marte Holten Jørgensen, Merete Wiken Dees, Simone Lang, Unni Vik<br />

Abstract<br />

It is well known that freez<strong>in</strong>g temperatures put arctic and alp<strong>in</strong>e <strong>plant</strong>s at risk dur<strong>in</strong>g<br />

the grow<strong>in</strong>g period only. Here we explore responses of high arctic <strong>plant</strong> species <strong>to</strong> a<br />

simulated early summer freez<strong>in</strong>g event of ­7 °C. After gradual cool<strong>in</strong>g, several hours<br />

at target conditions and slow thaw<strong>in</strong>g over 21 hours, the 12 species tested exhibited a<br />

broad damage spectrum from zero <strong>to</strong> 100%. We conclude that ­7 °C is a critical<br />

temperature for many arctic taxa, and repeated freez<strong>in</strong>g episodes like this would exert<br />

major changes <strong>in</strong> species abundance.<br />

Key words: Cold climate, frost, low temperature, Spitsbergen<br />

Introduction<br />

Freez<strong>in</strong>g resistance is the first and most fundamental environmental filter <strong>plant</strong><br />

species have <strong>to</strong> pass <strong>to</strong> establish susta<strong>in</strong>ably <strong>in</strong> periodically cold environments. The<br />

taxa found <strong>in</strong> areas with periodic freez<strong>in</strong>g temperatures have <strong>to</strong> be resistant, otherwise<br />

they would not be there. However, freez<strong>in</strong>g <strong>to</strong>lerance of <strong>plant</strong>s has two aspects. One is<br />

the loss of certa<strong>in</strong> (above­ground) organs such as leaves and flowers, another one is<br />

the complete ext<strong>in</strong>ction of an <strong>in</strong>dividual. The repeated occurrence of the first may,<br />

however, pave the way <strong>to</strong> the second. Another facet of freez<strong>in</strong>g <strong>to</strong>lerance is time,<br />

which aga<strong>in</strong> has two dimensions, a short term and a long term. In the short term,<br />

freez<strong>in</strong>g <strong>to</strong>lerance goes through seasonal cycles of acclimation, with harden<strong>in</strong>g and<br />

deharden<strong>in</strong>g associated with both pho<strong>to</strong>period and experienced temperature (Sakai &<br />

Larcher 1987, Heide 2005). Plants are commonly much more susceptible when they<br />

are active, i.e. dur<strong>in</strong>g the grow<strong>in</strong>g season, than dur<strong>in</strong>g the dormant season (w<strong>in</strong>ter).<br />

Tissues of arctic and alp<strong>in</strong>e <strong>plant</strong>s may <strong>to</strong>lerate almost any temperature (some even<br />

liquid nitrogen) when they are dormant, but might be killed at temperatures between ­<br />

2 and ­9 °C, when actively grow<strong>in</strong>g and flower<strong>in</strong>g. Hence it is well established that<br />

extreme summer events are the critical issue <strong>to</strong> look at (for a review see Körner 2003).<br />

The climate of <strong>Svalbard</strong> is quite untypical for the given latitud<strong>in</strong>al position between<br />

76.5° and 80.5° of northern latitude, because the Archipelago is hit by the golf stream,<br />

caus<strong>in</strong>g its temperatures <strong>to</strong> lack extremes known for other high arctic and antarctic<br />

latitudes, both <strong>in</strong> terms of w<strong>in</strong>ter m<strong>in</strong>ima and summer maxima (Engelskjøn et al.<br />

2003, Przybylak 2007). Although the annual mean temperature is ca. ­5 °C at sea<br />

level at the Longyearbyen airport station (a comparatively warm area for <strong>Svalbard</strong>; for<br />

93


a climate description see Rønn<strong>in</strong>g 1996), the 30 year absolute m<strong>in</strong>ima there are ­10 °C<br />

for June and 0 °C for July (the lowest temperature ever measured, ­46 °C <strong>in</strong> March;<br />

annual absolute maximum +23 °C <strong>in</strong> July). At sea level and <strong>in</strong> favorable regions, such<br />

as the <strong>in</strong>ner Fjords, the grow<strong>in</strong>g season normally does not last longer than 80­100<br />

days <strong>in</strong> the warmest places. It may be as short as 6 weeks <strong>in</strong> less sheltered coastal sites<br />

and there is hardly any higher <strong>plant</strong> growth <strong>in</strong> the <strong>polar</strong> <strong>desert</strong> north of 80°. Even the<br />

most favorable locations do not permit upright shrubs <strong>to</strong> grow. The about 165 higher<br />

<strong>plant</strong> species known for <strong>Svalbard</strong> (Brochmann & Steen 1999, Rønn<strong>in</strong>g 1996, Elven &<br />

Elvebakk 1996), all have their grow<strong>in</strong>g po<strong>in</strong>ts (apical meristems) with<strong>in</strong> a few<br />

centimeters above ground or below the soil surface (the majority), only expos<strong>in</strong>g<br />

leaves and flowers <strong>to</strong> atmospheric conditions. These tissues may thus be experienc<strong>in</strong>g<br />

short term low temperature extremes, while subsurface structures would profit from<br />

the moderat<strong>in</strong>g <strong>in</strong>fluence of immersion <strong>in</strong> soil.<br />

Although the sun is sh<strong>in</strong><strong>in</strong>g 24 hours <strong>in</strong> summer, and even midnight sun is quite<br />

<strong>in</strong>tense, slope <strong>in</strong>cl<strong>in</strong>ation and slope direction can cause a periodic screen<strong>in</strong>g of<br />

vegetation from direct <strong>in</strong>solation. While direct solar radiation is commonly caus<strong>in</strong>g<br />

<strong>plant</strong> temperature <strong>to</strong> rise above air temperature <strong>in</strong> the arctic (by 4­17K accord<strong>in</strong>g <strong>to</strong><br />

Biebl 1968), the lack of direct <strong>in</strong>solation can cause ground surface temperatures <strong>to</strong><br />

drop below air temperature by radiative cool<strong>in</strong>g under clear sky conditions (Körner<br />

2003). Temperatures may be 2­4 K below the air temperature a meteorological station<br />

might record under standard measurement conditions. In addition, altitude causes a<br />

mean reduction of 0.7K per100 m <strong>in</strong> this area and flower<strong>in</strong>g <strong>plant</strong>s grow above 500 m<br />

a.s.l. <strong>in</strong> some places. Hence, <strong>plant</strong>s may experience temperatures as low as ­15 °C <strong>in</strong><br />

June or ­5 °C <strong>in</strong> July, at least once <strong>in</strong> a century, at the climatic conditions recorded so<br />

far. Most recently, the climate <strong>in</strong> <strong>Svalbard</strong> has warmed significantly, and most<br />

glaciers retreat (Przybylak 2007). However, a warmer climate may not exclude/reduce<br />

the likelihood of such extreme events, but may accelerate spr<strong>in</strong>g development and<br />

thus, actually enhance the risk of <strong>plant</strong>s becom<strong>in</strong>g exposed <strong>to</strong> such conditions <strong>in</strong> June<br />

(the beg<strong>in</strong>n<strong>in</strong>g of the grow<strong>in</strong>g season). It would thus be good <strong>to</strong> know how sensitive<br />

<strong>plant</strong> species actually are <strong>to</strong> summer time freez<strong>in</strong>g events and whether such events<br />

could cause differential damage across species and thereby <strong>in</strong>fluence community<br />

composition. We explored this possibility <strong>in</strong> a small screen<strong>in</strong>g experiment, us<strong>in</strong>g fully<br />

developed, flower<strong>in</strong>g <strong>plant</strong> <strong>in</strong>dividuals of 12 common species grow<strong>in</strong>g at 30 m above<br />

sea level, <strong>in</strong> Endalen 4 km east of Longyearbyen.<br />

Methods<br />

At least 5 mature leaves and 5 non­senescent, fully open <strong>in</strong>florescences (except for S.<br />

nivalis) were collected for each of three treatments (see below) from randomly<br />

selected <strong>in</strong>dividuals around 6 p.m. on July 10, 2007 (3x5=15 samples for 12 species).<br />

Samples were collected <strong>in</strong><strong>to</strong> and transported <strong>to</strong> the lab <strong>in</strong> 100 ml plastic vials and were<br />

exposed <strong>to</strong> the follow<strong>in</strong>g three conditions by 8 p.m. the same day: a cool room at +5<br />

°C (control), a freezer set at ­18 °C (guaranteed freez<strong>in</strong>g damage) and a freezer set <strong>to</strong> ­<br />

7 °C. We had selected the ­7 °C treatment because this temperature falls midway the<br />

known range of summer­time freez<strong>in</strong>g damage <strong>in</strong> alp<strong>in</strong>e <strong>plant</strong> species (Körner 2003).<br />

All species analyzed here (Table 1) are widespread <strong>in</strong> <strong>Svalbard</strong> and classified as<br />

temperature <strong>in</strong>different species except Dryas oc<strong>to</strong>petala, which is classified as weakly<br />

thermophilous, and Petasites frigidus and Silene furcata, which both are classified as<br />

dis<strong>in</strong>ctly thermophilous species (Elvebakk 1989). Dryas oc<strong>to</strong>petala is common <strong>in</strong> the<br />

northern arctic <strong>tundra</strong> zone but does not grow <strong>in</strong> the <strong>polar</strong> <strong>desert</strong> zone. Petasites<br />

94


frigidus and S. furcata are limited <strong>to</strong> the climatically more favorable <strong>in</strong>ner fjord zone<br />

of <strong>Svalbard</strong> (www.svalbardflora.net).<br />

The two groups of vials <strong>in</strong> the freezers were placed <strong>in</strong> <strong>in</strong>sulat<strong>in</strong>g boxes, so that the<br />

lowest temperature was approached slowly (over several hours), persisted over several<br />

hours (until noon of July 11) and was slowly allowed <strong>to</strong> ramp back <strong>to</strong> +5 C <strong>in</strong> the cool<br />

room. Temperatures were logged <strong>in</strong>side the boxes with one channel temperature<br />

loggers (±0.2 K, Tidbit, Onset Corp., Bourne, USA). By 5 p.m. samples were<br />

removed from the cool room and immersed <strong>in</strong> distilled water <strong>in</strong> petri­dishes on white<br />

paper at room temperature (Fig. 1). The next morn<strong>in</strong>g (12 July) samples were<br />

<strong>in</strong>spected by eye for discoloration, turgor and/or smell and the immersion water was<br />

checked conduc<strong>to</strong>metrically for ion leach<strong>in</strong>g (cell membrane collaps). Because the<br />

amount of tissue differed greatly (because of different leaf and flower sizes) the<br />

conduc<strong>to</strong>metric read<strong>in</strong>gs have only semi­quantitative value. The visual <strong>in</strong>spection was<br />

repeated 24 hours later. In flowers we counted the number of damaged flowers, <strong>in</strong><br />

leaves we estimated the % leaf area damaged per leaf, and calculated a mean.<br />

Figure 1 a­b. Assessment of tissue conditions after freez<strong>in</strong>g treatment <strong>in</strong> petri­dishes filled with<br />

water.<br />

95


Results and Discussion<br />

The m<strong>in</strong>imum temperatures recorded <strong>in</strong> the vic<strong>in</strong>ity of the samples <strong>in</strong> the freezers<br />

were ­18.2 and ­7.2 °C. All control tissue (+5 °C) rema<strong>in</strong>ed <strong>in</strong>tact, freshly look<strong>in</strong>g,<br />

and served as a reference. All ­18° treated tissue was dead and served as a reference<br />

for how damaged tissue looks like. The ­7.2 treated cohort exhibited a clearly species<br />

specific differentiation <strong>in</strong> damage, with some species/organ types completely<br />

damaged or undamaged or partially damaged (Tab. 1, Fig.2). Two species turned out<br />

<strong>to</strong> be difficult <strong>to</strong> assess. Saxifraga nivalis leaves largely looked f<strong>in</strong>e, but there was<br />

significant ion leakage <strong>to</strong> the immersion water. Luzula confusa naturally has reddish<br />

and rigid leaves and flowers and neither showed clear color changes nor turgor loss,<br />

nor was ion leakage obvious, but some leaves and flowers looked slightly altered. All<br />

other species/organs could be clearly judged. Damage <strong>in</strong> flowers was generally much<br />

greater, but our sample size was <strong>to</strong>o small <strong>to</strong> rank species <strong>in</strong> a trustworthy manner.<br />

We thus, present two damage categories only for flowers (Tab. 2).<br />

Table 1. Rank<strong>in</strong>g of exam<strong>in</strong>ed <strong>plant</strong> species for freez<strong>in</strong>g damage <strong>in</strong> leaves.<br />

_____________________________________________________________________<br />

_________<br />

Rank Plant species Damage (%) Conductivity (µS)<br />

1 Papaver dahlianum 0 19<br />

2 Dryas oc<strong>to</strong>petala 2 17<br />

3 Petasites frigidus 7 51<br />

4 Saxifraga nivalis 10 54<br />

5 Salix <strong>polar</strong>is 12 17<br />

6 Cerastium arcticum 26 114 a<br />

7 Luzula confusa 40 19<br />

8 Saxifraga cespi<strong>to</strong>sa 58 ­ b<br />

9 Oxyria digyna 60 138<br />

10 Bis<strong>to</strong>rta vivipara 84 63 c<br />

11 Saxifraga cernua 98 239<br />

12 Silene furcata 100 383<br />

a Central, young part of rosette alife, outer and bigger part (older leaves) dead.<br />

b Some soil and dead leaf material attached <strong>to</strong> rosettes, i.e. odd read<strong>in</strong>g.<br />

c Note, the small leaf area is caus<strong>in</strong>g a small signal despite large damage.<br />

In summary, these data show that a ­7 °C freez<strong>in</strong>g event at that time of the year and/or<br />

developmental stage of <strong>plant</strong>s would have a dramatic impact on above ground<br />

structures of these <strong>plant</strong>s <strong>in</strong> mid­summer. Yet, species known for their occurrence <strong>in</strong><br />

the most extreme <strong>polar</strong> habitats, such as Papaver dahlianum showed not only no leaf<br />

damage, but even a fraction of the otherwise delicate look<strong>in</strong>g, big flowers had<br />

survived. Dryas oc<strong>to</strong>petala commonly ranked as weakly thermophilous (Elvebakk<br />

1989), survived with almost 100% <strong>in</strong>tact foliage. Even more surpris<strong>in</strong>g, Petasites<br />

frigidus, ranked as dist<strong>in</strong>ctly thermophilous (Elvebakk 1989), showed over 90 %<br />

survival. Thus the distribution of this species is probably not limited by extreme low<br />

temperatures. Rather, other fac<strong>to</strong>rs such as limited ability for sexual reproduction<br />

(Brochmann & Steen 1999, Rønn<strong>in</strong>g 1996) may limit its distribution <strong>in</strong> <strong>Svalbard</strong>.<br />

96


Fig. 2 a­f. Leaf and flower conditions 30 hours after thaw<strong>in</strong>g. <strong>From</strong> left <strong>to</strong> right: control (+5<br />

°C), “mild” freez<strong>in</strong>g (­7.2 °C), severe freez<strong>in</strong>g (­18.2 °C). a Silene and Cerastium, b<br />

Papaver and Saxifraga cespi<strong>to</strong>sa, c Bis<strong>to</strong>rta and S. cernua, d Luzula and Dryas, e S.<br />

nivalis and Salix, f Oxyria and Petasites<br />

97


Table 2. Rank<strong>in</strong>g of exam<strong>in</strong>ed <strong>plant</strong> species by freez<strong>in</strong>g damage <strong>in</strong> flowers a .<br />

(1) 10­30% survival, i.e. 70­90 % damage:<br />

Oxyria digyna<br />

Dryas oc<strong>to</strong>petala<br />

Luzula confusa<br />

Saxifraga cespi<strong>to</strong>sa<br />

Papaver dahlianum<br />

Saxifraga nivalis b<br />

(2) 0% survival, i.e. 100 % damage:<br />

Silene furcata<br />

Cerastium arcticum<br />

Bis<strong>to</strong>rta vivipara<br />

Saxifraga cernua<br />

Salix <strong>polar</strong>is<br />

a Petasites frigidus had no flowers.<br />

b Uncerta<strong>in</strong>, flowers looked almost ok.<br />

Of the 5 <strong>in</strong>dividuals (leaf rosette with <strong>in</strong>florescence) of Saxifraga cespi<strong>to</strong>sa, 2<br />

<strong>in</strong>dividuals showed negative geotropism over night, i.e. they uprighted their fully<br />

<strong>in</strong>tact flower<strong>in</strong>g shoots from the flat position <strong>in</strong> the petri­dish (Fig.3). For half of the<br />

tested species, such an event would eradicate the complete reproductive <strong>in</strong>vestment of<br />

that season, but <strong>in</strong> these species most or all leaves would also be killed.<br />

Silene furcata, the other distictly thermophilous species analysed here, emerged as the<br />

most sensitive species. Hence, it may serve as an <strong>in</strong>dica<strong>to</strong>r species of favourable site<br />

conditions, provided such selective freez<strong>in</strong>g would occur. The <strong>plant</strong> genus does not<br />

seem <strong>to</strong> be of predictive value, given that Saxifraga exhibits particularly sensitive and<br />

robust representatives. Silene acaulis was found <strong>to</strong> be very robust aga<strong>in</strong>st midsummer<br />

freez<strong>in</strong>g near Tromsø (surviv<strong>in</strong>g ­8.5 <strong>to</strong> ­9 °C; Junttila & Robberecht 1993). The latter<br />

authors had confirmed earlier evidence that growth temperatures have a strong<br />

<strong>in</strong>fluence on actual freez<strong>in</strong>g resistence. It was thus considered that repeated warm<br />

episodes <strong>in</strong> the arctic could weaken freez<strong>in</strong>g <strong>to</strong>lerance (Marchand et al. 2006). We<br />

sampled <strong>plant</strong>s dur<strong>in</strong>g a very warm period, with noon air temperatures of around +12<br />

°C, which could have sensitized our test <strong>plant</strong>s.<br />

The low freez<strong>in</strong>g resistance of Saxifraga cernua was unexpected given that this<br />

species is common <strong>in</strong> the <strong>polar</strong> <strong>desert</strong> zone and is one of the species reach<strong>in</strong>g highest<br />

up <strong>in</strong> the mounta<strong>in</strong>s <strong>in</strong> <strong>Svalbard</strong> (>900 m a.s.l., Sund<strong>in</strong>g 1960). Also, some other<br />

hardy arctic species such as Bis<strong>to</strong>rta vivipara, Oxyria digyna and Saxifraga cepi<strong>to</strong>sa<br />

showed over 50 % freez<strong>in</strong>g damage. Common for all these species is their ability <strong>to</strong><br />

produce viable seeds or bulbils even at cold sites (Cooper et al. 2004). Recruitment<br />

from seed bank may therefore replace any lost <strong>in</strong>dividuals due <strong>to</strong> freez<strong>in</strong>g events and<br />

thus secure long­time survival of these species even at the coldest sites <strong>in</strong> the <strong>Arctic</strong>.<br />

98


Fig. 3 a­c. Close­up examples of flower conditions after the ­7°C treatment. Note the negative<br />

geotropic position of 2 Saxifraga caespi<strong>to</strong>sa shoots after 30 hours (3a), flowers (one<br />

of each damaged at<br />

­7 °C and one undamaged at ­7 °C) of Dryas oc<strong>to</strong>petala (3b) and Papaver dahlianum<br />

(3c).<br />

It can be concluded that dur<strong>in</strong>g the grow<strong>in</strong>g season, freez<strong>in</strong>g temperatures of ­7 °C or<br />

possible less, would damage a significant fraction of the arctic flora. Given that ­10<br />

°C had been recorded for air temperature <strong>in</strong> June, this means that earlier spr<strong>in</strong>g<br />

growth <strong>in</strong> the course of global warm<strong>in</strong>g at an otherwise unchanged likelihood of the<br />

occurrence of such an extreme events would lead <strong>to</strong> massive losses of tissue and<br />

above ground productivity. It would be <strong>in</strong>terest<strong>in</strong>g <strong>to</strong> know, whether low temperature<br />

extremes dur<strong>in</strong>g the grow<strong>in</strong>g season had <strong>in</strong> fact became rarer as the overall means <strong>in</strong><br />

temperatures rose <strong>in</strong> recent years. Our survey <strong>in</strong>dicates the critical range of<br />

temperature <strong>to</strong> be explored <strong>in</strong> a more detailed assessment and that biodiversity<br />

(species identity) matters a lot. Overall, the data appear <strong>to</strong> match the summer freez<strong>in</strong>g<br />

<strong>to</strong>lerance known for alp<strong>in</strong>e <strong>plant</strong>s of the temperate zone (Körner 2003) and do not<br />

<strong>in</strong>dicate a greater frost hard<strong>in</strong>ess for these high arctic <strong>plant</strong>s as had been suggested<br />

from experiments with Saxifraga oppositifolia under controlled growth conditions<br />

(Robberecht & Junttila 1992).<br />

Acknowledgements<br />

UNIS organized and f<strong>in</strong>anced this arctic <strong>plant</strong> <strong>ecology</strong> course <strong>in</strong> July 2007 and<br />

provided the needed <strong>in</strong>frastructure. The participat<strong>in</strong>g students contributed the practical<br />

work and are listed on the title page.<br />

99


References<br />

Biebl, R. 1968: Über Wärmehaushalt und Temperaturresistenz arktischer Pflanzen <strong>in</strong><br />

Westgrönland. Flora 157:327­354<br />

Brochmann, C. & Steen, S. 1999: Sex and genes <strong>in</strong> the flora of <strong>Svalbard</strong> ­<br />

Implications for conservation biology and climate change. Det Norske Videnskaps­<br />

Akademi. I. Matematisk­ Naturvitenskapelig Klasse, Skrifter, Ny Serie 38:33­72<br />

Cooper, E.J., Alsos, I.G., Hagen, D., Smith, F.M., Coulson, S.J. & Hodk<strong>in</strong>son, I.D.<br />

2004: Recruitment <strong>in</strong> the <strong>Arctic</strong>: diversity and importance of the seed bank. Journal<br />

of Vegetation Science 15: 115­124<br />

Elvebakk, A. 1989: Biogeographical zones of <strong>Svalbard</strong> and adjacent areas based on<br />

botanical criteria. Institute of Biology and Geology. University of Tromsø, Tromsø<br />

Elven, R. & Elvebakk, A. 1996: Part 1. Vascular <strong>plant</strong>s. A catalogue of <strong>Svalbard</strong><br />

<strong>plant</strong>s, fungi, algae, and cyanobacteria (ed. by A. Elvebakk & P. Prestrud), pp 9­55.<br />

Norsk Polar<strong>in</strong>stitutt, Oslo<br />

Engelskjøn, T., Lund, L. & Alsos, I.G. 2003: Twenty of the most thermophilous<br />

vascular <strong>plant</strong> species <strong>in</strong> <strong>Svalbard</strong> and their conservation state. Polar Research 22:<br />

317­339<br />

Heide, O.M. 2005: Ecotypic variation among European arctic and alp<strong>in</strong>e populations<br />

of Oxyda digyna. Arct Antarct Alp Res 37:233­238<br />

Junttila, O. & Robberecht, R. 1993: The <strong>in</strong>fluence of season and phenology on<br />

freez<strong>in</strong>g <strong>to</strong>lerance <strong>in</strong> Silene acaulis L., a subarctic and arctic cushion <strong>plant</strong> of<br />

circum<strong>polar</strong> distribution. Ann Bot 71:423­426<br />

Körner, C. 2003: Alp<strong>in</strong>e <strong>plant</strong> Life. Spr<strong>in</strong>ger, Berl<strong>in</strong><br />

Marchand, F.L., Kockelbergh, F., van de Vijver, B., Beyens, L. & Nijs, I. 2006: Are<br />

heat and cold resistance of arctic species affected by successive extreme<br />

temperature events? New Phy<strong>to</strong>l 170:291­300<br />

Przybylak, R. 2007: Recent air­temperature changes <strong>in</strong> the <strong>Arctic</strong>. Annals of<br />

Glaciology 46:316­324<br />

Robberecht, R. & Junttila, O. 1992: The Freez<strong>in</strong>g Response of an <strong>Arctic</strong> Cushion<br />

Plant, Saxifraga caespi<strong>to</strong>sa L.: Acclimation, Freez<strong>in</strong>g Tolerance and Ice<br />

Nucleation. Ann Bot 70:129­135<br />

Rønn<strong>in</strong>g, O.I. 1996: The flora of <strong>Svalbard</strong>. Norwegian Polar Institute, Oslo<br />

Sakai, A. & Larcher, W. 1987: Frost Survival of Plants. Responses and Adaptation <strong>to</strong><br />

Freez<strong>in</strong>g Stress. Ecological Studies 62, Spr<strong>in</strong>ger, Berl<strong>in</strong><br />

Sund<strong>in</strong>g, P. 1960: Høydegrenser for høyere <strong>plant</strong>er på <strong>Svalbard</strong> (Height limits for<br />

vascular <strong>plant</strong>s <strong>in</strong> <strong>Svalbard</strong>). Norsk Polar<strong>in</strong>stitutt Årbok 32­59<br />

100

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!