29.03.2015 Views

in vivo

in vivo

in vivo

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

a<br />

b<br />

Recent publications<br />

Figure 1<br />

Molecular imag<strong>in</strong>g enables one to visualize and quantify molecular dynamics, <strong>in</strong>teractions, and k<strong>in</strong>etics <strong>in</strong> cells for molecular<br />

systems biology. (a) HILO microscopy for molecular imag<strong>in</strong>g <strong>in</strong> cells. Illum<strong>in</strong>ation by a highly-<strong>in</strong>cl<strong>in</strong>ed and th<strong>in</strong> beam <strong>in</strong>creases<br />

image <strong>in</strong>tensity and decreases background <strong>in</strong>tensity, yield<strong>in</strong>g a signal/background ratio up to about eightfold greater than<br />

that of epi-illum<strong>in</strong>ation. A high ratio yielded clear s<strong>in</strong>gle-molecule images and three-dimensional images. (b) To evaluate the<br />

HILO microscopy technique, we reconstructed a three-dimensional image from serial images of nuclear pore complexes<br />

labeled with EGFP-import<strong>in</strong> β <strong>in</strong> an MDBK cell. Scale bar, 5.0 µm.<br />

molecules. Dur<strong>in</strong>g the first phase of development<br />

we achieved s<strong>in</strong>gle-color HILO, but now we have<br />

<strong>in</strong>stalled a new multi-color system to observe<br />

<strong>in</strong>termolecular <strong>in</strong>teractions <strong>in</strong> ever greater detail.<br />

Quantification of Molecular K<strong>in</strong>etics and<br />

Interactions <strong>in</strong> Cells<br />

To explore potential new uses of this<br />

technology, we performed quantitative analysis<br />

on nuclear import to demonstrate its application<br />

to k<strong>in</strong>etic studies (Fig. 2 left). We could visualize<br />

s<strong>in</strong>gle molecules of GFP-import<strong>in</strong> β mediat<strong>in</strong>g<br />

the import of cargo through nuclear pores <strong>in</strong><br />

cells as bright spots on the nuclear envelope at a<br />

concentration at or below the nanomolar range.<br />

The <strong>in</strong>teraction time of s<strong>in</strong>gle molecules with<br />

nuclear pore complexes (NPCs) was determ<strong>in</strong>ed<br />

base on the duration of the fluorescent spots.<br />

At greater than nanomolar concentrations<br />

of GFP-import<strong>in</strong> β, <strong>in</strong>dividual NPCs were clearly<br />

visualized as fluorescent spots (Fig.1b). The<br />

number of GFP-import<strong>in</strong> β molecules bound to<br />

a s<strong>in</strong>gle NPC could be estimated by determ<strong>in</strong><strong>in</strong>g<br />

the ratio of the fluorescence <strong>in</strong>tensities of s<strong>in</strong>gle<br />

NPC images to that of s<strong>in</strong>gle molecule images.<br />

We determ<strong>in</strong>ed the number of bound molecules<br />

as a function of the GFP-import<strong>in</strong> β concentration.<br />

Import<strong>in</strong> β <strong>in</strong> the absence of RanGTP exhibited<br />

two types of b<strong>in</strong>d<strong>in</strong>g with the NPC. The higher<br />

aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g showed a dissociation constant<br />

of approximately 0.3 nM.The maximum number<br />

of bound molecules was calculated to be<br />

approximately 7 molecules/NPC, although the<br />

actual number is probably 8 molecules/NPC<br />

s<strong>in</strong>ce the NPC exhibits an 8-fold symmetry. The<br />

lower aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g exhibited almost the same<br />

k<strong>in</strong>etic parameters irrespective of the presence or<br />

absence of cargo, with a dissociation constant of<br />

70+50/-30 nM and a maximum bound number<br />

of 110 +60/-40 molecules / NPC.<br />

We then exam<strong>in</strong>ed the rate of translocation<br />

<strong>in</strong>to the nucleus of cargo or import<strong>in</strong> β at the<br />

s<strong>in</strong>gle-cell level. The rate of nuclear import was<br />

obta<strong>in</strong>ed as the maximum slope <strong>in</strong> the time<br />

course of nuclear accumulation. The import rate<br />

was plotted as a function of the cargo-import<strong>in</strong> β<br />

concentrations, and it was fitted to a Michaelis-<br />

Menten equation with a Michaelis constant of 54<br />

±16 nM. The import rate showed a significant<br />

correlation with the <strong>in</strong>verse of the retention time,<br />

which represents the frequency of translocations<br />

per second of s<strong>in</strong>gle molecules. The correlation<br />

coefficient was approximately 8 molecules/NPC,<br />

which exhibits the number of the translocation<br />

sites <strong>in</strong>to the nucleus per NPC. This corresponds<br />

well with the 8-fold symmetry of the NPC<br />

structure.<br />

“In silico” Model<strong>in</strong>g and Simulation<br />

As shown above, molecular <strong>in</strong>teractions<br />

with the assembled NPC were quantified by<br />

s<strong>in</strong>gle molecule analysis - retention times,<br />

the number of associated molecules, the<br />

dissociation constant, and stoichiometry of<br />

import were all determ<strong>in</strong>ed (Fig. 2 left). In order<br />

to understand the molecular mechanism of<br />

nuclear import, a numerical model of import was<br />

constructed us<strong>in</strong>g these k<strong>in</strong>etic parameters.<br />

Computer simulation was carried out based on<br />

the model with two types of b<strong>in</strong>d<strong>in</strong>g sites. The<br />

simulation fit very well with both the results of<br />

s<strong>in</strong>gle-molecule experiments and the molecular<br />

k<strong>in</strong>etic features <strong>in</strong> cells.<br />

As demonstrated here<strong>in</strong>, the comb<strong>in</strong>ation<br />

of s<strong>in</strong>gle molecule quantification and model<strong>in</strong>g<br />

opens new approaches for develop<strong>in</strong>g molecular<br />

system biology.<br />

Tokunaga, M., Imamoto, N.,<br />

Sakata-Sogawa, K.: Highly <strong>in</strong>cl<strong>in</strong>ed<br />

th<strong>in</strong> illum<strong>in</strong>ation enables clear<br />

s<strong>in</strong>gle-molecule imag<strong>in</strong>g <strong>in</strong> cells.<br />

Nat Methods. 5, 159-161 (2008).<br />

Yamasaki, S., Sakata-Sogawa, K.,<br />

Hasegawa, A., Suzuki, T., Kabu, K.,<br />

Sato, E., Kurosaki, T., Yamashita,<br />

S., Tokunaga, M., Nishida, K.,<br />

Hirano, T.: Z<strong>in</strong>c is a novel second<br />

messenger. J. Cell Biol. 177,<br />

637-645 (2007)<br />

Yamasaki S., Ishikawa, E.,<br />

Sakuma, M., Ogata, K., Sakata-<br />

Sogawa K., Hiroshima, M., Wiest,<br />

D. L., Tokunaga M., Saito, T.<br />

Mechanistic basis of pre-T cell<br />

receptor-mediated autonomous<br />

signal<strong>in</strong>g critical for thymocyte<br />

development. Nature Immunol. 7,<br />

67-75 (2006)<br />

Yokosuka T., Sakata-Sogawa K.,<br />

Kobayashi, W., Hiroshima, M.,<br />

Hashimoto-Tane, A., Tokunaga<br />

M., Dust<strong>in</strong>, M. L., Saito, T.<br />

Newly generated T cell receptor<br />

microclusters <strong>in</strong>itiate and susta<strong>in</strong><br />

T cell activation by recruitment<br />

of Zap70 and SLP-76. Nature<br />

Immunol. 6, 1253-1262 (2005)<br />

Shi<strong>in</strong>a N., Sh<strong>in</strong>kura K., Tokunaga<br />

M. A novel RNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> <strong>in</strong><br />

neuronal RNA granules: Regulatory<br />

mach<strong>in</strong>ery for local translation.<br />

J.Neuroscience, 25, 4420-4434<br />

(2005)<br />

a<br />

b<br />

Imag<strong>in</strong>g<br />

and<br />

In Silico<br />

Figure 2<br />

The comb<strong>in</strong>ation of s<strong>in</strong>gle molecule<br />

quantification and “<strong>in</strong> silico” model<strong>in</strong>g<br />

opens new approaches for develop<strong>in</strong>g<br />

molecular systems biology. (left) Molecular<br />

<strong>in</strong>teractions with the assembled NPC were<br />

quantified by s<strong>in</strong>gle molecule analysis.<br />

Retention times, the number of associated<br />

molecules, the dissociation constant,<br />

and stoichiometry of import were all<br />

determ<strong>in</strong>ed. Simulation based on a model<br />

with two types of multi-b<strong>in</strong>d<strong>in</strong>g sites us<strong>in</strong>g<br />

these parameters fit well with the molecular<br />

k<strong>in</strong>etic features <strong>in</strong> cells. (right) Aim<strong>in</strong>g at<br />

understand<strong>in</strong>g immune cells as molecular<br />

systems, we are go<strong>in</strong>g to construct “<strong>in</strong><br />

silico” cell models based on s<strong>in</strong>gle-molecule<br />

quantification. Bidirectional research is<br />

essential to reconstruct cell functions <strong>in</strong><br />

silico; research from molecules to systems<br />

by s<strong>in</strong>gle molecule analysis, and feedback<br />

research from systems to molecules.<br />

dynamics, <strong>in</strong>teractions, and k<strong>in</strong>etics <strong>in</strong> cells<br />

for molecular systems biology.<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!