10.04.2015 Views

EQUATIONS OF ELASTIC HYPERSURFACES

EQUATIONS OF ELASTIC HYPERSURFACES

EQUATIONS OF ELASTIC HYPERSURFACES

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3. CALCULUS <strong>OF</strong> DIFFERENTIAL OPERATORS ON <strong>HYPERSURFACES</strong> 91<br />

Theorem 3.29 The following identities hold for the deformation tensor and the Lamé operator<br />

on S :<br />

Def S (U) := [ D jk (U) ] , n×n Djk (U) = 1 [<br />

( ) ]<br />

D k U j + D j U k + D U νj ν k , (3.111)<br />

2<br />

[Def S (U)] ⊤ = Def S (U) and Def S (U)ν = 0 , (3.112)<br />

L S =µ π S ∇ ∗ S ∇ S + (λ + µ) ∇ S ∇ ∗ S − µ H 0<br />

S W S<br />

=−µ ∆ S − (λ + µ) π S ∇ S Div S − µ H 0<br />

S W S . (3.113)<br />

Proof: Given the local nature of the identities we seek to prove, it suffices to work locally,<br />

in a small open subset O of S , where an orthonormal frame T 1 , . . . , T n−1 to TS has been<br />

fixed. As before, we set T n := ν so that {T j } 1≤j≤n is an ortho-normal frame for R n , at points<br />

in O.<br />

For a tangential field U to S with supp U ⊂ O by the definition of the deformation<br />

tensor we have:<br />

〈Def S (U)V, W 〉 := Def S (U)(π S V, π S W ), ∀ V, W ∈ R n . (3.114)<br />

The equalities (3.112) are easy to check and we proceed with the proof of (3.113). Applying<br />

(3.68) and (2.225) we eventually obtain (3.111):<br />

D jk (U)= 1 [ ] 1<br />

Uj;k + U k;j =<br />

2<br />

2<br />

= 1 2<br />

[<br />

D S k U j + D S j U k +<br />

[<br />

D k U j + D j U k + D U<br />

(<br />

νj ν k<br />

) ] .<br />

n∑<br />

U r (D r ν k )ν j +<br />

r=1<br />

n∑ ]<br />

U r (D r ν j )ν k<br />

Now if V is also a smooth vector field, tangential to S , applying (3.111) we get<br />

∫<br />

∫<br />

〈Def ∗ S Def S (U), V 〉 dS = 〈Def S (U), Def S (V )〉 dS<br />

S<br />

=<br />

j,k=1<br />

S<br />

n∑<br />

∫<br />

1<br />

[<br />

][<br />

]<br />

D k U j + D j U k + D U (ν j ν k ) D k V j + D j V k + D V (ν j ν k ) dS . (3.115)<br />

4 S<br />

To proceed, we first consider<br />

∫<br />

n∑<br />

S<br />

j,k=1<br />

∫<br />

= 2<br />

∫<br />

(D j U k + D k U j )(D j V k + D k V j ) dS = 2<br />

n∑<br />

S<br />

j,k=1<br />

[<br />

−V k D 2 j U k − V k D j D k U j − H 0<br />

∫<br />

= − 〈∆ S U, V 〉 dS − 2<br />

S<br />

∫<br />

n∑<br />

S<br />

j,k=1<br />

S<br />

j,k=1<br />

r=1<br />

n∑<br />

Dj ∗ (D j U k + D k U j )V k dS<br />

]<br />

S ν j (D j U k )V k − HS 0 ν j (D k U j )V k dS<br />

[<br />

V k D j D k U j + H 0<br />

S ν j (D k U j )V k<br />

]<br />

dS , (3.116)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!