29.04.2015 Views

Performance of Rice Husk Ash Concrete at Elevated ... - Cafet Innova

Performance of Rice Husk Ash Concrete at Elevated ... - Cafet Innova

Performance of Rice Husk Ash Concrete at Elevated ... - Cafet Innova

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

www.cafetinnova.org<br />

Indexed in<br />

Scopus Compendex and Geobase Elsevier, Chemical<br />

Abstract Services-USA, Geo-Ref Inform<strong>at</strong>ion Services-USA<br />

ISSN 0974-5904, Volume 05, No. 03 (01)<br />

June 2012, P.P. 640-643<br />

<strong>Performance</strong> <strong>of</strong> <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> <strong>Concrete</strong> <strong>at</strong> Elev<strong>at</strong>ed Temper<strong>at</strong>ures<br />

SURYA VEERA VASUDEVA RAO. R and MANIDEEP TUMMALAPUDI<br />

Department <strong>of</strong> Civil Engineering, GITAM University, India<br />

Email: manitdeep@gmail.com, vasu_relangi99@yahoo.com<br />

Abstract: In the present investig<strong>at</strong>ion, a feasibility study is made to utilize the <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> as an admixture in<br />

concrete and to investig<strong>at</strong>e the impact <strong>of</strong> elev<strong>at</strong>ed temper<strong>at</strong>ures on compressive strength <strong>of</strong> concrete. The<br />

proportions <strong>of</strong> w<strong>at</strong>er, cement, fine aggreg<strong>at</strong>e and coarse aggreg<strong>at</strong>e for M 20 grade concrete is arrived as per IS:<br />

10262 – 2007. 5%,10%,15%and 20% <strong>of</strong> cement is replaced with rice husk ash for the study to arrive <strong>at</strong> the optimum<br />

replacement and they are tested <strong>at</strong> room temper<strong>at</strong>ure ,100,300,500,700 degrees centigrade temper<strong>at</strong>ures. Use <strong>of</strong> rise<br />

husk ash in concrete not only reduces cost but also improves resistance against elev<strong>at</strong>ed temper<strong>at</strong>ures and durability.<br />

The utiliz<strong>at</strong>ion <strong>of</strong> <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> (RHA) in concrete is environmental friendly and reduces the carbon dioxide<br />

emission.<br />

Introduction:<br />

<strong>Concrete</strong> is a widely used construction m<strong>at</strong>erial for<br />

various types <strong>of</strong> structures due to its structural stability<br />

and strength. All the m<strong>at</strong>erials required for producing<br />

such huge quantities <strong>of</strong> concrete come from the earth’s<br />

crust. Thus, it depletes its resources every year cre<strong>at</strong>ing<br />

ecological strains. On the other hand, human activities<br />

on the earth produce solid waste in considerable<br />

quantities <strong>of</strong> over 2500/MT per year, including<br />

industrial wastes, agricultural wastes and wastes from<br />

rural and urban societies. Recent technological<br />

development has shown th<strong>at</strong> these m<strong>at</strong>erials are<br />

valuable as inorganic and organic resources and can<br />

produce various useful products. Amongst the solid<br />

wastes, the most prominent ones are fly ash, blast<br />

furnace slag, rice husk, silica fume and demolished<br />

construction m<strong>at</strong>erials [1] [3].<br />

India is a major rice producing country, and the husk<br />

gener<strong>at</strong>ed during milling is mostly used as a fuel in the<br />

boilers for processing paddy, producing energy through<br />

direct combustion and / or by gasific<strong>at</strong>ion. About 20<br />

million tones <strong>of</strong> RHA is produced annually. This RHA<br />

is a gre<strong>at</strong> environment thre<strong>at</strong> causing damage to the land<br />

and the surrounding area in which it is dumped. In the<br />

present investig<strong>at</strong>ion, cement is replaced by rice husk<br />

ash <strong>at</strong> different percentages ranging from 0 % to 20 %<br />

to study its effect on compressive strength. The<br />

investig<strong>at</strong>ion is also aimed <strong>at</strong> to study the impact on<br />

compressive strength <strong>of</strong> these mixes when exposed to<br />

elev<strong>at</strong>ed temper<strong>at</strong>ures in the range <strong>of</strong> 27 0 c to 800 0 c.<br />

[2][4][6].<br />

Importance <strong>of</strong> Study:<br />

The objective <strong>of</strong> the study is to utilize the agricultural<br />

waste produced in the world to the tune <strong>of</strong> 120 million<br />

tones.<br />

It reduces the consumption <strong>of</strong> cement thereby saving<br />

raw m<strong>at</strong>erial base, power and environment.<br />

The focus <strong>of</strong> the present study is to investig<strong>at</strong>e the<br />

usefulness <strong>of</strong> rice husk ash concrete exposed to elev<strong>at</strong>ed<br />

temper<strong>at</strong>ures which is <strong>of</strong> interest for many researchers<br />

in the recent past.<br />

Liter<strong>at</strong>ure review rel<strong>at</strong>ed to topic <strong>of</strong> the study Mauro M<br />

Tashima et al. 1 studied how different grades <strong>of</strong> RHA<br />

concrete with 5% & 10% <strong>of</strong> ash, replacing the cement,<br />

can influence its physico-mechanical properties and<br />

concluded th<strong>at</strong>, by adding RHA a decrease in w<strong>at</strong>er<br />

absorption was noted and compressive and splitting<br />

tensile strengths showed decreasing strength by 25%<br />

and 38.7% respectively with increase in RHA levels<br />

when compared to control sample.<br />

Dakroury A. El - et al. 11 explained and studied the waste<br />

immobiliz<strong>at</strong>ion performance <strong>of</strong> (Cs+) wastes in cement<br />

RHA mixtures and the results show th<strong>at</strong> RHA addition<br />

<strong>of</strong> 30% causes a significant increase in the hydraulic<br />

stability <strong>of</strong> cemented waste form as RHA enhances the<br />

strength, leaching and durability <strong>of</strong> cement .<br />

Experimental Programme:<br />

1.1 M<strong>at</strong>erials Used:<br />

Cement:<br />

Cement used in the experimental work is PORTLAND<br />

POZZOLONA CEMENT conforming to IS: 1489<br />

(Part1)-1991. The physical properties <strong>of</strong> the cement are<br />

#02050341 Copyright ©2012 CAFET-INNOVA TECHNICAL SOCIETY. All rights reserved.


MANIDEEP TUMMALAPUDI and SURYA VEERA VASUDEVA RAO. R<br />

641<br />

obtained by conducting the tests specified as per IS:<br />

269/4831 and cement confirms to the requirements as<br />

per IS 1489-1991.<br />

<strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong>:<br />

<strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> used in the present experimental study<br />

was obtained from Orissa. General specific<strong>at</strong>ions,<br />

Physical Properties and Chemical Composition <strong>of</strong> this<br />

RHA used in this study which are furnished by the<br />

supplier are given in Table-1, Table-2 and Table-3.<br />

[6][7]<br />

Fine Aggreg<strong>at</strong>e:<br />

Fine aggreg<strong>at</strong>e (sand) used in this experimental work<br />

confirms to zone III as per the specific<strong>at</strong>ions <strong>of</strong> IS 383:<br />

1970. The Specific gravity <strong>of</strong> the Fine aggreg<strong>at</strong>e is<br />

2.61.<br />

Coarse Aggreg<strong>at</strong>e:<br />

Crushed granite <strong>of</strong> 20 mm maximum size has been used<br />

as coarse aggreg<strong>at</strong>e. The sieve analysis <strong>of</strong> combined<br />

aggreg<strong>at</strong>es confirms to the specific<strong>at</strong>ions <strong>of</strong> IS 383:<br />

1970 for graded aggreg<strong>at</strong>es. The specific gravity <strong>of</strong><br />

coarse aggreg<strong>at</strong>e is 2.70.<br />

W<strong>at</strong>er:<br />

In this project potable w<strong>at</strong>er free from organic substance<br />

was used for mixing as well as curing <strong>of</strong> concrete.<br />

Super Plasticizers:<br />

Conplast SP430A2 complies with IS: 9103 and BS:<br />

5075 and ASTM-C-494 Type ‘G’ as a high range w<strong>at</strong>er<br />

reducing admixture for obtaining a workable mix.<br />

1.2 Mix Design for M20-Grade <strong>Concrete</strong>:<br />

The mix proportions arrived for M 20 grade concrete<br />

designed as per IS 10262 – 2007[8] are presented in<br />

Table -4. Cement in proportions <strong>of</strong> 0%, 5%, 10%, 15%<br />

and 20% is replaced with RHA.<br />

Tests Conducted:<br />

Standard 200 T compression testing machine is used for<br />

testing <strong>of</strong> samples <strong>of</strong> size 100*100*100 mm which are<br />

cast and cured for 28days,he<strong>at</strong>ed <strong>at</strong> different<br />

temper<strong>at</strong>ures for two hours. Specimens tested <strong>at</strong> room<br />

temper<strong>at</strong>ure i.e., 27degree centigrade are used for<br />

comparison purpose.<br />

Three each specimens <strong>of</strong> 0%,5%,10%,15%and 20%<br />

<strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> replaced cubes are he<strong>at</strong>ed <strong>at</strong> temper<strong>at</strong>ure<br />

<strong>of</strong> 27 (Room Temper<strong>at</strong>ure),100,300,500and700 degree<br />

centigrade and their residual compressive strength are<br />

tabul<strong>at</strong>ed. The weight gain/loss is also noted for each<br />

sample and shown in figure below.<br />

Bogie Hearth Furnace supplied by M/s Industrial<br />

Furnace and Controls, Bangalore is employed to he<strong>at</strong><br />

specimens to different temper<strong>at</strong>ures. The he<strong>at</strong>ed<br />

samples are air cooled and tested for compressive<br />

Strength.<br />

Most concrete structures are designed assuming th<strong>at</strong><br />

concrete processes sufficient compressive strength but<br />

not the tensile strength. The compressive strength is the<br />

main criterion for the purpose <strong>of</strong> structural design. To<br />

study the strength development <strong>of</strong> <strong>Rice</strong> husk ash (RHA)<br />

concrete <strong>at</strong> elev<strong>at</strong>ed temper<strong>at</strong>ures in comparison to<br />

Control concrete, compressive strength tests were<br />

conducted <strong>at</strong> the ages <strong>of</strong> 7 and 28 days are reported as<br />

follows.<br />

Results and Discussions:<br />

1.3 General:<br />

The mix proportions along with test results presented in<br />

Table 5. Table 6&7 illustr<strong>at</strong>es Compressive strength<br />

development <strong>of</strong> Normal concrete and <strong>Rice</strong> husk ash<br />

concrete <strong>at</strong> different curing periods and <strong>at</strong> different<br />

elev<strong>at</strong>ed temper<strong>at</strong>ures. Compressive strength behavior<br />

<strong>of</strong> RHA concrete <strong>at</strong> elev<strong>at</strong>ed temper<strong>at</strong>ure designed by<br />

the replacement method are studied, where in the effect<br />

<strong>of</strong> age and percentage replacement <strong>of</strong> cement with RHA<br />

on Compressive strength is studied for M20 grade<br />

concrete and the slump <strong>of</strong> concrete is maintained <strong>at</strong> 75<br />

mm for all mixes.<br />

Conclusions:<br />

Based on the study carried out on the strength behavior<br />

<strong>of</strong> <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> Replaced <strong>Concrete</strong>, the following<br />

conclusions can be drawn:<br />

1. Replacement <strong>of</strong> RHA in the range <strong>of</strong> 5% to 20%<br />

does not change the compressive strength <strong>of</strong><br />

concrete. However, the workability decreases with<br />

the increase in RHA replacement level. To<br />

compens<strong>at</strong>e the loss <strong>of</strong> workability super plasticizer<br />

in the dosage <strong>of</strong> 10ml, 12ml, 14ml and 16 ml is<br />

required for 5%, 10%, 15% and 20% RHA<br />

replacement concrete respectively.<br />

2. The residual compressive strength <strong>of</strong> concrete for all<br />

the RHA replacements increases <strong>at</strong> the initial<br />

temper<strong>at</strong>ures <strong>of</strong> 100 0 c – 150 0 c and thereafter<br />

decreases gradually upto temper<strong>at</strong>ure <strong>of</strong> 700 0 c<br />

because pore w<strong>at</strong>er evapor<strong>at</strong>es <strong>at</strong> 100 0 c and the<br />

concrete m<strong>at</strong>rix becomes brittle.<br />

3. 15% replacement <strong>of</strong> RHA is found to be optimal as<br />

the residual compressive strength <strong>at</strong> various<br />

temper<strong>at</strong>ures in the range <strong>of</strong> 100 – 700 degrees<br />

centigrade shows similar strengths to th<strong>at</strong> <strong>of</strong><br />

concrete with out RHA <strong>at</strong> 28 days(as in fig1) .<br />

4. An overall performance <strong>of</strong> 10% RHA replacement<br />

level <strong>at</strong> both 7 and 28 days shows better residual<br />

compressive strength than th<strong>at</strong> <strong>of</strong> normal concrete<br />

and other replacements(as in fig1&2).<br />

Intern<strong>at</strong>ional Journal <strong>of</strong> Earth Sciences and Engineering<br />

ISSN 0974-5904, Vol. 05, No. 03 (01), June 2012, pp. 640-643


642<br />

<strong>Performance</strong> <strong>of</strong> <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> <strong>Concrete</strong> <strong>at</strong> Elev<strong>at</strong>ed Temper<strong>at</strong>ures<br />

5. By using this <strong>Rice</strong> husk ash in concrete as<br />

replacement the emission <strong>of</strong> green house gases can<br />

be decreased to a gre<strong>at</strong>er extent. As a result there is<br />

gre<strong>at</strong>er possibility to gain more number <strong>of</strong> carbon<br />

credits.<br />

6. The technical and economic advantages <strong>of</strong><br />

incorpor<strong>at</strong>ing <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> in concrete should be<br />

exploited by the construction and rice industries,<br />

more so for the rice growing n<strong>at</strong>ions <strong>of</strong> Asia.<br />

References:<br />

[1] P.ChandanKumar and P.MalleswaraRao, “A Study<br />

on Reuse <strong>of</strong> <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> in <strong>Concrete</strong>”, Pollution<br />

Research ,29 (1), 2010, pp157-163 .<br />

[2] P.Kumar Mehta, “<strong>Concrete</strong> Technology for<br />

Sustainable Development,” <strong>Concrete</strong> Intern<strong>at</strong>ional,<br />

November 1999, pp.47-53.<br />

[3] P.Kumar Mehta, “Reducing the Environmental<br />

Impact <strong>of</strong> <strong>Concrete</strong>,” <strong>Concrete</strong> Intern<strong>at</strong>ional,<br />

October 2001, pp.61-66.<br />

[4] Min-Hong Zhang and V. Mohan Malhotra, “High-<br />

<strong>Performance</strong> <strong>Concrete</strong> Incorpor<strong>at</strong>ing <strong>Rice</strong> <strong>Husk</strong><br />

<strong>Ash</strong> as a Supplementary Cementing M<strong>at</strong>erial,” ACI<br />

M<strong>at</strong>erials Journal, November-December 1996,<br />

pp.629-636.<br />

[5] Mauro M. Tashima, Carlos A. R Da Silva, Jorge L.<br />

Akasaki, and Michele Beniti Barbosa, “The<br />

Possibility <strong>of</strong> adding the <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> (RHA) to<br />

the <strong>Concrete</strong>,” Conference, FEIS/UNESP, Brazil<br />

2001<br />

[6] G.V.Rama Rao and M.V.Sheshagiri Rao,”High<br />

performance <strong>Concrete</strong> with <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong> as<br />

Mineral Admixture,”ICI Journal, April-June 2003,<br />

pp.17-22.<br />

[7] Rama Rao G.V and Seshagiri Rao M.V (2004)<br />

”High <strong>Performance</strong> <strong>Concrete</strong> Mix Design using<br />

<strong>Husk</strong> <strong>Ash</strong> As Mineral Admixture”, proceedings <strong>of</strong><br />

n<strong>at</strong>ional conference on m<strong>at</strong>erials and structures,<br />

Warangal, pp.65-70.<br />

[8] Rama Samy and Dr. Viswa. S (oct-dec,2009)<br />

“Durable To Properties Of <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong><br />

<strong>Concrete</strong>”, ICI journal Indian concrete institute pp.<br />

41-50.<br />

[9] IS 10262-2009: Indian Standard <strong>Concrete</strong> Mix<br />

Proportioning-Guidelines, Bureau Of Indian<br />

Standards,2009, New Delhi.<br />

[10] In this paper Moayad N. AlKhalaf et al., the effect<br />

<strong>of</strong> rice husk ash content as partial replacement <strong>of</strong><br />

cement on compressive strength and volume<br />

changes <strong>of</strong> different mixes is only investig<strong>at</strong>ed.<br />

Table 1: Specific<strong>at</strong>ions <strong>of</strong> <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong><br />

Silica<br />

Humidity<br />

Mean Particle Size<br />

Color<br />

Loss on Ignition <strong>at</strong><br />

800 0 C<br />

Table 4: Mix Proprotions for M20 Grade <strong>Concrete</strong><br />

90% minimum<br />

2% maximum<br />

25 microns<br />

Grey<br />

4% maximum<br />

Table 2: Physical Properties <strong>of</strong> <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong><br />

Physical St<strong>at</strong>e Solid – Non Hazardous<br />

Appearance Very fine powder<br />

Particle Size 25 microns – mean<br />

Color<br />

Grey<br />

Odour<br />

Odourless<br />

Specific Gravity 2.3<br />

Table 3: Chemical Properties <strong>of</strong> <strong>Rice</strong> <strong>Husk</strong> <strong>Ash</strong><br />

SiO 2 93.80%<br />

Al 2 O 3 0.74%<br />

Fe 2 O 3 0.30%<br />

TiO 2 0.10%<br />

CaO 0.89%<br />

MgO 0.32%<br />

Na 2 O 0.28%<br />

K 2 O 0.12%<br />

Loi 3.37%<br />

W<strong>at</strong>er Cement Fine Aggreg<strong>at</strong>e Coarse Aggreg<strong>at</strong>e<br />

191.61 /m 3 383 kg 594kg 1356 kg<br />

0.5 1 1.55 3.54<br />

Table 5: Mix Proportion <strong>of</strong> <strong>Rice</strong> <strong>Husk</strong> <strong>Concrete</strong> for 0%, 5%, 10%, 15%&20% Replacement<br />

Grade <strong>of</strong><br />

<strong>Concrete</strong><br />

Cement<br />

in Kgs<br />

<strong>Rice</strong> <strong>Husk</strong><br />

<strong>Ash</strong> in Kgs<br />

Fine<br />

Aggreg<strong>at</strong>e<br />

in Kgs<br />

Coarse<br />

Aggreg<strong>at</strong>e<br />

in Kgs<br />

W<strong>at</strong>er<br />

in Ltrs<br />

Super<br />

Plasticizer<br />

in ml<br />

M20(0%) 1 0 1.55 3.54 0.5 -<br />

M20(5%) 0.95 0.05 1.55 3.54 0.5 10<br />

M20(10%) 0.9 0.1 1.55 3.54 0.5 12<br />

M20(15%) 0.85 0.15 1.55 3.54 0.5 14<br />

M20(20%) 0.8 0.2 1.55 3.54 0.5 16<br />

Intern<strong>at</strong>ional Journal <strong>of</strong> Earth Sciences and Engineering<br />

ISSN 0974-5904, Vol. 05, No. 03 (01), June 2012, pp. 640-643


MANIDEEP TUMMALAPUDI and SURYA VEERA VASUDEVA RAO. R<br />

643<br />

Table 6: Compressive Strength <strong>at</strong> different Temper<strong>at</strong>ures for different RHA Replacements <strong>at</strong> 7 Days<br />

Table 7: Compressive Strength <strong>at</strong> different Temper<strong>at</strong>ures for different RHA Replacements <strong>at</strong> 28 Days<br />

Temper<strong>at</strong>ure Compressive Strength in N/mm 2<br />

RHA Replacement ->% 0 5 10 15 20<br />

27 0 c 34.49 36.38 38.2 34.01 30.45<br />

100 0 c 35.69 37.39 39.65 35.28 31.45<br />

300 0 c 32.4 33.4 36.9 31.12 27.9<br />

500 0 c 28.84 29.8 31.47 28.09 24.36<br />

700 0 c 25.99 26.75 27.8 24.65 23.7<br />

Figure 1:<br />

Figure 2:<br />

Intern<strong>at</strong>ional Journal <strong>of</strong> Earth Sciences and Engineering<br />

ISSN 0974-5904, Vol. 05, No. 03 (01), June 2012, pp. 640-643

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!